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ABSTRACT 
 
 

Automatic Transistor-Level Design and 
Layout Placement of FPGA Logic and 

Routing from an Architectural Specification 
 

Bachelor of Applied Science and Engineering, April 2001 
Ketan Padalia 

Division of Engineering Science 
Faculty of Applied Science and Engineering 

University of Toronto 
 
 
 

One of the most intensive tasks involved in the design of FPGAs is chip layout.  For 
commercial FPGAs, the layout is done largely by hand, in a process that takes many 
months to complete. 

Our research creates an infrastructure that begins the process of allowing FPGA 
architects to create FPGA layouts automatically, requiring only a relatively simple 
description of the architecture of that FPGA. 

In the first phase of our work, we develop tools that allow us to transform 
architectural descriptions of FPGAs into spice-style, transistor-level netlists that 
implement the logic and routing for single tiles of those FPGAs. 

In the second phase of our work, we develop a tool that creates the layout 
placement of the FPGA tiles described by those netlists.  Finally, we use this tool to 
demonstrate that the layout placement can be improved by taking advantage of domain-
specific knowledge about the structures within our FPGAs. 
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Chapter 1 
 

Introduction 
 
 
 
 

1.1 Motivation 
 
 

Over the past two decades, FPGAs (Field-Programmable Gate Arrays) have 

become a popular medium for implementing digital circuits.  A key reason for this 

popularity is the ability of a single FPGA chip to implement any circuit simply by being 

programmed appropriately.  Despite the availability of other options, such as ASICs 

(Application-Specific Integrated Circuits) or Standard Cells, which provide significantly 

faster and smaller implementations, the programmability of FPGAs has allowed 

designers to achieve lower non-recurring engineering (NRE) costs and faster time-to-

market for their designs [1].  Careful design of FPGAs, however, can limit the speed and 

area penalties relative to other options, making them a viable option for implementing a 

broader class of circuits at high volume. 

The ability of an FPGA to provide good performance with low area rests on four 

primary factors:  the logic and routing architecture of the FPGA, the transistor-level 

circuit design that is used to implement it, the software tools that are used to configure it, 

and its physical layout.  When designing an FPGA, these four factors are heavily focused 

on to achieve the best possible performance, and as a result, they account for most of the 

time and resources required in the design process. 
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The complexity involved in each of these factors, however, often requires that 

decisions regarding one factor be made without any detailed idea of the impact that they 

would have on the other factors.  For example, the software tools for an FPGA might not 

be able to take advantage of certain complex architectural features that seemed beneficial 

when the architecture was designed, potentially resulting in wasted area for unused logic 

on the final chip. 

Ideally, every design decision that is made would consider the implications for all 

the factors influencing an FPGA’s performance.  In practice, however, this means that all 

FPGA architectures that are under consideration need to be designed, provided 

customized software tools, and laid out in order to accurately determine the best design.  

In a process that might consider hundreds of different architectures, this is obviously not 

a viable approach. 

One solution to this problem is to design CAD tools that automate this process 

and allow a designer to quickly observe the impact of various decisions on overall FPGA 

performance.  Over the past few years, research done at the University of Toronto has 

attempted to link three of the four factors presented above – an FPGA’s architectural 

specification, transistor-level design, and software tools – to provide this capability [2].  

This research has clearly demonstrated the benefits of being able to design an FPGA in 

the presence of detailed knowledge about how architectural decisions affect the circuit 

design and software tools, and hence the FPGA’s performance. 

These benefits lead to the hope that even greater advantages might be attainable 

by integrating the last of the four factors influencing FPGA performance with the other 

three.  If there was a CAD tool that took an architectural specification of an FPGA and 
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automatically provided its physical layout in addition to the circuit design and the 

software tools, then design decisions could be made in the presence of precise 

information about the impact that they would have on all aspects of the FPGA’s 

performance and cost. 

The implications such tools would have on FPGA design go far beyond making 

the design process more informed.  Using these tools, an FPGA could be designed and 

manufactured with a reasonable idea of its performance and cost, all without any 

significant engineering design effort.  Depending on the performance penalties associated 

with designing an FPGA in this way, the very low cost of development could make it an 

extremely attractive solution.  An FPGA manufactured in this way could also serve as an 

early prototype that could be followed up by improved versions.  Alternatively, these 

tools could give designers a starting point that would save time in the design cycle and 

thus reduce costs. 

Clearly, there are many advantages that could be reaped by the ability to provide 

physical layout in addition to transistor-level design and software tools, all from a single 

architectural specification.  This work is an attempt to move closer to that goal. 

 
 

1.2 Scope 
 
 

This research involved two phases.  In the first phase, we developed a tool that 

automatically creates a spice-style, transistor-level netlist of FPGA logic and routing 

based on an architectural specification given to it.  In addition to the transistor-level 

netlist, it generates a cell-level netlist that allows small groups of transistors to be 

abstracted into cells. 



 

 4

In the second phase of our work, we developed a tool that creates layout 

placements for cell-level netlists of FPGA logic and routing.  When creating these 

placements, we attempt to take advantage of the structure of the FPGAs that we are 

dealing with to achieve a better result.  In this research, we demonstrate that this 

“domain-specific knowledge” can guide the automatic layout placement of an FPGA to a 

better solution. 

The scope of our research was limited to performing placement for the cell-level 

netlist, which essentially forms a detailed floorplan of the transistor-level netlist.  

Determining the exact transistor-level layout within the different cells, and performing 

the routing between the cells, is left to future work. 

 
 

1.3 Thesis Organization 
 
 

Chapter 2 presents background information and details about the previous work 

that is relevant to this research.  Chapter 3 describes the first phase of our work, which 

involves tileable netlist generation.  Chapter 4 discusses the second phase of our work, 

which explores automatic layout placement of FPGA tile netlists.  Chapter 5 

demonstrates how FPGA layout can be improved by taking advantage of domain-specific 

knowledge about the structure of our netlists.  Finally, Chapter 6 summarizes our 

conclusions and gives suggestions for future work. 
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Chapter 2 
 

Background 
 
 
 
 

The first section of this chapter provides a very brief overview of the FPGAs that 

we deal with in this work.  The second section presents the use of repeated “tiles” of logic 

and routing in the implementation of FPGAs.  The third section provides information 

about VPR, a result of previous research that was extended for use in the first phase of 

our work.  The fourth section presents the transistor-level structures that we use to 

implement the FPGA tiles we deal with.  The final section is a brief outline of the 

previous work that is relevant to the second phase of our research. 

 
 

2.1 Overview of FPGAs 
 
 

An FPGA is a circuit that can be configured to implement a wide variety of digital 

logic circuits.  The FPGAs we consider in this work are composed of three broad classes 

of structures – logic blocks, programmable routing, and I/O pads.  The logic blocks and 

routing are found in the “core” of the chip, surrounded by a ring of I/O pads on the 

perimeter.  This arrangement is shown in Figure 2.1. 

 



 

 6

I/O
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Routing
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Routing
Switch

 
 

Figure 2.1 High-level view of FPGAs that we work with 
 
 

Figure 2.1 also shows the wires that run in the channels between the logic blocks, 

as well as the programmable switches that allow signals to be sent from one wire to 

another.  Switches can be simple pass transistors controlled by an SRAM cell, or can use 

a buffer to provide greater drive strength.  Figure 2.2 shows both of these types of 

switches being used to connect different routing wires together. 
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Figure 2.2 Two types of routing switches – adapted from [1] 
 
 

Ultimately, routing wires and routing switches are used to connect logic blocks 

together.  Figure 2.3 shows the contents of a single FPGA logic block. 

 

Inputs 4-input
LUT Clock
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BLE

BLE

. .
 .

. .
 .
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N
BLEs

N
Outputs

Clock

I
Inputs

I

(b) Logic cluster

#1

#N

FPGA

BLE
Contents

 
 

Figure 2.3 Logic block contents – adapted from [1] 
 
 

As the figure shows, a logic block is made up of several BLEs (Basic Logic 

Elements).  These BLEs have a programmable look-up table and a flip-flop that can be 
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used to implement small logic functions.  These BLEs are connected to other BLEs in the 

same logic block by the internal feedback paths shown, as well as to BLES in other logic 

blocks via the I inputs and N outputs of the logic block. 

To allow logic blocks to connect to routing wires, an FPGA has input connection 

blocks and output connection blocks.  A set of typical input connection blocks is shown 

in Figure 2.4. 

 

in1 in1in1

in2 in2 in2

in1 in1in1

in2 in2 in2

Routing
wires}Out

SRAM
cells

 
 

Figure 2.4 Typical input connection blocks – adapted from [1] 
 
 

The figure shows three input connection blocks, one shared by each pair of 

vertically aligned logic blocks.  Figure 2.5 shows a typical output connection block. 
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SRAM

SRAM

SRAM

(a) No buffer sharing

Logic
block

Routing wire

Routing wire

Routing wire  
 

Figure 2.5 Typical output connection block – adapted from [1] 
 
 

The architecture of an FPGA is determined by many different parameters, each of 

which affects one or more of the building blocks presented above.  More detail about 

these parameters can be found in [1].  For the purposes of our research, we used values 

for these parameters that were found to be good in [1]. 

 
 

2.2 FPGA Tiles 
 
 

An FPGA of the form shown in Figure 2.1 is often implemented by designing 

only one logic block and the programmable routing around it, forming an FPGA “tile”.  

This single tile can, if designed properly, be duplicated and laid in a regular array to form 

the core of the FPGA.  This process is shown in Figure 2.6, with a single tile being used 

to generate a 3-by-3 portion of the FPGA core. 
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Figure 2.6 FPGA formed by replicating a single tile (shown at top) 
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2.3 VPR (Versatile Place and Route) 
 
 

VPR is a flexible CAD tool that was designed at the University of Toronto [3].  

As we describe in Chapter 3, we extended VPR to generate netlists for FPGA tiles.  Thus, 

the VPR flow is intimately linked to the first phase of our work. 

VPR performs clustering, placement, and routing of circuit netlists for a wide 

variety of FPGA architectures by using this architectural description.  VPR gives FPGA 

designers the ability to observe the effects of various architectural decisions on an 

FPGA’s software performance and transistor-level design.  A simplified view of its CAD 

flow is shown in Figure 2.7. 

 

VPR
Architecture Generator

VPR Place and Route
Engine

Routing-resource
Graph

Circuit Netlist Architecture
Description File

Placement &
Routing of Circuit

 
 

Figure 2.7 Simplified VPR CAD flow 
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2.3.2 VPR Architecture File 
 
 

The primary input to VPR is an “architecture file”, which contains a description 

of the architecture for the FPGA being considered.  VPR uses this architectural 

specification to provide place and route capability for circuits.  Figure 2.8 shows an 

excerpt of a typical VPR architecture file. 

 
# Cluster of size 4, with 10 logic inputs (I = 10, N = 4) 
 
# Logic block information 
subblocks_per_clb 4 
subblock_lut_size 4 
 
# Logic block pin information 
# Class 0 is LUT inputs, class 1 is the output 
 
inpin class: 0 bottom 
... 
inpin class: 0 left 
outpin class: 1 top 
outpin class: 1 right 
outpin class: 1 bottom 
outpin class: 1 left 
 
# Wire information 
segment frequency: 0.5 length: 4 wire_switch: 0 opin_switch: 1 \ 
Frac_cb: 1 Frac_sb: 1 Rmetal:  300.0 Cmetal:  10.0e-14 
 
# Switch information 
switch 1 buffered: yes R: 500.0  Cin: 10.0e-15 Cout: 1.0e-15 \ 
Tdel: 1.0e-10 
 
... 

 
Figure 2.8 Excerpt of a VPR architecture file 

 
 

The excerpt begins with a description of the number of logic blocks and the size 

of the lookup table in each logic block.  It then describes the location and type of the 

logic block pins.  The wire information is presented next, including the length, 

connectivity, as well as R and C values used in delay estimation.  Finally, the excerpt 
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shows information for a switch, including the type of the switch and additional electrical 

information used for sizing and delay estimation.  With only a few additional lines, this 

simple text description would capture a complete FPGA architecture. 

VPR also uses this specification to compute an estimate of the area and delays 

that would characterize the FPGA if it were manufactured.  The area estimates are based 

on assuming certain types and sizes for transistor-level structures in the FPGA, and the 

delay estimates are based on the resistance and capacitance values obtained for these 

structures through circuit simulation. 

 
 

2.4 Transistor-level Structures 
 
 

This section presents the transistor-level structures we assume throughout our 

work.  For the most part, they are reproductions of the transistor-level structures assumed 

by VPR (the figures, where indicated, are adapted versions of those that appear in 

Appendix B of [1]).  Cases where we assumed different structures than VPR are noted. 

Figure 2.9 shows the schematics assumed for one of the key structures in an 

FPGA – the SRAM cell.  Our schematic differs from the one assumed in VPR because 

we do not provide the inverted prog_data signal.  Careful design of the SRAM cell would 

be able to overcome the need for that inverted signal in writing values into the cell [5]. 
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data
data

prog_data prog_data

program

SRAM

(a) SRAM assumed by VPR

data
data

prog_data

program

SRAM

(b) SRAM assumed in this work
 

 
Figure 2.9 SRAM schematics used in (a) VPR and (b) in this work – adapted from [1] 

 
 

Figure 2.10 shows the schematic assumed for a buffer.  The exact sizing of the 

transistors depends on the drive strength required for the buffer, but follows the common 

technique of cascading increasingly larger stages together with a stage ratio near 4. 

 

1

1.9
In

4

7.6

16

30.4

Out

 Buffer (16x minimum
drive strength)

16x

 
 

Figure 2.10 Buffer schematic – adapted from [1] 
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Figure 2.11 shows the schematic for a 4-input multiplexer, controlled by two 

SRAM cells.  Larger or smaller multiplexers are implemented by modifying this structure 

as necessary.  

 

SRAMdata data

In0

In2

In1

In3

SRAMdata data

Out

2 SRAM cells

In0
In1
In2
In3

Out

 
 

Figure 2.11 Multiplexer schematic – adapted from [1] 
 
 

Figure 2.12 shows an overall view of the logic block schematic we use in our 

work. 
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Figure 2.12 Logic block schematic – adapted from [1] 
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Figure 2.13 shows the schematics used for flip-flops in VPR and in our work.  

The only difference between the two is the availability of set and reset inputs in VPR that 

were left out in our work. 

 

(a) Flip-flop assumed by VPR

(b) Flip-flop assumed in this work
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Figure 2.13 Flip-flop schematics used in (a) VPR and (b) in this work – adapted from 
[1] 

 
 

Figure 2.14 shows the schematic used for LUTs in our work. 
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Figure 2.14 Look-up Table (LUT) schematic – adapted from [1] 
 
 

2.5 Automatic Cell Layout Placement 
 
 

As far as we are aware, there is no previous work that has attempted to link the 

layout of an FPGA tile to an architectural specification.  However, much work has been 

done on the problem of placing blocks of varying sizes on a grid.  This placement 

problem requires only that all blocks be placed onto the grid such that there is no overlap 

between them.  While fulfilling this requirement, one of the jobs of a placement 

algorithm is to try and reduce the length of connections between blocks. 
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Our layout placement problem reduces to this placement problem because we 

operate on the cell-level netlist with the actual transistors abstracted away. 

The simulated annealing algorithm is one popular approach in solving this 

problem.  The Timberwolf tool [4] used this approach to handling “macrocell 

placement”, with an algorithm that initially allows overlap in the placement of the 

differently sized blocks.  A gradually increasing penalty is applied to this overlap to force 

the blocks apart.  This is followed by a final “clean-up” phase that eliminates any overlap 

left at the end of the placement process. 

The placement algorithm used in VPR [2] also uses simulated annealing, although 

without the presence of differently sized blocks. 
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Chapter 3 
 

Tileable Netlist Generation 
 
 
 
 

This chapter describes the first phase of our research, which involves generating 

netlists representing FPGA tiles. 

 
 

3.1 Goals and Requirements 
 
 

Our primary goal is to generate the transistor-level netlist of an FPGA tile using 

only an architectural description as input. 

We also want these netlists to be usable in performing automatic layout for the 

tiles that they represent.  In Chapter 4, we describe an automatic layout procedure that 

involves grouping transistors into cells that represent the various structures used in the 

netlist.  This grouping makes the layout placement problem simpler by allowing groups 

of highly related transistors to be treated as one “black box”.  To make our netlists 

suitable for such use, we need to generate an additional, “cell-level”, netlist that abstracts 

away some of the details of the transistor-level netlist. 

Finally, in order to guide the automatic layout process in the second phase of our 

research, we need to annotate our netlist with as much domain-specific knowledge as 

possible about the structures in the tile. 
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3.2 CAD Flow 
 
 

We decided to extend an existing tool, VPR (described in Section 2.3), in order to 

generate the netlists that we require.  VPR already provides the ability to describe an 

FPGA with a simple “architecture file” and was an ideal starting point for meeting our 

goals.  Figure 3.1 shows the CAD flow involved when using VPR_Layout.  Notice that it 

is very similar to the CAD flow for VPR shown in Figure 2.7.  The additional step of the 

tile netlist generator creates two extra outputs – the transistor-level and cell-level netlists. 

 
 

VPR_Layout

Circuit Netlist Architecture
Description File

Architecture Generator

Routing-resource
Graph

VPR Place and Route
Engine

Placement &
Routing of Circuit Cell-level NetlistTransistor-level

Netlist

Tile Netlist Generator

 
 

Figure 3.1 VPR_Layout CAD flow 
 
 

The tile netlist generator in VPR_Layout operates on the routing-resource graph 

that VPR creates based on the architecture file.  This routing-resource graph contains a 
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detailed representation of all the programmable routing in the FPGA and the connectivity 

to all the logic blocks as well.  For generating the logic block structures, which cannot be 

found in the routing-resource graph, VPR_Layout assumes the transistor-level schematics 

that are presented in Section 2.4. 

 
 

3.3 Transistor-level Netlist Generation 
 
 

3.3.1 Transistor-level Netlist Boundary 
 
 

In order to generate tile netlists that can be replicated and laid in an array as 

described in Section 2.2, we define a clear boundary for the part of the FPGA that the 

netlist represents.  Figure 3.2 shows the boundary we use when making our netlists. 
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Figure 3.2 Boundary of VPR_Layout netlists 

 
 

Our netlists include the logic block as well as the routing wires to the right of and 

above it.  This view of the tile is a little less regular than the one presented in Figure 2.6, 

although replicating either tile results in the same FPGA.  We used this slightly more 

complicated boundary because it simplified implementation of the netlist generator by 

requiring it to consider only those connections that have at least one end touching a wire 

or logic block pin that is included in the tile.  The switch connection in the top-right 

corner of Figure 2.6 doesn’t touch any wires in the tile and would complicate the 

implementation slightly. 
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3.3.2 Transistor-level Netlist Structure 
 
 

A few sample lines from a typical transistor-level netlist are shown in Figure 3.3. 

 
# FPGA tile transistor-level netlist 
# Output by VPR_Layout 
 
# PORT Format: <id> <node> <constraint class> <orientation> 
 
# XTOR Format: <id> <drain> <gate> <source> <type> <size> 
#              <cell type> <cell id> <subgroup type> <group type> 
 
... 
P11 3595 64 L 
P12 3595 64 R 
... 
P24 3636 69 T 
P25 3636 69 B 
... 
M0 35 2 1 P 2 0 0 0 0 
M1 35 2 0 N 1 0 0 0 0 
M2 36 35 1 P 8 0 1 0 0 
M3 36 35 0 N 4 0 1 0 0 
... 

 
Figure 3.3 Sample section from a typical transistor-level netlist output by VPR_Layout 

 
 

This sample illustrates the information that our netlists can convey about the tiles 

that they represent.  Figure 3.4 shows the tile portion that would be implemented from the 

sample netlist of Figure 3.3. 
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M0 (2X)

M1 (1X)

M2 (8X)

M3 (4X)

Node 1

Node 0

Node 35Node 2 Node 36

Node 1

Node 0

Cell type 0, ID 0 Cell type 0, ID 1

P11 P12

P24

P25

Node 3595

Node
3636

 
Figure 3.4 Tile portion generated by sample netlist in Figure 3.3 

 
 

There are two types of blocks in our netlists – transistors and ports.  The letter at 

the beginning of each line determines which type of block the line is describing (‘M’ for 

transistors and ‘P’ for ports).  Transistors are used to implement the various structures 

that are necessary in our tiles, while ports are used to fix the locations that a signal enters 

or exits a tile. 

 

Every transistor is described by an ID number, followed by three node numbers 

that represent the drain, gate, and source connections respectively.  This is followed by 

the type of the transistor (N- or P-mos), and then the size of the transistor relative to the 
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minimum-width transistor of the process.  The relative size was used in VPR’s area 

model [1] to create greater process-independence and we continue that here.  The 

definition of a minimum-width transistor is presented in Figure 4.2.  Finally, each 

transistor has information about its role in the FPGA tile attached to it.  The cell type and 

ID give the lowest-level hierarchy, and correspond to the cell-level netlist that is also 

output by VPR_Layout.  The various types of cells currently used in VPR_Layout are 

shown in Table 3.1. 

 
Cell type 

Port 
Buffer 
SRAM 

Multiplexer 
Look-up table (LUT) 

Flip-flop 
Pass transistor routing switch 

Buffered routing switch 
 

Table 3.1 Cell types used in VPR_Layout 
 
 

The subgroup and group fields are used to specify more hierarchy information, 

and the different values for these fields used in VPR_Layout are shown in Table 3.2. 

 
Group type Subgroup types found in group 
Logic block Logic block input circuitry 

 Logic block LUT circuitry 
 Logic block output circuitry 

Routing switch block Routing circuitry 
Input connection block Routing circuitry 

Output connection block Routing circuitry 
 

Table 3.2 Group and subgroup types used in VPR_Layout 
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All of this hierarchy information is intended to help guide the automatic layout 

tool that will be discussed later in Chapter 4.  The current types supported are arbitrarily 

chosen, and although we present some exploration about the information that is most 

useful in automatic layout of the tile, much research remains to be done to determine 

exactly what knowledge is useful to have in the netlist. 

 

Besides transistors, our netlists include port blocks.  Every port is described with 

an ID number, along with a node number indicating what node in the circuit that port is 

connecting to.  The next two fields allow VPR_Layout to inform our automatic layout 

tool about any placement constraints that ports have. 

The first of these is a constraint class number that, when applied to two ports, 

forces those ports to be placed opposite one another on the perimeter of the tile.  The 

second field is a character specifying the edge of the tile that the port must be placed on 

(‘T’ for top, ‘B’ for bottom, ‘L’ for left, ‘R’ for right, and ‘N’ for no requirement).  The 

result of using these constraints is shown in the sample netlist and the tile that it generates 

in Figure 3.3 and Figure 3.4.  Ports need to be constrained using these values so that they 

lie on specific edges of the tile and so that they line up with other ports to make a tileable 

block.  This subject is discussed in greater depth in Section 3.3.3 

 
 

3.3.3 Tileability Constraints for Ports 
 
 

The ports in our netlists need to have constraints specified so that when they are 

placed on the perimeter of the tile, the result is a tileable placement.  The constraints 

involved for various connections can be derived from the boundary that is shown in 
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Figure 3.2.  There are four classes of tileability concerns that need to be considered – 

routing wire tileability, routing switch block tileability, input connection block tileability, 

and output connection block tileability. 

 

For routing wires, we need to ensure that the wires “twist” so that they each end at 

a switch block every L adjacent tiles, where L is the length of the wire.  This can be 

accomplished by constraining the ports so that a wire exits the tile at a location exactly 

opposite to the one where the next wire enters it.  Thus, when two tiles are placed 

adjacent to one another, the first wire in the first tile is connected to the same electrical 

node as the second wire in the second tile.  Figure 3.5 illustrates one example of ports 

being placed exactly opposite one another on our netlist boundary to achieve this twisting 

effect. 
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Logic Block

 
 

Figure 3.5 Ports lined up to create routing wire tileability 
 
 

In order to create this twisting pattern successfully, we need to be able to find 

groups of L wires (where L is the length of all the wires in that group – 3 in the example 

of Figure 3.5).  If we have such a group, one wire can start in this tile, twist and continue 

in the second adjacent tile, and ultimately end at a routing switch block in the “Lth” 

adjacent tile. 

If there are many wires of length L (as is commonly the case in large FPGAs), 

they can be dealt with as long as the wires can be arranged into distinct groups of exactly 

L wires.  Each of these groups then has the same twisting pattern described above. 

Finally, if there are wires with different lengths in the tile, they can still be dealt 

with by the twisting method if they can be arranged into groups with other wires of the 
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same length.  All such groups must have Li wires when the length of the wires in group i 

is Li. 

These conditions, when combined, result in the following more compact 

requirement (mentioned in Section 4.2 of [1]) – the tileability constraint for routing wires 

can be met by the twisting method described above if, for all wire lengths L present in the 

tile, the number of wires of length L is an integer multiple of L. 

 

When generating routing switch blocks, the netlist generator in VPR_Layout must 

create all the connections that are shown in the switch block of Figure 3.2.  Because our 

netlist boundary includes only the routing wires to the right of and above the logic block, 

some switch block connections connect wires in our tile to wires in adjacent tiles.  These 

connections must exit the tile at one edge (via a port), and enter the tile at the opposite 

edge.  Figure 3.6 shows one example of ports lined up to create these types of 

connections. 
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Logic Block

 
 

Figure 3.6 Ports lined up to create switch block tileability 
 
 

The two ports indicated in the figure will create connections from a tile’s 

horizontal wire to a vertical wire in the tile directly above it.  This type of connection is 

used to make the connections that go from a given tile to the tile that is horizontally or 

vertically adjacent to it.  However, there is the additional possibility of a diagonal 

connection that needs to connect a wire in our tile to another wire in the tile below and to 

the right of it. 
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We deal with this type of connection by extending the process used to deal with 

adjacent connections.  As shown in Figure 3.7, the connection exits the tile on the bottom 

edge, enters at the top edge, exits again on the right edge, and finally enters to finish the 

connection on the left edge. 

 

Logic Block

 
 

Figure 3.7 Ports lined up to create tileable, diagonal switch block connections 
 
 

When the tiles are laid in an array, this will connect a wire in a tile to the tile 

below and to the right of it as required.  The arrows in the figure indicate the four ports 

involved in making these types of connections. 

 

Finally, to create tileable input connection block and output connection block 

connections, we need to allow for wires below and to the left of the logic block (which 
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are not included in the same tile as the logic block) to connect to logic block pins.  This is 

equivalent to the wires in our tile connecting to pins of logic blocks in the tile above it 

and to the right of it.  To create these connections, we again line up pairs of ports to allow 

connections leaving a tile to enter an identical tile placed adjacent to it.  Figure 3.8 

illustrates connections made in this way. 

 

Logic Block

 
 

Figure 3.8 Ports lined up to create connection block tileability 
 
 

The arrows in the figure show an output connection block connection (horizontal) 

and input connection block connection (vertical) being made to adjacent tiles such that a 

logic block has access to the wires on all four of its edges once the full array is replicated. 
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3.3.4 SRAM Programming 
 
 

SRAM cells are a key component of our FPGAs because the values they are 

programmed with determine the circuit that the FPGA implements.  In our tile netlists, 

each SRAM cell controls cells with its data value.  However, the programming 

connections of an SRAM cell need to be made keeping in mind that the entire set of cells 

will eventually need to be treated as a memory array.  Because of this requirement, the 

tile netlist generator automatically assigns programming lines to SRAM cells such that 

they form word lines and bit lines that can be used to access the entire array. 

Our SRAM programming assignments are done so as to generate the same 

number of word and bit lines (resulting in a square memory array).  The assignment of 

word and bit lines can be done in an arbitrary fashion since the assignment does not affect 

the FPGA’s functionality.  However, since our ultimate goal was to use our tile netlists to 

perform automatic layout while taking advantage of the domain-specific knowledge 

explicitly embedded in the netlist, we needed to make sure that no additional domain-

specific knowledge was left implicitly in the netlist.  If this occurred, our results would be 

affected by that hidden information. 

This is an issue that must be considered when assigning the SRAM programming 

lines.  For example, a 4-input LUT is driven by 16 SRAM cells (refer to Section 2.4 for 

schematics).  Figure 3.9 shows a word line assignment that results in all 16 SRAM cells 

that are driving the LUT having the same word line.  
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...

4-input LUT

16 SRAM cells
 

 
Figure 3.9 A 4-LUT driven by 16 SRAM cells on the same word line 

 
 

If this were done systematically for all the SRAMs that drove LUTs, there would 

be implicit domain-specific knowledge in the netlist.  Without explicitly stating so, the 

netlist has been designed such that the 16 SRAM cells driving a single LUT have more 

connections in common because they have a similar role in the context of the FPGA. 

The solution to this problem is to assign all SRAM programming lines randomly, 

making sure that multiple SRAMs that might have been generated to control a given cell 

(like the LUT in the example above) do not systematically get placed onto the same 

programming lines.  

 
 

3.4 Cell-level Netlist Generation 
 
 

VPR_Layout generates the cell-level netlist at the same time as the transistor-

level netlist.  Since each transistor line in the transistor-level netlist specifies the cell that 

it is part of, this is the easiest way to obtain the abstracted cell-level netlist.  Ports are not 
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specified in the cell-level netlist, because their specification is unchanged at the cell level 

(each port is a cell of its own).  Thus, information about the ports comes only from the 

transistor-level netlist. 

 
 

3.4.1 Cell-level Netlist Structure 
 
 

A few sample lines from a typical cell-level netlist are shown in Figure 3.10. 

 
# FPGA Tile cell-level netlist 
# Output by VPR_Layout 
 
# CELL Format: <id> <cell type> <subgroup type> <group type> 
#              <width> <height> <num pins> 
#              (pin class,node,x-offset,y-offset) (...) (...) etc 
#               for “num pins” times 
 
C0 0 0 0 3 2 2 (0 2 0 1) (1 8 2 1) 
C1 0 0 0 5 4 2 (0 8 0 2) (1 9 4 2) 
C2 0 0 0 3 2 2 (0 3 0 1) (1 10 2 1) 
... 

 
Figure 3.10 Sample section from a typical cell-level netlist output by VPR_Layout 

 
 

The cell level netlist is made up only of cells, although each has parameters that 

allow us to differentiate between the cell types used in VPR_Layout. 

The first field is an identifier, followed by three fields that give hierarchy info that 

was described in Section 3.3.2.  The integer width and height (respectively) of the 

rectangular cell are next.  The cell area determines the height and width of the cell, which 

is made as close to square as possible.  The area is set based on the total transistor area 

required for the cell, with an extra 50% of that area added to allow for intra-cell routing.  

The value of 50% is an arbitrary value that can be explored in any future work that 

attempts to actually determine cell layouts. 
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The next field represents the number of pins that the cell has.  These pins allow 

cells to connect to each other to form the FPGA tile.  For each pin, a set of information 

about the pin forms the rest of the line, with a pin class, the node that the pin connects to, 

and the pin offsets relative to the lower-left corner of the cell all specified for each pin. 

A more detailed look at using some of this information will be given in Chapter 4 

and Chapter 5.  Some of the fields, such as the pin offsets, have not been used in our 

work but would likely be necessary in any future work that attempted routing between 

cells or determining the layout inside individual cells. 
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Chapter 4 
 

Automatic Cell Placement of FPGA Tile Netlists 
 
 
 
 

This chapter describes the second phase of our research, which involves 

performing the automatic layout placement of the netlists output by VPR_Layout. 

 
 

4.1 Goal 
 
 

In this part of our work, our goal is to develop a tool to read in transistor-level and 

cell-level netlists of the form described in Section 3.3.2 and Section 3.4.1, respectively.  

Using these netlists, we want to generate good placements for the cell-level netlists. 

 
 

4.2 CAD Flow 
 
 

To meet the goal stated above, we developed a new tool called ATL (Automatic 

Tile Layout).  It reads in netlists of the form output by VPR_Layout, and provides the 

infrastructure for obtaining cell-level placements and for using the domain-specific 

knowledge associated with the netlists to improve those placements.  Figure 4.1 shows 

the CAD flow for ATL. 
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Figure 4.1 ATL CAD flow 
 
 

4.3 Netlist Reader 
 
 

The netlist reader parses in the transistor-level and cell-level netlists, and 

generates an internal netlist.  Whereas the input netlists are specified in a spice-style 

format with node numbers, the internal netlist transforms them into a compact netlist that 

is more efficient for algorithms to operate on. 



 

 39

 
 

4.4 Area Calculator 
 
 

The area calculator uses the information in the internal netlists to determine the 

size of the tile used for placement.  We have assumed square tiles in our work, though 

such an assumption is arbitrary and rectangular dimensions can easily be explored in 

future work. 

To determine the area, the area calculator uses the following equations: 
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The width and height are set to the maximum required by either the total cell area 

or the ports that lie on the edge of the tile assigned the most ports.  The 

AREA_FUDGE_FACTOR in the equation above is used to allow extra space when the 

tile area is determined by cell area.  This space is needed to allow cells to be able to move 

around and to allow space for routing.  Since the scope of this work did not involve 

routing, though, an arbitrary value of 1.4 is used for this factor.  This is clearly a value 

that needs to be explored in any future work that attempts to route our placements. 

Once the area of the tile has been calculated, the grid that represents the FPGA 

tile is fixed to that area.  The area is specified in units of “minimum-width transistor 

areas”, and each square in the placement grid represents one minimum-width transistor 

area.  The definition of a minimum-width transistor area is shown in Figure 4.2. 
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Figure 4.2 Definition of a minimum-width transistor area – adapted from [1] 

 
 

4.5 Constraint Generator 
 
 

The constraint generator is the portion of ATL that we used to demonstrate the 

value of using domain-specific knowledge in generating the placements of an FPGA tile.  

In particular, it uses the hierarchy information provided in the cell-level netlist to 

determine ways of improving the placements. 

One of the features provided by the constraint generator is the ability to specify a 

rectangular region in which a cell must be placed.  Every cell can be given such a 

placement constraint. 

This constraint generator is one tool that can help leverage the domain-specific 

knowledge to floorplan groups of cells into certain areas in order to improve the layout. 
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4.6 Placement Engine 
 
 

The placement engine in ATL is based on the simulated annealing algorithm 

described in Chapter 2.  The details of our placement approach largely follow the one 

presented in [1].  Some of the key features are described in the sections below. 

 
 

4.6.1 Initial Placement 
 
 

The initial placement that is used by our placement engine is generated in a 

random fashion.  However, because the cells we are placing are all of different sizes, our 

initial placement places cells in order of their size.  With larger cells placed first, the 

smaller cells can “fit in the gaps” much more easily. 

Another challenge is presented by the presence of placement constraints of the 

type described in Section 4.5.  If cells that are unconstrained are placed before cells that 

are constrained, the limited space in which the constrained cells can be placed are often 

already taken by cells that do not need to be there.  To handle this, we use an initial 

placement algorithm that makes repeated initial placement attempts, with each attempt 

first placing the cells that failed in the previous attempt. 

 
 

4.6.2 Cost Function 
 
 

One of the most important factors in an annealing-based placement algorithm is 

the cost function that is used to evaluate changes to the initial placement.  Our cost 



 

 42

function is based on the bounding box enclosing the terminals of each net, and is 

calculated according to the formula below [1]: 
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The bbx and bby values are determined based on the smallest box that encloses the 

lower-left corner of all the terminals of a net.  The q(inet) factor is used to model the fact 

that the bounding box usually underestimates the amount of routing needed for nets with 

more than 3 terminals [6].  The value of q(inet) is determined based on [6]:  it is 1 for 

nets with 3 or fewer terminals, and linearly increases to 2.79 for nets with 50 or more 

terminals.  An example of a bounding box cost calculation for one net is shown in Figure 

4.3. 

 



 

 43

inet

Bounding box

q(inet) =
1.0828

bbx(inet) = 6

bby(inet) = 6

Cost(inet) = (1.0828)(6 + 6) = 12.9936
 

 
Figure 4.3 Example bounding box cost calculation for one net 

 
 

4.6.3 Annealing Schedule 
 
 

We use the same adaptive annealing schedule that is presented in [1], which 

includes the temperature update scheme, the range limiting scheme, and the exit criterion.  

A detailed explanation of these methods can be found in Chapter 3 of [1]. 

The number of moves attempted per temperature is also set to the same value as 

[1]: 
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The “inner_num” factor is a user-specified option that is directly proportional to 

the amount of CPU time spent in the placement tool.  This option allows the user to 

explore the time-quality trade-off for placements. 

 
 

4.6.4 Move Generation 
 
 

Because of the varied size of the cells in our tiles, the move generator in our 

placement engine must be careful to swap cells such that the legality of the placement is 

maintained.  This means that there must be no overlap of cells in the final placement.  As 

described in Section 2.5, many placement algorithms attempt to achieve this by applying 

an increasing overlap penalty, followed by a phase that fixes any remaining overlap. 

Our placement algorithm disallows overlap at any stage in the placement, 

ensuring that the algorithm is always working with a legal placement throughout the 

entire process.  Determining whether allowing overlap would work better for our 

application is beyond the scope of our work, but could be explored in future work. 

To prevent overlap, we use a move checking procedure that forbids all moves that 

would create overlap if accepted.  The basic rule is that when a cell is moved, all cells 

that it displaces (which are swapped to the area that the original cell is leaving) must 

either fit into the space left by the original cell, or if they displace further cells, those 

newly displaced cells must fit into the space left by the cells displacing them.  Figure 4.4 

shows pseudo-code that describes the move checking procedure. 
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move_allowed = 1; /* Assume okay until problem found */ 
target_cell = select_random_cell(); 
(x_to, y_to) = select_random_target_location(); 
for (icell = cells target_cell will be displacing) { 

if (icell fits once target_cell has left) { 
/* Does not make move illegal */ 

} 
else { 

for (blocking_cell = cells icell will be displacing) { 
if (blocking_cell fits into space left by icell) { 

/* Does not make move illegal */ 
} 
else { 

move_allowed = 0; /* Forbid this move! */ 
} 

} 
} 

} 
 

Figure 4.4 Pseudo-code describing move checking procedure 
 
 

Figure 4.5 shows an example of a legal move.  The move of the lower-left cell 

results in a “first-level” displacement of the cell on the right.  That displacement in turn 

results in a “second-level” displacement.  However, because this second displacement 

does not result in any further displacements (the top-left cell is moving such that it fits 

into the space left by the cell on the right), this move is allowed by ATL.  The figure also 

shows the resulting placement after the move has been made. 
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Proposed move

Grid

First-level displacements due to proposed move
Second-level displacements due to first-level displacements

(b) Result after move

(a) Proposed move and consequences

 
 

Figure 4.5 A legal move in ATL – (a) The move and its consequences, and (b) The 
resulting placement after the move 

 
 

An example of a move that ATL rejects is shown in Figure 4.6.  Now the cell on 

the top-left is a second-level displacement that does not fit into the space left by the block 
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displacing it (i.e. the cell on the right).  This could result in further displacements and so 

ATL declares the move illegal.  Notice that in this particular case, the move would be 

legal if ATL allowed it because no other cell occupies the space above the cell on the 

right and hence no further displacements would actually be required. 

 

Proposed move

Grid

First-level displacements due to proposed move
Second-level displacements due to first-level displacements

Doesn't fit into space left
by leaving block

 
 

Figure 4.6 An illegal move in ATL – this type of move will be rejected 
 
 

4.7 Placer Quality 
 
 

In the absence of a router that can determine whether the cell placements we 

create are actually routable, it is difficult to determine the quality of our placement tool 

with respect to our ultimate goal of creating an FPGA tile layout. 

We believe that our placement tool is of sufficient quality to allow exploration of 

using domain-specific knowledge to improve FPGA layouts.  However, a complete 

layout tool is clearly the most pressing need for future work to try and meet. 
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Chapter 5 
 

Using Domain-Specific Knowledge to Improve 
Cell Placements 

 
 
 
 

The work described in this chapter uses the infrastructure provided by the tools 

presented in Chapter 3 and Chapter 4 to evaluate the benefit of using domain-specific 

knowledge to improve cell-level placement of FPGA tiles. 

In this dissertation, we present only one particular application of domain-specific 

knowledge.  Exploring more ways of using this information is an obvious area requiring 

much further work. 

 
 

5.1 Experimental Methodology 
 
 

All of our experiments used a set of ten “benchmark tiles” that were generated 

using VPR_Layout.  These benchmark tiles were formed with architecture files that have 

been found to result in high-quality FPGAs in [1].  The electrical parameters in the 

architecture files, used to size buffers and switches in our tiles, were based on TSMC’s 

0.18µm process technology and were taken from the work done in [9].  To obtain the set 

of tiles that we used in our experiments, we varied the number of LUTs from 1 to 10 in 

the architecture files, and ran each architecture file through VPR_Layout to obtain the tile 

netlists. 
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In our experiments, we run ATL with all ten tile netlists and calculate the 

geometric average of the final placement costs for those netlists.  We use geometric 

averages to make sure that all tiles have equal weight in the average; an arithmetic 

average would give greater weight to the larger tiles that have more cells and hence 

higher costs.  Our experiments compare these geometric averages to evaluate the effects 

of optimizations. 

 
 

5.2 SRAM Placement 
 
 

5.2.1 SRAMs in our Tile Netlists 
 
 

SRAM cells are one of the most important components of an FPGA because they 

provide the programmability of its routing and logic components.  Section 3.3.4 describes 

our method of assigning word and bit lines to SRAM cells.  This method results in a 

netlist that has groups of SRAM cells that the placement cost function will prefer to put 

together (because they share the same word or bit lines) even though they might not have 

anything else in common. 

In an FPGA, though, the choice of word and bit lines is arbitrary, and can be done 

in any way that reduces layout complexity.  For example, groups of SRAM cells that are 

close together and connected to the same blocks can be put onto common word or bit 

lines to make the layout simpler. 

This is an example of domain-specific knowledge that we have about our netlists.  

We know that FPGA SRAM cells in our netlist are assigned arbitrarily to word and bit 
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lines, and that those assignments can be swapped with other SRAM cells without any 

consequence. 

 
 

5.2.2 SRAM Regularization 
 
 

To improve our layouts by using the netlist properties described in Section 5.2.1, 

we perform “SRAM regularization”, a process that is described in this section. 

First, we fix the locations of all SRAM cells based on their arbitrary programming 

line assignments in the netlist.  This results in a square array of fixed SRAM cells, with 

all the cells in a row connected to the same word line, and all the cells in a column 

connected to the same bit line.  This SRAM placement has a very low placement cost for 

its programming nets, since the SRAM cells are all lined up according to those nets.  

However, since the SRAMs sharing a given word or bit line do not necessarily have 

anything in common, this SRAM placement makes it hard to bring cells that are driven 

by multiple SRAM cells close to the SRAMs that drive them (since those SRAMs are 

likely to be on separate sets of programming lines).  Table 5.1 shows that if we keep these 

regularized locations for the SRAMs (by locking them down throughout the annealing 

process), the final placement is much worse (by more than 30%) than the original 

algorithm that treats SRAMs like all other cells. 
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Geometric Average Wirelength for 10 tiles 

Normal Placement Regularized SRAM Placement 
with SRAM cells locked to 

initial locations 
 

94 062 
 

124 361 
 

Table 5.1 Comparison of normal placement and regularized SRAM placement with 
locked SRAM cells 

 
 

Once we have placed the SRAMs into an array of cells, however, we can allow 

them to swap with other SRAM cells without affecting the extremely low cost for 

programming nets.  This is because of the domain-specific property described in 5.2.1.  If 

two SRAM cells from different rows swap locations, for example, the netlist indicates 

that the word lines for both of them will need to be routed out to the new locations 

instead of in a straight line as before.  We know, however, that the SRAM cells can just 

swap the word line they are using so that those word lines can still run in straight lines.  

An example of this strategy is shown in Figure 5.1. 
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A

B ...Word line 1

...Word line 2

B ...Word line 1

A ...Word line 2

A ...Word line 1

B ...Word line 2

Proposed Swap

(a) Without reassigned word line

(b) With reassigned word line
 

 
Figure 5.1 Effect of an SRAM cell swap on word lines (a) without reassignment and (b) 

with reassignment 
 
 

We tested this procedure by directing the placement tool to ignore the 

programming line costs as it evaluated moves involving SRAMs (instead of continuously 

reassigning programming lines in the netlist).  We then add back the cost of the original 

programming nets (i.e. the ones running in straight lines) to the final cost using this 

method.  The result of this process is shown in Table 5.2. 
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Geometric Average Wirelength for 10 tiles 

Normal Placement Regularized SRAM Placement 
with SRAM cells allowed to 

move 
 

94 062 
 

90 259 
 

Table 5.2 Comparison of normal placement and regularized SRAM placement with 
SRAM cells allowed to move without penalizing programming connections 

 
 

Regularizing SRAMs in this fashion provides an improvement in the wirelength 

of about 4%. 
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Chapter 6 
 

Conclusions and Future Work 
 
 
 
 

6.1 Summary 
 
 

The main contribution of this research is to provide an infrastructure that allows 

simple architectural descriptions to be turned into the detailed transistor-level design of 

an FPGA tile, and that begins the process of automatically laying out that design.  We 

have also shown that taking advantage of domain-specific knowledge can help create 

better layout placements, and can potentially reduce the penalties associated with 

performing layout automatically. 

 
 

6.2 Future Work 
 
 

This research has opened up many promising avenues of further work.  The 

largest of these is to finish the task of automatically laying out our tiles by developing a 

router for connections between cells, and by developing a tool to automatically determine 

the layout inside the cells themselves.  Clock, power, and other special nets should also 

be handled in an appropriate fashion. 

Achieving a complete layout would determine what the performance and area 

penalties are likely to be for laying out FPGAs automatically versus manually.  It would 
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also allow the layout to be extracted and simulated for more detailed verification of 

performance and functionality. 

Using a completed automatic layout engine, the transistor-level structures we used 

in our work could be modified or optimized to result in better layouts.  Also, further 

exploration of using domain-specific knowledge to improve those complete layouts 

would help determine how much of the area and performance penalty can be removed by 

a smarter layout tool. 

Future work could also take the spice-style netlists that we produce with 

VPR_Layout and simulate them to ensure functionality and to get an idea of how 

performance of various structures in the tile is affected by simulating the entire tile as a 

whole. 
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Appendix A 
 

Graphical Representation of Tiles in ATL 
 
 
 
 

ATL includes a graphical tool that displays the cells and cell-level nets of an 

FPGA tile on the screen.  This tool is an extended version of the one first presented in [2], 

and was ported to Windows as part of the work done in [7] and [8]. 

This tool is a particularly useful aid in visualizing the contents of the tile, as well 

as the interactions between various types of cells.  Table A.1 provides a legend for the 

cell colours by cell type, which is needed to interpret the graphical output of ATL. 

 
Cell type Colour 

Buffer Dark green 
SRAM Red 

Multiplexer Yellow 
Look-up Table Magenta 

Flip-flop Cyan 
Pass transistor routing switch Dark grey 

Buffered routing switch Light grey 
Port White 

 
Table A.1 Legend of cell colours in ATL graphical representation 

 
 

The following pages show some screen captures of our graphical tool in various 

stages of placement and with different optimization options. 
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