OPTIMIZATION OF TRANSISTOR-LEVEL FLOORPLANS FOR

FELD-PROGRAMMABLE GATE ARRAYS

by

Ryan Fung

Supervisor: Jonathan Rose

April 2002

OPTIMIZATION OF TRANSISTOR-LEVEL FLOORPLANS FOR

FIELD-PROGRAMMABLE GATE ARRAYS

by

Ryan Fung

A THESISSUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
BACHELOR OF APPLIED SCIENCE

DIVISION OF ENGINEERING SCIENCE

FACULTY OF APPLIED SCIENCE AND ENGINEERING
UNIVERSITY OF TORONTO

Supervisor: Jonathan Rose

April 2002

ABSTRACT

Optimization of Transistor-Level Floorplans for Field-Programmable Gate Arrays

Bachelor of Applied Science and Engineering, April 2002
Ryan Fung
Division of Engineering Science
Faculty of Applied Science and Engineering
University of Toronto

The design and custom hand- layout of FPGAs (Field-Programmable Gate Arrays)
is a painstaking process that takes many personyears of effort to complete.

This research builds upon groundbreaking work done at the University of Toronto
to work towards the construction of a tool that automatically generates physical layouts
from FPGA architectural specifications. In particular, this research focuses on improving
the performance of the placement phase of the layout generation engine of that tool.

Various heuristics, some of which make use d specific knowledge of FPGA
circuitry, were developed to reduce the area and the amount of wiring resources needed
to connect the functional cells within an FPGA layout. Comparisons with the original
version, based on practical FPGA architectures, demonstrate the improved layout engine
produces layouts about 40% smaller, on average, withabout 30% less wiring demand.

ACKNOWLEDGEMENTS

| would like to thank my supervisor, Jonathan Rose, for the guidance he offered
and the general wisdom he shared. His enthusiasm is as remarkable as his vision.

| would also like to thank Ketan Padalia, the developer of the tools that serve the
immediate foundation for this research, for providing me with the resources | needed to
conduct this research. His assistance and support is grestly appreciated.

| would finally like to thank Vaughn Betz of Altera, whose pioneering research
Ketan built upon, for the insights and knowledge he has offered me.

TABLE OF CONTENTS

CHAPTER LINTRODUCTION ..ottt sssssssssssssssss s st ssssssssssans 1

11 IMIOTIVATION. ..o ttetteeetetet ettt ea bbb bbb d bR b e bR bbb R bbb R bbb bbb bR b e s e bR s sn b ren e 1
12 SCOPE
1.3 ORGANIZATION OF THESIS.....ccueuerreresteersesesesessesesssessssessssssssessssssssesssessssesssssessssssessssessssssssesssssesssssessssessans 3

CHAPTER 2 BACKGROUND ..ot 5

21 OVERVIEW OF FPGA STRUCTUREcoctrurireeereresseetsesesssesssesssssessssssssssessssssssssssssssssssssesssssssssssssssssessessss
2.2 FPGA TILES...otiiiteeeerereceesese st esessssssesesssssssesessssssssesssessesessssssssesssssesenssssnsssnssnsesnssenssesesenssnsesssnssesessensss
23 VPR (VERSATILE PLACEAND ROUTE)
24 TRANSISTOR AND FUNCTIONAL-CELL NETLIST GENERATION.....cctuetrereeueererensesssesessasesssesassseseseneees 9
241 Transistors, CellS, AN POITS.......ooriereceirereee ettt seben
24.2 SRAM Programming-Line Assignments
243 Cell-LeVEl NEtliSt DELAIIS........cciureurireeeireerireeseset ettt bbbt
AN S 1< FE= AN g a0 = 1) 1F S
25 AUTOMATIC CELL-LEVEL PLACEMENT OF FPGA TILES
251 NEHSE REAUEY ...ttt bbbttt
252 OptimiZation ENQINE.......cooiireireesieresssis s sesesssesssssssssssssssssessssssssnss
2521 Initial Placementccccoovveeveveiciiecne
2522 Annealing Schedule
2523 LayOUL COSL....oviieieeieiceieie e
2524 Move Generation and Move Cost ArDitration..........cccovereiererereneieseree e
2525 Advantages of SImulated ANNEAIING........ccorreirriereeeere s
253 SRAM Regularization
2.6 AUTOMATIC INTERCONNECTED BLOCK PLACEMENTouituturtrereeisisiserensiseseess it sessssssssessssssessnssesens

CHAPTER 3NEW OPTIMIZATION INFRASTRUCTUR E......ccoioinnrnrrnnese e 30

3.1 GOAL oottt et see sttt R R E SRR AR AR 30
3.2 RESTRUCTURING OF GENERAL OPTIMIZATION FLOWcovvuririnieissineesesssensesssessessssssssssssssssssssssssessns 31
321 Multi-Phase Optimization...........cccoeeevvenrenerenessesesessseennnens
3.22 Tile Compaction Between Reheat Anneals
3.3 MAJOR MODIFICATION OF EXISTING FEATURESIN SIMULATED-ANNEALING-BASED
OPTIMIZATION ENGINE.....cutriueteereeesesesesessssessseessssessssessessssessssessssassssssssssssssnsessssssesns

331 Initial-Placement MOdifiCatiONS........cooeureerereerereireeirie et
3.3.2 Annealing-Schedule MOdifiCatiONS.........coereereereeerie e
3.3.3 Layout Cost MOdifiCatiONS.........ccouureuerrererrercrreerrieereieeseiesssessreserseereaes

3.34 Move Generation and Move Cost Arbitration Modifications
3.4 OVERVIEW OF NEW HEURISTICS AND COSTS

341 TIHESZE COSt ...ttt

G N1 = s o] oY o TR

A3 VMITE OVEIUSE COSL.....ouieirieintiresciress i isees et ses st bbb bbbttt

34.4 Block-Off-Edge Move

345 COMPACLION IMOVE.......ciecieiririsieisesssstressssie s sesssssasessssssssssssssessssssssessssssssessssssssesasssssesssnssnsessssnssnss

3.4.6 BIOCK ROtAtiON QN FliP....cuiiiirieereceerireresie s esesssss e ssssse e sssnssssesssssnsnesssssnes

3.4.7 Block Equivalent-Pin Swap

34.8 Initial Large-Grid PIACEMENL.........coeuieeeirieereerreiseeirie et sese s

349 SRAM REWEAVE........coeeeeeieeeetete ettt bbb bbb bbb bbb bbb bbbt bbbtk e bbb bbbt et bena

CHAPTER 4OPTIMIZATION TECHNIQUES AND COSTS....ciririrerriresenesesessesessessssssssssssssssssseseens 46

4.1 EXPERIMENTAL BENCHMARK SET....oiiiitieeeeereseeseseesessessseessssesstsesssssssssssssssssssessssssssssssesssssssssssessssssnes 46
4.2 PSEUDO CODE

43 COST -BASED OPTIMIZATIONS.cutretutuetrerestessessesesssessessassessesessesssssesssessssssssssssstsssssesssssssssssssssesssssnsenss 47

431 THE-SIZE COSt ..ottt ettt bbb bbbt
432 TIHE-HOPE COSt...cooriiericrririreeirereee st esesessssessenens
433 WIre-OVErUSE COSt....cooeeeeeieeeeereseene s ssss s
4331 Congestion Modél..........cceeevreeirenienenes
4332 Congestion COSt.......c..coeveererereenerieneeeeas
4.4 MOVE-BASED OPTIMIZATIONS
441 Block-Off-EAge MOVE........cccoeeeccrereeeteesese s
4.4.2 Compaction MOVE.........cccceceerneneeeeirisesietssssssssssssssessssssens
4.4.3 Block Rotation and Flip (Cell Template Svap)
444 Block Equivalent-Pin SWap.......cccccovvvenreneeseneseninennens
45 OTHER OPTIMIZATIONS .. .uctieereeereneeressesesessssessssesssessssessessnnees
451 Initial Large-Grid Placement...........cooveevrereeenerereeeenerennens
452 SRAM REBWEAVE........ceieeeiririreisisie et
4.6 CUMULATIVE EFFECT OF OPTIMIZATION TECHNIQUESAND COSTS

CHAPTER 5 CONCLUSION ...t s nsns 98

51 FINAL RESULTS... ettt ettt ettt bbbt bbb bbbt bbb bbb bbb b e bbb e b e b e bk e b e b e b et ebenebebenenas 98
5.2 FUTURE W ORK ...ttt ittt ettt bbb bbb bbb bbb bbb bbb bbb bbb e b b e bt e b e b et bebebebebenanas 9

APPENDIX A LAYOUT OPTIMIZER FLOW ..o 104
APPENDIX B MOVE GENERATOR DETAILS ...t 106
APPENDIX C GRAPHICAL ILLUSTRATION OF ATL CELL PLACEMENT RUNS.cccueuuu. 108

REFERENCES ... b b b bbb 121

LIST OF FIGURES

FIGURE 2-1 HIGH-LEVEL VIEW OF UPPER-LEFT CORNER OF A TYPICAL FPGA ..o 6
FIGURE 2-2 ILLUSTRATING THE TILE-ABILITY OF AN FPGA TILE. .. i sseseesessesessse e 8
FIGURE 2-3 VPR CAD FLOWooitiiieerrmreerereeseseessseseesessesesssss s esess s ssse s ssessssssssssssssnssessssssssenssssesnenssesssnessens

FIGURE 2-4 VPR_LAY OUT CAD FLOW.....coveercrrrreccrreennee
FIGURE 2-5 ILLUSTRATION OF PORT CONSTRAINTS
FIGURE 2-6 ILLUSTRATION OF THE PLACEMENT /ROUTING GRID (BASED ON ROUTING TRACKS).....ccocesuevreenee 14
FIGURE 2-7 ATL CAD FLOW ...t bbb bbb 16
FIGURE 2-8 ILLUSTRATION OF AN FPGA TILE AND TILE-ABILITY BASED ON THE PORT ARRANGEMENTS..... 17
FIGURE 2-9 ILLUSTRATION OF A NET AND ITS BOUNDING BOX
FIGURE 2-10 LEGAL MOVE EXAMPLE......cvtiuetrererieieireneseeeseeseseesessesens
FIGURE 2-11ILLEGAL MOVE EXAMPLE
FIGURE 2-12 ILLUSTRATING REGULAR ARRANGEMENT OF SRAM CELLS......cocvnuerrererererrerenes
FIGURE 3-1 ILLUSTRATING TILE COMPACTION BETWEEN REHEAT ANNEALS
FIGURE 3-2 ILLUSTRATION OF A NET AND ITS BOUNDING BOX......cvierirrenirrerreresieeneeseensesessse s
FIGURE 3-3 MOVE GENERATOR MODIFICATION: EXAMPLE 1
FIGURE 3-4 MOVE GENERATOR MODIFICATION: EXAMPLE 2
FIGURE 4-1 RINGS OF EQUAL TILE-SLOPE COSTceuitrerererereresesesesesesesesesssesesesssesesesssssesssssssssssssssesssssssssssssssssssssssenes
FIGURE 4-2 RINGS OF EQUAL TILE-SLOPE COST INCONGRUENT WITH TILE BOUNDARY AND RESULTING
PLACEMENT .ttt ettt
FIGURE 4-3 COARSENESS OF CONGESTION GRID AS A FUNCTION OF TILE COMPACTNESS
FIGURE 4-4 EXAMPLE OF CELLS LIMITING COLLAPSE AND SPACE THAT CAN A CCOMMODATE THEM
FIGURE 4-5 EFFECT OF BLOCK-OFF-EDGE MOVE ON RANGE LIMIT

FIGURE 4-8 THE " CORRECT " MOVE SEQUENCE WILL SUCCESSFULLY MOVE THE BLOCKS OFF THE EDGE......... 71
FIGURE 4-9 PROPOSED MOVES OF FIRST COMPACTION MOVE TY PE......cvvrrrrereriresesesesesesesesesesesesesesssesesesssesenes

FIGURE 4-10 PROPOSED M OVES OF SECOND COMPACTION MOVE TY PE
FIGURE 4-11 PROPOSED MOVES OF THIRD COMPACTION MOVE TYPE......ccenneeneieeeeeenes
FIGURE 4-12 PROPOSED M OVES OF FOURTH COMPACTION MOVE TY PE
FIGURE 4-13 T-SHAPED ARRANGEMENT PRODUCED BY COMPACTION MOVE TYPES (1) AND (2) e 14
FIGURE 4-14 X-SHAPED ARRANGEMENT PRODUCED BY COMPACTION MOVE TYPES (3) AND (4)....ccveeeururerenee 74
FIGURE 4-15 INITIAL LARGE-GRID PLACEMENTcoittueurtrttesteesestaseesseessssssesssssessesessssssesassesssssssssssssensasssssssssessssens

FIGURE 4-16 ILLUSTRATION OF BAD PROGRAMMING-LINE A SSGNMENT
FIGURE 4-17 EXAMPLE OF AN SRAM REWEAVING......c.trttuetetrertaseesseesssessessssiessesesssessessassessesesssessssesssssssssassessssens

FIGURE 4-18 ILLUSTRATION OF GOOD PROGRAMMING LINE A SSIGNMENT ACHIEVED BY SRAM REWEAVE %4

Vi

LIST OF GRAPHS

GRAPH 4-1 FREE SPACE, RUN TIME, WIRELENGTH VS. TILE-SIZE COST FRACTIONc.octntrireeieereneeeneenenene

GRAPH 4-2 WIRELENGTH, RUN-TIME, FREE-SPACE, OVERUSE VS. OVERUSE COST FACTOR

GRAPH 4-3 FREE SPACE, RUN-TIME, WIRELENGTH VS. COST -DIFFERENCE DIVISOR......ccotteeireneeeeneeenene

GRAPH 4-4 FREE SPACE, RUN-TIME, WIRELENGTH VS. AVERAGE NUMBER OF TILE COMPACTION M OVESPER
TEMPERATUREcututututueueutitaeuestsssesestssieseesesesesessseseses b esesesebeseses e b e s ese b e b e b e R e b e b e b e R e b e b e R e R e b e b e R e R e b e b e b e b e b e b e b e b e b et e b ebebebebenas

GRAPH 4-5RUN TIME, WIRELENGTH VS. TEMPLATE MOVE FREQUENCYccctoetrureneueerereraeens

GRAPH 4-6 LEGAL MOVE PERCENTAGE, WIRELENGTH VS. AREA_FUDGE_FACTOR

vii

LIST OF TABLES

TABLE 4-1 TECHNIQUE AND COST SUMMARY ...cocuturreiuererieresssessssesssssesesssessssesssssssssssssssssessssssssesssssessssassessessassessons

TABLE 4-2 TILE-SIZE COST FRACTION COMPARISON......ctrterireerereresesesesesesesesesesessssssssesssssssesessessssssssssnsssssssaens

TABLE 4-3 EFFECT OF BLOCK-OFF-EDGE M OVE DIVISOR

TABLE 4-4 COMPACTION-MOVE EFFECTcoevvrerrereresereneene

TABLE 4-5 EFFECT OF TEMPLATE MOVES

TABLE 4-6 EFFECT OF INITIAL LARGE-GRID PLACEMENT WITHOUT RUN-TIME ADJUSTMENTccovnieneeenenene 89

TABLE 4-7 EFFECT OF INITIAL LARGE-GRID PLACEMENT WITH RUN-TIME ADJUSTMENT .. 90

TABLE 4-8 EFFECT OF SRAM REWEAVING......ceututuetretustetseststisesesesssssestssassessesssssssssssssssssesssssessssssssessssenssessssssssesssns A

TABLE 4-9 RESULTS OF THIS RESEARCH COMPARED WITH THOSE OF INITIAL ATL (TILE-AREA FACTOR: 1.4)
9%

TABLE 4-10 RESULTSOF THIS RESEARCH COMPARED WITH THOSE OF INITIAL ATL (MINIMUM TILE AREA)96

viii

Chapter 1
INTRODUCTION

1.1 MOTIVATION

There are many competing options available for digital circuit implementation.
Field-programmable gate arrays (FPGAS), mask-programmable gate arrays (MPGAS),
standard-cell implementations, and custom layout are representative of the spectrum of
possibilities available. The spectrum represents a continuous tradeoff between ease-of-
engineering (rapid time to market), and area/speed/power/price performance. FPGAS
offer ease and speed of development at the cost of sacrificing the area/speed/power/price
performance achievable by the more involved and mass produced alternatives. FPGAS
can be programmed to implement different digital circuits and be re-programmed if
necessary. This flexibility and ease of engineering contributes to lower nonrecurring
engineering costs and faster time-to-market, which have made FPGAs popular for
development (prototyping) and low to mid-volume production. [1 and 2] Better designed
FPGAS, that reduce the area/speed/power performance gap and can be produced cheaply,
can help increase the precise low- to mid-volume point where FPGAS remain a viable
implementation aternative.

With good FPGA design being of paramount importance, the primary factors that
contribute to this goal should be considered. The overall logic and routing architecture,
the transistor-level design, the physical layout, and the computer-aided-design (CAD)

tools, which program the FPGAS, are al important factors of FPGA design. [1]

Of course, these factors are highly interrelated. Transistor-level design decisions
will affect layout alternatives and logic and routing architecture changes will impact the
heuristics used in the CAD tools which program FPGAs to operate at high speeds.
Ideally, al these interrelated factors can be considered at every stage in the design
process. For example, when determining logic and routing architecture, ideally CAD tool
capability, and circuit and layout considerations could be evaluated as each of the design
choices are made.

Over the past decade, research has been conducted at the University of Toronto
that has tried to link three of the four primary factors indicated above. [3] This research
has taken the approach of creating a CAD tool that automates the exploration of FPGA
architectures. This research has shown the area/speed performance benefits realized by
considering transistor-level circuit design and CAD tools, while making architectural
decisions.

Even more recently, additional research at the University of Toronto has
attempted to incorporate the consideration of physical layout in the context of automated
FPGA-architecture evaluation. [1]

Currently, corsiderable FPGA design and engineering effort is expended
considering the implications of layout, as well as actually laying out an FPGA. Since key
structures in the FPGA are replicated over-and-over, custom-design hand-tuning is very
important and is often required to lay out the respective structures for good area/speed
performance. Automated FPGA architecture evaluation that considers physical layout can
greatly reduce the initial design effort. Furthermore, the tool constructed in [1], while

evaluating architectures, automatically considers transistor-level circuit designs and

physica layouts; these designs and layouts can serve as starting points, reducing the cost
and time spent in the FPGA design cycle. Clearly, the redlization of both these
advantages rely on the tool properly considering layout constraints and effectively
producing adequate-quality FPGA layouts based on the considered architecture.
Thiswork is an attempt to move closer to the goals of considering physical layout
when exploring architectures and providing good-quality physical layouts for given

architectural specifications.

1.2 SCOPE

This research sought to improve the automated layout mechanism used by the
expanded tool created at the University of Toronto [1] that attempts to consider physical
layout when evaluating FPGA architectures.

In this research, it is shown that various heuristics, some of which make use of
knowledge of the circuitry within an FPGA, can be used to improve the layout
performance of the tool.

The scope of this research was limited to creating mechanisms for optimizing
placements of the functional cells (multiplexers, buffers, switches, etc.) within an FPGA.
This specifies a detailed floorplan for the transistor-level layout. Exact transistor-level
layout and routing between functional cells is left to concurrent and future work. At the
time of this writing, work on both these fronts was being conducted at the University of

Toronto.

1.3 ORGANIZATION OF THESIS

Chapter 2 presents background information and details about previous work that

are relevant to this research. Chapter 3 describes important infrastructure changes and
modifications made to the FPGA tile layout tool (which serves as the foundation for this
research); it also introduces the major heuristics developed to improve layout quality that
rely on these general enhancements. Chapter 4 describes the major heuristics in more
detail; experimental results are presented to illustrate the effects of each of the relevant
techniques. Chapter 5 summarizes the effect the developments of this research have on
the quality of the layouts produced by the FPGA tile layout tool. Appendix A and B
provide pseudo-code details of important aspects of the implementation. Appendix C
presents illustrations of layouts produced by the ol at various stages during layout

optimization.

Chapter 2
B ACKGROUND

The first section of this chapter briefly describes the structure of FPGAs. The
second section describes the “tiles” of logic and routing that are replicated to produce an
FPGA. The third section provides information regarding the generation of transistor-level
and functional cell-level netlists of the FPGA tiles considered in this research. The fourth
section provides information regarding the initial state of the cell-level layout engine thet
serves as a foundation for this research. The final section is a brief outline of some of the
previous work that is relevant to the placement and compaction problems central to this

work.

2.1 OVERVIEW OF FPGA STRUCTURE

An FPGA is a re-programmable digital device that can be configured and re-
configured to implement different digital circuits. Three components make up the FPGAs
considered in this work: logic blocks, programmable routing, and 1/0 pads. The I/O pads
lie in a ring surrounding the FPGA core (which contains the logic and programmable
routing). The core is often created by replicating a“tile” of logic (the logic block) and its
surrounding routing, many times, both horizontally and vertically across the core of the

chip. Thisgenera structure is illustrated in Figure 2-1.

1/0 Blocks

Routing Switches

Logic Block Input Switches

Logic Blocks

Logic Block Output Switches

Channels of Routing Wires

Figure 2-1 High-level View of Upper -Left Corner of a Typical FPGA

Bundles of staggered wires, spanning different distances, run in channels between
the logic blocks. Programmable switches are used to transfer signals from one wire to
another and to connect the logic blocks to wires. Static-RAM (SRAM) cells are the
entities programmed during FPGA programming. These, in turn, control, amongst other
things, the programmable switches — which may be simple pass transistors, or tri-state
buffers for greater drive strength.

A logic block consists of one or more basic logic elements (BLES). These BLES
generally consist of a programmable look-up table (LUT) and the flip-flop it optionally
drives. The look-up tables are essentially multiplexers with the respective input lines
driven by SRAM cells. By hooking the BLE inputs to the control lines of the multiplexer,
any N-input Boolean logic function can be achieved (with the appropriate SRAM
programming). Logic blocks offer additiona levels of flexibility such as optional

feedback of BLE outputs to inputs and the optional registering of the BLE output.

The architecture of an FPGA is determined by parameters that affect the building

blocks presented above.

2.2 FPGA TILES

As mentioned earlier, the core of an FPGA can be realized by replicating tiles —
each tile consists of a single logic block and with its surrounding routing. The careful
design and layout of thesetiles directly affect the speed/power performance of the FPGA.
The replication of this tile many times to form the core of the FPGA means that layout
area savings in the fundamental tile largely map to chip area savings; hence, smaler tile
area leads to lower overall fabrication cost or, alternatively, more logic in the FPGA for a
given fabrication cost (allowing the FPGA to implement larger digital circuits). The
automatic layout mechanisms studied in this research are interested in the layout of the
FPGA tile. Figure 2-2 (adapted from [1]) illustrates how a core can be constructed by
replicating an FPGA tile. Notice how the respective ports on the tile must align to permit

the replication. This tile-ability consideration will be discussed later.

2.3 VPR (VERSATILE PLACE AND ROUTE)

VPR is a flexible CAD tool designed at the University of Toronto [3]. VPR
performs clustering, placement, and routing of digital circuit netlists for a variety of
FPGA architectures (each specified with an architectural description provided to VPR). A

simplified view of a VPR CAD flow isillustrated in Figure 2-3.

/ // “— Routing Wire
/4//‘/' N
/ «+«—— Routing Switch
+— Logic Block Input Pin Connections
~N
Logic Block
Connection Block Switches
\
Logic Block Output Pin Connections
|
== / /] L
—+T — -1 _—
- = -t
’L/T | {
Logic Block Logic Block Logic Block
L a
- | - *Iﬂ — _‘[—
7 ISy S o
EJLf£JLf£J#f
[
Logic Block Logic Block Logic Block
H - H=
— — — -
= = +
| | |
—
Logic Block Logic Block Logic Block

Figure2-2 Illustrating the Tile-ability of an FPGA Tile

VPR gives designers the ability to observe how architecture changes affect
software performance and transistor-level circuit design. Using the architectural
description, VPR synthesizes an FPGA out of a pre-determined set of transistor-level
structures. It creates area and delay estimates based on the types, sizes, and delay
characterization of these structures. VPR does not consider the physica layout of these

structures, but it does consider the final route-ability and potential timing performance of

the FPGASs it creates based on its digital-circuit place-and-route engine.

Architecture
Description File

Digital Circuit
Netlist

]

Architecture
Generator

Versatile Place-and-Route
(VPR)

Internal
Architecture
Representation

Place-and-Route
Engine

Placed and
Routed Circuit

Figure2-3 VPR CAD Flow

2.4 TRANSISTOR AND FUNCTIONAL-CELL NETLIST GENERATION

2.4.1 TRANSISTORS, CELLS, AND PORTS

VPR_LAYOUT designed at the University of Toronto [1] extends VPR by
generating a transistor-level and cell-level circuit specification of an FPGA tile based on
an architectural description read into VPR. VPR_LAYOUT primarily operates on VPR's
internal architecture representation, which is created based on an architecture description.
This interna representation contains a description of al the programmable routing and
the connectivity to the logic blocks. VPR_LAYOUT also assumes certain transistor- level
implementations of the transistor-level structures (functional cells), considered by VPR,
when building the transistor-level and cell-level netlists of an FPGA tile. The functional

cells include: SRAMs, buffers, multiplexers, flip-flops, LUTS, pass-transistor routing

switches, and tri-state buffers. These are described in [1]. The cell-level netlist is based

on these cell primitives. The VPR_LAYOUT CAD flow isillustrated in Figure 2-4.

Architecture
Description File

Digital Circuit
Netlist

]

Architecture
VPR_LAYOUT Generator

Internal
Architecture
Representation

Place-and-Route
Engine

Tile Netlist
Generator

Cell-Level and
Transistor-Level
Netlists

Placed and
Routed Circuit

Figure2-4 VPR_LAYOUT CAD Flow

Besides functional cells and transistors, the netlists generated by VPR_LAYOUT
also include ports. Ports are the end-points of the wire segments at the edge of an FPGA
tile that cross into an adjacent tile. Since tiles must be tile-able verticaly and
horizontally, port placement and constraints are important considerations for tile legality.
For example, a port on the left side of a tile must have a matching port at the same
vertical location on the right in order for the respective signal to flow between the tiles.
Each port is assigned a pairing number and a tile-side character to facilitate this. The
same unique pairing number is assigned to each member of a corresponding pair of ports
which must line up vertically or horizontally on opposite sides of the tile. The tile-side

character specifies whether the port should be placed on the top (‘T’), bottom (‘B’), left

10

(‘'L"), or right (‘R’) side of the tile. Necessarily, if one member of a matching port pair is
constrained to the top of the tile, the other member of the pair will be constrained to the
bottom. This is illustrated in Figure 2-5. Notice how ports with the same pairing number

are placed opposite one another so that, when the tile is tiled, they connect. Notice aso

how the tile-side characters are respected.

57 (1,T)

L]
22 (0,'L)[] []o(,R)
FPGA Tile Port Number
(Pairing Number,
Tile-Side Character)

M

104 (1, ‘B’)

o o =)
u) m | O

[==]
(==
[==]

Figure 2-5 Illustration of Port Constraints

2.4.2 SRAM PROGRAMMING-LINE ASSIGNMENTS
VPR_LAYOUT is aso responsible for making SRAM programming line
assignments to the SRAM cells. It creates the same number of word and bit lines (to

achieve a square memory array for the tile).
It turns out that word and bit line assignments are arbitrary. To recognize this,
consider that it is a CAD tool which generates the streams of data fed into the SRAM

cells. Different data streams program the SRAM cells to different values and

11

consequently different digital circuits are implemented in the FPGA. Since the CAD tool
can be adjusted to produce data streams suitable for any arbitrary programming line
assignmen, it does not matter which SRAMs connect to which word and bit lines.
Acknowledging this fact, the netlist generator assigns word and bit lines randomly to the
SRAMs to avoid embedding netlist information implicitly in the SRAM programming-
line connectivity. For example, when a programmable multiplexer is generated, its
respective SRAM cells will be generated at the same time. If al these cells were tied
together with the same word line, implicit association of the SRAMs would result. By
randomly making SRAM assignments, such implicit embedded knowledge is removed,
reflecting the true arbitrariness of the word and bit line assignments. This leaves room for
the layout optimizer to independently leverage the arbitrariness of word and bit line

assignments for its own purposes — with no “hints’ skewing experimental results.

2.4.3 CELL-LEVEL NETLIST DETAILS

The cell-level netlist is the one placed during the layout creation studied in this
research; therefore, details of its generation are especialy important for this research.
Cell area was calculated by VPR _LAYOUT based on the total transistor area used to
construct the cell. An extra 50% of that area was added to allow for intra-cell routing, and
to account for spacing around the edges necessary to achieve adequate well spacing (and
accommodate other design rules). This would allow cells to directly abut one another.
Cdl height and width was set to make the cell as square as possible and to upper bound
the estimated cell area. Precisely, VPR _LAYOUT calculated cell height and width by
starting with acell area specified in units of minimum-width transistor areas. Therefore,

the cell heights and widths were in units of (minimum-width transistor areas)”?.

For this research, this specification of cell heights and widths based on units of
(minimumwidth transistor areas)”® was abandoned. Instead, cell heights and widths are
specified in terms of the number of routing tracks spanned. Basing cell heights and
widths (and the corresponding placement grid) on units of routing tracks is more
meaningful in the sense that cell pins can be precisely positioned at locations where
routing contacts will have to be made. Furthermore, the size of ports (which are implicitly
defined by VPR_LAYOUT as being 1x1) make much more sense when a routing track
grid is used because ports essentially represent a single routing segment (one routing
track by one routing track in size). To achieve this “more reaistic” specification of cell
heights and widths, the total transistor area of the cell (specified in units of minimum
width transistor areas) is multiplied by 2.25 (routing tracks)?/(minimumwidth transistor
area). The resulting value is an estimate of the number of routing grid (placement grid)
squares occupied by the cell. Refer to Figure 2-6 for more details and further explanation
of the terminology. The 2.25 multiplier is designed to account for layout-bloat due to
intra-cell routing and design rule accommodation It is a rough estimate based on
observation of several custom layouts of digital logic. The accuracy of this estimate can
be examined in future work by conducting more detailed studies. Nevertheless, this
estimate is not extremely important because once actual layouts of the cells are produced
(work on this front is being conducted at the University of Toronto), the related area
information can be directly embedded in the netlist without resorting to area estimates.
Furthermore, the heuristics developed in this research do not depend on the specific
heights and widths of cells but on the genera problem of placing FPGA-tile cells and

ports on a placement/routing grid.

There are a few details that should be noted when considering the new placement
grid, depicted in Figure 2-6. The placement/routing grid is sized based on the minimum
distance between contacts (because of the metal halo around them). That way, the router
can route different signals in adjacent grid squares — placing contacts to hop between
metal layers whenever necessary. When different design rules are present in different
metal layers, the most conservative rules (those that produce routing grid squares of the

largest size, in square microns) are used so that the same grid can be applied to al layers.

Metal 1 Lines
-~

Contact i .

T !_! !_! Rotting-GridhSquare:
Rauting Seament

(| ([| (Roiing Sedment

LI |

I

Metal 2 Lin

—

Minimunh Cantag
Spdcing

Ly
/

Plzacement/ Roﬁting Gﬁd
Routing Track

Figure2-6 lllustration of the Placement/Routing Grid (Based on Routing Tracks)

Each cell has pins distributed throughout its area that represent the cell “ports’ to
which connections can be made. VPR_LAY OUT originally positiored these pins around

the perimeter of the cell. Since connections to the cell can be made through vias to points

14

within the cell, this research modified VPR _LAYOUT to randomly spread the pins
throughout the cells instead of sticking to the perimeter. This avoids routing congestion
around the cell perimeter (especially in the form of “via towers’) and is more
representative of the fact that signals within cells are not needed and produced only at the

perimeter.

2.4.4 NETLIST ANNOTATION

VPR_LAYOUT is aso responsible for annotating its produced netlists with
information that guides placement. It does this by providing details of the roles of various
cells, ports, transistors, and connections in terms of the overal tile structure. For
example, SRAM cell pins responsible for SRAM programming (attached to word and bit
lines) are annotated with pin class values that indicates their connection to word or bit
lines. That way, information regarding which nets correspond to SRAM programming

can be extracted from the netlist.

2.5 AUTOMATIC CELL-LEVEL PLACEMENT OF FPGA TILES

ATL (Automatic Tile Layout) designed at the University of Toronto reads in the
netlists generated by VPR_LAYOUT and lays out of the corresponding FPGA tile.

To simplify the placement problem the functiona cell-level netlist is placed
instead of the transistor-level netlist. By placing functional cells (consisting of a few
transistors) instead of individual transistors, a detailed floorplan rather than a transistor-

level placement is determined. Nevertheless, because the functional cells consist of

highly related logic, this level of placement should produce results very close to a “flat”
placement while avoiding the complexity of individual transistor placement. Refer to

Figure 2-7 for the ATL CAD flow.

Cell-Level and
Transistor-Level
Netlists

ATL Tile Netlist
Reader

Internal
Netlist
Representation

Cell-Level Cell-Level
Placer_nent Tile Placement
Engine

Figure2-7 ATL CAD Flow

The placement problem involves placement of cells and ports to form a
rectangular FPGA tile. The ports are arranged on the perimeter of the tile; they indicate
the points of routing connection with adjacent tiles. To permit tile-ability, the respective
port constraints must be obeyed. Each port must reside on a particular side of the tile and
must be matched with its partner, which is placed opposite it on the tile. That way when
the tile is replicated, horizontally and vertically, the port will connect with its partner,
connecting the appropriate signals, as described in 2.4.1. Cells are placed so that they do
not overlap inside he port perimeter. Cells can be placed anywhere within the port

perimeter. Refer to Figure 2-8 for a genera illustration of the placement problem.

16

Tile Ports
VN FPGA Tile

E m|m bo o o =i

| Non-Overlapping Cells

] Note: The ports align to
~ERE permit tileability.

Figure 2-8 lllustration of an FPGA Tile and Tile-ability Based on the Port Arrangements

What follows is a description of the key components of the ATL flow.

2.5.1 NETLIST READER
The netlist reader parses the transistor-level and cell-level netlists, setting up
internal netlist representations appropriately. The internal representations are designed to

permit the layout optimizer’s heuristics to operate on them quickly.

17

2.5.2 OPTIMIZATION ENGINE

The layout optimization engine is based on the smulated-annealing agorithm.
This is a popular optimization technique, a detailed description of which can be found in
[2].

The following pseudo-code describes the general annealing algorithm used:

BEG N PLACEMENT ANNEAL
FCR EACH PLACEMENT TEMPERATURE
PERFORM A STANDARD RANGE- LIM T MOVE AND UPDATE LAYQUT COST
REPEAT FCR DESI RED NUMBER OF MOVES | N TEMPERATURE

REDUCE TEMPERATURE
EXIT WHEN EXIT CRI TERI ON MET
END PLACEMENT TEMPERATURE
END PLACEMENT ANNEAL

There are four maor components in a simulated annealer adapated to create
FPGA tile layouts: (1) initial placement; (2) annealing schedule (initial temperature
computation, a temperature update schedule, and exit criterion); (3) layout cost; and (4)
move generation and move cost arbitration Each of these mgor components will be

described next, as they were implemented in ATL, by [1].

2.5.2.1 INITIAL PLACEMENT

The smulated-annealing optimization engine in ATL operates by continually
making small changes to the current legal layout — illegal layouts are not considered by
the optimization engine. Over time, these incrementally small changes serve to greatly
transform the layout and improve the cell and port placement. To begin this process,
however, an initial placer is required to create a cell and port layout that can be gradually
mutated over the anneal.

The first step in creating a cell and port layout is to determine initial tile

18

dimensions. ATL calculated the tile area based on the total cell area. The tile width and
height was calculated to make the tile as square as possible.

The following equations were used to calculate the tile area:

WDTH(SIDE) = MAX(SQRT(TOTAL_CELL_AREA) * AREA_FUDGE_FACTOR, NUM_PCRTS(SIDE))
WDTH = MAX(W DTH(LEFT) , WDTH(RI GHT) , WDTH(TCP) , W DTH(BOTTQV))
HEI GHT = W DTH

The AREA_FUDGE _FACTOR is used to bloat the tile area to make space for
routing and to give cells more room, primarily for initial placement. A value of 1.4 was
selected because it permitted initial placement of all netlists experimented with at the
time.

The placement grid ATL was based on, initially, was a minimum-width transistor
area grid. Each grid sguare had the area of a minimum-width transistor (which includes
the area of the drain contact and source contact to the first metal layer, but not the gate
contact). As mentioned earlier, instead of this, for this research, a routing grid, illustrated
in Figure 2-6, is used during placement.

Ports are placed around the perimeter of the tile. The tile is sized large enough to
place all the respective ports on the relevant sides ensuring paired ports are opposite one
another. ATL, produced by [1], ensured that ports can not overlap one another. Cells are
placed randomly in the interior of thetile.

Initial placement is carried out through successive iterations until it succeeds or
the iteration count exceeds a set threshold. In the first iteration, a cell ordering is created
so that larger cells are placed first. This heuristic helps initial placement because smaller
cells can often fit in the gaps between the larger cells. If an initial placement attempt fails

— alega placement (without cell overlap) can not be created — it is repeated, but the

19

previous ordering of cell placement is modified so that cells that could not be placed
(without causing overlap) in the previous attempt are placed first. Initial placement fails if

the iteration count exceeds a threshold value, and the layout generator aborts

2.5.2.2 ANNEALING SCHEDULE

The ssmulated annealing algorithm operates by making continuous changes to the
current layout at lower and lower “temperatures’. The current temperature affects the
types of moves which are performed and which moves are rejected. Moves which
severely degrade placement quality are more likely to be regjected at lower temperatures.
More details will be provided in 2.5.2.4.

An annealing schedule is required to compute an initial temperature, control the
temperature updates throughout the anneal, and to finally terminate the anneal based on
some criteria. In this sense, the annealing schedule governs the annealing process; it
controls the initial state (initial temperature computation), transitions between states
(temperature updates), and when the optimizer should terminate (exit criteria). The

adaptive annealing schedule presented in [2] is used.

2.5.2.3 LAYout CosT

The simulated annealing agorithm requires a cost function that is used to
compute placement costs that indicate the quality of the current placement. When a move
is proposed, the placement cost difference, which would result from the move, is

caculated based on the cost function. Based on the cost difference and the current

20

placement temperature, the move (placement mutation) is either accepted or rejected.

The cost function in ATL was entirely based on wire length. Wirelength cost is
based on bounding boxes erclosing net terminals. Each net (electrically connected cell
pins, wires, contacts, etc.) has an associated bounding box which tightly encloses all
things connected by the net. ATL ignored cell pins and used a bounding box estimate that
enclosed the respective connected cells and ports completely (a worst-case estimate).
Refer to Figure 2-9 for an illustration of a net with its respective worst-case bounding
box. Notice how the bounding box includes the entire 2x2 cell on the left and the entire
4x3 cell on the bottom; hence the box does not tightly enclose the electrically connected
contacts — it is expanded to fully encompass all the relevant cells (hence, it assumes
worst-case cell pin positions).

Net

0

— ett-Pir =
ontacts)]

’i‘ \Cell gl

\

/

L]

B¢unding|Box |
: ! !

PIacement/Ro'uting Grid

Figure2-9 Illustration of a Net and Its Bounding Box

21

The following formula is used to compute wirelength (or bounding-box cost):

num_nets
cost= Z q(inet) ‘(bbx(inet) + bby(inet))
inet=1

bbx and bby are the width and height, respectively, of the bounding-box associated with
the respective net. q is a multiplication factor that is used to create a wirelength estimate
from a bounding-box hei ght +wi dth. The value of q(inet) is a function of the number of

terminals (cell pins and ports) connected by the net. It is 1 for nets with 3 or fewer

terminals, and its value increases to 2.79 for nets with 50 or more terminals. [4]

2.5.2.4 MOVE GENERATION AND MOVE COST ARBITRATION

A mechanism is needed to propose and perform the types of mutations and
transformations which can be applied to the current placement. This mechanism is called
move generation. Move cost arbitration controls whether the moves proposed by the
move generator are accepted or rejected (whether the corresponding placement mutation
is alowed or prevented), based on the cost change that would result and the current
temperature.

The following pseudo-code describes the algorithm used to select a set of cells for
moving:

PI CK PRI MARY CELL TO MOVE AND DESTI NATI ON LOCATI ON FCR THE CELL BASED ON THE RANGE LIMT
GATHER OTHER CELLS (GROP B) THAT TH'S PR MARY CELL DI SPLACES
CONSI DER MOVI NG THESE CELLS | NTO THE REG ON THAT WOULD BE ABANDONED BY THE PRI MARY CELL
GATHER THE CELLS AROUND THE PRI MARY CELL DI SPLACED BY GROUP B CELLS, THESE CELLS, ALONG WTH THE PR MARY CELL,
FORM GROUP A
TRY TO SWAP GROUP A AND B W THOUT CREATI NG CELL OVERLAP
|F THE MOVE WOULD CREATE AN | LLEGAL PLACEMENT (CELL OVERLAP)
REJECT PRCPCSED MOVE
ELSE | F PROPCSED MOVE | S REJECTED FCR COST REASONS
DO NOT PERFCRM MOVE
ELSE
PERFCRM PROPCSED MOVE

It should be noted that if the trandation proposed for the primary cel is (? x, ?y),
the trandlation for all the group A cells will be (?x, ?y); that is, they are moved as a unit.
Also, the trandation (inverse move) proposed for the group B cells will be (-?x, -?y) to

ensure they move as a unit to the location abandoned by the group A cells.

Refer to Figure 2-10 for an illustration of alegal move.

Pick up Group B cells.

v
|| Grobip H Inversd Moye (-4,-5) ||
% | / |
Primary el Initial Move ({4, 4{5) |
\>‘ B 7
b
/ 1
Pick up Group A cells.
7 L]
Grgup A Mpve {+4,]+5)

Move can be performed without
causing cell overlap (legal move).

Figure2-10 Legal Move Example

Refer to Figure 2-11 for an illustration of an illegal move.

A legal proposed move will be accepted or rejected depending on the placement
cost difference it produces. A move is accepted if the subsequent placement cost would
be less than or equal to the current placement cost. If the subsequent placement cost is

greater than the current placement cost, the move is accepted probabilistically. A move

this increases the placement cost by a given amount is more likely to be rejected at lower
placement temperatures. Also, during the same placement temperature, a move that
increases the placement cost by a greater amount is more likely to be rejected. For precise

details regarding this cost arbitration refer to [1] and [3].

Pick up Group B cells.

v
Grolip B Inversd Moye (-4, -$)
” A /
Primary Cell Irfitial [(Moye (14, 45)
\>~ B /
ﬁ
T
Pick up Group A cells.
7
Cell|Ovgrlap
\‘
Group A Mpve (+4,[+5) [

Move will cause cell overlap
(illegal move).

Figure2-11 Illegal Move Example

There are two levels of move rgjection. A proposed move can be rejected because
of legality reasons (it would create an illegal placement). Legal proposed moves can aso
be rgjected for cost reasons. Acceptance ratio is defined as the percentage of legal
proposed moves which are accepted because of cost reasons.

Port moves are subject to the same cost arbitration. Nevertheless, port swaps are
generally simpler because they only have to consider port placement legality (paired ports

and side constraints); other than that, they can be swapped freely between port locations

24

because there are no partial overlap considerations.

A range limit is used to limit the distance a single move can transport a cell or
port; it is kept constant during a placement temperature and is gradually reduced over the
course of an anneal based on measures of proposed move acceptance and the temperature
update schedule [1]. A range limit is used to restrict the search space of move
possibilities that are considered when proposing a move for a cell or port. As an anneal
proceeds, the placement will first globaly improve to the point where cells will lie in
relatively good positions with respect to one another; subtler improvements are made at
lower and lower emperatures. A proposed move that moves a cell a large distance is
more likely to be rejected as the anneal proceeds because the block aready lies in a
relatively good position. The practical distances cells can be successfully moved
continually shrinks. Proposing an increasing number of moves which are likely to be
rgiected is counter-productive. Therefore, the range limit is designed to collapse the size
of the proposed move search space around the moving cell as the anneal proceeds — so
more productive local moves are considered; initially, the range limit is set to the size of
the tile. The fruitfulness of the move search space is measured by the fraction of lega
proposed moves accepted for cost reasons. Therefore, the feedback mechanism used to
control the shrinkage of the range limit is based on acceptance ratio. [2] For example, as
move acceptance decreases, the range limit is shrunk to focus the move generator's efforts
on more productive local (likely acceptable) perturbations.

ATL establishes a minimum range limit of 20x20 to ensure that blocks can till
effectively jump around their loca area (effectively exploring the cost space) without

resorting to multiple proposed moves to take them places.

2.5.2.5 ADVANTAGES OF SIMULATED ANNEALING

Simulated annealing offers severa advantages that make it a well suited
optimization engine for layout improvement.

Simulated annealing offers easy accommodation of new, differing optimization
goals. Accommodation of new optimization goals is achieved by adding new component
costs (with relative weightings) to the cost function and by making changes to the move
generator (to expand or refine the move space).

Simulated-annealing offers cost “hill climbing”. Individual lega placement
moves are accepted and rejected depending on the cost change the move causes and the
temperature. Moves that greatly increase the placement cost will be accepted at higher
temperatures, but cost increase will be more and more discouraged as the temperature
drops. In that way, ssmulated-annealing optimization alows “hill climbing” in the sense
of exploring different parts of the cost space even if it means moving out of a local
minimum (a cost increase) when trying to locate a more global (absolutely deeper)
minimum. As the temperature is decreased, the area of search is reduced, and the
algorithm tries to find areas of lower cost in the “genera” region settled upon. To explore
the cost space, the annealer move generator selects moves from a move space. The move
gpace is the range of possible noves that the placer can perform to mutate the placement
during cost space exploration. For a more detailed discussion of simulated-annealing

optimization, refer to [5].

26

2.5.3 SRAM REGULARIZATION

Initially, ATL leveraged the arbitrariness of word and bit line assignments by
creating a regular array of SRAM cells. SRAMs connected to the same word line were
lined up and SRAMs connected to the same bit line were also lined up. This regular array
was preserved throughout placement (Figure 2-12). A regular array of SRAM cells
produces straight programming lines and consequently a low programming line cost. By
ignoring the programming line net costs throughout placement, SRAMs were swapped
with each other within the regular array structure to achieve good positions relative to the
cells withwhich they were connected. Since word and bit line assignments are arbitrary,
once placement was done, the length of the programming lines did not change from the
initial low value, because the SRAMs stayed within the regular array, and the respective
programming lines could be connected to the SRAMs they intersected. A 4%
improvement in wirelength (measured through bounding-box wirelength cost) was

achieved, by [1], using SRAM regularization.

SRAM Cells

Figure2-12 Illustrating Regular Arrangement of SRAM Cells

27

2.6 AUTOMATIC INTERCONNECTED BLOCK PLACEMENT

The placement problem explored in this work requires the placement of blocks of
various size within a grid, without overlap; while fulfilling this requirement, wiring
optimization and block compaction represent optimization objectives.

As mentioned in [1], utilizing a Simulated-annealing-based optimization engine to
solve this placement problem is a popular approach.

The Timberwolf tool [6] uses such an approach when performing “macrocell
placement”. Thistool initially allows overlap in the placement of differently sized blocks.
A penalty is used to gradually enforce separation of these blocks to reduce overlap. A
clean-up phase at the end of placement is required to remove al overlap to make the
placement legal. Thisis different than the approach used in ATL which forbids overlap at
all stages of placement.

The placement algorithm used in VPR [3] aso uses smulated annealing, and
avoids block overlap, but it operates on blocks of the same size placed in a grid that
accommodates one block per grid square. Therefore, the placement problem tackled by
VPR is very regular in nature — involving block swaps and movement between grid
squares.

There are also many algorithms available to perform one-dimensional and two-
dimensional compaction. Layout compaction, in particular, is a popular topic. A layout
compaction algorithm discussed in [7] is based on constraint graphs. A constraint graph is
used to represent blocks that one-dimensional compaction is to be performed on, along
with minimum and maximum distance constraints. Constraint-graph compaction involves

finding the longest path in a directed graph. This algorithm does not operate directly on a

28

layout, it requires the construction and analysis of a constraint graph. Consequently, this
compaction-focused optimization does not simultaneously consider other optimization
goals while performing compaction and it is difficult to model other optimization goals
within the framework of this algorithm

Another algorithm discussed in [7] tries to generate a layout with small area by
examining equations expressing block area as a function of block aspect ratio (shape
functions). By considering the shape functions of lower-level blocks, composite blocks
made from those lower-level blocks can be characterized by their own shape functions. In
a bottom-up fashion, higher and higher levels of block composition can be considered
and, ultimately, a low-area layout aspect ratio can be determined for the overal layout.
The consequences of this aspect ratio choice for the layout can be propagated down the
composite block hierarchy to define the aspect ratios of al the lower-level blocks. This
floorplanning does not deal with actual block positioning (an actual layout/placement)
and, consequently, it does not simultaneously deal with other optimization objectives
while determining the constraints necessary to produce a small layout. Another limitation
of this approach (in the context of ATL and this research) is that cells first have to be
characterized (shape functions determined) and then laid out to satisfy their imposed
aspect ratios. As mentioned earlier, cell layouts are a subject of concurrent and future
work, and, consequently, such layout characterization was not available. The idea of
using ATL to determine cell aspect ratios and pin positions was briefly investigated and it

isdiscussed in 5.2 as apossible avenue of future investigation.

29

Chapter 3
NEW OPTIMIZATION INFRASTRUCTURE

3.1 GOAL

The god of this research was to develop placement heuristics that could be
incorporated into the Automatic-FPGA Tile Layout (ATL) tool that attempt to: (1)
minimize the area of laid out tiles, (2) minimize the wire length needed to nterconnect
the cells and ports within the tile, and (3) balance the wiring requirements over the tile
area to prevent localized over-demand of wiring resources and, hence, avoid routing
congestion.

The focus of this research was to achieve objectives (1) and (2). A congestion
model, along with heuristics and costs designed to reduce congestion measured by the
model, were developed to address objective (3). Nevertheless, techniques used to achieve
objective (3) are considered tentative because an FPGA tile router was not available at
the time of this research; therefore, verification of the assumptions used to address
objective (3) is left to future work that can examine the behaviour and performance of a
tile router. Details regarding these assumptions are provided in 4.3.3.

To meet the objectives stated above, severa changes were made to ATL. These
changes can be categorized into three maor classes: (1) restructuring of the general
optimization flow; (2) modification of existing agorithms in the simulated-annealing-
based optimization engine; and (3) addition of new heuristics and costs The first two

classes do not notably improve placement results (layout quality); they provide the

foundations and infrastructure needed for the heuristics and costs to operate effectively
and efficiently. It is changes belonging to the third class that directly attenpt to satisfy
the research objectives.

The first two classes are the primary subjects of this chapter. The next section
describes the first class of changes in detail and the following section describes the
second class of changes in detail. The last section briefly introduces the new heuristics
and costs so the reader can be familiar with all of them before they are described in detail

in the next chapter.

3.2 RESTRUCTURING OF GENERAL OPTIMIZATION FLOW

3.2.1 MULTI-PHASE OPTIMIZATION

The single-anneal optimization of ATL was replaced by a single initial anneal
optimization phase followed by successive iterations of tile-shrinkage and annealing
(these anneals are called reheat anneals). This multi-phase mechanism was introduced to
permit the optimizer to decrease tile area while performing placement optimization. The
initial incarnation of ATL did not shrink tile area during optimization. An initial tile area
was calculated and the optimizer tried to work within that constraint. If the optimizer
could not create an initial placement within the tile area specified, it would give up. This
research showed that smaller tile areas could be achieved (balanced with adequate
fulfillment of other placement objectives), if tile shrinkage is performed during
optimization.

Here is pseudo-code describing this multi- phase optimization:

31

PERFCRM | NI TI AL ANNEAL, SIM LAR TO THAT PERFCRVED BY THE ORI G NAL ATL, RECCRDI NG HI GHEST TEMPERATURE (?) THAT
PRODUCES AN PROPOSED MOVE ACCEPTANCE RATI O BELOW ?
BEG N REHEAT AND TI LE- SHRI NK | TERATI ONS
SHR NK TILE
RECCRD TILE AREA | MPROVEMENT ?
REHEAT ANNEAL TEMPERATURE TO ?
PERFORM REHEAT ANNEAL
EXI T WHEN TI LE- AREA | MPROVEMENT (?) 1S BELON THRESHOLD d, FCR € SUCCESSI VE ANNEALS
END REHEAT AND TI LE- SHRI NK | TERATI ONS

It should be noted that there is an optimization tradeoff present in the selection of
the reheat anneal temperature. If a higher temperature is selected, the reheat anneals can
perform better cost “hill climbing” — perhaps, better exploring the cost space to find
better layouts. If a lower temperature is selected, the reheat anneals will better preserve
the decisions made during the initial anneal and previous reheat anneals; therefore, past
optimization effort can be better leveraged. This issue is discussed more thoroughly when

the detailed optimization heuristics are described.

3.2.2 TILE COMPACTION BETWEEN REHEAT ANNEALS

Tile compaction between anneals is performed to permit tile shrinkage during
optimization. The tile is compacted by moving al cells as a unit, until the lower-left
corner of the imaginary bounding box tightly enclosing them touches the lower-left
corner of the port perimeter. The ports are then collapsed around these cells completing
the shrinkage. Figure 3-1 illustrates this. Notice how the relative cell positions and the
port ordering are maintained so that the optimization effort of previous anneals is not lost
during compaction and subsequent reheat anneals have a good global starting point to
work from. That is why ports are also not moved more than necessary to achieve tile
collapse. This is not as important, however, because ports tend to sort themselves out

quickly during optimization because they can swap freely with one another — no partial

32

overlap problems like cells have to contend with

~*~~Ports
/

n

Cglls

o
= 0 o |

Infagirjary Bouyndir|g-Bpx
Syrrogndirjg afl Cefls

I < | -l

Step One:
Translate all cells, maintaining
relative positions, to lower-left corner.

11
10
[W :

Step Two: Step Three:

Move ports on left and right downwards. Collapse ports and shrink tile.
Move ports on top and bottom leftwards.

Preserve relative ordering of ports and

do not move ports a greater distance than

the cell will shrink, in this case, 5 horizontally

and 6 vertically.

Figure3-1 lllustrating Tile Compaction Between Reheat Anneals

3.3 MAJOR MODIFICATION OF EXISTING FEATURES IN
SIMULATED-ANNEALING-BASED OPTIMIZATION ENGINE

As mentioned in 2.5.2, there are four major componerts in a simulated anneal er
adapted to create FPGA tile layouts: (1) initial placement; (2) annealing schedule; (3)

layout cost; and (4) move generation and move cost arbitration.

The major modifications made to each of these components are described in turn.

3.3.1 INITIAL-PLACEMENT MODIFICATIONS

This research extended the tool so that more than one port can be placed at a port
location. This extension required not only changes to initial placement, but also to move
generation. The extension is necessary because the compaction of some tiles is not
limited by cell areg, it is limited by the size of the port perimeter. It turns out (according
to this research) that an overlap of two ports per port location is sufficient to prevent
compaction of al tiles experimented with from being constrained by ports. It is
physically possible to have more than one port at a location because of the existence of
more than one metal layer. Future work on the tile router has to be careful, however, that

matching or paired ports, on opposite ends of thetile, end up on the same metal layer.

3.3.2 ANNEALING-SCHEDULE MODIFICATIONS

Instead of using a single exit criterion to determine when an anneal is complete,

different exit criteria are used for the initial anneal and the subsequent reheat anneals.

The exit criteria are based on atemperature threshold and a cost- improvement percentage
threshold. If the current temperature is below the temperature threshold and the cost
improvement over the last temperature is less than the cost-improvement percentage
threshold, the exit criterion is satisfied. The use of these two parameters permits flexible
tuning of how hard the annedler tries to thoroughly explore the final local cost minima
before exiting an anneal. That way, effort can be diverted from over-optimizing local
minima of earlier anneals in favour of deeply exploring the local minima of the final
anneal. This change was motivated for the sake of run-time; experiments showed, if

tuned appropriately, the run-time can be cut, at least, in half, without sacrificing quality.

3.3.3 LAYOUT COST MODIFICATIONS

The wirelength cost, originally used in ATL, was maintained because of its
fruitfulness in leading towards many optimization goals. This cost is designed to penalize
moves that increase the total estimated bounding-box wirelength used to make al the cell
connections. This encourages the genera movement of cells closer to cells with which
they are connected. This minimizes the total amount of routing (metal) needed by the
router to make al the connections and it should decrease the length of any given
connection. Hence, this cost directly tries to satisfy objective (2), which is the reduction
in overall wirelength. In fact, the experimental measure used, to determine the extent that
objective (2) is satisfied, is the value of the wirelength cost. As a side benefit,
minimization of wirelength should also decrease general routing delay and improve the
speed of the circuit; of course, more targeted optimization for timing, based on timing

analyses, would produce better (more focused) timing results; timingoriented

optimization is left to future work. Another side benefit of wirelength reduction is the
overal reduction in routing also reduces overall routing capacitance and total resistance;
this should also reduce power consumption to a certain degree. Detailed study and
focused power optimization is left to future work, however.

The precise formulation of the wirelength cost was revised. Wirelength is still
measured based on bounding boxes, however, the bounding boxes are now precise
instead of pessmistic (as originally implemented in ATL). That is, the bounding box
corresponding to a net is stretched around all the attached cell pins and ports exactly. The
formulation of the cost initially in ATL meant that the corresponding bounding box
stretched around all the respective cells and ports (not considering actual cell pin
positions). Figure 3-2 illustrates the new notion of a bounding box with respect to a net

(compare this to Figure 2-9).

Net
| Y
{

0

e ettPir =
ontacts)]

SN
Cells

L]

! I
Bc}unding Box ' [

Placement/Routing Grid

Figure 3-2 lllustration of a Net and Its Bounding Box

36

3.3.4 MoVvE GENERATION AND MOVE COST ARBITRATION MODIFICATIONS

The move generator was changed to permit better movement of larger cells. It
turns out that larger cells that lie near the perimeter of the tile are the bottleneck to tile
compaction (achievement of objective (2) — small tile areas). The generally large number
of connections attached to larger cells and their bulk size make them difficult to move; if
they lie near the edge of the tile, they will inhibit compaction. Consider Figure 3-3, the
move generator proposes to move the larger block (primary block) upwards one unit
away from the tile perimeter. This would cause overlap with the smaller block above it.
The origina move generator would propose an inverse move of one unit downwards for
the smaller block. This would result in an illegal placement and so the move is aborted.
As mentioned earlier, if the proposed move of the primary cell is (?x, ?y), the original
move generator proposes the inverse move (-?x, -?y) for group B cells (refer to 2.5.2.4
for more details). The modified move generator ensures an inverse move covers distances
a least equal to the respective dimensions of the primary block. The modified move

generator proposes the inverse move:

(SaN(-?X) ? MAX (ABS(?X), WDTHm e acod , SO - ?Y) 2 MAX ((ABS(?Y), HEl GHTom e sicn))

wheresgn(?) islif ? >0,-1if ? <0,and0if ? =0.

The modified move generator would produce an inverse move, in Figure 3-3, of

three units downwards. This results in a successful move.

37

Port Perimeter

Original Move Modified Move Modified Move
Generator - Generator - Generator -
Rejects Accepts Final

Figure 3-3 Move Generator Modification: Example 1

Port Perimeter

™~

Original Move Modified Move Modified Move
Generator - Generator - Generator -
Rejects Accepts Final

Figure 3-4 Move Generator Modification: Example 2

Consider another example in Figure 3-4. The proposed move is to move the larger
cell two units upwards. The origind move generator would create an inverse move for
the smaller cell of two units downwards. This would result in an illegal placement. The
modified move generator proposes an inverse move of three units downwards resulting in
alegal placement.

Even though this mechanism is a heuristic that does not solve all proposed move
feasibility problems, it represents a dlight tweak targeted to address the fundamental
problem of nudging cells off edges. It turns out that despite the fact that it changes the

notion of what constitutes an inverse move, it otherwise does not affect placement results

(other than indirectly helping facilitate tile compaction); it solely helps swap larger cells
away from the tile perimeter. Finaly, notice that the inverse move is a function of the
primary cell dimensions and displacement alone. This is necessary to ensure that the
same inverse move is applied to al the respective cells (group B cells, referred to in
2.5.2.4); otherwise, if differing inverse moves are applied, additiona overlaps may be
Created.

This research found that a minimum range-limit a small multiple (1 or 2) of the
largest cell’s longest dimension further facilitates this nudging of cells off edges Notice
that in the examples presented (Figure 3-3 and Figure 3-4), the proposed move must
displace the larger cell by adistance at least equal to the smaller cell’ srelevant dimension
for the move to be successful. Otherwise, not enough room is evacuated to accommodate
the smaller cell. By basing the range limit on the largest cell’s dimensions, the move
ace is adapted somewhat to the size of cells in the netlist. Consider this adaptability
opposed to the static minimum range limit originally defined in ATL that was a fixed size
of 20x20. It turns out that because the largest cell dimensions in the netlists experimented
with are gproximately 20 units, this modification has little affect on any placement
optimization results other than tile compaction and ensuring adequate nudging can

always be performed to permit tile shrinkage.

3.4 OVERVIEW OF NEW HEURISTICS AND COSTS

This section provides short descriptions of the mechanisms added to ATL to
address the various optimization objectives. The various mechanisms are briefly

described to provide general context before each, in turn, is described and examined in

39

detailed, in the next chapter.

3.4.1 TILE-SIzE COST

This cost has two components. One component is designed to penalize moves that
increase the area of an imaginary bounding box enclosing all the cells (not ports) in the
tile. This encourages “ crunching” of the cells together away from the tile edge to promote
and facilitate tile shrinkage during the reheat and tile-shrink iterations. The other cost
component is designed to penalize moves that increase the number of cells on the edge of
the imaginary bounding box enclosing all of the cells. This encourages evacuation of the

imaginary bounding box perimeter, hopefully, leading to a collapse of the box.

3.4.2 TILE-SLOPE COST

This cost is designed to penalize moves that increase the distance of a block from
the geometric center of the tile. This encourages “bunching” of the cells together towards
the center of the tile to promote and facilitate tile shrinkage. By constantly tugging cells
inwards, this cost works with the tile-size cost by moving “central cells’ further from the
edge, so cells on the edge have space to move off the edge of the imaginary bounding
box. Its name suggests the effect the cost has on the placement; the cost creates an

effective sope inclined towards the edge of the tile that cells tend to tumble down.

3.4.3 WIRE-OVERUSE COST

This cost is designed to penalize moves that create routing hotspots in the

placement or increase the “hotness’ of a hotspot. Routing hotspots are areas of the
placement identified as being problematic routing areas; these areas are identified as
locations the placer thinks the router will route many distinct nets (distinct electrical
nodes) over. These nets will have to occupy different routing layers and consequently
hotspots indicate areas of the chip containing nets the router may fail to route because it
does not have enough routing resources in the local area. The more nets the placer deems
will have to be routed over a given spot, the “hotter” the hotspot and the greater the
anticipated routing difficulty. By encouraging the reduction in the “hotness’ and number
of hotspots, the routing difficulty should be decreased. This cost, in particular, may fight
tile compaction and the minimization of wirelength; for example, increasing the area
required to route nets (over hotspots) decreases the magnitude of the hotspots by giving
the router more options (metal) to complete the respective routes. This cost represents
work in progress because its formulation relies on a placement model of routing
congestion that must be confirmed and tuned (in future work) to that encountered by an

actua FPGA tile router.

3.4.4 BLocKk-OFF-EDGE MoVE

This move is designed to encourage cells to move off the edge of the imaginary
bounding box enclosing all cells. This encourages the collapse of the imaginary bounding
box, hopefully, leading to tile compaction. The need for this type of move originates from
the following. Once the general locations of blocks settle during placement, the move
acceptance function tends to reject moves that span a great distance and the range-limit

move generator tends to propose moves in a local region. To shrink the tile, however,

41

sometimes moves have to be accepted that transport cells across a large distance because
cells can only move to locations that can accept them (possibly with abit of cell juggling)
without producing an overlap. This move type addresses both cost arbitration and move
generation issues that would otherwise prevent the type of long-distance move often
needed for the sake of tile compaction. The block-off-edge nove reduces the magnitude
of cost increase associated with moves that would successfully move cells off the edge; it
also removes the standard range-limit, imposing its own range-limit geared to explore
moving a cell off an edge of the imaginary bounding-box to a location somewhere just

inside that edge. This move type works in conjunction with the tile-size compaction cost.

3.4.5 CoMPACTION MOVE

This “compound” move is designed to encourage cells to converge towards the
center of the tile, making room for the outer cells to move off the edge of the imaginary
bounding box surrounding al cells. This move type works in conjunction with the tile-
slope compaction cost. This move actualy involves all cells (hence, it is a *compound”
move) in a focused effort to take immediate advantage of gaps and spacings for cells to
move closer to the center of the tile. Each compaction move tries to move al cells. Cells
closer to the center are moved inwards first, hopefully, opening gaps that outer cells can
in turn, fill. Each individual cell move is arbitrated with the cost function like a normal

move. It is the move sequencing which makes compaction moves useful.

3.4.6 BLOCK ROTATION AND FLIP

42

This move expands the move space by exploring cell re-orientation possibilities.
Cells can be flipped (horizontally and vertically) and rotated (90 degree angles) because
the routing grid and the cell layouts are orientation independent to a certain extent; that is,

in terms of design rules, layouts can be flipped and rotated as indicated.

3.4.7 BLOCK EQUIVALENT-PIN SWAP

Certain cells have groups of input pins and output pins whose respective
connections can be swapped because the functionality of the circuit is independent of
exactly which signals are routed to the various pins on each cell. This move expands the
move space by exploring these pin swap possibilities. During cell topology generation
(during netlist generation), care is taken to distribute cell input and output pins in
positions across the cell that reflect their actual positions in the layout. These pin
positions are not motivated by netlist and placement considerations and, hence, from a
placement and netlist perspective, the actual positions are random. Furthermore, netlist
generation does not take into account placement and cell topology, and, hence, from a
placement perspective, connections are made to essentially random cell locations. The
netlist generator actually attempts to ensure that there is no systematic bias tying related
connections to adjacent cell pin locations, etc.. This move type, and the previous move
type (3.4.7), attempt to explore better positions for those connections than those

randomly assigned by the netlist generator.

3.4.8 INITIAL L ARGE-GRID PLACEMENT

Cellsare placed on a large tile initially to alow globally good placements for cells
to be determined without cell overlap inhibiting move generation freedom. Placements
with little free space tend to have a lot of proposed moves rejected for legality reasons
solely (not cost reasors). Therefore, if placement optimization begins with a dense
placement, cells will have a hard time achieving globally good positions relative to one
another because many proposed moves will be rgjected. This technique inflates the initial
tile size and modifies the move generator so cells can be swapped freely with one another
without overlap considerations. Cells are spaced out on the large initia tile, so a given
cell move involves at most two cells in a swap. Once initially good global placements for
cells are found, norma cell movement ensues and compaction techniques are used to

reduce the tile size from this initial large tile configuration.

3.4.9 SRAM REWEAVE

SRAM word and hit lines are assigned randomly to SRAMs by the netlist
generator to avoid systematically associating certain SRAMs together by connecting
them to the same programming lines. As discussed in 2.4.2, word and bit line
assignments are arbitrary because FPGA SRAM programming can be adjusted to
program the target SRAMs to any values for any fixed word and bit line assignment.
SRAM Reweaving gives the layout optimizer the freedom to initially place SRAMs
without considering word and bit line costs. After al the SRAMs are assigned good
global positions (close to logic they are attached to), word and bit lines can be assigned to
SRAMs (rewoven) based on SRAM placement. That way, the arbitrariness of word and

bit line assignments can be leveraged to minimize word and bit line length and to

minimize consideration of programming line length when determining globally good

positions for SRAMs.

Chapter 4
OPTIMIZATION TECHNIQUES AND COSTS

Each of the major optimization techniques (heuristics) and costs (summarized in
Table 4-1) that were developed for ATL to help meet the objectives stated in 3.1 are
described, in detail, throughout this chapter. The techniques and costs are organized by
type and the goals they address.

The first section of this chapter discusses the FPGA tiles used during
experimentation (the benchmark set). The second section points the reader to pseudo-
code descriptions of the overall optimization flow and the move generation process. The
third section examines the cost-based optimizations. The fourth section examines the
move-based optimizations. The fifth section examines the optimizations which do not
completely fall under either of these classifications. The last section presents an overall
performance comparison between the version of ATL produced by this research and the

initial version of ATL, produced by [1].

Table4-1 Technique and Cost Summary

Techniques and Costs

Cost-Based Move-Based Other
Minimum Area Tile-Size st Block-Off-Edge Move
Tile-Sope Cogt Compaction M ove
e Minimum Wire Length Block Rotation and Flip Initial Large-Grid
o Block Equivalent-Pin Placement
@) Swap SRAM Reweave
Balanced Wiring | Wire-Overuse
Requirements Cost

4.1 EXPERIMENTAL BENCHMARK SET

As each of the techniques and costs are examined, results are presented to

guantify their significant effects and examine observable trends. These results are based
on experiments conducted during this research Most of the experiments conducted (and
al of the results presented in 4.3, 4.4, 4.5) were based onthe set of ten “benchmark tiles’
used in [1]. These benchmark tiles were created by [1], based on architecture files that
were found to result in high-quality FPGAs [3]. The electrica parameters used to size
buffers and switches, which were specified in the architecture files, were based on
TSMC's 0.18 pum technology and were taken from work done in [8]. The ten benchmark
tiles created by [1], and used in this research, al had 40 wires per FPGA routing channel
and a differing number of LUTSs per tile (1 to 10).

As mentioned earlier, the results of this research, to a certain extent are
independent of the exact cell sizes and net connectivity of FPGA tiles. In fact, the
generality of the results make the heuristics useful for the exploration of diverse FPGA

architectures, from which cells and ports can be abstracted.

4.2 PsSeubo CODE

If abetter understanding of the interrelationship between and the integration of
the various techniques is desired, the reader is encouraged to examine the pseudo code
presented in Appendix A and B, as each of the techniques and costs are described.
Appendix A contains the pseudo code that summarizes the overall placement flow.

Appendix B contains pseudo code that illustrates the details of move generation.

4.3 CoST-BASED OPTIMIZATIONS

47

First cost-based optimizations are presented which leverage the cost-based move

arbitration of smulated annealing to achieve layout goals.

4.3.1 TiLE-SI1zE COST

Actua tile compaction only occurs between reheat anneals; therefore, the reheat
anneals need to monitor and encourage congregation of cells towards the center of the
tile, so compaction can actually occur between the anneds. If the annedler tries to
optimize wirelength and other measures of placement merit without directly considering
eventual tile compaction, active re-arrangement of cells will have to be performed during
the tile compaction phase. This is because the annealer will make no direct attempt to
group cells (compact cells together); consequently, they may spread out, attempting to
satisfy other constraints, over the entire tile area. If cells are actively re-arranged, during
the tile compaction phase, either only tile compaction concerns are considered (reducing
overall placement quality) or extra complexity has to be added to that phase to monitor
al the quality aspects the annealer is designed to monitor.

To alow tile compaction efforts to consider general placement quality, atile-size
cost is added to monitor progress towards tile shrinkage during the anneal (that can be
balanced with other placement costs). That way, tile compaction can be balanced with
wirelength improvement, for example, and moves that greatly benefit eventua tile
compaction can be immediately recognized and accepted.

This cost is based on an “imaginary” bounding box that encloses al the tile cells
(not ports) (described in 3.2.2 and Figure 3-1). This bounding box is incrementally

maintained as the cells are moved. The cost has two components, as follows:

acsT = (W DTH waai nary Bouni NG BOX ? HeEl GHT\ vaai nary Bounol NG ch) + I\U\A_ BLOCKS err sioe + '\L]Vl_ BLOCKSr ar sioe + NJV'_ BLOCKSrop sioe

NUM_BLOCKSs0rrom s1 0

One component of the cost is the “imaginary” bounding box area. Moves that
decrease the area of the bounding box improve this component of the tile-size cost. The
second component of the cost is the number of cells lying on the edge of the “imaginary”
bounding box. This component of the cost is designed to encourage movement of cells
off the edge of the “imaginary” bounding box so that collapse of box area eventually
occurs. A tile-size cost multiplier is applied to the calculated tile-size cost so it can be
weighted with respect to the bounding-box wirelength cost.

The area of the imaginary bounding box is used instead of the perimeter, for
example, because of the interaction with the second component of the cost. The area
component of the cost is the only meaningful aspect of the cost. The cell count on the
edge affects the second component of the cost but it does not affect the tile-compaction
potential which is strictly a function of the imaginary bounding-box area. Therefore, the
second component is designed to be a tie-breaking cost in the sense that given the same
area, the cell count on the edge is the deciding factor. This neans that if a side of the
imaginary bounding-box collapses by one unit, even if the cell count on the edge
increases, the overall cost should show the merit of the respective move. For example, by
monitoring the imaginary bounding-box area, shrinking a WxH bounding box to Wx(H-
1) results in a cost improvement of the first component by W units. As few as one cell
can be on the edge that collapsed, and, following the collapse, as many as W cells can be
on that edge (maximum one cell per grid square). Therefore, in general, despite the

maximum cost increase of the second component (W — 1), the cost decrease of the first

49

component is sufficient for the tile-size cost to recognize the merit in shrinking the
imaginary bounding-box area.

The cost factor that is used to weight this cost relative to the bounding-box
wirelength is re-determined between reheat anneals. It is calculated so that the weighted
tile-size cost is a certain multiple of the bounding-box wirelength cost. The precise
multiple (fraction) is increased over the course of the anneal up to a certain value. This
upper-bound vaue is adjusted during experimentation. It turns out that one can not
completely “turn off” this cost because the placement run times grow unreasonably large
as tile compaction occurs slowly and randomly over a long period of time. Therefore,

experiments adjust the maximum tile-size cost fraction, but do not set it to O.

Table4-2 Tile-Size Cost Fraction Comparison

Tile-Size Cost Fraction: 0.01 | Tile-Size Cost Fraction: 5 I mprovement
(?) (?) (? Result/? Result)
Number of | FreeSpace Run Wirdength | FreeSpace Run Wirdength | FreeSpace Run Wirdength
LUTs / Cell Area Time / Cell Area Time / Cell Area | Time
(s (s
1 0.67 317 38363.2 0.13 193 345255 0.19 0.61 0.90
2 0.28 721 40991.8 0.16 267 41394.2 0.57 0.37 1.01
3 0.46 802 50532.2 0.12 437 48248.8 0.26 0.54 0.95
4 0.28 1120 48698.3 0.13 399 46896.6 0.47 0.36 0.96
5 0.34 1415 62175.8 0.12 598 60563 0.35 0.42 0.97
6 0.23 1834 70322.9 0.10 1019 68170.9 0.46 0.56 0.97
7 0.19 1975 74099.4 0.11 858 72614.3 0.62 0.43 0.98
8 0.20 2152 81387.9 0.10 1150 78154.4 0.53 0.53 0.96
9 0.22 2024 91470.5 0.10 1550 87457.8 0.45 0.77 0.96
10 0.12 4333 103764 0.10 1741 102187 0.85 0.40 0.98
Average 0.47 0.50 0.97

It turns out that the average percentage free space in thetileis cut in half (reduced
by a factor of 2.11) by increasing the tile-size cost fraction from 0.01 to 5. The run-time
issimilarly cut in half and the wirelength is improved by 3.5%. Higher cost fractions start
to increase the overall wirelength because tile-size cost reduction is prioritized over
wirelength optimization Therefore, a tile-size cost fraction of 5 was settled upon. It

should be noted that smaller tile sizes reduce the total amount of wire used up to a certain

point, however, there is a wirelength penalty incurred by incessantly compacting cells
within the rectangular tile — wrenching them away from their globally good positions.
Table 4-2 illustrates the experimental results obtained from the benchmark set for two
cost fractions. Graph 4-1 illustrates the change of free space, run time, and wirelength as

thetile-size cost fraction is adjusted; note the logarithmic horizontal scale.

Free Space, Run-Time, Wirelength vs.
Tile-Size Cost Fraction

©

0.01 0.1 1 10 100
Tile-Size Cost Fraction

|—<>— Normalized Extra Area —&— Normalized Run-Time —&— Normalized Wirelength |

Graph 4-1 Free Space, Run Time, Wirelength vs. Tile-Size Cost Fraction

4.3.2 TILE-SLOPE COST

The tile-size cost is designed to decrease the size of the imaginary bounding box
enclosing al alls. The cost encourages movement of the cells inwards just off the edge
of the bounding box so the bounding box can collapse. Nevertheless, unless there is a
general evacuation of cells away from the edge towards the tile center, there will be a
buildup of cellsjust inside the edge. Thisis because other costs (optimization goals) may

motivate cell movement towards the bounding-box edge (closer to the ports, for

51

example). After successive imaginary bounding-box shrinks, a larger collection of cells
will build up just inside the box perimeter; this general trend will result in an overall
placement of cells, which inhibit further “imaginary” bounding-box collapse.

To prevent the cell buildup that inhibits imaginary bounding-box collapse, the
tile-slope cost was created. This cost refers to atile slope because it creates a virtual slope
inclined towards the edge of the tile that encourages cells to “tumble” towards the center.
It is a “weak” cost in the sense that it is designed to tug dlightly on all cells without
disrupting general placement quality (measured through other costs). It is designed to
break cost “ties’” and generally encourage movement of cells away from the tile edge so
that the annealer, with its tile-size cost, can effectively achieve imaginary bounding-box
collapse.

This cost (for each cell) is formulated as follows:

QOST = MAX(HORI ZONTAL DI STANCE CF CELL CENTER FROM VERTI CAL LI NE THROUGH TILE CENTER/ TILE WDTH, VERTI CAL
DI STANCE CF CELL CENTER FROM HORI ZONTAL LI NE THROUGH TI LE CENTER / TI LE HEl GHT)

The effect of this cost formulation can be visualized by envisioning the concentric
rings of equal cost that it creates (Figure 4-1). The center of a cell can move along a
rectangular ring, without affecting the respective cost. A move which tranglates the center
of acell to arectangular ring which is outside the current rectangular ring resultsin atile-
dlope cost increase. By using the max of the two dimensions rather than the sum, for
example, is motivated by the tile shape and orientation. The sides of the rectangular rings
are parallel to the tile sides, so that cells do not conglomerate to form shapes distinctly
different from that of the tile (like in Figure 4-2). This would be unbeneficia and would
waste areg; it is better that the cell conglomeration “match” the tile boundary so the latter

can collapse snugly over the former without any area wastage.

52

Figure4-1 Rings of Equal Tile-Slope Cost

Figure4-2 Rings of Equal Tile-Slope Cost Incongruent with Tile Boundary and Resulting Placement

The normalization of horizontal and vertical distance with respect to tile width
and height has the effect of biasing which direction of cell migration the cost prefers.
Imagine the tile width is twice the magnitude of the tile height. A move which decreases
the horizontal distance by one unit has half the cost benefit of a move which decreases
the vertical distance by one unit. Therefore, in general, vertical collapse is promoted. The
cost structure has the effect that collapse is promoted in the direction that corresponds
with the smaller dimension. Smaller height than width encourages vertical collapse and

smaller width than height encourages horizontal collapse. By promoting skewing of tile

aspect ratio, better compaction (final tile area) results were observed (7% reduction in tile
free space). One can understand this better by considering that a one unit collapse in one
dimension of a 400x300 tile results in a 400 square- unit area reduction while a one unit
collapse in the other results in a 300 sguare-unit area reduction. Therefore, the
experimenta result seems to indicate that it is equally easy to achieve collapse in both
dimensiors, so biasing collapse in the aready smaller dimension is beneficial.

The tile-dlope cost factor is set just like the tile-size cost factor to normalize it
between reheat anneals to be a certain multiple of the bounding-box wirelength cost. It
turns out that as long as the fraction (multiple) is kept to a reasonably low value, there is
no change in wirelength results or final tile free space as the precise fraction is varied. It
turns out that this cost is merely a time saver. By pulling al cells inwards before they
inhibit further compaction, overal rurrtime is decreased. A total run-time savings of 16%

was achieved without sacrificing placement quality.

4.3.3 WIRE-OVERUSE COST

Monitoring just overal wire utilization s not sufficient to ensure route-ability. If
too many different connections have to be routed in a given area, the router will either be
unable to route all the connections because there are not enough metal layersin the given
region (available in the given technology), or the router will have to try extending the
routes outside of the current region, if it is possible. If there are enough nonoptimal
routes, even if there is “enough wire’ in the chip theoreticaly to route al the
connections, the router will use up all available wiring leaving some connections not

routed. Non-optimal routes also increase the actual length of connections beyond their

expected length (defined within the placer’s net bounding boxes) leading to increased
path delays. A timing-driven router can avoid extending connections that are “critical”
for timing; nevertheless, forcing the router to take nonoptima routes is generaly
unbeneficial because the increased wire usage increases the overall pressure on routing
resources — making the router’ s job more difficult. If the tile can not be routed, the router
may also have to resort to growing the tile in certain areas to make room for the
respective routing. This is disadvantageous because it increases the overall tile area.

If the severity of the routing “hotspots’ can be reduced (less severe loca wiring
demand), and the overall wire utilization is sufficiently low, the router may al'so complete
its job with fewer layers of metal. This utimately could reduce the expense of producing
the FPGA and would consequently be beneficial. Reducing the amount of non-optimal
routing the router has to resort to also reduces the total routing capacitance and

resistance, reducing the overall power consumed due to the routing.

4.3.3.1 CONGESTION MODEL

This research was conducted in the absence of a router. Therefore, to measure
routing congestion, a router congestion metric was developed. This congestion metric
was adapted to form a placement cost to monitor congestion. If future work shows a
correlation between this congestion metric and router congestion, this congestion model
and metric can be tuned to reduce final congestion.

The congestion model used considers overlapping bounding boxes. The
congestion over each placement grid square is calculated. It is calculated by adding

contributions from each of the wirelength bounding boxes overlapping the grid square.

The contribution of a bounding box is equal to the total wirelength of the corresponding
net divided by the number of routing grid squares covered by the bounding box (net
routing density). This estimate of congestion is based on several assumptions. It assumes
the router can, typically, route all the connections of a net without violating the respective
bounding box perimeter. It is also assumes the amount of extra routing square segments
needed for metal hops (vias) is relatively small; note that when a viais used, two routing
sguare segments at the respective placement grid square is used instead of one. It is also
assumed the router can chose any number of possible paths to route al the net
connections within the bounding-box; hence, probabilistically, the larger the area of the
bounding box, generally, the smaller the probability the router will use a given grid
sguare — actudly, it is the area to perimeter ratio that matters because wire-use increases
with perimeter. By basing the contribution of a net on the probability the router will use
the respective placement/routing grid square, it is hoped that potential router choice can
be incorporated in the congestion assessment.

It should be noted that this model’s view of routing flexibility is overly optimistic.
A better modeling of router options would consider that near points of connection(to cell
pins and ports), the net must establish the appropriate connections. Consequently, near
net sinks and sources, the probability of the router using a routing square segment
increases. This affect can be approximately modeled by carefully considering the area
around sinks and sources (adding the relevant high probability bonuses to the respective
placement grid squares); this modification to the routing model was experimented with
briefly and should be reconsidered when future work assesses overuse modeling and

costing with reference to a tile router. Infrastructure was put in place to bonus routing

grid squares around relevant cell pins and ports, however, the cost described next and the
experimental results do not incorporate this cost or model feature since the respective

bonus magnitudes are highly speculative without considering atile router carefully.

4.3.3.2 CONGESTION COST

To avoid introducing routing hotspots in the placement and to reduce overall
routing congestion, a placement wire-overuse cost was created. This wire-overuse cost is
based on the congestion model proposed. Monitoring the overuse with the preciseness of
the proposed model is too expensive (in terms of run time). To make the run-time
practical, a few approximations are made that do not impede the placer’s ability to reduce
placement congestion as measured by the proposed model.

Instead of considering each placement grid sguare individually, a coarser
congestion grid is monitored. The coarseness of the grid is specified in terms of the
number of routing grid squares each congestion grid square should enclose when the tile
is highly compacted — most of the tile area filled with cells. If the tile is loosely
compacted, the coarseness of the grid is artificially increased so the height and width of
the congestion grid matches the height and width of the grid if the tile was highly
compacted. Refer to Figure 4-3 for an illustration of this. As will soon become evident,
the run-time of the algorithm and the “realism” of the cost are both a function of the
coarseness of the grid. Therefore, this decrease in coarseness as the tile is shrunk was

motivated by several reasons, which will be discussed later.

57

4x4 Placement Grid Squares per
Congestion Grid Square when
tile is loosely compacted.
Congestion Grid: 3x3

2x2 Placement Grid Squares per
Congestion Grid Square when
tile is highly compacted.
Congestion Grid: 3x3

Figure4-3 Coar seness of Congestion Grid as a Function of Tile Compactness

The congestion cost of a congestion grid square is:

AREA OF CONGESTI ON GRI D SQUARE (NUMBER OF PLACEMENT/ ROUTI NG GRI D SQUARES ENCLOSED) ? MaX(0, OONGESTICN
MEASURED — (CONGESTI ON THRESHOLD — 1. 0)) 2

The measured congestion is a function of the net routing dersity of al nets that intersect
the congestion grid square. The net routing density of all nets which intersect the square
are added together to get the worst-case congestion value (as if al the nets actually

intersected over one placement grid sgquare within the congestion grid square). By

considering the worst-case congestion value, a coarse congestion grid will report
congestion even if there is not any, and, it will never fail to recognize congestion.
Currently, a congestion threshold of 5.0 is used, because it seems to work well to reduce
the congestion reported by the congestion model. A value of 5.0 also seems reasonable
because the congestion reported at a placement grid square is equal to the expected
amount (expected value) of metal lines needed ower that square. Consequently, there
should be a correlation between the maximum congestion measure and the number of
layers of metal needed for routing. A threshold of 5.0 would imply that congestion should
be limited to five layers of meta and overuse should be reported above that amount.
Assuming an eight-layer metal process (achievable by state-of-the-art processes, now, or
in the near future [9]), five layers of metal for inter-cell routing seems reasonable; this
would leave 3 layers of metd for intra-cell routing and routing of power and ground
(which are not in the tile netlists). Nevertheless, this threshold value should be
experimented with in future work.

The amount the measured congestion exceeds one less than the threshold value is
squared so that congestion can be balanced throughout the tile. That is, an excess
congestion value of 60 at one location is penalized more than two excess congestion
values of 30 at two locations. 1 is subtracted from the threshold value so that at the
threshold value, 1 unit of congestion cost is measured. If this is not done, the optimizer
will amost never reduce the congestion below the threshold value because values dlightly
above the threshold would have negligible cost.

Finally, by multiplying mx(0, Coveestav Measurep — (ConaesTi v TheesHap — 1. 0)) 2 by the

congestion-grid “placement square area”, a cost is determined that assumes the worst-

59

possible congestion in the congestion grid square occurs at all positions within the region.
Of course, because of this the greater the coarseness of the congestion grid, the greater
the worst-case analysis is overly pessmistic. Therefore, finer grids tend to estimate
congestion more redlistically.

Generally, the coarser the congestion grid, in generd, the fewer the number of
congestion grid squares (“bins”) crossed by a given net. That is why, increasing the grid
coarseness reduces the run-time; the number of bins that have to be updated for a given
net is reduced.

It turns out a better balance between precision and run-time can be achieved,
without sacrificing placement quality, as measured by the overuse model. By only
monitoring certain nets with respect to wire-overuse cost, the optimizer can avoid having
to make as many updates during an anneal. Nets that have a low ret routing density do
not greatly affect congestion measures. Furthermore, they tend to be large-area nets that
gpan a large number of “congestion bins’. Therefore, not considering these nets is
beneficial because of their low affect on congestion measures and the fact that the
expense in updating bins is greatly reduced if they are ignored. The threshold density
below which nets are ignored is based on the congestion threshold and the maximum
number of nets which cross a placement/routing grid square in the tile. By dividing the
congestion threshold by the maximum number of nets which cross a placement/routing
grid sguare, the threshold density is obtained. The contribution of nets below this
threshold is minimal because even if many of those nets overlap (uUp to the maximum
number of overlapping nets) only a maximum density equal to the overuse threshold will

be contributed.

All the nets are considered when re-computing the overuse cost between anneal
temperatures, but during a temperature only nonignored nets are updated when
performing overuse updates. It turns out that using this technique with the density
threshold described earlier, only 13% percent of the nets are typically ignored, the
placement results are not affected, and the run time is improved by approximately an
order of magnitude.

Taking a step back, by reducing the coarseness of the congestion grid in step with
tile shrinkage, several advantages are obtained. The preciseness of the congestion
measurement is increased as more local placement improvements are made near the end
of optimization When the tile is larger, nets tend to be spread out over a larger distance;
in fact, all features of the tile tend to be spread out, so a coarser congestion gid at this
time makes sense; coarse features and regions are coarsely monitored. This also keeps the
relative number of bins crossed by a set of nets grosdy at the same value throughout the
anneal. When the regions and features shrink, the coarseness grid shrinks with them,
keeping the same relative areas of the tile under supervision by the same squares of the
congestion grid.

The specification of grid coarseness is made in terms of the number of routing
grid squares enclosed by a congestion grid square (when the tile is highly compacted).
Therefore, tiles with more cell area will have a greater number of congestion grid
squares. Consider this opposed to the increased number of routing grid squares in a
congestion grid square, for tiles with larger cell area, if the width and height of the
congestion gid was specified instead. Assuming that local regions in tiles with a larger

total cell area are similar to local regions in tiles with a smaller total cell area (with

61

respect to routing congestion), a congestion grid square should have the same number of
constituent routing grid squares to monitor the congestion appropriately for differing tile
sizes. Experiments show that this assumption is reasonably accurate (allows for better
optimization of the congestion model). One would expect, however, that the longer
average distance of cell interconnections within larger tiles would tend to result in extra
routing passing over cells that is connecting more remote parts of the tile. Nevertheless,
this affect would tend to suggest more metal layers are needed to route such tiles,
changing the congestion threshold but not the congestion grid coarseness or precision.

The coarseness of the congestion grid was specified so that 15x15 placement grid
squares lie within a congestion grid square when the tile is highly conpacted. This degree
of coarseness seemed to produce the best results in terms of run-time and placement
quality.

Of course, all these considerations and assumptions, and the underlying
congestion model, which motivated the various decisions, should be tested when a router
is available. That is why, other than the results presented next, the experimental results
presented in this paper do not consider overuse cost and the congestion model.

To control how strongly the layout optimizer prioritizes overuse redwction, an
overuse cost factor is multiplied by the raw overuse cost before adding it to the total cost.
Graph 4-2 illustrates the effects of different overuse cost factors. The overuse threshold
used is 5.0; as indicated earlier, this value produced good results & measured by the
overuse model. Vaues higher than this did not restrain hotspot magnitude as much and
values lower than this could not be satisfied, even with considerable placement

degradation.

62

The maximum overuse measured in a placement grid square (Graph 4-2) isa
measure of the overuse in the hottest hot-spot in the tile (usage above the overuse
threshold). Wirelength, free space, and run time are all normalized with respect to a run
which does not monitor overuse and does not suffer from any of the overhead of the
respective computations. The number of hot-spots in the tile was measured, at the end of
optimization, by counting how many placement grid squares had a predicted quantity of
routing above them greater than the overuse threshold. The percentage of placement
squares, which were “hot”, was below 4% for al (> 0) overuse cost factor values tested.

An overuse cost factor of 10 reduced this count to O for al tiles in the benchmark set.

Wirelength, Run-Time, Free-Space, Overuse vs.
Overuse Cost Factor

,
L Ja
il

[— ¥/
g
- 5
|

Ay - - 4
| J\&n\&

0.0001 0.001 0.01 0.1 1 10

A

Overuse Cost Factor

|—<>— Normalized Wirelength —&— Normalized Run-Time —&— Normalized Free-Space —¥— Maximum Measured Overuse in a Placement Grid Square |

Graph 4-2 Wirelength, Run-Time, Free-Space, Overuse vs. Overuse Cost Factor

Notice how the run-time increases as the overuse cost factor increases. This effect
is due to the fact that congestion monitoring inhibits tile compaction because the

respective moves that lead to tile compaction tend to increase congestion. Therefore, tile

compaction occurs over a longer period of time as the optimizer struggles to balance all
the optimization goals. Therefore, the final optimizer exit criteria (based on tile
compactness) are not satisfied as quickly when the optimizer focuses on reducing
congestion. This effect is minimized by lower overuse cost factor values. The actual
overhead of computations performed to monitor congestion can be more readily observed
at those lower values An overhead of about 60% run time is incurred due to the
monitoring of congestion. This relatively small overhead is due to the carefully chosen
algorithmic tradeoffs discussed above.

Of course, the maximum measured overuse is decreased as the overuse cost factor
isincreased. This comes at the expense of increased overall wirelength and tile free-space

as these optimization goals are sacrificed in favour of limiting overuse.

4.4 MoOVE-BASED OPTIMIZATIONS

Secondly, moved-based optimizations are presented, which expand, direct, skew,

or modify the annealer’s move space to facilitate the achievement of optimization goals.

4.4.1 BLocK-OFF-EDGE MOVE

At lower placement temperatures, large cost increases are likely to be rejected.
Therefore, cell movements over great distances that destroy good globa placement
choices are likely to be rglected. The starting temperature of the reheat anneals is chosen
to be high enough that useful progress (tile shrinkage and wirelength improvement, for
example) through cost “hill climbing” can be achieved; nevertheless to prevent the

destruction of globally good placement decisions, a lower temperature is beneficial. In

general, to preserve placement decisions, the temperature is selected to be relatively low.
To achieve adequate tile compaction, however, some cells have to be moved great
distances— in order to get off the edge of the “imaginary” bounding box — despite the fact
that competing costs resist such a move. The reason br long-range moves is generally
because near the end of placement optimization when the center of the tile is highly
compacted, large clusters of cells often congregate in one section near the edge of the tile.
There is no room to move the cells towards the tile center and no short sequence of local
moves (likely to be proposed) can move the respective cells off the tile edge. The tile-
slope and tile-size compaction cost factors can be increased to the point where they
dominate so that such long-distance moves are accepted, but such increased focus on tile
compaction generates lower-quality placements. Furthermore, there is a more
fundamental problem that such long-distance moves are generally not proposed during
the reheat anneals because the relatively low temperatures motivate small range limits.
Consider Figure 4-4 which was captured from an actual placement run without block-off-
edge moves. Notice how there are cells near the edge of the tile preventing tile collapse,
even though there is free space available to accommodate them. A combination of the

range-limit imposed on them and the cost penalty in moving them limits tile compaction.

am 0 o ES X1 1EN SRR AIRPITIre g

0 &
T

mihmsmmsmm -
- D D R G G0 N G D am

Room to Accommodate Room to Accommodate
Cells Cells on Edge of Tile Cells

Limiting Collapse
Figure4-4 Example of Cells Limiting Collapse and Space that can Accommodate Them

Block-off-edge moves are strictly designed to propose the long-distance moves
necessary to permit tile compaction and to provide the cost bonuses needed to ensure
those specific moves are accepted by the annealer. These moves ignore particular range
limits. Whenever a cell on the edge of the “imaginary” bounding-box is selected for
moving, the range limit in the direction paralel to the edge is removed, so that the
proposed move destination can be anywhere along the edge (but just inside the edge).
Refer to Figure 4-5 for an illustration of how the range-limit is modified for this move.
This solves the problem of beneficial move proposal by allowing long-range moves

specificaly for cells that need to be moved to facilitate compaction. If the proposed move

is to alocation that can accept the cell without disturbing other cells and that location is
inside the edge of the “imaginary” bounding-box, a cost bonus is applied. This solves the
problem o ensuring such “necessary” moves are accepted. The cost bonus is simply
performed by dividing the resulting cost difference by a cost-bonus divisor before the
difference is used to determine proposed move acceptance or rejection. If the cost
difference indicates a cost decrease, the bonus has no effect; the move is accepted no
matter what. If the cost difference indicates a cost increase, the perceived magnitude of
the cost increase will be reduced, so the move is more likely to be accepted. Of course,
large cost increases are ill likely to be rglected (maintaining ®me degree of cost
arbitration). Nevertheless, if the cost-bonus factor is adjusted appropriately, “necessary”
moves can be more frequently proposed and accepted without seriously harming the
overall placement quality; such a decrease in overall placement quality manifests if the

alternative of increasing the compaction cost factors is employed instead.

Imaginary Bounding Box

.

Block-OffiEdge Move Range Limit

L

Standard Range Limit

Figure4-5 Effect of Block-Off-Edge Move on Range Limit

It turns out that even if the range-limit is extended, the cost division (cost bonus)
is necessary to achieve any sort of difference in results. Furthermore, if the cost bonus is

implemented in isolation, placement results degrade without compaction benefits. Graph

67

4-3 illustrates the affect on placement results of changing the cost divisor for Block-Off-
Edge moves. The results are presented assuming that Block-Off-Edge moves are
executed half of the time when it is possible to execute them (the move involves a block
on the imaginary-bounding box edge); it turns out that this value produces the best
results. It should be noted that as the divisor is increased, the fina free space area is
amost immediately reduced to a good value. The runtime decrease is similarly
immediate; run time decrease makes sense because tile compaction occurs more
effectively, and, the optimizer’s exit criteria based on tile compaction is satisfied sooner
(refer to Appendix A for more details). The wirelength increase is steady as the divisor is
increased, which makes sense, because any increase in wirelength cost is diluted by the
divisor. Notice how the wirelength dips for small divisor values, howewer; this is
probably because the decrease in area benefits overall wirelength mitigating the impact of
the cost divisor. A cost divisor of 8 is selected because it achieved the free space and run-
time benefit without affecting wirelength. Table 4-3 indicates the detailed results of a
comparison between a cost divisor of 1 and a cost divisor of 8 for the netlists in the
benchmark set. Notice the general improvement in free space and run time without the

large impact onwirelength.

Free Space, Run-Time, Wirelength vs.
Cost-Difference Divisor

14

12

y l/:/_ﬁ/a/ﬁ
08 f\ :i

04

0.2

1 10 100 1000
Cost-Difference Divisor

|—<>— Normalized Extra Area —=— Normalized Run Time —&— Normalized Wirelength |

Graph 4-3 Free Space, Run-Time, Wirelength vs. Cost-Difference Divisor

Table 4-3 Effect of Block-Off-Edge M ove Divisor

Cost Difference Divisor: 1 Cost Difference Divisor: 8 I mprovement
(?) (?) (? Result/? Result)
Number of | FreeSpace Run Wirdlength | FreeSpace Run Wirelength | Free Space Run Wirelength
LUTs / Cell Area Time / Cell Area Time [Cell Area | Time
C] C]
1 0.14 332 36712.5 0.12 229 34934.9 0.85 0.69 0.95
2 0.36 341 41867.1 0.11 313 40676.6 0.31 0.92 0.97
3 0.24 548 47611.4 0.12 368 49379.9 0.48 0.67 1.04
4 0.33 400 47963.2 0.13 362 50119.5 0.38 0.91 1.04
5 0.35 685 62061.7 0.12 603 59356.1 0.34 0.88 0.96
6 0.18 969 67861.3 0.12 804 69523.7 0.63 0.83 1.02
7 0.25 1140 74078.3 0.11 900 73966 0.43 0.79 1.00
8 0.19 1382 80286.5 0.13 1002 80581.8 0.67 0.73 1.00
9 0.21 1302 87013.5 0.11 1087 88724.5 0.53 0.83 1.02
10 0.19 1687 98628.2 0.12 1393 100638 0.62 0.83 1.02
Average 0.52 0.81 1.00

4.4.2 COMPACTION MOVE

Even with tile-compaction cost bonuses designed to benefit moves that lead to
smaller tiles, combinations and sequences of those moves have to be proposed by the

move generator for tile compaction to result. It is unlikely that the move generator is able

69

to generate the proper sequences randomly and frequently. For example, consider the
following sets of blocks, with the indicated connections, that have to move to the right to

permit tile-area shrinkage (Figure 4-6):

Figure4-6 All blocks must move right to permit tile shrinkage.

Assuming the blocks are “tightly” held in their respective relative positions by the
connections that run between them, any “out-of-order” moves which drastically change

the relative positions of the blocks are likely to be rejected (Figure 4-7):

\|

//

Figure4-7 Movelikely rejected because of unfavourable impact on other optimization goals.

Consequently, each block can move to the right only after the block ahead of it is
moved (Figure 4-8):

The tile-dlope compaction cost will bonus moves to the right so that moves which
result in connection cost tie-breaks will tend to be resolved in favour of rightward
movement (over time). Nevertheless, the correct succession of moves have to be
proposed for this to happen efficiently (reasonable runtime) and effectively (for
example, taking advantage of gaps which temporarily open between blocks by squeezing

ablock between them).

70

Figure4-8 The" correct” move sequence will successfully move the blocks off the edge.

The solution is to ntroduce a type of multiple-block move, which attempts to
successively move al blocks to the center of the tile one after another. By making
compaction a priority of the move generator, more efficient, and effective tile compaction
can take place.

On average the move generator selects this multiple-block move a particular
number of times per temperature. The move considers al blocks, one after another.
Blocks closer to the tile center (Manhattanwise) are considered first. The following

pseudo-code summarizes the compaction move process:

COVPACTI CN_MOVE_TYPE : = SELECT ONE CF FOUR COMPACTI ON MOVE TYPES
FOR EACH CELL, STARTING WTH CELLS CLOSER TO TILE CENTER
PIOK A DIRECTION TO NUDGE THE CELL CLOSER TO THE CENTER (BASED ON THE COMPACTI ON MOVE TYPE AND THE
CELL POSITION

IF THE CELL MOVE WOULD CREATE AN | LLEGAL PLACEMENT
REJECT PRCPCSED MOVE

ELSE | F PROPCSED MOVE | S REJECTED FOR COST REASONS
DO NOT PERFCRM MOVE

ELSE
PERFCRM PROPCSED MOVE AND UPDATE COST

Notice that all cells may be moved by a compaction move. In that sense, this
move is an al-block or all-cell move. There are four types of compaction moves: (1)
move blocks above center downwards and move blocks below center upwards (Figure

4-9); (2) move blocks left of center rightwards and move blocks right of center leftwards

71

(Figure 4-10); (3) move blocks above center downwards and move blocks below center
upwards, only if they are not horizontally (as opposed to vertically) more distant from the
center (Figure 4-11); (4) move blocks left of center rightwards and move blocks right of
center leftwards, only if they are not vertically (as opposed to horizontally) more distant

from the center (Figure 4-12).

o

!
|
] n
W N
H EEN | N

Figure4-9 Proposed Moves of First Compaction Move Type

[] Ii
] .
_HEE 11 .
o] N

Figure4-10 Proposed Moves of Second Compaction Move Type

72

3
:
N n
] o
o L] N

Figure4-11 Proposed Moves of Third Compaction Move Type

m ﬁ
N N
_NES 1.
N m

Figure4-12 Proposed Moves of Fourth Compaction Move Type

Move types (1) and (2) tend to produce tshaped arrangements as blocks are
sguashed along vertical and horizontal central axes (Figure 4-13). Move types (3) and (4)
tend to produce xshaped arrangements (Figure 4-14). Therefore, if either (1) and (2), or
(3) and (4) are used in isolation, large portions of free space are left at the edges of the
tile. By utilizing al four types of moves, overall compaction takes place to fit the

rectangular shape of thetile.

73

i T T L
.
i i
: :

Figure4-13 t-Shaped Arrangement Produced by Compaction Move Types (1) and (2)
! !
| !
| ;

Figure4-14 x-Shaped Arrangement Produced by Compaction Move Types (3) and (4)

One unit (distance) moves are suggested (proposed) for each of the blocks. These

proposed “shift” moves are still subject to the same cost arbitration as a normal move.

74

Therefore, al the specialized move generation realy does is sequence and promote
“beneficial” moves instead of relying on fortune and long run times.

Multiple-unit (distance) moves were experimented with and showed no advantage
over single-unit moves. The compaction move types all propose one-dimensional moves.
Two-dimensional moves were experimented with; however, there was no perceivable
advantage over one-dimensional moves. In fact, blocks tended to get in the way of each
other, obstructing efficient compaction.

Since compaction moves affect al cells, they are performed relatively
infrequently. The frequency they are performed with is specified as the average number
of times they are performed per temperature. If compaction moves are not performed, the
run time of the tool increases greatly because compaction occurs very slowly. Therefore,
when the performance of 0 compaction moves per temperature was compared with the
performance of 4 compaction moves per temperature (in Table 4-4), the tool was
terminated in the former case once the respective run times were over twice aslong asin
the latter case; therefore, the reported free space percentages for the former case are not

final values. Nevertheless, notice the dramatic improvement in free space and run time.

Table 4-4 Compaction-M ove Effect

Average of 0 Compaction Average of 4 Compaction I mprovement
Moves per Temperature(?) M oves per Temperature(?) (? Result/? Result)
Number of | FreeSpace / Cell Area Run Time(s) Free Space / Cell Area Run Time(s) Free Space / Run
LUTs Cell Area Time
1 2.60 1148 0.12 236 0.047 0.206
2 2.83 907 0.12 372 0.044 0.410
3 361 1886 0.11 595 0.031 0.315
4 1.81 2341 0.10 509 0.057 0217
5 4.14 5821 013 852 0.030 0.146
6 271 15501 0.13 1116 0.049 0.072
7 1.37 > 2798 0.11 1399 N/A N/A
8 5.05 > 3146 012 1573 N/A N/A
9 4.79 > 4040 011 2020 N/A N/A
10 5.34 > 4460 011 2230 N/A N/A
Average 0.043 0.228

75

By changing the average number of multiple-block compaction moves per

temperature, the following trends can be observed (Graph 4-4).

Free Space, Run-Time, Wirelength vs.
Average Number of Tile-Compaction Moves Per
Temperature

14

13 1

NI

11

0.9

0.8 \:——D/D\ﬁ———r‘.— —

0.7

0 5 10 15 20 25 30 35
Average Number of Tile-Compaction Moves Per Temperature

|—<>— Normalized Extra Area —=— Normalized Run-Time —— Normalized Wirelength I

Graph 4-4 Free Space, Run-Time, Wirelength vs. Average Number of Tile Compaction M oves per
Temperature

Notice the run time improves as the tile-compaction frequency is increased. This only
happens up to a point because the tile-compaction moves are relatively expensive (each
move involves al blocks). The reason an upwards trend in rurrtime is not observed is
because once rapid compaction takes place, the optimizer is likely to experience a series
of reheat anneals without additional compaction; hence, the optimizer’s exit criterion is
satisfied and the optimizer exits (terminating execution and keeping the run time small).
Overal wirelength begins to increase somewhat. This relatively “weak increase”
is probably due to the fact that rapid tile compression results in compacted tiles sooner.

Compacted tiles inhibit the ability of blocks to achieve adequately “good positions’

76

relative to one another because a large portion of proposed moves are infeasible due to
block overlap.

Extra area (free space) is reduced up to a point. As he more effective tile-
compaction move frequency is increased, surplus tile area is initially reduced because
compaction opportunities can be better and more frequently leveraged for example,
squeezing between blocks temporarily separated). This trend cortinues until the tile-
compaction rate is increased to the point where the essentially greedy multiple-block
compaction takes place almost immediately after compaction opportunities present
themselves. If rapid tile compaction takes place, followed by a series of reheat anneals
without apparent forward progress, the optimizer’s exit criterion will be satisfied and the
optimizer will terminate before the other compaction mechanisms can effectively engage

and explore compaction possibilities.

4.4.3 BLOCK ROTATION AND FLIP (CELL TEMPLATE SWAP)

The cell specification in the netlist assumes particular layout orientatiors for the
cells. Cdl layout orientation determines cell pin placement and, consequently, the
particular layout orientation affects placement quality. There is nothing that necessitates a
particular layout orientation because cell layouts can be flipped and rotated to a certain
extent re-arranging the relative cell pin positions. The netlist builder does not consider
cell placements when determining the orientation, therefore, the orientation it chooses
may be highly sub-optimal.

By expanding the placer move space to explore cell layout possibilities, cell

orientations can be considered and explored during placement optimization.

Nevertheless, rot only does this move potentially rotate cells and change relative pin
placements, it aso potentially affects cell aspect ratios allowing cells to better abut and
squeeze between other cells. Nevertheless, currently the netlist builder chooses aspect
ratios for all of the cells, which are close to square, so such benefits are not readily
realized during actual placement.

Block rotation and flip moves are facilitated by the creation of cell templates in
the placer. These templates are loaded from the initial netlist specification to represent all
possible flips and rotations the cell can undergo without requiring re-layout. During
placement, each cell has a set of templates that can be imposed to re-arrange pin positions
and resize the cell to represent flip and/or rotation possibilities. When the block rotation
and flip move imposes a new cell template, it maintains the position of the lower-left
corner of the cell. The placement change this move results in is measured with the
standard cost arbitration scheme and the move can be accepted or rejected (undone)
based on the resulting cost difference and the current placement temperature.

Experiments were formed to determine if cell repositioning, at the same time as
template swapping, was beneficial. It turns out that there is no advantage in coupling
those two types of moves. Therefore, for the sake of move generation simplicity, both
types of moves are proposed independently (and do not occur together). Perhaps, there is
an added benefit in that this encourages smaller overall placement changes. Annealers
appear to function best when the cost space is uniform and the moves selected from the
move space result in small placement perturbations. If the move space is such that
drastically different placements result from every move, the placer randomly explores

wider scattered regions of the cost space rather than carefully considering one loca

78

region before moving on to ancther.

While design rules permit al cell re-orientations, transistor characteristics, due to
uncertain mask alignment and patterning in orthogonal directions in modern
semiconductor processes, might be largely affected by 90-degree rotations. [9] Assuming
CMOS-technology is used, speed would only be affected, circuit functionality should not.
Therefore, the degrees of freedom offered to this type of move should be reconsidered
when speed (performance) considerations are integrated into the tool or the cells are laid
out using a technology other than CMOS whose functionality is affected by transistor
characteristics.

Furthermore, currently the tool does not consider cell layouts that are beyond
simple re-orientations of the cell specification in the netlist. One natural extension is to
permit the tool to read in severa different layout possibilities for several cells allowing it
to explore highly different cell aspect ratios and pin possibilities when placing cells. At
that point, the decoupling between cell trandations and template changes might be
reconsidered, because a compound move might be able to explore areas of the cost space
not readily reachable by a series of independent translations and template changes. That
said, as discussed in 5.2, experimentation indicates that highly non-square aspect ratios
are generally detrimertal; hence, exploring drastically different cell aspect ratios might
not be beneficial. Regardless, adding consideration of many cell templates to explore an
expanded range of layout possibilities, should be relatively easy and should not require
changes to the optimizer, only changes to the optimizer's data structure loaders
(informing it of the layout possibilities); that is, the template swapping code is currently

general enough to handle such swaps.

7

The frequency of template moves (percentage of moves which are template
moves) is varied to produce Graph 4-5. There is no noticeable change is free space
percentage as the frequency of this move is changed within reasonable values. Notice the
increase in run time as the template move frequency is increased. This increase in run
time is not due to the fact that template moves are more expensive than regular moves.
The increase in run time is due to the fact that by performing template moves, the
optimizer is distracted from performing other moves, especialy those that contribute to
tile compaction. Therefore, the optimizer does not complete (with a highly compacted
tile) until it has run for alonger time. Nevertheless, notice the improvement in wirelength
due to this type of move. The trend of improving wirelength reverses itself when this
move is performed very frequently because this biased emphasis on template moves
detracts from overall placement quality. Table 4-5 indicates that template moves reduce

wirelength by about 3%.

Table 4-5 Effect of Template Moves

Template Move Frequency: 0 | Template Move Frequency: 0.08 | Improvement
(?) (?) (? Result /?
Result)
Number of Run Time(s) Wirdength Run Time(s) Wirelength Run Time | Wirelength
LUTs

1 539 35826 552 34250.3 1.02 0.96
2 808 44826.5 784 41743.4 0.97 0.93
3 1134 50149.1 1176 49894.2 1.04 0.99
4 1077 48382.8 976 47729.6 0.91 0.99
5 1860 62605.7 1956 60973.1 1.05 0.97
6 2468 71493.2 2578 69401.9 1.04 0.97
7 3107 79121.9 3225 75749.3 1.04 0.96
8 2773 84448.8 3043 79296.3 1.10 0.94
9 3520 91003.4 3517 89498.3 1.00 0.98
10 5400 104721 5979 100888 111 0.96
Average 1.03 0.97

Run-Time, Wirelength vs.
Template-Move Frequency

13

125

12

115

- /
1.05
1Z/D_D/H

0.95

0.9 T T T T T T
0 0.1 0.2 0.3 04 0.5 0.6 0.7

Template-Move Frequency

|—|:|— Normalized Run-Time —&— Normalized Wirelength |

Graph 4-5 Run Time, Wirelength vs. Template Move Frequency

4.4.4 BLOCK EQUIVALENT-PIN SWAP

Particular cells have egquivalent pins in the sense that a given set of connections
attached to those pins can be swapped without affecting the functionality of the circuit.
For example, a programmable multiplexer’'s inputs are equivaent in the sense that
connections to its inputs can be swapped freely because the SRAM cells which control
the multiplexer can be programmed to any values. Netlist generation makes the various
connections to equivalent pins without considering placement, therefore, it makes no
effort to optimize the relevant connections for placement considerations.

A mechanism is created (block equivaent-pin swap) to allow the placer to swap
connections to equivalent pins. That way, as the placer places cells, the connectivity can
be swapped (arbitrated by the cost function) to achieve greater placement improvement

through an expansion of the proposed move space. During netlist loading, atomic pin

81

groups and compatible pin groups are formed based on the cells read in. Each compatible
group contains a set of two or more atomic pin groups. An atomic pin group defines a set
of pins whose connections must be swapped with those of another atomic pin group (in
the same compatible group). All the connections corresponding to an atomic pin group
must be swapped with the corresponding connections of the other atomic pin group; that
is, the atomic pin grouping must be maintained (hence, the term atomic).

A few examples can help illustrate this. Consider the control pins of a
multiplexer. To facilitate swapping of control pins the netlist loader would create the

following compatible group with the corresponding atomic pin groups:
T R can y oy - om

ATOM C_PI N_GROUP_3(CONTROL_G, NOT_ CONTRAL_Q)

During the anneal, if a pin swap move is selected, and compatible_group_1 of the
respective block is selected (a connection swap between control pins),
atomic_pin_group_1, atomic_pin_group 2, and atomic_pin_group_3 would be available
for swapping. If atomic_pin_group_1 and atomic_pin_group_2 are selected for swapping,
the connections attached to CONTROL_A and CONTROL_B will be swapped and the
connections attached to NOT_CONTROL_A and NOT_CONTROL_B will be swapped.
Therefore, the respective atomic pin groupings are maintained; that is, swapping
CONTROL_A and CONTROL_B can not occur in isolation because the atomic pin
groupings of compatible group_1 guarantee both the CONTROL pins and the
NOT_CONTROL pins will be swapped together. This is important because the

functionality of the multiplexer could not be preserved if SRAM ? was connected to

CONTROL_A and NOT_CONTROL_B, for example.

82

Of course, single pin swaps are also supported by this scheme by including only a

single pin in each atomic pin group. Consider the three additional compatible pin groups:

COWPATI BLE_GROP_2 {
ATOM C_PIN_GROUP_1(CONTRCL_A)
ATOM C_PIN_GROUP_2(NOT_CONTRCL_A)

}

COWPATI BLE_GROP_3 {
ATOM C_PIN_GROUP_1(CONTROL_B)
ATOM C_PIN_GROUP_2(NOT_CONTRCL_B)

}

COWPATI BLE_GROP_4 {
ATOM C_PIN_GROUP_1(CONTRL_ Q)
ATOM C_PIN_GROUP_2(NOT_CONTRCL_C)

}

These groups would facilitate swapping of the connections attached to the
CONTROL and NOT_CONTROL pins; logicdly, this is permitted because of the
flexibility offered by the arbitrariness of SRAM programming — simply programming an
SRAM bhit to its complement vaue would make the resulting circuit function
equivaently.

Another potential application of the connection-swapping mechanism is in the
utilization of layout options. Often cell layouts provide a choice of several locations
where a particular signal can be connected. These options may take the form of severd
exposed ports that a signal can be connected to or a location where a via can be placed to
get a signa out. In any case, these options alow flexible use of the cell in that
connections can be made to the closest convenient option rather than having to target a
single pin. By creating compatibility groups to represent these options, a given
connection can be swapped between these various possibilities with the placer cost

function arbitrating the choice. Consider the following compatible group as an example:

COVPATI BLE_GROP_5 {
ATOM C_PIN_GROUP_1(CLaX_CPTION_1)
ATOM C_PIN_GROUP_2(CLOCK_CPTI ON_2)
ATOM C_PIN_GROUP_3(CLOK_CPTION_3)

This compatible group can be used to represent the various pins to which a clock
signal can be routed. The netlist generator will randomly select a given option (such as
CLOCK_OPTION_1) to connect the clock to. The pin-swapping mechanism in the placer
will then automatically consider swapping the clock connection to the other options. The
placer currently supports option optimization, however, the netlists explored do not
specify options and consequently their introduction is left to future work.

For the cells considered in the explored netlists, multiplexers, SRAMs, and LUTSs
are viable candidates for equivaent-pin swapping. All the input pins of a multiplexer are
candidates for connection swapping, because the programming of the SRAM control bits
of the multiplexer can be adjusted. The connections attached to a control pin and its
complement can be swapped as discussed above. Pairs of control/control_complement
pins can be swapped, as long as the pairings are maintained through atomic pin groups as
discussed above. Connections attached to the output pins of an SRAM can be swapped,
again because of programming flexibility. Finally, LUT inputs can be swapped (in pairs)
because the SRAM programming bits programming the LUT can be adjusted in response;
the connections attached to a LUT-input pin and its complement pin can be similarly
swapped; aso, the connections programming the LUT from SRAM cells can be swapped
freely aswell.

It turns out that a 1.4% improvement in wirelength can be achieved without
sacrificing tile area compaction or run-time speed. This modest improvement is over that
achieved by block rotation and flips which sort out inappropriate cell connectivity (for a
given placement) to a certain extent. Nevertheless, the power of this move type will be

uncovered primarily through the exploration of options in the cell layouts that should be

explored in future work.

4.5 OTHER OPTIMIZATIONS

Thirdly, optimizations which are not entirely move-based or cost-based are

presented.

4.5.1 INITIAL L ARGE-GRID PLACEMENT

Achieving small area tiles is an optimization goal. Earlier work on ATL started
off with arelatively small tile area and tried to optimize wirelength within that area (there
was no mechanism to shrink the tile throughout the anneal). The initia tile area was 1.4
times the total area occupied by the cells, and this value was empirically determined as a
good value because initial placement would fail for lower values. Besides the limitation
of having tile area determined by initial placement capability, there is a fundamental
optimization problem/tradeoff created by this approach. The smaller the initial tile area,
the better the final tile area and, hence, the greater the satisfaction of a low-area goal.
Nevertheless, the smaller the tile area, the less freedom of movement available to the
move generator. More compact placements are inherently crowded with cells. The
placement move generator operates by picking a random cell to move and a random
location to move the cell to; as described in 2.5.2.4, the placer move generator gives up if
it can not quickly select a set of cells to move which will result in a post-move lega
placement. Therefore, the more crowded the cells, the more difficult it is to find legal

moves to propose. This lack of move freedom reduces the optimization effectiveness of

the placer because the annealer can not explore the cost space effectively. Therefore,
there is a trade-off, between smaller tile areas and lower utilization of routing resources
(effective optimization of wirelength cost), present in the earlier work on ATL.

This tradeoff in the initial version of ATL can be readily observed. Notice in
Graph 4-6 how the legal move percentage increases as the AREA_FUDGE_FACTOR is
increased (increasing the tile area). Also notice how the normalized wirelength improves
steadily asthe areais initially increased. This is despite the fact that larger tile areas mean
larger port/pin distances and more spread out nets (more wiring). Therefore, the ability of
the optimizer to perform effectively is greatly inhibited by small initia tile sizes because

of cell crowding.

Legal Move Percentage, Wirelength Cost vs.
AREA_FUDGE_FACTOR

115 09
11
A/Mﬁ- o8
1.05 ol
/\/Q/f/‘/u/ |
14
/o//;/‘:'/‘ Lo
095

0.9
Q\/ |
0.85 \ g

0.8 T T T T T T 0.3
25 3 35 4 45

AREA_FUDGE_FACTOR

Normalized Wirelength
Legal Move Percentage

N
=
wn
N

|—n— Normalized Wirelength —e— Legal Move Percentage |

Graph 4-6 Legal Move Percentage, Wirelength vs. AREA_FUDGE_FACTOR

This research modified ATL so it currently optimizes for tile area by aternating

between arranging the cells to permit tile shrinkage (balanced with other optimization

objectives) and collapsing the tile, until further tile collapse can not “easily” be achieved.
Therefore, there is no advantage in selecting a small initia tile size because the tile area
will be optimized throughout the placement (balanced dynamically with other
optimization goals). Considering the impact of cell crowding on wirelength and other
optimization goals, it is advantageous to select a large initial tile size to permit cells to
achieve globally good positions, with local optimizations occurring as the tile is shrunk.
An initid large-grid placement (refer to Figure 4-15 for an illustration of the spacing
between cells that characterizes this large-grid placement) anneal serves this purpose.
Subsequent reheat anneals between tile shrinks serve to make the local optimizations
necessary to fix changes due to the tile shrink and to further optimize the placement as

cells find good positions around each other in the context of the smaller tile.

mm®" po mm oe wsa@.
Mecs [|wemmm]=o ;
:..EI.I-D---I-EIHD:
M= s os=s@gEl EHE[]= .
EEc= sasc@Es@ @Es
]] l:l L BN B B B AN
[lm = = @ m e m =00 E
--.I:l..-..u-l__—l.-

;--I---D....--.-;
:l:l-..--l |:.|:|.|:|§|.3
N] [] B = B -l__'||:||:|-.
B[] @ = s == B[EE =0 -
e = D e g s[Jem =;
" s Em =] O = [

. -g.---.--l:lll -“

Figure4-15 Initial Large-Grid Placement

The goal of the large-grid initial placement is to give cells the movement freedom

and flexibility to achieve good global positions relative to one another. Therefore, the

87

initial grid is sized large enough so there is enough space available to place al cells and
cells are separated at regular distances (determined by the largest cell dimensions) so they
can swap freely with one another. That way, illegal moves are no longer a consideration.
This freedom of movement tends to produce good global placement results despite the
fact that cells are artificially kept apart, and are prevented from bunching. Global
placement seems to be at least as important, if not more important, than locally realistic
placement — perhaps, because the sorting out of local positions occurs in the later phases.
The ports are ill placed in “standard” port dots because they can aways swap freely
with one another. The large initial placement grid also has an added bonus of making
initial placement trivial (the tile is sized to explicitly fit every cdl in a separate non
overlapping section).

There is a natura reduction of cell movement freedom (a gradual solidifying of
position) as the tile collapses. Cells can only jiggle around because substantial moves are
likely to cause irreconcilable overlap with other cells (illegal proposed moves).
Nevertheless, the good cell arrangements determined by the initial large-grid placement
anneal and earlier reheat anneals should be more explicitly preserved. Consequently, the
reheat anneals start with a low enough placement temperature b preserve placement
quality for the most part, while leaving room for some hill-climbing capability.

This research considered &ceptance ratio a good measure of anneal progress
independent of the circuit netlist — precise temperature values are a certain function of
cost and, hence, are netlist dependent. Therefore, the reheat anneal temperature is
selected to be the temperature that achieves a particular acceptance ratio during the initial

large-grid placement. Experiments show an acceptance ratio of 0.2875 yields good

results. The minimum range-limit used for the initia large-grid placement permits cells to
swap with cells up to a distance equal to two times the “largest-cell dimension” away. It
was found that this value gave cells adequate freedom to move while restricting the move
space sufficiently (at lower temperatures) to adequately narrow the search space (propose
fruitful moves).

Consider the difference this tchnique has on final wirelength (Table 4-6). The
technique reduces wirelength by 37%. Both runs produced the same fina fee space
results (within experimental noise). Notice how the run with no initial large-grid
placement, that garts with a smaller initial tile size, terminates sooner because tile
compaction occurs sooner and consequently the final optimizer exit criterion is satisfied

earlier.

Table4-6 Effect of Initial Large-Grid Placement without Run-Time Adjustment

No Initial Large-Grid Placement Initial Large-Grid I mprovement
(Initial Tile Size 1.4 Times Cell Placement (?) (? Result /?
Area) (?) Result)
Number of Run Time(s) Wirdength Run Time(s) Wirelength Run Wirelength
LUTs Time
1 29 46300.2 40 33187.9 1.38 0.72
2 41 61070.1 56 41846.9 1.37 0.69
3 55 76340.6 74 50587.1 1.35 0.66
4 38 79032.1 55 48972.8 1.45 0.62
5 64 100415 137 59091.6 2.14 0.59
6 90 119091 172 69541.4 1.91 0.58
7 112 126008 206 74605.5 1.84 0.59
8 119 128286 266 76651.6 2.24 0.60
9 146 142934 249 88005.3 1.71 0.62
10 183 158069 275 97323.9 1.50 0.62
Average 1.69 0.63

To ensure that both runs could be evaluated more fairly, the no initia large-grid
placement run was alowed to spend more time on each anneal and reheat anneal
temperature to balance the run times (Table 4-7). Again, essentially, the same fina free
space results were produced by both runs (within experimental noise). Notice how the

technique still produces better wirelength results. In fact, the extra run time does very

89

little to improve the no initial large-grid placement results because of the inability to

adequately explore the cost space.

Table4-7 Effect of Initial Large-Grid Placement with Run-Time Adjustment

No Initial Large-Grid Placement (Initial Initial Large-Grid I mprovement
TileSize 1.4 TimesCell Area) (?) Placement (?) (? Result /?
Result)
Number of Wirdength Wirelength Wirdlength
LUTs
1 43304.7 33187.9 0.77
2 61466.3 41846.9 0.68
3 72534.2 50587.1 0.70
4 68205.2 48972.8 0.72
5 93268 59091.6 0.63
6 109340 69541.4 0.64
7 122972 74605.5 061
8 118497 76651.6 0.65
9 133225 88005.3 0.66
10 154299 97323.9 0.63
Average 0.67

4.5.2 SRAM REWEAVE

The netlist generator does not consider the placement of the cells when it assigns
SRAMs to word and bit lines. Therefore, for the most part, the word and bit line
assignments are random in that cells ultimately placed in two remote locations of the tile
may be attached to SRAMs driven by the same programming lines. Since the word and
bit lines run the length of the tile, reducing the amount of zigzagging necessary to route
them can result in a large savings of routing resources. Another way of looking at thisis
the placer will try hard to minimize the routing resources needed to route the SRAM
word and bit lines, consequently tugging them away from logic they are attached to (or
tugging that logic away with them). Either way, these two effects produce conflicting
optimization goals (which the placer can not satisfy). Furthermore, the tradeoff created is
artificia in the sense that it is a function of the arbitrary word and bit line assignments

made by the netlist generator.

Consider Figure 4-16 for an illustration of a bad programming line assignment.
The lines emanating from the SRAM, enclosed by the solid oval close to the center,
connect to SRAMs (enclosed in dotted ovals) attached to this one by programming lines.
Notice how the programming line assignments are such that the respective SRAM cell is
attached to SRAMSs throughout the tile because those SRAMS gravitate towards the logic

they are attached to.

Connected SRAMs Programming-Line Port
N

Programming-Line Port 1
N

: Programming-Line Ports

Figure4-16 Illustration of Bad Programming-Line Assignment

A mechanism was created that is invoked between the reheat anneals to reweave
the SRAM word and bit lines depending on the current placement. This decouples
placement consideration of SRAM programming lines from the arbitrary assignments
made by the netlist generator. In fact, the initial large-grid placement does not consider
the cost of the programming lines at all. That way, the SRAMSs can be tugged by the logic
they are attached to without the arbitrary SRAM programming lines impairing

movement. During the reheat anneals, the SRAM programming lines are monitored,

91

however, because they eventually have to be routed and should be considered when
optimizing for wirelength and congestion

The SRAM reweaving mechanism simply rips up all currently connected SRAM
programming lines and then re-connects the SRAMs to their closest bit and word linesin
order; it is performed between reheat anneals. To preserve the tile-ability of the tile, the
ports associated with a given programming line are placed opposite one another at
opposite ends of the tile. Therefore, the programming lines would ideally be one unit in
width. The placement of their respective ports determine a natural ordering of the
programming lines from left to right and from bottom to top. This ordering determines
the reweaving. The bottom most line is woven through the bottom most SRAMs until the
line is full. The next-bottom most line is woven through the next-bottom most SRAMs
until that line is full. This process repeats until al the SRAMs are rewoven. Refer to
Figure 4-17 for an illustration of the result of reweaving. In fact, it is the association of
the SRAMs more than which ports they are associated with that matters because the
ports tend to move more freely to match the position of the SRAMs they are tied to rather
than the other way around. This is probably due to the fact that the ports can move and
swap with other ports without experiencing the overlap problems faced by the cells; also,

the ports are not tied down like the SRAMs are to associated logic.

92

C [y l—$ramdels| £] 1

pal lline Paths

Pdst-Rewdave

Programming-Line Ports

L/

Ca nnecti\<ity

Figure4-17 Example of an SRAM Reweaving

Notice how SRAM reweave capability can correct the bad programming-line
assignment situation illustrated in Figure 4-16. The tile layout shown in Figure 4-18
illustrates a good programming line assignment achieved through the SRAM reweaving
technique. Notice how the SRAMs, connected to the one inside the solid oval (same
SRAM as in previous illustration, but ssimply rotated due to block rotation move), are
aligned close to the ideal programming line paths; consequently, the connectivity is much

less spread out.

Programming-Line Port
N

Programming-Line Port *

Programming-Line Port

Figure4-18 Illustration of Good Programming Line Assignment Achieved by SRAM Reweave

Table 4-8 Effect of SRAM Reweaving

No SRAM Reweaving (?) | SRAM Reweaving (?) | Improvement
(? Result / ? Result)

Number of LUTs Wirdength Wirdength Wirdength
1 37679.8 33187.9 0.88
2 45947.8 41846.9 0.91
3 54596.2 50587.1 0.93
4 53482.9 48972.8 0.92
5 69831.6 59091.6 0.85
6 78806.2 69541.4 0.88
7 85432.9 74605.5 0.87
8 89288.7 76651.6 0.86
9 100515 88005.3 0.88
10 110434 97323.9 0.88
Average 0.89

Consider the impact SRAM reweaving has on wirelength results (Table 4-8). The
no SRAM reweaving run constantly monitored programming lines throughout
optimization because ultimately the respective connections were static (because of the
lack of reweaving) and would have to be routed as is. The run times and the free space

results of the two runs were the same (within experimental noise). Notice how the 11%

wirelength improvement is greater than the 4% observed in [1] (2.5.3) (when SRAMs

were allowed to swap only within aregular row and column arrangement).

4.6 CUMULATIVE EFFECT OF OPTIMIZATION TECHNIQUES AND
CosTS

The following results summarize the effect the implemented heuristics and costs
have on placement quality (wirelength and tile area) considering placement run time.
Both theinitial ATL and the ATL produced by this research do not rely on particular cell
sizes or the number of cells. They are designed to lay out FPGA tiles that consist of the
respective cell types, irregardiess of exact composition. To illustrate this, the results
presented in Table 4-9 are based on 1-10 LUT architectures with more realistic amounts
of wires per FPGA routing channel than those used in the benchmark circuits created by
[1]; the wire counts were extrapolated from the number of wires (indicated in datasheets)
used in Xilinx Inc’s Virtex-E [10] and Virtex-1l [11] architectures. Nevertheless, it
should be noted that the results of the comparison apply to many varying architectures
because both tools are independent of precise architecture details. Initial ATL run time
was adjusted so that it had equal CPU time to that of the ATL from this research by
increasing the number of moves it explores per temperature. The smallest tile (1 LUT,
436 ports and 542 cells) is laid out in about 30 seconds while the largest tile (10 LUT,
3256 ports and 4475 cells) takes about 1.5 hours to lay out. Initial ATL was modified to
report final wirelength using the improved bounding-box measurement @.3.3), after it
completed optimization using its standard worst-case bounding-box measurement

(2.5.2.3).

Table 4-9 Results of this Research Compared with those of Initial ATL (Tile-Area Factor: 1.4)

Initial ATL ATL with Heuristicsfrom I mprovement
(Tile-Area Factor: 1.4) (?) thisResearch (?) (? Result / ? Result)
Number Tile-Area Wirelength Tile-Area Wirelength Tile-Area Wirelength
of LUTs (Placement/Routing (Placement/Routing (Placement/Routing
Grid Squares) Grid Sguares) Grid Sguares)
1 24336 38207.41 20083 30990.1 0.83 0.81
2 52441 101136.7 41814 75985.3 0.80 0.75
3 86436 182827.1 68096 131265 0.79 0.72
4 135424 227825.7 64770 159542 0.48 0.70
5 207025 358311.8 117294 256768 0.57 0.72
6 313600 496295.9 148980 339182 0.48 0.68
7 369664 594107.8 177177 410557 0.48 0.69
8 480249 727683 197132 477889 0.41 0.66
9 579121 864912 230868 550271 0.40 0.64
10 665856 978329 276315 629134 0.41 0.64
Average 0.56 0.70

The only mechanism available to decrease tile area using the initial version of

ATL involved manualy re-running the tool with lower and lower tile-area factors until

initial placement failure or tile area was limited by port perimeter size (only one port per

port location was supported).

Table4-10 Results of this Research Compared with those of Initial ATL (Minimum Tile Area)

Initial ATL ATL with Heuristicsfrom I mprovement
(Minimum Tile Area) (?) thisResearch (?) (? Result /? Result)
Number Tile-Area Wirdength Tile-Area Wireength Tile-Area Wirdength
of LUTs (Placement/Routing (Placement/Routing (Placement/Routing
Grid Squares) Grid Sguares) Grid Squares)
1 22500 41967.36 20083 30990.1 0.89 0.74
2 49284 103646.6 41814 75985.3 0.85 0.73
3 82944 184952.3 68096 131265 0.82 0.71
4 135424 227825.7 64770 159542 0.48 0.70
5 207025 358311.8 117294 256768 057 0.72
6 313600 496295.9 148980 339182 0.48 0.68
7 369664 594107.8 177177 410557 0.48 0.69
8 480249 727683 197132 477889 0.41 0.66
9 579121 864912 230868 550271 0.40 0.64
10 665856 978329 276315 629134 0.41 0.64
Average 0.58 0.69

It turns out the initial version of ATL can only reduce the tile area of 1-, 2-, and 3-

LUT architectures (Table 4-10). The other architecture tiles are limited by port perimeter.

It should be noted that the tiles Initial ATL did shrink are still, at least, 10% larger than

the tiles produced automatically by this research’s ATL because Initial ATL can not fit

the cells within the tile (initial placement fails). Notice also how the decrease in tile area
produced manually using Initial ATL is accompanied by an increase in wirelength. This
is because even though the tile dimensions are smaller, nonroptimal cell arrangements
result because the tool can not optimize wirelength as effectively within the constraints of
the smaller tile. This research’s ATL produces smaller tile areas combined with less

overall wirelength.

97

Chapter 5
CONCLUSION

5.1 FINAL RESULTS

As stated earlier, the goal of this research was to develop placement heuristics that
could be incorporated into the Automatic-FPGA Tile Layout (ATL) tool that attempt to:
(1) minimize the area of laid out tiles, (2) minimize the wire length needed to
interconnect the cells and ports within the tile, and (3) balance wiring requirements over
the tile area to prevent localized over-demand of wiring resources ard, hence, avoid
routing congestion.

This research has shown that various heuristics, some of which make use of
knowledge of the circuitry within an FPGA, can be used to improve the layout
performance of the tool. As presented in 4.6, the heuristics and costs added © ATL
reduce the size of the tiles produced by 42%. The techniques developed also manage to
simultaneously reduce overall wire length by 31%. Currently, the empty space in the
layouts generated by ATL is, approximately, 10% of the actual cell area.

Asdiscussed in 4.3.3, a congestion model was created to measure localized over-
demand of wiring resources. A placement cost was developed along with heuristics to
effectively and efficiently minimize the size and number of routing congestion “hot
spots’ across the chip, as measured by the congestion model proposed. 1t was shown that
adjustment of the relevant overuse cost weighting can reduce congestion at the expense

of increased overall wirelength and tile area. Further study and validation of the

congestion model, congestion cost, and the relevant heuristics are left to future work and

analysis, in the presence of an FPGA tile router.

5.2 FUTURE WORK

The outcome of this research motivates several avenues of further investigation
some of which are discussed below.

As mentioned earlier, concurrent work was ongoing at the University of Toronto
to develop an FPGA tile router. This router performs multi-layer metal routing of the
connections attached to the cells and ports positioned (laid out) by the placement
optimizer of ATL (the focus of this research). Future work can examine the congestion
models and costs created by this research in the context of an actual FPGA tile router,
once it is complete. Future work on the router can also examine the impact of routing the
VDD, GND, and other “global signals’ across the tile. It should be investigated whether
the layout (placement) optimizer should consider those signals (currently ATL does not
consider VDD ad GND, but it does consider clocks) or whether their “global” nature
implies direct consideration is detrimental .

Concurrent work was also ongoing at the University of Toronto to create actua
transistor-level layouts for the functional cells floorplanned by the placement optimizer.
Future work can incorporate those layout details in the netlists produced by
VPR_LAYOUT so that ATL can generate layouts based on actual cell sizes and pin
positions rather than the current estimates made by VPR_LAYOUT. Mechanisms should
also be created to automatically generate transistor-level layouts of the cellsto more fully

automate the process.

Once layouts are created based on actual cell sizes and pin positions and those
layouts are successfully routed (with the FPGA tile router and adequate congestion
monitoring), performance of this integrated automatic layout mechanism can be
compared with actua hand-layouts of FPGA tiles to anayze the time-quality trade-offs
involved in the automation and convenience provided by VPR LAYOUT and ATL.

Future work can also explore incorporating direct optimization of timing
requirements within the FPGA tile. As mentioned in Chapter 1, the speed of operation of
digital circuits implemented in FPGASs is an important factor that affects their practical
use. By imposing strict timing requirements (carefully determined and monitored) when
creating the FPGA tile, FPGAs can be produced that can implement high-speed digital
designs. This work may also involve dynamic insertion and modification of logic in
addition to layout optimization. Such work can also be extended to try to reduce FPGA
power consumption. As mentioned previoudy in this paper, the reduction of wirelength
(and, hence, resistance and capacitance) serves as a starting point for both these goals.

Other future work can examine, in more detail, fundamental assumptions in the
netlist builder. For example, as discussed in 2.4.3, the cells considered by ATL have been
bloated so that cells can be abutted against each other. That is, well spacing design rules
are accommodated by increasing the cell sizes. Perhaps, directly monitoring well spacing
during layout (placement) is more beneficial to reduce the overal cell area. Current, this
research produces tile layous with 10% free space, so any additional dramatic savingsin
tile area will be achieved by reducing cell area. Any effort on this front might also
consider breaking up the cells into their constituent wells so that they can be placed next

to each other, well contacts can be shared, etc.. A similar degree of abutment can be

100

achieved by pitch-matching the various cells like in a standard-cell flow. However, such
constraints reduce the ability of the cells to “float” freely with respect to one another —
hopefully, achieving more ideal positions. Also such constraints limit the freedom of the
cells to be laid out in as little space as possible (no matter what shape, aspect ratio, they
may end up in). It is this freedom to consider a range of highly-tuned cell layout
alternatives that allows the tool to explore the range of possibilities available to a custom
layout engineer. Too large a space of layout possibilities may encumber the tool,
however, so future work should examine these and similar tradeoffs in more detail.

The template moves and pin swaps discussed in 4.4.3 and 4.4.4 support different
implementations of cells and different routing “options’ associated with a cell
(electrically equivalent contact points). Future work can explore this capability by
creating new cell layouts that the tool can use during layout that have routing “options’
that the tool can leverage. For example, good layouts of a cell with different aspect ratios
can be created so the tool can dynamically determine which layouts are suited to the
current tile placement. The move generator can aso be experimented with to
simultaneously move a cell at the same time as its aspect ratio is changed, for example.
That said, this research did experiment which such moves, however, the particular move
type experimented with allowed any area-preserving aspect ratio change to be made. It
turned out that highly skewed (nonsquare) aspect ratios inhibited placement quality
because long-thin cells tend to highly interfere with one another. Therefore, if
experimentation is performed along these lines, highly skewed aspect ratios should be

avoided or, at least, carefully explored.

101

By providing ATL with avariety of proposed cell templates to work with, the tool
can also investigate the benefits of different cell layout alternatives prior to actual cell
layout. Modifications can also be made to ATL to change cell aspect ratios and pin
positions freely, outside of the confines of cell templates. This free exploration can be
used to impose (determine) layout constraints for the cells. As indicated, experiments
performed during this research suggest that aspect ratios should be constrained to be
close to square. That said, since it is difficult for alayout designer (or custom:layout tool)
to satisfy highly-specific (tight) cell constraints, it is unclear how fruitful this line of
research is. The bottom-up flow is probably better, where cell layout engineers create a
variety of highly-optimized cell layouts that the tool uses as effectively as it can

As mentioned in 3.2.1, a multi-phase optimization scheme was developed to
facilitate tile compaction during placement optimization. This research has shown that a
tight integration between tile compaction and placement optimization is advantageous for
balancing al the various optimization goals. Future work should explore a tighter
integration between optimization and compaction that may be necessary to adequately
avoid routing congestion — experienced by an actual FPGA tile router. If a new placement
move responsible for tile shrinking (port collapse around cells) is implemented, this move
can be made subject to the placement cost function like any other move. Therefore, tile
shrinks can be aborted if the placement of cells imply a port collapse would create too
much congestion around the edges, for example. Right now, the tile is shrunk between
reheat anneals as much as the cell arrangement permits. By creating a tile-shrink

placement move, compaction can be gradually (and slowly) performed as the anneal

102

proceeds; this would hopefully result in a smooth collapse of the tile and a gradual
satisfaction of all placement goals.
From all these suggestions, it is clear that VPR_LAYOUT and ATL have opened

up many avenues of future work that may profit from and build upon this research.

103

Appendix A
LAYOUT OPTIMIZER FLOW

The following pseudo-code summarizes the overall placement-phase flow:

BEG N PLACEMENT- PHASE FLOW
READ CELL- LEVEL AND TRANSI STOR- LEVEL NETLI STS FOR CELL AND PCRT | NFCRVATI ON
COWUTE | NI TI AL PLACEMENT GRID SIZE TO ALLOW CELLS TO SWAP FREELY W THOUT | NTERFERENCE
PERFORM | NI TI AL PLACEMENT TO CREATE AN | NI TI AL LEGAL PLACEMENT
COWUTE ALL PLACEMENT COSTS
DETERM NE WHI CH NETS UPDATE OVERUSE QOST
REMOVE COSTI NG CGF SRAM LI NES
I'NITIALI ZE TI LE- SLCPE AND Tl LE- SI ZE COST MULTIPLIERS TO O
COWUTE | NI TI AL TEMPERATURE
BEG N I NI TI AL PLACEMENT ANNEAL
FCR EACH PLACEMENT TEMPERATURE
PERFCRM El THER A STANDARD RANGE- LIM T MOVE, BLOCK ROTATI ON AND FLI P, CR BLOXK
EQU VALENT- PIN SWAP, KEEPI NG PORTS ALONG THE EDGE, CELLS | NSIDE THE PCRT
PER METER, AND THE TI LE SI ZE CONSTANT
REPEAT FCR DESI RED NUMBER OF MOVES | N TEMPERATURE

RECCRD MAXI MUM TEMPERATURE (f3) THAT PRODUCES PROPOSED- MOVE ACCEPTANCE RATI O BELOWN
a
REDUCE TEMPERATURE
ACCURATELY RE- COMPUTE W RE OVERUSE COST BECAUSE | NACOURACI ES IN THI'S COST BU LD WP
BECAUSE ONLY CERTAIN NETS UPDATE | T DURI NG AN ANNEAL TEMPERATURE
RE- DETERM NE WH CH NETS UPDATE OVERUSE COST
EXI T WHEN TEMPERATURE BELOW G AND THE COST DI D NOT | MPROVE BY ? PERCENT OVER THE
TEMPERATURE
END PLACEMENT TEMPERATURE
END | NI TI AL PLACEMENT ANNEAL
ADD BACK COSTI NG OF SRAM LI NES
BEG N RE- HEAT AND Tl LE- SHRI NK | TERATI ONS
SHRINK TILE BY MOVING ALL CELLS, AS A GROUP, MAI NTAINING RELATIVE CELL POSITIONS TO
BOTTOM LEFT EDGE OF TILE, AND OOLLAPSE PCRTS AROUND CELLS
RECCRD TILE AREA | MPROVEMENT ?
RE- WEAVE SRAM LI NES
RE- COMPUTE PLACEMENT QOSTS
ADJUST TILE- SLCPE AND TI LE- SI ZE COST MULTI PLI ERS TO | MPROVE SHRI NKAGE POTENTI AL
BEG N RE HEAT PLACEMENT ANNEAL
REHEAT ANNEAL TEMPERATURE TO B
FOR EACH PLACEMENT TEMPERATURE
PERFORM EI THER A STANDARD RANGE- LIM T MOVE, A BLOCK- CFF- EDGE MOVE, BLOK
ROTATI ON AND FLI P, BLOCK EQUI VALENT PIN SWAP, CR COMPACTI ON
MOVE, KEEPI NG PORTS ALONG THE EDGE, CELLS | NSI DE THE PCRT
PER METER, AND THE TI LE S| ZE CONSTANT
REPEAT FOR DESI RED NUMBER OF MOVES | N TEMPERATURE

REDUCE TEMPERATURE
ACCURATELY RE COWPUTE W RE OVERUSE COST BECAUSE | NACOURACIES IN THI S COST
BU LD UP BECAUSE ONLY CERTAIN NETS UPDATE | T DURI NG AN ANNEAL
TEMPERATURE
RE- DETERM NE WH CH NETS UPDATE OVERUSE COST
DETERM NE (?, 7 BASED ON WHETHER TI LE- AREA | MPROVEMENT H STORY DI CTATES
TH S WLL BE THE LAST RE- HEAT ANNEAL
EXI T WHEN TEMPERATURE BELOWN ? AND THE COST DI D NOT | MPROVE BY ? PERCENT
OVER THE TEMPERATURE
END PLACEMENT TEMPERATURE
END RE- HEAT PLACEMENT ANNEAL
EXI T WHEN TI LE- AREA | MPROVEMENT (?) 1S BELONTHRESHOLD d, FCR € SUCCESSI VE ANNEALS
END RE- HEAT AND TI LE- SHRI NK | TERATI ONS

104

END PLACEMENT- PHASE FLOW
NOTE: A LEGAL PLACEMENT |'S ONE W TH THE PORTS ARRANGED ON THE PERI METER SO THE TILE IS TILEABLE; LESS THAN ?

PCRTS ARE PLACED IN A G VEN PCRT PCSI TION, CELLS ARE PLACED IN THE I NTERIOR OF THE TI LE SO THEY DO
NOT OVERLAP WTH EACH OTHER

105

Appendix B
MoVE GENERATOR DETAILS

To support the variety of new placement moves, the move generator was modified
to perform these moves. The following pseudo-code indicates the current steps in move

generation:

MOVE_TYPE . = RANDOMLY SELECT THE TYPE CF MOVE

SWTOH MOVE_TYPE) {
CASE STANDARD RANGE- LIM T MOVE CR BLOCK- CFF- EDGE MOVE:

Pl OK PRIMARY CELL TO MOVE AND DESTI NATI ON LOCATI ON FOR CELL BASED ON RANGE LIMT (R
MCDI FI ED RANGE LIM T FOR BLOCK- CFF- EDGE MOVE)

GATHER OTHER CELLS (GROUP B) THAT TH S PRIMARY CELL DI SPLACES TO MAI NTAIN A LEGAL NOM
OVERLAPPI NG CELL PLACEMENT

OONSI DER MOVI NG THESE CELLS | NTO THE REG ON THAT WOULD BE ABANDONED BY THE PRI MARY CELL

GATHER THE CELLS ARCUND THE PRI MARY CELL DI SPLACED BY GROWP B CELLS, THESE CELLS, ALONG
WTH THE PR MARY CELL, FORM GROP A

CONS| DER SWAPPI NG GROUP A AND B W THQUT CREATI NG CELL OVERLAP

| F THE MOVE WOULD CREATE AN | LLEGAL PLACEMENT
REJECT PROPCSED MOVE
ELSE | F PROPCSED MDVE | S REJECTED FCR COST REASONS (OR MCDI FI ED COST DI FFERENCE FOR BLOCK-
CFF- EDGE MOVE)
DO NOT PERFCRM MOVE
ELSE
PERFORM PROPOSED MOVE AND UPDATE COST
CASE BLOOK ROTATI ON AND FLI P
Pl OK PRIMARY CELL TO ROTATE CR FLIP
PI CK ROTATI ON AND FLI P TO PERFORM

I F SELECTED RE- ORI ENTATION OF CELL, |IN PLACE, CREATES |LLEGAL PLACEMENT
REJECT PRCPCSED MOVE

ELSE | F PROPCSED MOVE | S REJECTED FOR COST REASONS
DO NOT PERFCRM MOVE

ELSE
PERFCRM PROPCSED MOVE AND UPDATE COST

CASE BLOCK EQUI VALENT- PI N SWAP:

PI CK PRI MARY CELL WHOSE CONNECTI ONS W LL BE SWAPPED

PICK PIN GROUP A ON THE BLOCK

PICK PIN GROUP B ON THE BLOCK WHOSE CONNECTI ONS CAN BE SWAPPED W TH CONNECTI ONS ATTACHED TO
PIN GROP A

CONSI DER SWAPPI NG CONNECTI ONS BETWEEN PI N GROUP A AND PI N GROUP B

| F PROPCSED MOVE | S REJECTED FOR COST REASONS
DO NOT PERFCRM MOVE
ELSE
PERFCRM PROPCSED MOVE AND UPDATE COST
CASE COVPACTI ON MOVE:
GCOWPACTI ON_MOVE_TYPE | = SELECT ONE OF FOUR COVPACTI ON MOVE TYPES
FOR EACH CELL, STARTING FROM CELLS CLCSER TO TI LE CENTER
PI CK A DI RECTI ON TO NUDGE THE CELL CLOSER TO THE CENTER (BASED ON THE COVPACTI ON
MOVE TYPE AND THE CELL PCSI TI ON)

IF THE CELL MOVE WOULD CREATE AN | LLEGAL PLACEMENT
REJECT PRCPCSED MOVE

ELSE | F PROPCSED MOVE | S REJECTED FOR OOST REASONS
DO NOT PERFCRM MOVE

106

ELSE
PERFCRM PROPCSED MOVE AND UPDATE COST

}

NOTE: THERE ARE TWD LEVELS OF MOVE REJECTICN IN MOVE GENERATI ON AND ACCEPTANCE. MOVES MUST MAI NTAIN LEGAL
PLACEMENTS; THEREFORE, PROPCSED MOVES CAN BE REJECTED BECAUSE THEY WOULD CREATE | LLEGAL PLACEMENTS. TH S IS
THE FI RST LEVEL OF MOVE REJECTION. MOVES CAN ALSO BE REJECTED BECAUSE THE LEGAL PLACEMENT THEY WOULD RESULT IS

DEEMED WORSE THAN THE CURRENT PLACEMENT BECAUSE OF OOST REASONS. TH'S SECOND LEVEL OF MOVE REJECTION IS
CONTROLLED BY THE PLACEMENT OPTI M ZATI ON SCHEME (S| MULATED- ANNEALI NG) .

107

Appendix C
GRAPHICAL ILLUSTRATION OF ATL CELL
PLACEMENT RUNS

ATL includes a graphical tool that displays the current cell placement of the
FPGA tile under consideration. Using this tool, cell placements can be observed at
various stages during the optimization process. This tool was initialy created by [3],
ported to the Microsoft Windows platform by [12], and extended by [1].

Two ATL layout runs are presented.

Both these runs use the version of ATL produced by this research. Both runs use
the experimentally determined best (default) settings of the tool used to generate the
experimental results in 4.6. These default settings turn off optimization of predicted
routing congestion. It is recommended that this be the default behaviour of the tool until
the underlying congestion model can be confirmed through experimentation, with a tile
router.

The first layout run illustrates the interim layouts generated by the ATL tool at
various stages during optimization of the 4-LUT architecture used to generate the

experimental resultsin 4.6.

108

S R < e SR e e St
T E e EmE ssapo-s =% ®wHO: 8@ E@O===
L =l=C -] LR-IN N R msmamssOe EE s s m
CE mEa e ms@ +ms@mEmsiEm D
Qe m - - s s ammams g s
Y T maf@ -8 e <Hul wi@sa@en
Oess =@ SO E e EOEE =@ B @D
- e [W -] mms@sn scs@sm@TsN-mN L
T |] (- EsmsssapgrapEws[]n=
e . u ms sma sO0semapoidossamns
- s D fsimEEQEEBA S S i@ mm@s@+
LR B agsgsd a0 ~Q-sE@@E@R-0O=
CIEN = LA O - “de+m-Bunmss ==+«=+s-penfi-=-an
@+ soD®s EE @ s aE OCEEBsIODeEFEs B
T EREE R OOe =*Q0 msmdm si g mem
+mm@Eeg+ m s+:pE[J++-+m-ampg+=m=-pg=
SIEREE] EEE =@ s sfe s o@ee B F an @l
ssmmBEmE S m= smmmem ssemEm = BE -
»+ swpDmenD RN R E-1-1 N R R R S R
-l . e I R - LR L - Oeases=m=s==
+Mo + L] (=R - RN NN - B CICH N] LI @@ - m -
- L LA I LR LR R] L] o s i0s @@« LI
LN] O= LI - = LR A B RN LI L BERC A Y -] @
. BN] - Tr @ s @ E sEEssrasQrrEaEEDE D
[~ B L] T =mEETEECR [] L 'R] El*sEms 3= = L] ==
) LN D8 --SOQssda@~0 ~-~=+=S@O0F -8 &=-0=>:8
@ Des cmcOBE®sDs» Q@ = s aDwsa s s age D
mie s + A m Besms s rpapssOum=a=s smsmsm@s+sa=OanD
o= e =@ sgeDc=Q= ==@= . =& wew= =e@e
s mEm s s s cEmEmdmsEmim e EE - a sEme s a@we e @w
Or®&8 -+ pD&=- E==-®= =+ ® +r= SO= - o@--s-pES-8 -
®mr* smesssmsmm@d s+ mEeamdEs @ a s awm =mmmOe s
samGeancsof@+ smBe s BmacsmAsw a sam em L]
- m & rO0*0 ==d@&[[E&@+& === - & FER-E] .D
s s [(E R R RN NE=L NN N AN NN & o = = .
os B+ e = EE-ESEE sADDE =D] [BN - I
- a = II-DIIDIIIDIl-nlll-l- " - "=
- [gm=+cs+afd++assafn@esd-~mm L] o * -
-n s pO*m O=s=s==g=+0=+=ja o - .
R = cams@g-Sv-ngean-a]e-- o = - m
- - ces-poEss s -DE@EE. = W o a -m
- . o~ i T a o I
+ - saE+Q+ s sas-amE-0-am . =g
- . ® +@® wssssm@sDsDeEaD N @
- m a Y T AL IR L a in &

PLACEMENT TIME (0%
W RELENGTH CosT: 1, 597, 020
TILE SIZE 767X767 -- | NTIAL ANNEAL (LARGE- GR D PLACEMENT)

i Or @ @8 B E s vOs e s @age@e s @ 086 08 0BEE s 880 6@ 8 0wa
ma smummEmld =raims =g eaQesssesmpammeaQPHewmaE A
«@ e aE W O=np= OO * =« o aQ+= a@=+ &8 a2+« @+ =0 @+s

C aems @ s@masaEe s @mEw 0@ s s s @ s Qs s R R E o E @

scpme:«[Jensns-noms - cp+@E:Q+a@+t:Q+a:mas= -

mEssssccmnmsl] smEmess sa @ sQEmssDeades e mas .

mEscEssssEm;nmEEEms s @B s s me s aflesus sBEs 3

ssa-[(essss.cffssassases - & - +--OQ0:O0@= =58 a

W EEEE DR R ED W EEEEEEEADs s+ s e MmO s oy oas s AE 0

ssasn: sssc:+amus[Jewami-gmsepssssnmismEs==0 i

EmREmE RNl L AR R R R - T - I R R - .

LR R A B A B R N BN N RN - A R R R B B IR A R -) s

s e s s s@eranE@ES v s Os s a0 n s @ s RO s @O0 [

EerasmEE:ss s css@-mERsBEABN @ cr@E® s aq - 4 - -

'TER N T R R | Y- R R R N - B .

mEmamaa Orasrassapagasg sgsQaanasnsgsmames@anp =

B E S mEEE @+ s Em-E e @ et a4 wcamEE-a@sED==+D0 [

SEa@a@s @ =sBess 51 Oesgss@ecssssnasnnagaen .

B EEEEEEE O+ arera s BAAO0D+DD*®crAQD8 @D W @* n

TR LR DR R T R .

LR R R I I R | Be=@i4 mpss+saPau@e L == “

peass[Je g s@asra Oesimtr EES N® oD EEEE s s BW "

EEsmEmEEms s B@ s sEes 4% sBecnBaBBEscmnmnn[Jomm "

BE S EEEEE kS W-s ks E s sDF A AD RN B - '] 4

EEEEE @ END 0 sO0 = = e o0 s sQOsaam@asam .

EEamsan:c: DOOD=@:-:=~0D=cdcdcc@aw-0rm a

SEEEEErrs ODrassO@esJO@ss e @ O SEE "

EEREEEENEB@E+8-"0@ - == « == s@-@H EECEERE RO | El

FEamEBa@age v s s TR T T R X

mEm=syas = apg awmg sas s sQ@@essmE a

se[fe+summs - D - -] s spEm -

SERE e s s @es s s@s@ =+ DA .

assmsmsad-n AR R RS B] .

"TEEEEERE - -1 Gs@E* » xaw -

msame@d+a@nm = wosa s e =s@=s@ =@ [

pess@a-af@soe s B o:=c@n- c@*D@EHs =@ o

mm=sisp=ps [DrimsBssoEE sB=s@= s@ss= .

R N- NN - U BEE i WE e+ s B D D& s S@Eaa o

sges@ro+JOE s - " L= = @ n@ie o af@ o

eDadf«oam v @ n - medo v =m OOe = csf0@da [}

A @ @AWW - amw " ow @0 o [}
8-mam IDI - [1. -]

-1 'R R .

O@as LI] G- E@E=== >

PR (R N RN N I R T R

PLACEMENT COVPLETI ON (24%)
W RELENGTH CosT: 432, 122
TILE SIZE: 757X757 -- AFTER | NTIAL ANNEAL (LARGE- GR D PLACEMENT)

109

PLACEMENT COMPLETI ON (27. 5%
W RELENGTH CosT: 412, 160
TILE SIZE: 733X714 -- BETWEN RE- HEAT ANNEALS

PLACEMENT COWPLETI ON (30%9
W RELENGTH CcsT: 383, 053
TILE SIZE: 496X473 -- BETWEN RE- HEAT ANNEALS

110

PLACEMENT COWPLETI ON (32. 5%
W RELENGTH CcsT: 242, 256
TILE SIZE: 388%x323 -- BETWEEN RE- HEAT ANNEALS

PLACEMENT COVPLETI ON (35%)
W RELENGTH CosT: 200, 355
TILE SIzE: 338x308 -- BETWEEN RE- HEAT ANNEALS

111

PLACEMENT COWPLETION (42. 5%
W RELENGTH CosT: 188, 367
TILE SIZE: 305X279 -- BETWEEN RE- HEAT ANNEALS

PLACEMENT COMPLETI ON (45%)
W RELENGTH CosT: 181, 254
TILE SIZE:. 285x268 -- BETWEN RE- HEAT ANNEALS

112

PLACEMENT COVPLETI ON (5099
W RELENGTH CcsT: 176, 396
TILE SIZE: 265x258 -- BETWEN RE- HEAT ANNEALS

PLACEMENT COMPLETION (77. 5%
W RELENGTH CcsT: 167, 088
TILE SIZE: 256x254 -- BETWEN RE- HEAT ANNEALS

113

PLACEMENT COVPLETI ON (1009
W RELENGTH CcsT: 159, 542
TILE SIZE: 255x254 -- FINAL LAYOUT

The second layout run illustrates the interim layouts generated by the ATL tool at
various stages during optimization of the 10-LUT architecture used to generate the

experimental resultsin 4.6.

114

ARGE- GR D PLACEMENT)

960

I NTIAL ANNEAL (L

PLACEMENT TIME (099
W RELENGTH CcsT: 6, 689

TILE SIZE: 1294Xx1294 --

ARGE- GRI D PLACEMENT)

, 480

491

AFTER | N TIAL ANNEAL (L

PLACEMENT COVPLETI ON (15%
W RELENGTH CosT: 1

TILE SIZE: 1285Xx1286

115

PLACEMENT COVPLETI ON (1699
W RELENGTH CosT: 1, 393, 750
TILE SIZE. 1265x1247 -- BETWEEN RE- HEAT ANNEALS

- ﬁ.ﬁeﬁﬁ

PLACEMENT COMPLETI ON (1799
W RELENGTH CcsT: 1, 386, 340
TILE SizE: 1015x1056 -- BETWEEN RE- HEAT ANNEALS

116

PLACEMENT COVPLETI ON (1999
W RELENGTH CosT: 908, 144
TILE SIZE: 753x804 -- BETWEEN RE- HEAT ANNEALS

& L]
ol 5y -
p ' |
- J i .
L] al
" .l
i E
4=
.
« W
b 1
- L
a= 7 .
L d
e,
l.. .l | 1
" p a
]
[3 h'
fy o .

PLACEMENT COVPLETI ON (21%9
W RELENGTH CosT: 835, 789
TILE SIZE 648X715 -- BETWEEN RE- HEAT ANNEALS

117

g
H

- [] { []

a”
“fr

= .:IJ:'-.

PLACEMENT COVPLETI ON (23%9
W RELENGTH CosT: 828, 060
TILE SIZE. 592X656 -- BETWEEN RE- HEAT ANNEALS

-3

PLACEMENT COMPLETI ON (279
W RELENGTH CcsT: 729, 575
TILE SIZE:. 554x604 -- BETWEN RE- HEAT ANNEALS

118

PLACEMENT COMPLETI ON (54%)
W RELENGTH CcsT: 670, 399
TILE SIZE: 521561 -- BETWEN RE- HEAT ANNEALS

PLACEMENT COMPLETI ON (79%
W RELENGTH CcsT: 653, 537
TILE SIZE: 509X548 -- BETWEEN RE- HEAT ANNEALS

119

PLACEMENT COMPLETI ON (1009
W RELENGTH CcsT: 629, 134
TILE SIZE: 507545 -- FINAL LAYQUT

120

REFERENCES

[1] Padalia, K.. Automatic Transistor-Level Design and Layout Placement of FPGA

Logic and Routing from an Architectural Specification Bachelor’'s Thesis.

University of Toronto, 2001.

[2] Betz, Vaughn, Marquardt, Alexander, and Rose, Jonathan. Architecture and CAD for
Deep-Submicron FPGAs Kluwer Academic Publishers: Boston, 1999.

[3] Betz, Vaughn. Architecture and CAD for Speed and Area Optimization of FPGAs
Ph.D. Thesis. University of Toronto, 1998.

[4] Cheng, C.. “RISA: Accurate and Efficient Placement and Routing Modeling”,
ICCAD, 1994. pp. 690-695.

[5] Fogel, D. B. and Michalewicz Z.. How to Solve It: Modern Heuristics. Springer:
Germany, 2000.

[6] Swartz, W.P.. Automatic Layout of Analog and Digital Mixed Macro/Standard Cell
Integrated Circuits Ph.D. Thesis. Yae University, 1993.

[7] Gerez, Sabih H.. Algorithms for VLS| Design Automation John Wiley & Sons: New
York, 1999.

[8] Ahmed, E.. The Effect of Logic Block Granularity on Deep- Submicron FPGA
Performance and Density. M.A.Sc. Thesis. University of Toronto, 2001.

[9] Nam, F.. VLSl Systems. Course Notes, University of Toronto, 2002.

[10] Xilinx Inc.. Virtex-E Extended Memory: Detailed Functional Description Revision
2.0. http://www.xilinx.com/partinfo/databook.htm November 16, 2001.

[11] Xilinx Inc.. Virtex-11: Introduction and Ordering Information Revision 1.7.
http://www.xilinx.com/partinfo/databook.htm October 2, 2001.

[12] Leventis, P.. Placement Algorithms and Routing Architecture for Long- Line Based
FPGASs. Bachelor’'s Thesis. University of Toronto, 1999.

121

