Automatic Transistor-Level Design and
Layout Placement of FPGA Logic and
Routing from an Architectural Specification

by
Ketan Paddia

Supervisor: Jonathan Rose

April 2001






Automatic Transistor-Level Design and
Layout Placement of FPGA Logic and
Routing from an Architectural Specification

by
Ketan Paddia

A THESISSUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
BACHELOR OF APPLIED SCIENCE

DIVISION OF ENGINEERING SCIENCE
FACULTY OF APPLIED SCIENCE AND ENGINEERING
UNIVERSITY OF TORONTO
Supervisor: Jonathan Rose

April 2001



ABSTRACT

Automatic Transistor-Level Design and
Layout Placement of FPGA Logic and
Routing from an Architectural Specification

Bachelor of Applied Science and Engineering, April 2001
Ketan Paddia
Divison of Enginesring Science
Faculty of Applied Science and Engineering
University of Toronto

One of the most intengve tasks involved in the design of FPGASs is chip layout. For
commercid FPGASs, the layout is done largely by hand, in a process that takes many
months to complete.

Our research creates an infrastructure that begins the process of dlowing FPGA
architects to creste FPGA layouts automaticaly, requiring only a reativdy smple
description of the architecture of that FPGA.

In the firg phase of our work, we develop tools that adlow us to transform
architectural  descriptions of FPGAs into spice-dyle, tranddor-levd  netligs  that
implement the logic and routing for Sngle tiles of those FPGAS.

In the second phase of our work, we develop a tool that creates the layout
placement of the FPGA tiles described by those netlits  Findly, we use this tool to
demongdrate that the layout placement can be improved by teking advantage of domain-
specific knowledge about the structures within our FPGAS.



ACKNOWLEDGMENTS

Above dl, | would like to thank my supervisor, Jonathan Rose, for dl the guidance
and encouragement that he provided throughout this project. His unwavering enthusiasm
and generous availability were a tremendous source of motivation for me.

| would ds0 like to thank Vaughn Betz of Altera, whose groundbresking research
a the Universty of Toronto was essentid to the feaghility of this project. In addition, |
learned much of what | needed to know for this work through working with him a Right
Track CAD and later at Altera Corporation.

| want to acknowledge the generous cooperation of Eliass Ahmed and William
Chow from Jonathan Rose's research group at the Universty of Toronto. Elias provided
the st of achitecture files that | used for my experiments, and William shared a
Windows port of VPR’ s graphics package that | used for my own tool.



TABLE OF CONTENTS

TABLE OF CONTENTS ...ttt sttt st iv
LIST OF FIGURES .......oouicieiereses ettt sttt st st anenneeneeneens Vi
LIST OF TABLES ...ttt st nenneens Vii
Chapter L INtrOdUCTION.......ccoiieiieee e este e sreesseenneeneenneas 1
Rt R |V T o (V7= o o TSSO 1
1.2 SOOPE... ettt R e n e n e n e e nneene e 3
1.3 TheSISOrganiZalioN ........cccecceieeseeieeieeseeeeseesteeee e e ste e sreesreeaesseeseeeneesreeseens 4
Chapter 2 BackgrOUNG .........ccooiiiiiieiie ettt e e e b e saeesreenree s 5
2.1 OVEIVIEW Of FPGAS......ooiciee ettt sttt e e re e s neennee s 5
2.2 FPGA TSt 9
2.3 VPR (Vesatile Place and ROULE) .........cccoveieieeiiecc et 11
232  VPRArChIteCtUre File......coeoieeeiece e 12

24 TranSStor-1eVel SITUCKUIES.........coveeece et 13
25 Automatic Cell Layout Placement ..........ccooveveiienicie e 17
Chapter 3 Tileable Netlist Generation..........cccoeeeieeieieereee e s 19
31  Goalsand REQUITEIMENTS .......cccoiiiirieeieeeeee et 19
3.2 CAD FIOW .ttt sttt b 20
3.3  Transstor-level Netlist GENeration...........cccccueeieeiiieciie s 21
331 Transstor-level Netlist BOUNary.........ccocooeverereriieieenieseesese e 21
3.3.2 Transstor-level Netlist SIrUCTUre .......cceccvveeecieececeeeee e 23
3.3.3 Tileability Constraints for POIS.........ccccoviieiieie e 26
334 SRAM Programming .......cccceceeeereerieriesesessesieseseseeseessessesse s seessesseseenes 33

34  Cél-level Netlist GENEration ........cccceevveeeereeseee e 34
341  Cél-level Netlist SITUCLUNE..........coviieieeecec e 35
Chapter 4 Automatic Cell Placement of FPGA Tile Netlists.......ccccooveveeiieviieccnnnee. 37
O o | 37
4.2 CAD FIOW.tiitiiiieiie sttt bbb 37
4.3 NElISEREAOEN ..o e 38
S N (== L 0% [l = (o ST 39
45  CONSrANt GENEIBLON ......ccueeveeeeesteeieseesteeteeeesteeeesseesseeseseesseesesseesseesesseessens 40
4.6  Placement ENQINE........coooiiiiiicie ettt s 41
4.6.1  Initial PlaCement .........oooieiieiiieee e s 41
4.6.2  COSt FUNCLON......ccueiiie ettt s ere e b 41
4.6.3 Annealing SChedule ..........ccooeeiieie e 43
4.6.4  MOVE GENEIALION........ceciiieiee ettt et e e s e be e s ree b sne e ebeesaeeeanas 44

A7 Placer QUEAITTY......ccueiiieiriiite st 47



Chapter 5 Using Domain-Specific Knowledge to Improve Cell Placements............. 48

51 Experimental MethodolOgy........ccccceririeiieneniinie e 438
5.2  SRAM PlaComent......cccocieiieiieiseesie et see et eee e s e e 49
521 SRAMSINOUr Tile NetliSIS......ccooviiieeresesee s 49
522  SRAM ReQUIANIZBLION.......c.eiiiieiiieeie et 50
Chapter 6 Conclusions and FUTUr@ WOTK ........ccooveiirineninineeeeee e 54
B.1  SUMM@IY ...ttt st ebe e e ba e sabe e e sabe e e sane e e nnreas 54
6.2 FULUIEWOIK ... e e 54
Appendix A Graphical Representation of TileSin ATL ...cccoooviiieieneneneeneeeeee 56
REFERENCES ..ottt sttt st st ne e nes 62



LIST OF FIGURES

Figure 2.1 High-level view of FPGAS that we wWork With............cccoooeeiiiieiicce i, 6
Figure 2.2 Two types of routing switches — adapted from [1] ........ccccooeierinineninicneeee 7
Figure 2.3 Logic block contents — adapted from [1] ........cccveverierieiinireese e 7
Figure 2.4 Typica input connection blocks — adapted from [1] .......ccccoovvcevieveicie v, 8
Figure 2.5 Typica output connection block — adapted from [1] ........cccoovriiieiiiinveneene 9
Figure 2.6 FPGA formed by replicating a single tile (Shown at top) ........ccccevererererenne. 10
Figure 2.7 SImplified VPR CAD flOW.....cccv oot 11
Figure 2.8 Excerpt of a VPR architecture file..........cccovveiiieciiiie e 12
Figure 2.9 SRAM schematics used in (a) VPR and (b) in this work — adapted from [1] 14
Figure 2.10 Buffer schematic — adapted from [1] .....ccccoeveeeeecesiece e 14
Figure 2.11 Multiplexer schematic — adapted from [1] .......cccoveveeieiceveece e 15
Figure 2.12 Logic block schematic — adapted from [1] ........ccoceieieienenenene e 15
Figure 2.13 Hip-flop schematicsused in (8) VPR and (b) in thiswork — adapted from [1]

................................................................................................................................... 16
Figure 2.14 Look-up Table (LUT) schematic — adapted from [1] ......cccccevvrinnininnnnne. 17
Figure 3.1 VPR_Layout CAD FlOW .....cciiiiiiieieieee et 20
Figure 3.2 Boundary of VPR _Layout NEtliStS..........ccoevveevieiecieseese e 22
Figure 3.3 Sample section from atypical transstor-leve netlist output by VPR_Layout

................................................................................................................................... 23
Figure 3.4 Tile portion generated by sample netlist in Figure 3.3 ........cccceovecvveereceenee 24
Figure 3.5 Ports lined up to create routing wire tileability ..........ccccoevevieciiiceciccecee 28
Figure 3.6 Ports lined up to create switch block tileability...........cccooeiiiinininininiee 30
Figure 3.7 Ports lined up to create tileable, diagonal switch block connections ............. 31
Figure 3.8 Ports lined up to create connection block tileability..........cccccevveieiiciennnne. 32
Figure 3.9 A 4-LUT driven by 16 SRAM cellson the sameword line.........c.coceeeenee. 34
Figure 3.10 Sample section from atypical cell-level netlist output by VPR_Layout....... 35
FIQUr€ 4.1 ATL CAD flOW ..ottt 38
Figure 4.2 Definition of a minimum-width transistor area — adapted from [1] ............... 40
Figure 4.3 Example bounding box cost calculation for one net............cocceveveveneneeene. 43
Figur e 4.4 Pseudo-code describing move checking procedure.........coocevveveeceeneeneseenees 45
Figure 4.5 A legd movein ATL — (a) The move and its consequences, and (b) The

resulting placement after the MOVE ..o 46
Figure 4.6 Anillegal movein ATL —thistype of move will bergected......................... 47
Figure 5.1 Effect of an SRAM cell swap on word lines (a) without reassignment and (b)

WIth FEBSSIGNIMENT ...ttt e e re b nns 52



LIST OF TABLES

Table 3.1 Cdl types used iN VPR _LaYOUL .......c.cccceeiieiieieesesee e 25

Table 3.2 Group and subgroup types used in VPR_Layout .........ccccoeceereeinnenniennnnne. 25

Table 5.1 Comparison of norma placement and regularized SRAM placement with
[OCKEA SRAM CEIIS ...t n s 51

Table 5.2 Comparison of normal placement and regularized SRAM placement with
SRAM cdls dlowed to move without pendlizing programming connections .......... 53
Table A.1 Legend of cell coloursin ATL gragphica representation

Vi



Chapter 1

| ntroduction

1.1 Motivation

Over the past two decades, FPGAs (Fied-Programmable Gate Arrays) have
become a popular medium for implementing digitd circuits. A key reason for this
popularity is the ability of a sngle FPGA chip to implement any circuit smply by being
programmed appropriately. Despite the avalability of other options, such as ASICs
(ApplicationSpecific Integrated Circuits) or Standard Cdlls, which provide sgnificantly
fader and gmdler implementations, the programmability of FPGAs has dlowed
designers to achieve lower nonrecurring engineering (NRE) costs and fagter time-to-
market for their designs [1]. Careful design of FPGAS, however, can limit the speed ad
aea pendties relative to other options, making them a viable option for implementing a
broader class of circuits a high volume.

The ability of an FPGA to provide good performance with low area rests on four
primary factors the logic and routing architecture of the FPGA, the trangstor-leve
circuit desgn that is used to implement it, the software tools that are used to configure it,
and its physcd layout. When designing an FPGA, these four factors are heavily focused
on to achieve the best possble performance, and as a result, they account for most of the

time and resources required in the design process.



The complexity involved in each of these factors, however, often requires that
decisons regarding one factor be made without any detailed idea of the impact that they
would have on the other factors. For example, the software tools for an FPGA might not
be able to take advantage of certain complex architectural features that seemed beneficid
when the architecture was designed, potentidly resuting in wasted area for unused logic
on thefind chip.

Idedly, every desgn decison that is made would condder the implications for dl
the factors influencing an FPGA'’s peformance. In practice, however, this means that dl
FPGA architectures that are under consderation need to be designed, provided
customized software tools, and laid out in order to accurately determine the best design.
In a process that might consder hundreds of different architectures, this is obvioudy not
aviable gpproach.

One solution to this problem is to desgn CAD tools tha automate this process
and dlow a designer to quickly observe the impact of various decisons on overdl FPGA
performance. Over the past few years, research done a the Universty of Toronto has
attempted to link three of the four factors presented above — an FPGA'’s architecturd
gpecification, transgtor-level design, and software tools — to provide this capability [2].
This research has clearly demondrated the benefits of being adle to design an FPGA in
the presence of detalled knowledge about how architecturd decisons affect the circuit
design and software tools, and hence the FPGA’ s performance.

These benefits lead to the hope that even greater advantages might be attainable
by integrating the last of the four factors influencing FPGA performance with the other

three. If there was a CAD tool that took an architecturd specification of an FPGA and



automaticaly provided its physica layout in addition to the drcuit desgn and the
software tools, then design decisons could be made in the presence of precise
information about the impact that they would have on dl agpects of the FPGA’s
performance and cogt.

The implications such tools would have on FPGA design go far beyond making
the design process more informed. Using these tools, an FPGA could be designed and
manufactured with a reasonable idea of its peformance and codt, dl without any
ggnificant engineering desgn effort.  Depending on the performance pendties associated
with desgning an FPGA in this way, the very low cogt of development could make it an
extremdy dtractive solution. An FPGA manufactured in this way could aso serve as an
early prototype that could be followed up by improved versions. Alterndively, these
tools could give designers a sarting point that would save time in the design cycle and
thus reduce costs.

Clearly, there are many advantages that could be regped by the ability to provide
physcd layout in addition to trandstor-leve design and software tools, dl from a single

architectura specification. Thiswork is an attempt to move closer to that god.

1.2 Scope

This research involved two phases. In the first phase, we developed a tool that
automatically creates a spice-yle, transstor-levd nelis of FPGA logic and routing
based on an architectural specification given to it. In addition to the transstor-leve
netlist, it generates a cdl-levd netlig that dlows smdl groups of transgors to be

abstracted into cdlls.



In the second phase of our work, we developed a tool that creates layout
placements for cdl-levd netligs of FPGA logic and routing. When crediing these
placements, we attempt to take advantage of the dructure of the FPGAs that we are
deding with to achieve a better result. In this research, we demondrate tha this
“domain-specific knowledge” can guide the automatic layout placement of an FPGA to a
better solution.

The scope of our research was limited to performing placement for the cell-leved
netlig, which essentidly forms a detaled floorplan of the trandgtor-levd netlig.
Determining the exact tranggor-levd layout within the different cells and performing

the routing between the cdlls, isleft to future work.

1.3 ThesisOrganization

Chapter 2 presents background information and details about the previous work
that is relevant to this research. Chapter 3 describes the first phase of our work, which
involves tileable netlist generation. Chapter 4 discusses the second phase of our work,
which explores automatic layout placement of FPGA tile netligs. Chapter 5
demongrates how FPGA layout can be improved by taking advantage of domain-specific
knowledge about the dructure of our netligs. Findly, Chepter 6 summarizes our

conclusions and gives suggestions for future work.



Chapter 2

Background

The firgt section of this chapter provides a very brief overview of the FPGAs that
we ded with in this work. The second section presents the use of repested “tiles’ of logic
and routing in the implementation of FPGAs. The third section provides information
about VPR, a result of previous research that was extended for use in the firs phase of
our work. The fourth section presents the transgor-level dructures that we use to
implement the FPGA tiles we ded with. The find section is a brief outline of the

previous work that is relevant to the second phase of our research.

2.1 Overview of FPGAS

An FPGA is a dircuit that can be configured to implement a wide variety of digita
logic circuits. The FPGAs we congider in this work are composed of three broad classes
of gructures — logic blocks, programmable routing, and 1/0 pads. The logic blocks and
routing are found in the “core’ of the chip, surrounded by a ring of 1/O pads on the

perimeter. Thisarrangement isshown in Figure 2.1.



Figure 2.1 High-levd view of FPGAs that we work with

Figure 2.1 dso shows the wires that run in the channels between the logic blocks,
as well as the programmable switches that dlow sgnds to be sent from one wire to
another. Switches can be smple pass trangstors controlled by an SRAM céll, or can use

a buffer to provide grester drive drength. Figure 2.2 shows both of these types of

switches being used to connect different routing wires together.

IfO

Logic
Block

Routing
Wire

Routing
Switch

/ ~] K Block
7 A Ny 7 B -
N
\\\
~- / 21T Y / ~
- f! \'\ \ J'! } "\
7 NP o V7 N
v\
"\ T\ AN AT T—
/ pd A N ! A kY N
7 S g N 17
- N AT A
VA EN AL VAN N I i
7 ~NF % “F 5
. N N N 4
N\ &



Passtransistor routing switch

Tri-state buffer routing switch /

Figure 2.2 Two types of routing switches — adapted from [1]

Ultimately, routing wires and routing switches are used to connect logic blocks

together. Figure 2.3 shows the contents of asingle FPGA logic block.

e ——

..--""'_F'_ e
T ~
/ —b ) | "a
_ Inputs =] 4FIIrCJI2I'Ut DFF ’ I~> out 3
\_ _: Clock —p] /
\H""--_‘_\_‘ _,_,.----"'""‘/
~—— J—
T W% BLE
Contents
r— - - — — — — - — — — "
I ) ] I
I : L BLE [ I
I = I
> N
| — L 1
I L : N N _I_.> N
| I : - BLEs |~ Outputs
I ™ I
I —] BLE I
| 1) — #N |
| | A |
Inputs . I—I
Clock I I
ok ———-—J r

Figure 2.3 Logic block contents — adapted from [1]

As the figure shows, a logic block is made up of severd BLES (Basic Logic

Elements). These BLEs have a programmable look-up table and a flip-flop that can be



used to implement smdl logic functions. These BLEs are connected to other BLES in the
same logic block by the internd feedback paths shown, as well as to BLES in other logic
blocksviathe | inputs and N outputs of the logic block.

To dlow logic blocks to connect to routing wires, an FPGA has input connection
blocks and output connection blocks. A set of typical input comection blocks is shown

inFigure 2.4.

S 2 [ [
\ inl inl inl

‘EI i o i o i
] ] m Routing

I é\ M wires
/ H ==wi

in2 in2 in2

inl inl inl

Figure 2.4 Typicd input connection blocks — adapted from [1]

The figure shows three input connection blocks, one shared by each par of

verticaly digned logic blocks. Figure 2.5 shows atypical output connection block.



Logic
block

i

m Routing wire

Routing wire

;i

i

Routl ngwire

Figure2.5 Typica output connection block — adapted from [1]

The architecture of an FPGA is determined by many different parameters, each of
which affects one or more of the building blocks presented above. More detal about
these parameters can be found in [1]. For the purposes of our research, we used values

for these parameters that were found to be good in [1].

2.2 FPGA Tiles

An FPGA of the form shown in Figure 2.1 is often implemented by designing
only one logic block and the programmable routing around it, forming an FPGA “tile’.
This dngle tile can, if desgned properly, be duplicated and lad in a regular aray to form
the core of the FPGA. This process is shown in Figure 2.6, with a single tile being used

to generate a 3-by-3 portion of the FPGA core.



Routing wire

Routing switch

¢---—- Input pin connections
.- Output pin connections
X Connection block switch

A

Logic Block

K->

L\

.'/

A
\/)

Logic Block

o =
X
@Qla’

Logic Block

Figure 2.6 FPGA formed by replicating a singletile (shown &t top)

10



2.3 VPR (Versatile Place and Route)

VPR is a flexible CAD tool that was designed a the Universty of Toronto [3].
As we describe in Chapter 3 we extended VPR to generate netlists for FPGA tiles. Thus,
the VPR flow isintimately linked to the first phase of our work.

VPR peforms clusering, placement, and routing of circut nelligs for a wide
vaiety of FPGA architectures by using this architecturd description. VPR gives FPGA
desgners the adility to observe the effects of various architectura decisons on an
FPGA’s software performance and tranagtor-level design. A amplified view of its CAD

flow isshownin Figure 2.7.

Circuit Netlist Archltgcturg
Description File

Y

Architecture Generator

VPR

Y

VPR Place and Route
Engine

Routing-resource
Graph

4

Placement &
Routing of Circuit

Figure 2.7 Smplified VPR CAD flow



2.3.2 VPR ArchitectureFile

The primary input to VPR is an “architecture file’, which contains a description
of the architecture for the FPGA being conddered. VPR uses this architectura
gpecification to provide place and route capability for circuits. Figure 2.8 shows an

excerpt of atypica VPR architecturefile,

# Cluster of size 4, with 10 logic inputs (I = 10, N = 4)
# Logi ¢ bl ock information

subbl ocks_per _clb 4

subbl ock_| ut_size 4

# Logic block pin information
# Class 0 is LUT inputs, class 1 is the output

inpin class: 0 bottom

inpin class: 0 |eft

outpin class: 1 top

outpin class: 1 right

outpin class: 1 bottom

outpin class: 1 left

# Wre information

segnment frequency: 0.5 length: 4 wire_switch: 0 opin_switch: 1\
Frac_cb: 1 Frac_sb: 1 Rretal: 300.0 Cretal: 10.0e-14

# Switch information

switch 1 buffered: yes R 500.0 Cin: 10.0e-15 Cout: 1.0e-15\
Tdel : 1.0e-10

Figure 2.8 Excerpt of aVPR architecturefile

The excerpt begins with a description of the number of logic blocks and the sze
of the lookup table in each logic block. It then describes the location and type of the
logic block pins.  The wire information is presented next, including the length,

connectivity, as wel as R and C vaues used in dday edimation. Findly, the excerpt

12



shows information for a switch, induding the type of the switch and additiond dectricd
information used for Szing and dday edimaion. With only a few additiond lines this
smple text description would capture a complete FPGA architecture.

VPR dso uses this specification to compute an estimate of the area and delays
that would characterize the FPGA if it were manufactured. The area estimates are based
on assuming certain types and szes for tranggor-level sructures in the FPGA, and the
delay estimates are based on the resistance and capacitance vaues obtained for these

structures through circuit smulation.

2.4 Transstor-level Structures

This section presents the tranggor-level dructures we assume  throughout our
work. For the mogt part, they are reproductions of the transstor-level structures assumed
by VPR (the figures where indicated, are adapted versons of those that appear in
Appendix B of [1]). Caseswhere we assumed different structures than VPR are noted.

Figure 29 shows the schematics assumed for one of the key dructures in an
FPGA — the SRAM cdl. Our schematic differs from the one assumed in VPR because
we do not provide the inverted prog data signd. Careful design of the SRAM cdl would

be able to overcome the need for that inverted sgnd in writing valuesinto the cel [5].

13



program

SRAM*

< prog_data

smm*l iﬁdati,l

(b) SRAM assumed in this work

Figure 2.9 SRAM schematicsused in (8) VPR and (b) in this work — adapted from [1]

Figure 2.10 shows the schematic assumed for a buffer. The exact szing of the
transstors depends on the drive srength required for the buffer, but follows the common

technique of cascading increasingly larger stages together with a stage ratio near 4.

drive strength)

L
B ) )

Figure2.10 Buffer schematic — adapted from [1]

14



Figure 211 shows the schemaic for a 4-input multiplexer, controlled by two

SRAM cdls  Lager or andler multiplexers are implemented by modifying this structure

as necessay.

2 SRAM cells datarsmapm data dat’g@_data
InG 1 2
r—1
ING— * Inl =
s Oout A out
In3—| n2 —
L Y W e T
In3 1

Figure2.11 Multiplexer schematic — adapted from [1]

Figure 2.12 shows an overdl view of the logic block schematic we use in our

work.

4LUT

_ Clock
Clock %;
| %CI ock
I
|

Figure2.12 Logic block schematic — adapted from [1]

15



Figure 2.13 shows the schematics used for flip-flops in VPR and in our work.
The only difference between the two is the availability of set and reset inputs in VPR that

were left out in our work.

DI —}Q
Clock

A
4 1. V1.2
‘ 0624 E 0.6/2.4ym D

Elg o

& et
D<|:1A'7 Cjo—d( _E[}ig Cik . I'jAg L Q

(b) Flip-flop assumed in this work

Figure2.13 Hip-flop schematicsused in (&) VPR and (b) in thiswork — adapted from
[1]

Figure 2.14 shows the schematic used for LUTsin our work.

16



N0 —
In1—|
In2 —|
In3

In3

;;;727 %%7 \7' Y %7??7
P
_|—|_'__. o *r
I = [ [
ST =N

- i
sl 1o
_.__Ll_. B _'_IL_" Out

Figure2.14 Look-up Table (LUT) schematic — adapted from [1]

2.5 Automatic Cell Layout Placement

As far as we are aware, there is no previous work that has attempted to link the
layout of an FPGA tile to an architecturd specification. However, much work has been
done on the problem of placing blocks of varying szes on a grid.  This placement
problem requires only that al blocks be placed onto the grid such that there is no overlap
between them.  While fulfilling this requirement, one of the jobs of a placement

agorithm isto try and reduce the length of connections between blocks.

17



Our layout placement problem reduces to this placement problem because we
operate on the cdll-levd ndtlist with the actua transstors absiracted away.

The gmulated anneding agorithm is one popular agpproach in solving this
problem. The Timbewolf tool [4] used this approach to handling *macrocel
placement”, with an dgorithm that initidly dlows overlgp in the placement of the
differently szed blocks. A gradudly increasng pendty is applied to this overlgp to force
the blocks gpart. This is followed by a find “clean-up’ phase that diminaes any overlap
|eft at the end of the placement process.

The placement dgorithm used in VPR [2] dso uses smulated annedling, dthough

without the presence of differently sized blocks.

18



Chapter 3

Tileable Netlist Generation

This chapter describes the firs phase of our research, which involves generating

netlists representing FPGA tiles.

3.1 Goalsand Requirements

Our primary god is to generate the tranddtor-levd netlig of an FPGA tile usng
only an architectura description asinpuit.

We aso want these netlists to be usable in peforming autometic layout for the
tiles that they represent. In Chapter 4, we describe an automatic layout procedure that
involves grouping tranggtors into cdls that represent the various Sructures used in the
netlig.  This grouping makes the layout placement problem smpler by dlowing groups
of highly related transstors to be treated as one “black box”. To make our netlists
suitable for such use, we need to generate an additiond, “cdl-leve”, netlist that abstracts
away some of the details of the transstor-leve netlis.

Finaly, in order to guide the autométic layout process in the second phase of our
research, we need to annotate our netlig with as much doman-specific knowledge as

possible about the structuresin theftile,

19



3.2 CAD Flow

We decided to extend an exigting tool, VPR (described in Section 2.3), in order to
generate the netlists that we require. VPR dready provides the ability to describe an
FPGA with a smple “architecture file’ and was an ided Sating point for meeting our
gods. Figure 3.1 shows the CAD flow involved when usng VPR Layout. Notice that it
is very smilar to the CAD flow for VPR shown in Figure 2.7. The additiond step of the

tile netlist generator crestes two extra outputs — the trangstor-leve and cdl-leve netligs.

Circuit Netlist Archlt(_ecturt_a
Description File

A
VP R_Layout Architecture Generator

Y
VPR Place and Route Routing-resource
Engine Graph

Tile Netlist Generator

[
\ 4 Y
Placement & Transistor-level .
Routing of Circuit @ Cell-level Netlist

Figure 3.1 VPR Layout CAD flow

The tile netlig generator in VPR _Layout operates on the routing-resource graph

that VPR creates based on the architecture file. This routing-resource graph contains a

20



detailed representation of dl the programmable routing in the FPGA and the connectivity
to dl the logic blocks as well. For generating the logic block structures, which cannot be
found in the routing-resource graph, VPR_Layout assumes the transstor-level schematics

that are presented in Section 2.4.

3.3 Trangstor-level Netlist Generation

3.3.1 Transstor-level Netlist Boundary

In order to generate tile netlisgts that can be replicated and laid in an aray as
described in Section 2.2, we define a clear boundary for the part of the FPGA that the

netlist represents. Figure 3.2 shows the boundary we use when making our netligts.

21



Logic Block

Connection block
X

Routing wire .
g switch

Routing switch Connection to/from

< Input pin connections other tiles

VPR_Layout netlist

*--—e- Output pin connections ---------- boundary

Figure 3.2 Boundary of VPR_Layout netlists

Our netligts include the logic block as well as the routing wires to the right of and
above it. This view of the tle is a little less regular than the one presented in Figure 2.6,
dthough replicating either tile results in the same FPGA. We used this dightly more
complicated boundary because it amplified implementation of the netlig generator by
requiring it to condder only those connections that have a leest one end touching a wire
or logic block pin that is included in the tile. The switch connection in the top-right
corner of Figure 2.6 doesn't touch any wires in the tile and would complicate the

implementation dightly.

22



3.3.2 Trandstor-level Netlist Structure

A few sample linesfrom atypicd trangstor-level netlig are shown in Figure 3.3.

FPGA tile transistor-1level netlist
Qut put by VPR Layout

H* H®*

# PORT Format: <id> <node> <constraint class> <orientation>

# XTOR Format: <id> <drain> <gate> <source> <type> <size>

# <cell type> <cell id> <subgroup type> <group type>
P11 3595 64 L
P12 3595 64 R
P24 3636 69 T
P25 3636 69 B
M 352 1P2
ML 35 2 0 N1

M 36 351 P8O
M3 36 35 0 N4 O

Figure 3.3 Sample section from atypica trangstor-level netlist output by VPR_Layout

This sample illudrates the information that our netlists can convey about the tiles
that they represent. Figure 3.4 shows the tile portion that would be implemented from the

sample netligt of Figure 3.3.

23



Cell type 0, 1D O Celltype 0,ID 1

Node
3636

Node 2

Figure 3.4 Tile portion generated by sample netlist in Figure 3.3

There are two types of blocks in our netlists — trangstors and ports. The letter at
the beginning of each line determines which type of block the line is describing (‘M for
tranggors and ‘P for ports). Trandstors are used to implement the various Structures
that are necessary in our tiles, while ports are used to fix the locations that a sgnd enters

or exits atile.

Every trangstor is described by an ID number, followed by three node numbers
that represent the drain, gate, and source connections respectively. This is followed by

the type of the trangstor (N- or Pmos), and then the size of the trangstor reative to the

24



minmum-width trangstor of the processs The reative sze was used in VPR's area
model [1] to create greater process-independence and we continue that here.  The
defintion of a minmum-width transstor is presented in Figure 4.2.  Findly, each
transgtor has information about its role in the FPGA tile attached to it. The cdl type and
ID give the lowes-levd hierarchy, and correspond to the cdl-levd netlig that is dso
output by VPR Layout. The various types of cdls currently used in VPR Layout are

shownin Table 3.1.

Cdl type
Port
Buffer
SRAM
Multiplexer
Look-up table (LUT)
Hip-flop
Pass trangstor routing switch
Buffered routing switch

Table3.1 Cdl typesusedin VPR _Layout

The subgroup and group fidds are used to specify more hierarchy information,

and the different values for these fields used in VPR_Layout are shown in Table 3.2.

Group type Subgroup typesfound in group
Logic block Logic block input circuitry
Logic block LUT circuitry
Logic block output circuitry
Routing switch block Routing circuitry
Input connection block Routing circuitry
Output connection block Routing circuitry

Table 3.2 Group and subgroup types used in VPR_Layout

25



All of this hierarchy information is intended to help guide the autometic layout
tool that will be discussed later in Chapter 4 The current types supported are arbitrarily
chosen, and dthough we present some exploration about the information that is mogt
useful in automatic layout of the tile, much research remans to be done to determine

exactly what knowledge is ussful to have in the netlig.

Besdes transgtors, our netligts include port blocks. Every port is described with
an ID number, dong with a node number indicating wha node in the circuit that port is
connecting to. The next two fieds dlow VPR Layout to inform our automatic layout
tool about any placement congtraints that ports have.

The firg of these is a condraint class number that, when applied to two ports,
forces those ports to be placed opposite one another on the perimeter of the tile. The
second field is a character specifying the edge of the tile that the port must be placed on
(‘T for top, ‘B’ for bottom, ‘L’ for left, ‘R’ for right, and ‘N’ for no requirement). The
result of usng these condraints is shown in the sample netlig and the tile that it generates
in Figure 3.3 and Figure 3.4. Ports need to be constrained using these values so that they
lie on specific edges of the tile and so that they line up with other ports to make a tilegble

block. Thissubject isdiscussed in greater depth in Section 3.3.3

3.3.3 Tileability Congtraintsfor Ports

The ports in our netlists need to have condraints specified so that when they are
placed on the perimeter of the tile, the result is a tilesble placement. The condraints

involved for various connections can be derived from the boundary tha is shown in

26



Figure 3.2. There are four classes of tileability concerns that need to be considered —
routing wire tilesbility, routing switch block tilesbility, input connection block tileshility,

and output connection block tileaility.

For routing wires, we need to ensure that the wires “twist” so that they each end at
a switch block every L adjacent tiles, where L is the length of the wire. This can be
accomplished by condraining the ports so that a wire exits the tile a a location exactly
opposite to the one where the next wire enters it.  Thus, when two tiles are placed
adjacent to one ancther, the fird wire in the fird tile is connected to the same eectrica
node as the second wire in the second tile. Figure 3.5 illustrates one example of ports
being placed exactly opposite one ancther on our netlig boundary to achieve this twisting

effect.

27



Logic Block

Figure 3.5 Portslined up to cregte routing wire tilegbility

In order to create this twigting pattern successfully, we need to be able to find
groups of L wires (where L is the length of all the wires in that group — 3 in the example
of Figure 3.5). If we have such a group, one wire can gart in this tile, twist and continue
in the second adjacent tile, and ultimately end a a routing switch block in the “L'™
adjacent tile.

If there are many wires of length L (as is commonly the case in large FPGAS),
they can be dedlt with as long as the wires can be arranged into distinct groups of exactly
L wires. Each of these groups then has the same twisting pattern described above.

Findly, if there are wires with different lengths in the tile, they can Hill be dedt

with by the twisting method if they can be arranged into groups with other wires of the

28



same length. All such groups must have L wires when the length of the wires in group i
isL.

These conditions, when combined, result in the following more compact
requirement (mentioned in Section 4.2 of [1]) — the tilegbility condraint for routing wires
can be met by the twisting method described above if, for al wire lengths L present in the

tile, the number of wires of length L isan integer multiple of L.

When generating routing switch blocks, the netlist generator in VPR _Layout must
cregte dl the connections that are shown in the switch block of Figure 3.2. Because our
netlis boundary includes only the routing wires to the right of and above the logic block,
some switch block connections connect wires in our tile to wires in adjacent tiles. These
connections must exit the tile a one edge (via a port), and enter the tile a the opposite
edge. Figure 3.6 shows one example of ports lined up to creste these types of

connections.

29



Logic Block

Figure 3.6 Portslined up to create switch block tilegbility

The two ports indicated in the figure will creste connections from a tile's
horizontd wire to a verticd wire in the tile directly above it. This type of connection is
used to make the connections that go from a given tile to the tile tha is horizontaly or
veticdly adjacent to it. However, there is the additiond posshility of a diagond
connection that reeds to connect a wire in our tile to another wire in the tile below and to

the right of it.

30



We ded with this type of connection by extending the process used to ded with
adjacent connections. As shown in Figure 3.7, the connection exits the tile on the bottom
edge, enters a the top edge, exits agan on the right edge, and findly enters to finish the

connection on the | eft edge.

Logic Block

Figure 3.7 Portslined up to creete tileable, diagond switch block connections

When the tiles are lad in an aray, this will connect a wire in a tile to the tile

below and to the right of it as required. The arrows in the figure indicate the four ports

involved in making these types of connections.

Findly, to create tilesble input connection block and output connection block

connections, we need to dlow for wires below and to the left of the logic block (which

31



are not included in the same tile as the logic block) to connect to logic block pins. This is
equivdent to the wires in our tile connecting to pins of logic blocks in the tile above it
and to the right of it. To create these connections, we again line up pairs of ports to alow
connections leaving a tile to enter an identicd tile placed adjacent to it. Figure 3.8

illustrates connections mede in thisway.

[ -

Logic Block

Figure 3.8 Portslined up to create connection block tilegbility

The arows in the figure show an output connection block connection (horizonta)
and input connection block connection (verticd) being made to adjacent tiles such that a

logic block has access to the wires on dl four of its edges once the full array is replicated.

32



3.3.4 SRAM Programming

SRAM cdls ae a key component of our FPGAs because the vaues they are
progranmed with determine the circuit tha the FPGA implements. In our tile netligs,
eech SRAM cdl controls cels with its data vdue.  However, the programming
connections of an SRAM cdl need to be made keeping in mind that the entire set of dls
will eventualy need to be treated as a memory aray. Because of this requirement, the
tile netlig generator automdicaly assigns programming lines to SRAM cdls such that
they form word lines and bit lines that can be used to access the entire array.

Our SRAM programming assgnments are done so as to generate the same
number of word and bit lines (resulting in a square memory aray). The assgnment of
word and bit lines can be done in an arbitrary fashion since the assgnment does not affect
the FPGA’s functiondity. However, snce our ultimate god was to use our tile nelligs to
peform automaic layout while taking advantage of the domain-specific knowledge
explicitly embedded in the netlist, we needed to make sure that no additiona domain-
specific knowledge was left implicitly in the netlist. If this occurred, our results would be
affected by that hidden information.

This is an issue that must be consdered when assgning the SRAM programming
lines. For example, a 4input LUT is driven by 16 SRAM cdlls (refer to Section 2.4 for
schematics).  Figure 3.9 shows a word line assignment that results in dl 16 SRAM cdls

thet are driving the LUT having the same word line.

33



4-input LUT

RN

16 SRAM cells

Figure3.9 A 4-LUT driven by 16 SRAM cdls on the sameword line

If this were done systemdticdly for al the SRAMs that drove LUTS, there would
be implicit domain-specific knowledge in the nellig.  Without explicitly deting so, the
netlisg has been desgned such that the 16 SRAM cdls driving a angle LUT have more
connectionsin common because they have asmilar role in the context of the FPGA.

The solution to this problem is to assgn dl SRAM programming lines randomly,
making sure that multiple SRAMSs that might have been generated to control a given cdl
(like the LUT in the example above) do not sysemdticdly get placed onto the same

programming lines

3.4 Cdl-level Netlist Generation

VPR Layout generates the cdl-levd netlig a the same time as the transstor-
level netlig. Since each tranggor line in the trangstor-leve netlist specifies the cdl tha

it is part of, this is the easest way to obtain the abstracted cell-level netlist. Ports are not



goecified in the cdl-levd ndlis, because their specification is unchanged a the cdl leve
(each port is a cdl of its own). Thus, information about the ports comes only from the

transastor-levd netli.

3.4.1 Cdl-level Netlist Structure

A few sample lines from atypicd cdl-leve netlist are shown in Figure 3.10.

# FPGA Tile cell-level netlist
# Qut put by VPR _Layout

# CELL Format: <id> <cell type> <subgroup type> <group type>

# <wi dt h> <hei ght > <num pi ns>

# (pin class, node, x-offset,y-offset) (...) (...) etc
# for “num pins” tines

CO000322 (0201 (1821)

ClL000542 (0802 (19142

C2000322 (0301 (11021)

Figure3.10 Sample section from atypica cdl-leve netlist output by VPR _Layout

The cdl leve nellig is made up only of cdls, dthough each has parameters that
alow usto differentiate between the cdll typesused in VPR_Layout.

The firg fidd is an identifier, followed by three fidds tha give hierarchy info that
was described in Section 3.3.2. The integer width and height (respectively) of the
rectangular cdl are next. The cel area determines the height and width of the cdl, which
is made as close to square as possble. The area is set based on the total transstor area
required for the cell, with an extra 50% of that area added to alow for intra-cdl routing.
The vdue of 50% is an abitrary vaue that can be explored in any future work that

attemptsto actudly determine cdll layouts.

35



The next field represents the number of pins that the cdl has. These pins dlow
cdls to connect to each other to form the FPGA tile. For each pin, a set of information
about the pin forms the rest of the line, with a pin class, the node that the pin connects to,
and the pin offsats rdative to the lower-1eft corner of the cdll adl specified for each pin.

A more detalled look & usng some of this information will be given in Chapter 4
and Chapter 5. Some of the fidds, such as the pin offsets, have not been used in our
work but would likely be necessary in any future work that attempted routing between

cdls or determining the layout ingde individud cdls.

36



Chapter 4

Automatic Cell Placement of FPGA Tile Netlists

This chapter describes the second phase of our research, which involves

performing the automatic layout placement of the netlists output by VPR _Layout.

4.1 Goal

In this part of our work, our god is to develop a tool to read in transstor-level and
cdl-level netligs of the form described in Section 3.3.2 and Section 3.4.1, respectively.

Usng these netlists, we want to generate good placements for the cell-leve netligts.

4.2 CAD Flow

To meet the goa sated above, we developed a new tool caled ATL (Automatic
Tile Layout). It reads in netligs of the form output by VPR Layout, and provides the
infratructure  for obtaining cel-levd placements and for usng the doman-specific
knowledge associated with the netlists to improve those placements. Figure 4.1 shows

the CAD flow for ATL.

37



Cell-level Netlist

Transistor-level
Netlist

Netlist Reader
Constraint Generator Internal Netlist Area Calculator

@ FPGA Tile Grid

Cell-Level Placement
Engine

Cell-Based
Placement of FPGA
Tile

Figure4.1 ATL CAD flow

4.3 Netlist Reader

The netlig reader parses in the trandgor-levd and cdl-levd netligs, and
generaes an internd netlis.  Whereas the input netlists are specified in a spice-dyle
format with node numbers, the internd netligt transforms them into a compact netlist that

ismore efficient for agorithms to operate on.

38



4.4 Area Calculator

The area cdculator uses the information in the interna netlists to determine the
gze of the tile usad for placement. We have assumed square tiles in our work, though
such an assumption is abitrary and rectangular dimensons can easly be explored in
future work.

To determine the areq, the area caculator uses the following equations.

width(side) = max( Jtotal _cdl _area* AREA_FUDGE _FACTOR, num_ portqside))
width = max( width(left), width(right), width(top), width(bottom))
height =width

The width and height are set to the maximum required by ether the totd cdl area
or the ports that lie on the edge of the tile assgned the most ports.  The
AREA FUDGE FACTOR in the eguation above is used to dlow extra space when the
tile area is determined by cell area. This space is needed to dlow cells to be able to move
around and to alow space for routing. Since the scope of this work did not involve
routing, though, an arbitrary vaue of 1.4 is used for this factor. This is dealy a vdue
that needs to be explored in any future work that attempts to route our placements.

Once the area of the tile has been caculated, the grid that represents the FPGA
tile is fixed to that area The aea is ecified in units of “minimum-width trangstor
aess’, and each sguare in the placement grid represents one minimum-width trangstor

area. The definition of aminimum-width trangstor areais shown in Figure 4.2.

39



Minimum horizontal spacing

| Ll

I

: / Minimum vertica| spacing
A

I

I

Perimeter of minimum-
width transistor area

Contact
/

| _— Diffusion

j\ Polysilicon gate

Figure 4.2 Ddfinition of aminimum-width transstor area— adapted from [1]

4.5 Constraint Generator

The condraint generator is the portion of ATL that we used to demondrate the
vadue of usng doman-specific knowledge in generating the placements of an FPGA tile.
In paticular, it uses the hierarchy information provided in the cdl-levd netlig to
determine ways of improving the placements.

One of the features provided by the condraint generator is the ability to specify a
rectangular region in which a cdl must be placed. Every cdl can be given such a
placement congraint.

This condraint generator is one tool that can hdp leverage the domain-specific

knowledge to floorplan groups of cdlsinto certain areasin order to improve the layout.

40



4.6 Placement Engine

The placement engine in ATL is based on the smulaed anneding agorithm
decribed in Chapter 2. The detalls of our placement approach largely follow the one

presentedin [1]. Some of the key features are described in the sections below.

4.6.1 Initial Placement

The initid placement that is used by our placement engine is generated in a
random fashion. However, because the cdls we are placing are dl of different szes, our
initidl placement places cdls in order of their sze. With larger cdls placed fir, the
gmdler cdls can “fit in the gaps’ much more esslly.

Another chdlenge is presented by the presence of placement condraints of the
type described in Section 4.5. If cdls that are unconstrained are placed before cells that
are condrained, the limited space in which the congrained cdls can be placed are often
dready taken by cdls that do not need to be there. To handle this, we use an initid
placement dgorithm that makes repeated initid placement atempts, with each atempt

firg placing the cdls that failed in the previous attempt.

4.6.2 Cost Function

One of the most important factors in an annedling-based placement dgorithm is

the cost function that is used to evduate changes to the initid placement. Our cogt

41



function is based on the bounding box enclosng the terminds of each net, and is

caculated according to the formulabelow [1]:

Cost = & qinet)]bb,(inet) + bb, (inet)]
inet=1
The bby and bby values are determined based on the smallest box that encloses the
lower-left corner of dl the terminds of a net.  The g(inet) factor is used to mode the fact
that the bounding box usualy underesimates the amount of routing needed for nets with
more than 3 terminds [6]. The vaue of q(inet) is determined based on [6]: it is 1 for
nets with 3 or fewer terminas, and linearly increases to 2.79 for nets with 50 or more

terminds. An example of a bounding box cogt cdculation for one net is shown in Fgure

4.3.

42



A o [

Bounding box

I |
I |

L~
N\

(]

1

I

I

I

bb,(inet) = 6 q(inet) = T |
' 1.0828 ! ' !
o
| i i I
[ L
| e
BN "
| |
Y | |

- |

bb,(inet) = 6

Cost(inet) = (1.0828)(6 + 6) = 12.9936

Figure 4.3 Example bounding box cost calculation for one net

4.6.3 Annealing Schedule

We use the same adgptive anneding schedule that is presented in [1], which
includes the temperature update scheme, the range limiting scheme, and the exit criterion.
A detailed explanation of these methods can be found in Chapter 3 of [1].

The number of moves atempted per temperature is dso set to the same vaue as

[1]:

4
moves_ per _temperature=inner _num* (num__cells)?

43



The “inner_num” factor is a user-pecified option that is directly proportiond to
the amount of CPU time spent in the placement tool. This option alows the user to

explore the time-quality trade-off for placements.

4.6.4 Move Generation

Because of the varied sze of the cdls in our tiles, the move generator in our
placement engine mugt be careful to swap cdls such that the legdity of the placement is
maintained. This means that there must be no overlgp of cels in the find placement. As
described in Section 2.5, many placement dgorithms attempt to achieve this by applying
an increasing overlgp pendty, followed by a phase that fixes any remaining overlap.

Our placement dgorithm disdlows overlgp a any dage in the placement,
enauring that the dgorithm is dways working with a legd placement throughout the
entire process.  Determining whether dlowing overlap would work better for our
gpplication is beyond the scope of our work, but could be explored in future work.

To prevent overlap, we use a move checking procedure that forbids al moves that
would cregte overlap if accepted. The basic rule is that when a cdll is moved, dl cdls
that it digolaces (which are swapped to the area that the origind cdl is leaving) mugt
gther fit into the space left by the origind cdl, or if they displace further cdls, those
newly displaced cdls mugt fit into the space left by the cdls displacing them. Figure 4.4

shows pseudo-code that describes the move checking procedure.



nmove_allowed = 1; /* Assunme okay until problem found */

target _cell = select_randomcell ();
(x_to, y_to) = select_randomtarget | ocation();
for (icell = cells target_cell will be displacing) {
if (icell fits once target_cell has left) {
/* Does not make nove illegal */
}
el se {
for (blocking cell = cells icell will be displacing) {
if (blocking cell fits into space left by icell) {
/* Does not nmke nmove illegal */
}
el se {
move _allowed = 0; /* Forbid this nove! */
}
}
}
}

Figure 4.4 Pseudo-code describing move checking procedure

Figure 4.5 shows an example of a legd move. The move of the lower-left cdl
results in a “fird-levd” digolacement of the cel on the right. That displacement in turn
results in a “second-level” displacement. However, because this second displacement
does not result in any further displacements (the top-left cdl is moving such that it fits
into the space left by the cdl on the right), this move is dlowed by ATL. The figure dso

shows the resulting placement after the move has been made.

45



9
I
|
|
|
—_——————

—P  Proposed move
— —P»  First-level displacements due to proposed move
— - 9  Second-level displacements due to first-level displacements

(a) Proposed move and consequences

(b) Result after move

Figure4.5 A legd movein ATL — (a) The move and its consequences, and (b) The
resulting placement after the move

An example of a move tha ATL rgects is shown in Figure 4.6. Now the cdl on

the top-left is a second-leve displacement that does not fit into the space left by the block

46



digolacing it (i.e. the cdl on the right). This could result in further digplacements and s0
ATL decares the move illegd. Notice that in this particular case, the move would be
legd if ATL dlowed it because no other cdl occupies the space above the cdl on the

right and hence no further displacements would actudly be required.

Doesn't fit into space left

by leaving block
_____ r_____r____ _

|

|

|

|

o)
=4
I/
|
|
|

9

:

|

|

|
—————1—————1

|

|

|

|

T

|

|

|

|

|
—_——————

I

|

|

|

|

|

|

|

|

_____7_____7_____1_____7_____7
|
|
|
|

-  Proposed move
— —Pp»  First-level displacements due to proposed move
— - P Second-level displacements due to first-level displacements

Figure 4.6 Anillegd movein ATL — thistype of move will be rgjected

4.7 Placer Quality

In the absence of a router that can determine whether the cdl placements we
creste are actudly routable, it is difficult to determine the qudity of our placement tool
with respect to our ultimate goal of cresting an FPGA tile layout.

We bdieve that our placement tool is of sufficient qudity to adlow exploration of
usng doman-specific knowledge to improve FPGA layouts.  However, a complete

layout toal is dearly the most pressing need for future work to try and meet.

47



Chapter 5

Using Domain-Specific Knowledge to I mprove
Cell Placements

The work described in this chapter uses the infrastructure provided by the tools
presented in Chapter 3 and Chapter 4 to evduae the bendfit of usng domain-specific
knowledge to improve cdl-leve placement of FPGA tiles.

In this dissertation, we present only one paticular gpplication of domain-specific
knowledge. Exploring more ways of usng this information is an obvious area requiring

much further work.

5.1 Experimental Methodology

All of our experiments used a st of ten “benchmark tiles’ that were generated
usng VPR Layout. These benchmark tiles were formed with architecture files that have
been found to result in high-qudity FPGAs in [1]. The dectricdl parameters in the
architecture files, used to sze buffers and switches in our tiles, were based on TSMC's
0.18mm process technology and were tken from the work done in [9]. To obtain the set
of tiles that we used in our experiments, we varied the number of LUTs from 1 to 10 in
the architecture files, and ran each architecture file through VPR _Layout to obtain the tle

netligs.

48



In our experiments, we run ATL with dl ten tile netligs and cdculate the
geometric average of the find placement costs for those netliss. We use geometric
averages to make sure that dl tiles have equa weight in the average; an aithmetic
average would give greater weight to the larger tiles that have more cdls and hence
higher costs. Our experiments compare these geometric averages to evduate the effects

of optimizations.

5.2 SRAM Placement

5.2.1 SRAMsin our Tile Netlists

SRAM cdls are one of the most important components of an FPGA because they
provide the programmability of its routing and logic components. Section 3.3.4 describes
our method of assgning word and bit lines to SRAM cdls.  This method results in a
netlist that has groups of SRAM cdls that the placement cost function will prefer to put
together (because they share the same word or bit lines) even though they might not have
anything dsein common.

In an FPGA, though, the choice of word and bit lines is arbitrary, and can be done
in any way that reduces layout complexity. For example, groups of SRAM cdls tha are
close together and connected to the same blocks can be put onto common word or bit
lines to make the layout Impler.

This is an example of domain-specific knowledge that we have about our netligts.

We know that FPGA SRAM cdls in our netlist are assgned arbitrarily to word and bit

49



lines, and that those assgnments can be swepped with other SRAM cdls without any

consequence.

5.2.2 SRAM Regularization

To improve our layouts by using the netlist properties described in Section 5.2.1,
we perform “ SRAM regularization”, a process that is described in this section.

Fird, we fix the locations of dl SRAM cdls based on their arbitrary programming
line assgnments in the netlis. This results in a square array of fixed SRAM cdls, with
dl the cdls in a row connected to the same word line, and dl the cdls in a column
connected to the same hit line. This SRAM placement has a very low placement cost for
its programming nets, snce the SRAM cdls ae dl lined up according to those nets.
However, snce the SRAMs sharing a given word or bit line do not necessxily have
anything in common, this SRAM placement makes it hard to bring cedls that are driven
by multiple SRAM cdls close to the SRAMs that drive them (since those SRAMs are
likely to be on separate sets of programming lines). Table 5.1 shows that if we keep these
regularized locations for the SRAMs (by locking them down throughout the anneding
process), the find placement is much worse (by more than 30%) than the origind

agorithm that treats SRAMs like dl other cdls.

50



Geometric Average Wirelength for 10 tiles
Norma Placement Regularized SRAM Placement
with SRAM cdllslocked to
initid locations
94 062 124 361

Table 5.1 Comparison of norma placement and regularized SRAM placement with
locked SRAM cdls
Once we have placed the SRAMs into an aray of cells, however, we can dlow
them to swap with other SRAM cdls without affecting the extremdy low cost for
programming nets. This is because of the domain-specific property described in 5.2.1. If
two SRAM cdls from different rows swap locations, for example, the netlist indicates
that the word lines for both of them will need to be routed out to the new locations
ingead of in a draight line as before. We know, however, that the SRAM cdls can just

swap the word line they are usng so that those word lines can ill run in graight lines.

An example of thisdrategy isshown in Figure 5.1.

51



Word line 1

ﬁposed Swap
B

Word line 2 -

Word line 1 7 \ N—— S

Word line 2 \‘ A \—— s

(a) Without reassigned word line

Word line 1

Word line 2 -

(b) With reassigned word line

Figure 5.1 Effect of an SRAM cdl swap on word lines (a) without reassgnment and (b)
with reassgnment
We tested this procedure by directing the placement tool to ignore the
programming line cods as it evauated moves involving SRAMs (insead of continuoudy
reessgning programming lines in the netlist). We then add back the cost of the origind
progranming nets (i.e the ones running in draight lines) to the find cos usng this

method. Theresult of this processis shownin Table 5.2.

52



Geometric Average Wirelength for 10 tiles
Norma Placement Regularized SRAM Placement
with SRAM cdlsdlowed to
move
94 062 90 259

Table 5.2 Comparison of norma placement and regularized SRAM placement with
SRAM cdls dlowed to move without pendizing programming connections

Regularizing SRAMSs in this fashion provides an improvement in the wirdength

of about 4%.

53



Chapter 6

Conclusions and Future Work

6.1 Summary

The main contribution of this research is to provide an infrastructure that alows
smple architecturd descriptions to be turned into the detailed transgtor-level design of
an FPGA tile, and that begins the process of automaicdly laying out that desgn. We
have ds0 shown that teking advantage of doman-specific knowledge can help create
better layout placements, and can potentidly reduce the pendties associated with

performing layout automaticaly.

6.2 FutureWork

This research has opened up many promisng avenues of further work. The
largest of these is to finish the task of automaticdly laying out our tiles by developing a
router for connections between cells, and by developing a tool to automaticaly determine
the layout ingde the cdls themselves. Clock, power, and other specid nets should aso
be handled in an appropriate fashion.

Achieving a complete layout would determine what the performance and area

pendties are likdy to be for laying out FPGAs automdicdly versus manudly. It would



dso dlow the layout to be extracted and smulated for more detailled verification of
performance and functiondlity.

Usng a completed automatic layout engine, the trangstor-level structures we used
in our work could be modified or optimized to result in better layouts. Also, further
exploration of usng doman-specific knowledge to improve those complete layouts
would help determine how much of the area and performance pendty can ke removed by
asmarter layout tool.

Future work could aso take the spice-dyle netligs tha we produce with
VPR Layout and smulate them to ensure functiondity and to get an idea of how
performance of various gructures in the tile is affected by smulating the entire tile as a

whole.

55



Appendix A

Graphical Representation of Tilesin ATL

ATL includes a grgphica tool that digplays the cdls and cdl-levd nets of an
FPGA tile on the screen.  This tool is an extended version of the one firgt presented in [2],
and was ported to Windows as part of the work donein [7] and [8].

This todl is a paticulaly useful ad in visudizing the contents of the tile, as wel
as the interactions between various types of cedls. Table A.1 provides a legend for the

cdl colours by cell type, which is needed to interpret the graphica output of ATL.

Cdl type Colour
Buffer Dark green
SRAM Red
Multiplexer Ydlow
Look-up Table Magenta
Hip-flop Cyan
Pass trangstor routing switch Dak grey
Buffered routing switch Light grey
Port White

TableA.1 Legend of cel coloursin ATL graphica representation

The following pages show some screen captures of our graphicad tool in various

stages of placement and with different optimization options.

56



57



58



59



60



61



[1]

[2]

[3]

[4]

[3]
[6]

[7]

[8]
[9]

REFERENCES

V. Betz, J. Rose, and A. Marquardt, Architecture and CAD for Degp-Submicron
FPGAS, Kluwer Academic Publishers, February 1999.

V. Betz, “Architecture and CAD for Speed and Area Optimization of FPGAS’,
Ph.D. Thesis, University of Toronto, 1998.

V. Betz and J. Rose, “VPR: A New Packing, Placement and Routing Tool for
FPGA Research”, Int. Workshop on Field-Programmable Logic and Applications,
1997, pp. 213 - 222.

W.P. Swatz J., “Automatic Layout of Anaog and Digitd Mixed Macro/Standard
Cdl Integrated Circuits’, Ph.D. Thesis, Yae Universty, 1993.

F. Ngm, VLS Sysems, Course Notes, University of Toronto, 2001.

C. Cheng, “RISA: Accurate and Efficient Placement Routability Modding”,
ICCAD, 1994, pp. 690-695.

P. Leventis “Placement Algorithms and Routing Architecture for Long-Line
Based FPGAS’, Undergraduate Thesis, University of Toronto, 1999.

W. Chow, M.A.&c. Thesis, University of Toronto, In Preparation.

E. Ahmed, “The Effect of Logic Block Granularity on Degp-Submicron FPGA
Performance and Dendity”, M.A.Sc. Thesis, University of Toronto, 2001.

62



