

OPTIMIZATION OF TRANSISTOR-LEVEL FLOORPLANS FOR

FIELD-PROGRAMMABLE GATE ARRAYS

by

Ryan Fung

Supervisor: Jonathan Rose

April 2002

OPTIMIZATION OF TRANSISTOR-LEVEL FLOORPLANS FOR

FIELD-PROGRAMMABLE GATE ARRAYS

by

Ryan Fung

A THESIS SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF

BACHELOR OF APPLIED SCIENCE

DIVISION OF ENGINEERING SCIENCE

FACULTY OF APPLIED SCIENCE AND ENGINEERING
UNIVERSITY OF TORONTO

Supervisor: Jonathan Rose

April 2002

 ii

ABSTRACT

Optimization of Transistor-Level Floorplans for Field-Programmable Gate Arrays

Bachelor of Applied Science and Engineering, April 2002
Ryan Fung

Division of Engineering Science
Faculty of Applied Science and Engineering

University of Toronto

The design and custom hand- layout of FPGAs (Field-Programmable Gate Arrays)

is a painstaking process that takes many person-years of effort to complete.
This research builds upon groundbreaking work done at the University of Toronto

to work towards the construction of a tool that automatically generates physical layouts
from FPGA architectural specifications. In particular, this research focuses on improving
the performance of the placement phase of the layout generation engine of that tool.

Various heuristics, some of which make use of specific knowledge of FPGA
circuitry, were developed to reduce the area and the amount of wiring resources needed
to connect the functional cells within an FPGA layout. Comparisons with the original
version, based on practical FPGA architectures, demonstrate the improved layout engine
produces layouts about 40% smaller, on average, with about 30% less wiring demand.

 iii

ACKNOWLEDGEMENTS

I would like to thank my supervisor, Jonathan Rose, for the guidance he offered

and the general wisdom he shared. His enthusiasm is as remarkable as his vision.
I would also like to thank Ketan Padalia, the developer of the tools that serve the

immediate foundation for this research, for providing me with the resources I needed to
conduct this research. His assistance and support is greatly appreciated.

I would finally like to thank Vaughn Betz of Altera, whose pioneering research
Ketan built upon, for the insights and knowledge he has offered me.

 iv

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION ...1
1.1 MOTIVATION.. 1
1.2 SCOPE.. 3
1.3 ORGANIZATION OF THESIS... 3

CHAPTER 2 BACKGROUND..5
2.1 OVERVIEW OF FPGA STRUCTURE .. 5
2.2 FPGA TILES... 7
2.3 VPR (VERSATILE PLACE AND ROUTE).. 7
2.4 TRANSISTOR AND FUNCTIONAL-CELL NETLIST GENERATION... 9

2.4.1 Transistors, Cells, and Ports...9
2.4.2 SRAM Programming-Line Assignments..11
2.4.3 Cell-Level Netlist Details...12
2.4.4 Netlist Annotation..15

2.5 AUTOMATIC CELL-LEVEL PLACEMENT OF FPGA TILES... 15
2.5.1 Netlist Reader ..17
2.5.2 Optimization Engine...18

2.5.2.1 Initial Placement .. 18
2.5.2.2 Annealing Schedule ... 20
2.5.2.3 Layout Cost.. 20
2.5.2.4 Move Generation and Move Cost Arbitration... 22
2.5.2.5 Advantages of Simulated Annealing... 26

2.5.3 SRAM Regularization...27
2.6 AUTOMATIC INTERCONNECTED BLOCK PLACEMENT.. 28

CHAPTER 3 NEW OPTIMIZATION INFRASTRUCTUR E..30
3.1 GOAL ... 30
3.2 RESTRUCTURING OF GENERAL OPTIMIZATION FLOW ... 31

3.2.1 Multi-Phase Optimization..31
3.2.2 Tile Compaction Between Reheat Anneals...32

3.3 MAJOR MODIFICATION OF EXISTING FEATURES IN SIMULATED-ANNEALING-BASED
OPTIMIZATION ENGINE... 34

3.3.1 Initial-Placement Modifications...34
3.3.2 Annealing-Schedule Modifications..34
3.3.3 Layout Cost Modifications...35
3.3.4 Move Generation and Move Cost Arbitration Modifications..37

3.4 OVERVIEW OF NEW HEURISTICS AND COSTS... 39
3.4.1 Tile-Size Cost ...40
3.4.2 Tile-Slope Cost ..40
3.4.3 Wire-Overuse Cost..40
3.4.4 Block -Off-Edge Move ...41
3.4.5 Compaction Move...42
3.4.6 Block Rotation and Flip...42
3.4.7 Block Equivalent-Pin Swap...43
3.4.8 Initial Large-Grid Placement..43
3.4.9 SRAM Reweave..44

CHAPTER 4 OPTIMIZATION TECHNIQUES AND COSTS ...46
4.1 EXPERIMENTAL BENCHMARK SET.. 46
4.2 PSEUDO CODE.. 47
4.3 COST -BASED OPTIMIZATIONS... 47

 v

4.3.1 Tile-Size Cost ...48
4.3.2 Tile-Slope Cost ..51
4.3.3 Wire-Overuse Cost..54

4.3.3.1 Congestion Model.. 55
4.3.3.2 Congestion Cost... 57

4.4 MOVE-BASED OPTIMIZATIONS... 64
4.4.1 Block -Off-Edge Move ...64
4.4.2 Compaction Move...69
4.4.3 Block Rotation and Flip (Cell Template Swap) ...77
4.4.4 Block Equivalent-Pin Swap...81

4.5 OTHER OPTIMIZATIONS.. 85
4.5.1 Initial Large-Grid Placement..85
4.5.2 SRAM Reweave..90

4.6 CUMULATIVE EFFECT OF OPTIMIZATION TECHNIQUES AND COSTS.. 95
CHAPTER 5 CONCLUSION ..98

5.1 FINAL RESULTS... 98
5.2 FUTURE WORK.. 99

APPENDIX A LAYOUT OPTIMIZER FLOW .. 104
APPENDIX B MOVE GENERATOR DETAILS ... 106
APPENDIX C GRAPHICAL ILLUSTRATION OF ATL CELL PLACEMENT RUNS 108
REFERENCES .. 121

 vi

LIST OF FIGURES

FIGURE 2-1 HIGH-LEVEL VIEW OF UPPER-LEFT CORNER OF A TYPICAL FPGA .. 6
FIGURE 2-2 ILLUSTRATING THE TILE-ABILITY OF AN FPGA TILE.. 8
FIGURE 2-3 VPR CAD FLOW ... 9
FIGURE 2-4 VPR_LAYOUT CAD FLOW... 10
FIGURE 2-5 ILLUSTRATION OF PORT CONSTRAINTS.. 11
FIGURE 2-6 ILLUSTRATION OF THE PLACEMENT /ROUTING GRID (BASED ON ROUTING TRACKS)..................... 14
FIGURE 2-7 ATL CAD FLOW ... 16
FIGURE 2-8 ILLUSTRATION OF AN FPGA TILE AND TILE-ABILITY BASED ON THE PORT ARRANGEMENTS..... 17
FIGURE 2-9 ILLUSTRATION OF A NET AND ITS BOUNDING BOX.. 21
FIGURE 2-10 LEGAL MOVE EXAMPLE... 23
FIGURE 2-11 ILLEGAL MOVE EXAMPLE.. 24
FIGURE 2-12 ILLUSTRATING REGULAR ARRANGEMENT OF SRAM CELLS... 27
FIGURE 3-1 ILLUSTRATING TILE COMPACTION BETWEEN REHEAT ANNEALS... 33
FIGURE 3-2 ILLUSTRATION OF A NET AND ITS BOUNDING BOX.. 36
FIGURE 3-3 MOVE GENERATOR MODIFICATION: EXAMPLE 1... 38
FIGURE 3-4 MOVE GENERATOR MODIFICATION: EXAMPLE 2... 38
FIGURE 4-1 RINGS OF EQUAL TILE-SLOPE COST ... 53
FIGURE 4-2 RINGS OF EQUAL TILE-SLOPE COST INCONGRUENT WITH TILE BOUNDARY AND RESULTING

PLACEMENT .. 53
FIGURE 4-3 COARSENESS OF CONGESTION GRID AS A FUNCTION OF TILE COMPACTNESS 58
FIGURE 4-4 EXAMPLE OF CELLS LIMITING COLLAPSE AND SPACE THAT CAN ACCOMMODATE THEM 66
FIGURE 4-5 EFFECT OF BLOCK-OFF-EDGE MOVE ON RANGE LIMIT.. 67
FIGURE 4-6 ALL BLOCKS MUST MOVE RIGHT TO PERMIT TILE SHRINKAGE.. 70
FIGURE 4-7 MOVE LIKELY REJECTED BECAUSE OF UNFAVOURABLE IMPACT ON OTHER OPTIMIZATION GOALS.

.. 70
FIGURE 4-8 THE "CORRECT" MOVE SEQUENCE WILL SUCCESSFULLY MOVE THE BLOCKS OFF THE EDGE......... 71
FIGURE 4-9 PROPOSED MOVES OF FIRST COMPACTION MOVE TYPE... 72
FIGURE 4-10 PROPOSED MOVES OF SECOND COMPACTION MOVE TYPE.. 72
FIGURE 4-11 PROPOSED MOVES OF THIRD COMPACTION MOVE TYPE... 73
FIGURE 4-12 PROPOSED MOVES OF FOURTH COMPACTION MOVE TYPE.. 73
FIGURE 4-13 T-SHAPED ARRANGEMENT PRODUCED BY COMPACTION MOVE TYPES (1) AND (2) 74
FIGURE 4-14 X-SHAPED ARRANGEMENT PRODUCED BY COMPACTION MOVE TYPES (3) AND (4).................... 74
FIGURE 4-15 INITIAL LARGE-GRID PLACEMENT ... 87
FIGURE 4-16 ILLUSTRATION OF BAD PROGRAMMING-LINE ASSIGNMENT .. 91
FIGURE 4-17 EXAMPLE OF AN SRAM REWEAVING.. 93
FIGURE 4-18 ILLUSTRATION OF GOOD PROGRAMMING LINE ASSIGNMENT ACHIEVED BY SRAM REWEAVE 94

 vii

LIST OF GRAPHS

GRAPH 4-1 FREE SPACE , RUN TIME, WIRELENGTH VS. TILE-SIZE COST FRACTION... 51
GRAPH 4-2 WIRELENGTH, RUN-TIME, FREE-SPACE, OVERUSE VS. OVERUSE COST FACTOR............................ 63
GRAPH 4-3 FREE SPACE , RUN-TIME, WIRELENGTH VS. COST -DIFFERENCE DIVISOR... 69
GRAPH 4-4 FREE SPACE , RUN-TIME, WIRELENGTH VS. AVERAGE NUMBER OF TILE COMPACTION MOVES PER

TEMPERATURE.. 76
GRAPH 4-5 RUN TIME, WIRELENGTH VS. TEMPLATE MOVE FREQUENCY.. 81
GRAPH 4-6 LEGAL MOVE PERCENTAGE, WIRELENGTH VS. AREA_FUDGE_FACTOR................................... 86

 viii

LIST OF TABLES

TABLE 4-1 TECHNIQUE AND COST SUMMARY... 46
TABLE 4-2 TILE-SIZE COST FRACTION COMPARISON... 50
TABLE 4-3 EFFECT OF BLOCK-OFF-EDGE MOVE DIVISOR .. 69
TABLE 4-4 COMPACTION-MOVE EFFECT.. 75
TABLE 4-5 EFFECT OF TEMPLATE MOVES.. 80
TABLE 4-6 EFFECT OF INITIAL LARGE-GRID PLACEMENT WITHOUT RUN-TIME ADJUSTMENT 89
TABLE 4-7 EFFECT OF INITIAL LARGE-GRID PLACEMENT WITH RUN-TIME ADJUSTMENT 90
TABLE 4-8 EFFECT OF SRAM REWEAVING.. 94
TABLE 4-9 RESULTS OF THIS RESEARCH COMPARED WITH THOSE OF INITIAL ATL (TILE-AREA FACTOR: 1.4)

.. 96
TABLE 4-10 RESULTS OF THIS RESEARCH COMPARED WITH THOSE OF INITIAL ATL (MINIMUM TILE AREA)96

Chapter 1
INTRODUCTION

1.1 MOTIVATION

There are many competing options available for digital circuit implementation.

Field-programmable gate arrays (FPGAs), mask-programmable gate arrays (MPGAs),

standard-cell implementations, and custom layout are representative of the spectrum of

possibilities available. The spectrum represents a continuous tradeoff between ease-of-

engineering (rapid time to market), and area/speed/power/price performance. FPGAs

offer ease and speed of development at the cost of sacrificing the area/speed/power/price

performance achievable by the more involved and mass-produced alternatives. FPGAs

can be programmed to implement different digital circuits and be re-programmed if

necessary. This flexibility and ease of engineering contributes to lower non-recurring

engineering costs and faster time-to-market, which have made FPGAs popular for

development (prototyping) and low- to mid-volume production. [1 and 2] Better designed

FPGAs, that reduce the area/speed/power performance gap and can be produced cheaply,

can help increase the precise low- to mid-volume point where FPGAs remain a viable

implementation alternative.

With good FPGA design being of paramount importance, the primary factors that

contribute to this goal should be considered. The overall logic and routing architecture,

the transistor- level design, the physical layout, and the computer-aided-design (CAD)

tools, which program the FPGAs, are all important factors of FPGA design. [1]

 2

Of course, these factors are highly interrelated. Transistor-level design decisions

will affect layout alternatives, and logic and routing architecture changes will impact the

heuristics used in the CAD tools which program FPGAs to operate at high speeds.

Ideally, all these interrelated factors can be considered at every stage in the design

process. For example, when determining logic and routing architecture, ideally CAD tool

capability, and circuit and layout considerations could be evaluated as each of the design

choices are made.

Over the past decade, research has been conducted at the University of Toronto

that has tried to link three of the four primary factors indicated above. [3] This research

has taken the approach of creating a CAD tool that automates the exploration of FPGA

architectures. This research has shown the area/speed performance benefits realized by

considering transistor- level circuit design and CAD tools, while making architectural

decisions.

Even more recently, additional research at the University of Toronto has

attempted to incorporate the consideration of physical layout in the context of automated

FPGA-architecture evaluation. [1]

Currently, considerable FPGA design and engineering effort is expended

considering the implications of layout, as well as actually laying out an FPGA. Since key

structures in the FPGA are replicated over-and-over, custom-design hand-tuning is very

important and is often required to lay out the respective structures for good area/speed

performance. Automated FPGA architecture evaluation that considers physical layout can

greatly reduce the initial design effort. Furthermore, the tool constructed in [1], while

evaluating architectures, automatically considers transistor-level circuit designs and

 3

physical layouts; these designs and layouts can serve as starting points, reducing the cost

and time spent in the FPGA design cycle. Clearly, the realization of both these

advantages rely on the tool properly considering layout constraints and effectively

producing adequate-quality FPGA layouts based on the considered architecture.

This work is an attempt to move closer to the goals of considering physical layout

when exploring architectures and providing good-quality physical layouts for given

architectural specifications.

1.2 SCOPE

This research sought to improve the automated layout mechanism used by the

expanded tool created at the University of Toronto [1] that attempts to consider physical

layout when evaluating FPGA architectures.

In this research, it is shown that various heuristics, some of which make use of

knowledge of the circuitry within an FPGA, can be used to improve the layout

performance of the tool.

The scope of this research was limited to creating mechanisms for optimizing

placements of the functional cells (multiplexers, buffers, switches, etc.) within an FPGA.

This specifies a detailed floorplan for the transistor- level layout. Exact transistor- level

layout and routing between functional cells is left to concurrent and future work. At the

time of this writing, work on both these fronts was being conducted at the University of

Toronto.

1.3 ORGANIZATION OF THESIS

Chapter 2 presents background information and details about previous work that

 4

are relevant to this research. Chapter 3 describes important infrastructure changes and

modifications made to the FPGA tile layout tool (which serves as the foundation for this

research); it also introduces the major heuristics developed to improve layout quality that

rely on these general enhancements. Chapter 4 describes the major heuristics in more

detail; experimental results are presented to illustrate the effects of each of the relevant

techniques. Chapter 5 summarizes the effect the developments of this research have on

the quality of the layouts produced by the FPGA tile layout tool. Appendix A and B

provide pseudo-code details of important aspects of the implementation. Appendix C

presents illustrations of layouts produced by the tool at various stages during layout

optimization.

 5

Chapter 2
BACKGROUND

The first section of this chapter briefly describes the structure of FPGAs. The

second section describes the “tiles” of logic and routing that are replicated to produce an

FPGA. The third section provides information regarding the generation of transistor- level

and functional cell- level netlists of the FPGA tiles considered in this research. The fourth

section provides information regarding the initial state of the cell- level layout engine that

serves as a foundation for this research. The final section is a brief outline of some of the

previous work that is relevant to the placement and compaction problems central to this

work.

2.1 OVERVIEW OF FPGA STRUCTURE

An FPGA is a re-programmable digital device that can be configured and re-

configured to implement different digital circuits. Three components make up the FPGAs

considered in this work: logic blocks, programmable routing, and I/O pads. The I/O pads

lie in a ring surrounding the FPGA core (which contains the logic and programmable

routing). The core is often created by replicating a “tile” of logic (the logic block) and its

surrounding routing, many times, both horizontally and vertically across the core of the

chip. This general structure is illustrated in Figure 2-1.

 6

I/O Blocks

Logic Block Input Switches

Logic Block Output Switches

Channels of Routing Wires

Routing Switches

Logic Blocks

Figure 2-1 High-level View of Upper-Left Corner of a Typical FPGA

Bundles of staggered wires, spanning different distances, run in channels between

the logic blocks. Programmable switches are used to transfer signals from one wire to

another and to connect the logic blocks to wires. Static-RAM (SRAM) cells are the

entities programmed during FPGA programming. These, in turn, control, amongst other

things, the programmable switches – which may be simple pass transistors, or tri-state

buffers for greater drive strength.

A logic block consists of one or more basic logic elements (BLEs). These BLEs

generally consist of a programmable look-up table (LUT) and the flip-flop it optionally

drives. The look-up tables are essentially multiplexers with the respective input lines

driven by SRAM cells. By hooking the BLE inputs to the control lines of the multiplexer,

any N-input Boolean logic function can be achieved (with the appropriate SRAM

programming). Logic blocks offer additional levels of flexibility such as optional

feedback of BLE outputs to inputs and the optional registering of the BLE output.

 7

The architecture of an FPGA is determined by parameters that affect the building

blocks presented above.

2.2 FPGA TILES

As mentioned earlier, the core of an FPGA can be realized by replicating tiles –

each tile consists of a single logic block and with its surrounding routing. The careful

design and layout of these tiles directly affect the speed/power performance of the FPGA.

The replication of this tile many times to form the core of the FPGA means that layout

area savings in the fundamental tile largely map to chip area savings; hence, smaller tile

area leads to lower overall fabrication cost or, alternatively, more logic in the FPGA for a

given fabrication cost (allowing the FPGA to implement larger digital circuits). The

automatic layout mechanisms studied in this research are interested in the layout of the

FPGA tile. Figure 2-2 (adapted from [1]) illustrates how a core can be constructed by

replicating an FPGA tile. Notice how the respective ports on the tile must align to permit

the replication. This tile-ability consideration will be discussed la ter.

2.3 VPR (VERSATILE PLACE AND ROUTE)

VPR is a flexible CAD tool designed at the University of Toronto [3]. VPR

performs clustering, placement, and routing of digital circuit netlists for a variety of

FPGA architectures (each specified with an architectural description provided to VPR). A

simplified view of a VPR CAD flow is illustrated in Figure 2-3.

 8

Logic Block

Logic Block

Logic Block

Logic Block

Logic Block

Logic Block

Logic Block

Logic Block

Logic Block

Logic Block

Routing Wire

Routing Switch

Logic Block Input Pin Connections

Logic Block Output Pin Connections

Connection Block Switches

Figure 2-2 Illustrating the Tile-ability of an FPGA Tile

VPR gives designers the ability to observe how architecture changes affect

software performance and transistor- level circuit design. Using the architectural

description, VPR synthesizes an FPGA out of a pre-determined set of transistor- level

structures. It creates area and delay estimates based on the types, sizes, and delay

characterization of these structures. VPR does not consider the phys ical layout of these

structures, but it does consider the final route-ability and potential timing performance of

 9

the FPGAs it creates based on its digital-circuit place-and-route engine.

Versatile Place-and-Route
(VPR)

Digital Circuit
Netlist

Placed and
Routed Circuit

Architecture
Description File

Internal
Architecture

Representation

Architecture
Generator

Place-and-Route
Engine

Figure 2-3 VPR CAD Flow

2.4 TRANSISTOR AND FUNCTIONAL-CELL NETLIST GENERATION

2.4.1 TRANSISTORS, CELLS, AND PORTS

VPR_LAYOUT designed at the University of Toronto [1] extends VPR by

generating a transistor- level and cell- level circuit specification of an FPGA tile based on

an architectural description read into VPR. VPR_LAYOUT primarily operates on VPR’s

internal architecture representation, which is created based on an architecture description.

This internal representation contains a description of all the programmable routing and

the connectivity to the logic blocks. VPR_LAYOUT also assumes certain transistor- level

implementations of the transistor-level structures (functional cells), considered by VPR,

when building the transistor- level and cell- level netlists of an FPGA tile. The functional

cells include: SRAMs, buffers, multiplexers, flip- flops, LUTs, pass-transistor routing

 10

switches, and tri-state buffers. These are described in [1]. The cell- level netlist is based

on these cell primitives. The VPR_LAYOUT CAD flow is illustrated in Figure 2-4.

VPR_LAYOUT

Digital Circuit
Netlist

Placed and
Routed Circuit

Cell-Level and
Transistor-Level

Netlists

Architecture
Description File

Internal
Architecture

Representation

Architecture
Generator

Tile Netlist
Generator

Place-and-Route
Engine

Figure 2-4 VPR_LAYOUT CAD Flow

Besides functional cells and transistors, the netlists generated by VPR_LAYOUT

also include ports. Ports are the end-points of the wire segments at the edge of an FPGA

tile that cross into an adjacent tile. Since tiles must be tile-able vertically and

horizontally, port placement and constraints are important considerations for tile legality.

For example, a port on the left side of a tile must have a matching port at the same

vertical location on the right in order for the respective signal to flow between the tiles.

Each port is assigned a pairing number and a tile-side character to facilitate this. The

same unique pairing number is assigned to each member of a corresponding pair of ports

which must line up vertically or horizontally on opposite sides of the tile. The tile-side

character specifies whether the port should be placed on the top (‘T’), bottom (‘B’), left

 11

(‘L’), or right (‘R’) side of the tile. Necessarily, if one member of a matching port pair is

constrained to the top of the tile, the other member of the pair will be constrained to the

bottom. This is illustrated in Figure 2-5. Notice how ports with the same pairing number

are placed opposite one another so that, when the tile is tiled, they connect. Notice also

how the tile-side characters are respected.

22 (0, ‘L’)

57 (1, ‘T’)

104 (1, ‘B’)

FPGA Tile Port Number
(Pairing Number,

Tile-Side Character)

0 (0, ‘R’)

Figure 2-5 Illustration of Port Constraints

2.4.2 SRAM PROGRAMMING-LINE ASSIGNMENTS

VPR_LAYOUT is also responsible for making SRAM programming line

assignments to the SRAM cells. It creates the same number of word and bit lines (to

achieve a square memory array for the tile).

It turns out that word and bit line assignments are arbitrary. To recognize this,

consider that it is a CAD tool which generates the streams of data fed into the SRAM

cells. Different data streams program the SRAM cells to different values and

 12

consequently different digital circuits are implemented in the FPGA. Since the CAD tool

can be adjusted to produce data streams suitable for any arbitrary programming line

assignment, it does not matter which SRAMs connect to which word and bit lines.

Acknowledging this fact, the netlist generator assigns word and bit lines randomly to the

SRAMs to avoid embedding netlist information implicitly in the SRAM programming-

line connectivity. For example, when a programmable multiplexer is generated, its

respective SRAM cells will be generated at the same time. If all these cells were tied

together with the same word line, implicit association of the SRAMs would result. By

randomly making SRAM assignments, such implicit embedded knowledge is removed,

reflecting the true arbitrariness of the word and bit line assignments. This leaves room for

the layout optimizer to independently leverage the arbitrariness of word and bit line

assignments for its own purposes – with no “hints” skewing experimental results.

2.4.3 CELL-LEVEL NETLIST DETAILS

The cell- level netlist is the one placed during the layout creation studied in this

research; therefore, details of its generation are especially important for this research.

Cell area was calculated by VPR_LAYOUT based on the total transistor area used to

construct the cell. An extra 50% of that area was added to allow for intra-cell routing, and

to account for spacing around the edges necessary to achieve adequate well spacing (and

accommodate other design rules). This would allow cells to directly abut one another.

Cell height and width was set to make the cell as square as possible and to upper bound

the estimated cell area. Precisely, VPR_LAYOUT calculated cell height and width by

starting with a cell area specified in units of minimum-width transistor areas. Therefore,

the cell heights and widths were in units of (minimum-width transistor areas)1/2.

 13

For this research, this specification of cell heights and widths based on units of

(minimum-width transistor areas)1/2 was abandoned. Instead, cell heights and widths are

specified in terms of the number of routing tracks spanned. Basing cell heights and

widths (and the corresponding placement grid) on units of routing tracks is more

meaningful in the sense that cell pins can be precisely positioned at locations where

routing contacts will have to be made. Furthermore, the size of ports (which are implicitly

defined by VPR_LAYOUT as being 1x1) make much more sense when a routing track

grid is used because ports essentially represent a single routing segment (one routing

track by one routing track in size). To achieve this “more realistic” specification of cell

heights and widths, the total transistor area of the cell (specified in units of minimum-

width transistor areas) is multiplied by 2.25 (routing tracks)2/(minimum-width transistor

area). The resulting value is an estimate of the number of routing grid (placement grid)

squares occupied by the cell. Refer to Figure 2-6 for more details and further explanation

of the terminology. The 2.25 multiplier is designed to account for layout-bloat due to

intra-cell routing and design rule accommodation. It is a rough estimate based on

observation of several custom layouts of digital logic. The accuracy of this estimate can

be examined in future work by conducting more detailed studies. Nevertheless, this

estimate is not extremely important because once actual layouts of the cells are produced

(work on this front is being conducted at the University of Toronto), the related area

information can be directly embedded in the netlist without resorting to area estimates.

Furthermore, the heuristics developed in this research do not depend on the specific

heights and widths of cells but on the general problem of placing FPGA-tile cells and

ports on a placement/routing grid.

 14

There are a few details that should be noted when considering the new placement

grid, depicted in Figure 2-6. The placement/routing grid is sized based on the minimum

distance between contacts (because of the metal halo around them). That way, the router

can route different signals in adjacent grid squares – placing contacts to hop between

metal layers whenever necessary. When different design rules are present in different

metal layers, the most conservative rules (those that produce routing grid squares of the

largest size, in square microns) are used so that the same grid can be applied to all layers.

Figure 2-6 Illustration of the Placement/Routing Grid (Based on Routing Tracks)

Each cell has pins distributed throughout its area that represent the cell “ports” to

which connections can be made. VPR_LAYOUT originally positioned these pins around

the perimeter of the cell. Since connections to the cell can be made through vias to points

 15

within the cell, this research modified VPR_LAYOUT to randomly spread the pins

throughout the cells instead of sticking to the perimeter. This avoids routing congestion

around the cell perimeter (especially in the form of “via towers”) and is more

representative of the fact that signals within cells are not needed and produced only at the

perimeter.

2.4.4 NETLIST ANNOTATION

VPR_LAYOUT is also responsible for annotating its produced netlists with

information that guides placement. It does this by providing details of the roles of various

cells, ports, transistors, and connections in terms of the overall tile structure. For

example, SRAM cell pins responsible for SRAM programming (attached to word and bit

lines) are annotated with pin class values that indicates their connection to word or bit

lines. That way, information regarding which nets correspond to SRAM programming

can be extracted from the netlist.

2.5 AUTOMATIC CELL-LEVEL PLACEMENT OF FPGA TILES

ATL (Automatic Tile Layout) designed at the University of Toronto reads in the

netlists generated by VPR_LAYOUT and lays out of the corresponding FPGA tile.

To simplify the placement problem, the functional cell- level netlist is placed

instead of the transistor- level netlist. By placing functional cells (consisting of a few

transistors) instead of individual transistors, a detailed floorplan rather than a transistor-

level placement is determined. Nevertheless, because the functional cells consist of

 16

highly related logic, this level of placement should produce results very close to a “flat”

placement while avoiding the complexity of individual transistor placement. Refer to

Figure 2-7 for the ATL CAD flow.

Cell-Level and
Transistor-Level

Netlists

Internal
Netlist

Representation

Tile Netlist
Reader

ATL

Cell-Level
Tile Placement

Cell-Level
Placement

Engine

Figure 2-7 ATL CAD Flow

The placement problem involves placement of cells and ports to form a

rectangular FPGA tile. The ports are arranged on the perimeter of the tile; they indicate

the points of routing connection with adjacent tiles. To permit tile-ability, the respective

port constraints must be obeyed. Each port must reside on a particular side of the tile and

must be matched with its partner, which is placed opposite it on the tile. That way when

the tile is replicated, horizontally and vertically, the port will connect with its partner,

connecting the appropriate signals, as described in 2.4.1. Cells are placed so that they do

not overlap inside the port perimeter. Cells can be placed anywhere within the port

perimeter. Refer to Figure 2-8 for a general illustration of the placement problem.

 17

Tile Ports

Non-Overlapping Cells

Note: The ports align to
permit tileability.

FPGA Tile

Figure 2-8 Illustration of an FPGA Tile and Tile-ability Based on the Port Arrangements

What follows is a description of the key components of the ATL flow.

2.5.1 NETLIST READER

The netlist reader parses the transistor- level and cell- level netlists, setting up

internal netlist representations appropriately. The internal representations are designed to

permit the layout optimizer’s heuristics to operate on them quickly.

 18

2.5.2 OPTIMIZATION ENGINE

The layout optimization engine is based on the simulated-annealing algorithm.

This is a popular optimization technique, a detailed description of which can be found in

[2].

The following pseudo-code describes the general annealing algorithm used:

BEGIN PLACEMENT ANNEAL
FOR EACH PLACEMENT TEMPERATURE

PERFORM A STANDARD RANGE-LIMIT MOVE AND UPDATE LAYOUT COST
REPEAT FOR DESIRED NUMBER OF MOVES IN TEMPERATURE

REDUCE TEMPERATURE
EXIT WHEN EXIT CRITERION MET

END PLACEMENT TEMPERATURE
END PLACEMENT ANNEAL

There are four major components in a simulated annealer adapated to create

FPGA tile layouts: (1) initial placement; (2) annealing schedule (initial temperature

computation, a temperature update schedule, and exit criterion); (3) layout cost; and (4)

move generation and move cost arbitration. Each of these major components will be

described next, as they were implemented in ATL, by [1].

2.5.2.1 INITIAL PLACEMENT

The simulated-annealing optimization engine in ATL operates by continually

making small changes to the current legal layout – illegal layouts are not considered by

the optimization engine. Over time, these incrementally small changes serve to greatly

transform the layout and improve the cell and port placement. To begin this process,

however, an initial placer is required to create a cell and port layout that can be gradually

mutated over the anneal.

The first step in creating a cell and port layout is to determine initial tile

 19

dimensions. ATL calculated the tile area based on the total cell area. The tile width and

height was calculated to make the tile as square as possible.

The following equations were used to calculate the tile area:

WIDTH(SIDE) = MAX(SQRT(TOTAL_CELL_AREA) * AREA_FUDGE_FACTOR, NUM_PORTS(SIDE))
WIDTH = MAX(WIDTH(LEFT), WIDTH(RIGHT), WIDTH(TOP), WIDTH(BOTTOM))
HEIGHT = WIDTH

The AREA_FUDGE_FACTOR is used to bloat the tile area to make space for

routing and to give cells more room, primarily for initial placement. A value of 1.4 was

selected because it permitted initial placement of all netlists experimented with at the

time.

The placement grid ATL was based on, initially, was a minimum-width transistor

area grid. Each grid square had the area of a minimum-width transistor (which includes

the area of the drain contact and source contact to the first metal layer, but not the gate

contact). As mentioned earlier, instead of this, for this research, a routing grid, illustrated

in Figure 2-6, is used during placement.

Ports are placed around the perimeter of the tile. The tile is sized large enough to

place all the respective ports on the relevant sides ensuring paired ports are opposite one

another. ATL, produced by [1], ensured that ports can not overlap one another. Cells are

placed randomly in the interior of the tile.

Initial placement is carried out through successive iterations until it succeeds, or

the iteration count exceeds a set threshold. In the first iteration, a cell ordering is created

so that larger cells are placed first. This heuristic helps initial placement because smaller

cells can often fit in the gaps between the larger cells. If an initial placement attempt fails

– a legal placement (without cell overlap) can not be created – it is repeated, but the

 20

previous ordering of cell placement is modified so that cells that could not be placed

(without causing overlap) in the previous attempt are placed first. Initial placement fails if

the iteration count exceeds a threshold value, and the layout generator aborts.

2.5.2.2 ANNEALING SCHEDULE

The simulated annealing algorithm operates by making continuous changes to the

current layout at lower and lower “temperatures”. The current temperature affects the

types of moves which are performed and which moves are rejected. Moves which

severely degrade placement quality are more likely to be rejected at lower temperatures.

More details will be provided in 2.5.2.4.

An annealing schedule is required to compute an initial temperature, control the

temperature updates throughout the anneal, and to finally terminate the anneal based on

some criteria. In this sense, the annealing schedule governs the annealing process; it

controls the initial state (initial temperature computation), transitions between states

(temperature updates), and when the optimizer should terminate (exit criteria). The

adaptive annealing schedule presented in [2] is used.

2.5.2.3 LAYOUT COST

The simulated annealing algorithm requires a cost function that is used to

compute placement costs that indicate the quality of the current placement. When a move

is proposed, the placement cost difference, which would result from the move, is

calculated based on the cost function. Based on the cost difference and the current

 21

placement temperature, the move (placement mutation) is either accepted or rejected.

The cost function in ATL was entirely based on wire length. Wirelength cost is

based on bounding boxes enclosing net terminals. Each net (electrically connected cell

pins, wires, contacts, etc.) has an associated bounding box which tightly encloses all

things connected by the net. ATL ignored cell pins and used a bounding box estimate that

enclosed the respective connected cells and ports completely (a worst-case estimate).

Refer to Figure 2-9 for an illustration of a net with its respective worst-case bounding

box. Notice how the bounding box includes the entire 2x2 cell on the left and the entire

4x3 cell on the bottom; hence the box does not tightly enclose the electrically connected

contacts – it is expanded to fully encompass all the relevant cells (hence, it assumes

worst-case cell pin positions).

Placement/Routing Grid

Routing

Bounding Box

Net

Cells

Cell Pins
(Contacts)

Figure 2-9 Illustration of a Net and Its Bounding Box

 22

The following formula is used to compute wirelength (or bounding-box cost):

cost

1

num_nets

inet

q inet() bbx inet() bby inet()()?

=

bbx and bby are the width and height, respectively, of the bounding-box associated with

the respective net. q is a multiplication factor that is used to create a wirelength estimate

from a bounding-box height+width. The value of q(inet) is a function of the number of

terminals (cell pins and ports) connected by the net. It is 1 for nets with 3 or fewer

terminals, and its value increases to 2.79 for nets with 50 or more terminals. [4]

2.5.2.4 MOVE GENERATION AND MOVE COST ARBITRATION

A mechanism is needed to propose and perform the types of mutations and

transformations which can be applied to the current placement. This mechanism is called

move generation. Move cost arbitration controls whether the moves proposed by the

move generator are accepted or rejected (whether the corresponding placement mutation

is allowed or prevented), based on the cost change that would result and the current

temperature.

The following pseudo-code describes the algorithm used to select a set of cells for

moving:

PICK PRIMARY CELL TO MOVE AND DESTINATION LOCATION FOR THE CELL BASED ON THE RANGE LIMIT
GATHER OTHER CELLS (GROUP B) THAT THIS PRIMARY CELL DISPLACES
CONSIDER MOVING THESE CELLS INTO THE REGION THAT WOULD BE ABANDONED BY THE PRIMARY CELL
GATHER THE CELLS AROUND THE PRIMARY CELL DISPLACED BY GROUP B CELLS; THESE CELLS, ALONG WITH THE PRIMARY CELL,

FORM GROUP A
TRY TO SWAP GROUP A AND B WITHOUT CREATING CELL OVERLAP
IF THE MOVE WOULD CREATE AN ILLEGAL PLACEMENT (CELL OVERLAP)
 REJECT PROPOSED MOVE
ELSE IF PROPOSED MOVE IS REJECTED FOR COST REASONS
 DO NOT PERFORM MOVE
ELSE
 PERFORM PROPOSED MOVE

 23

It should be noted that if the translation proposed for the primary cell is (? x, ? y),

the translation for all the group A cells will be (? x, ? y); that is, they are moved as a unit.

Also, the translation (inverse move) proposed for the group B cells will be (-? x, -? y) to

ensure they move as a unit to the location abandoned by the group A cells.

Refer to Figure 2-10 for an illustration of a legal move.

Initial Move (+4, +5)

Group B Inverse Move (-4, -5)

Pick up Group B cells.

Pick up Group A cells.

Primary Cell

Group A Move (+4, +5)

Move can be performed without
causing cell overlap (legal move).

Figure 2-10 Legal Move Example

Refer to Figure 2-11 for an illustration of an illegal move.

A legal proposed move will be accepted or rejected depending on the placement

cost difference it produces. A move is accepted if the subsequent placement cost would

be less than or equal to the current placement cost. If the subsequent placement cost is

greater than the current placement cost, the move is accepted probabilistically. A move

 24

this increases the placement cost by a given amount is more likely to be rejected at lower

placement temperatures. Also, during the same placement temperature, a move that

increases the placement cost by a greater amount is more likely to be rejected. For precise

details regarding this cost arbitration, refer to [1] and [3].

Initial Move (+4, +5)

Group B Inverse Move (-4, -5)

Pick up Group B cells.

Pick up Group A cells.

Cell Overlap

Primary Cell

Group A Move (+4, +5)

Move will cause cell overlap
(illegal move).

Figure 2-11 Illegal Move Example

There are two levels of move rejection. A proposed move can be rejected because

of legality reasons (it would create an illegal placement). Legal proposed moves can also

be rejected for cost reasons. Acceptance ratio is defined as the percentage of legal

proposed moves which are accepted because of cost reasons.

Port moves are subject to the same cost arbitration. Nevertheless, port swaps are

generally simpler because they only have to consider port placement legality (paired ports

and side constraints); other than that, they can be swapped freely between port locations

 25

because there are no partial overlap considerations.

A range limit is used to limit the distance a single move can transport a cell or

port; it is kept constant during a placement temperature and is gradually reduced over the

course of an anneal based on measures of proposed move acceptance and the temperature

update schedule [1]. A range limit is used to restrict the search space of move

possibilities that are cons idered when proposing a move for a cell or port. As an anneal

proceeds, the placement will first globally improve to the point where cells will lie in

relatively good positions with respect to one another; subtler improvements are made at

lower and lower temperatures. A proposed move that moves a cell a large distance is

more likely to be rejected as the anneal proceeds because the block already lies in a

relatively good position. The practical distances cells can be successfully moved

continually shrinks. Proposing an increasing number of moves which are likely to be

rejected is counter-productive. Therefore, the range limit is designed to collapse the size

of the proposed move search space around the moving cell as the anneal proceeds – so

more productive local moves are considered; initially, the range limit is set to the size of

the tile. The fruitfulness of the move search space is measured by the fraction of legal

proposed moves accepted for cost reasons. Therefore, the feedback mechanism used to

control the shrinkage of the range limit is based on acceptance ratio. [2] For example, as

move acceptance decreases, the range limit is shrunk to focus the move generator's efforts

on more productive local (likely acceptable) perturbations.

ATL establishes a minimum range limit of 20x20 to ensure that blocks can still

effectively jump around their local area (effectively exploring the cost space) without

resorting to multiple proposed moves to take them places.

 26

2.5.2.5 ADVANTAGES OF SIMULATED ANNEALING

Simulated annealing offers several advantages that make it a well suited

optimization engine for layout improvement.

Simulated annealing offers easy accommodation of new, differing optimization

goals. Accommodation of new optimization goals is achieved by adding new component

costs (with relative weightings) to the cost function and by making changes to the move

generator (to expand or refine the move space).

Simulated-annealing offers cost “hill climbing”. Individual legal placement

moves are accepted and rejected depend ing on the cost change the move causes and the

temperature. Moves that greatly increase the placement cost will be accepted at higher

temperatures, but cost increase will be more and more discouraged as the temperature

drops. In that way, simulated-annealing optimization allows “hill climbing” in the sense

of exploring different parts of the cost space even if it means moving out of a local

minimum (a cost increase) when trying to locate a more global (absolutely deeper)

minimum. As the temperature is decreased, the area of search is reduced, and the

algorithm tries to find areas of lower cost in the “general” region settled upon. To explore

the cost space, the annealer move generator selects moves from a move space. The move

space is the range of possible moves that the placer can perform to mutate the placement

during cost space exploration. For a more detailed discussion of simulated-annealing

optimization, refer to [5].

 27

2.5.3 SRAM REGULARIZATION

Initially, ATL leveraged the arbitrariness of word and bit line assignments by

creating a regular array of SRAM cells. SRAMs connected to the same word line were

lined up and SRAMs connected to the same bit line were also lined up. This regular array

was preserved throughout placement (Figure 2-12). A regular array of SRAM cells

produces straight programming lines and consequently a low programming line cost. By

ignoring the programming line net costs throughout placement, SRAMs were swapped

with each other within the regular array structure to achieve good positions relative to the

cells with which they were connected. Since word and bit line assignments are arbitrary,

once placement was done, the length of the programming lines did not change from the

initial low value, because the SRAMs stayed within the regular array, and the respective

programming lines could be connected to the SRAMs they intersected. A 4%

improvement in wirelength (measured through bounding-box wirelength cost) was

achieved, by [1], using SRAM regularization.

SRAM Cells

Figure 2-12 Illustrating Regular Arrangement of SRAM Cells

 28

2.6 AUTOMATIC INTERCONNECTED BLOCK PLACEMENT

The placement problem explored in this work requires the placement of blocks of

various size within a grid, without overlap; while fulfilling this requirement, wiring

optimization and block compaction represent optimization objectives.

As mentioned in [1], utilizing a simulated-annealing-based optimization engine to

solve this placement problem is a popular approach.

The Timberwolf tool [6] uses such an approach when performing “macrocell

placement”. This tool initially allows overlap in the placement of differently sized blocks.

A penalty is used to gradually enforce separation of these blocks to reduce overlap. A

clean-up phase at the end of placement is required to remove all overlap to make the

placement legal. This is different than the approach used in ATL which forbids overlap at

all stages of placement.

The placement algorithm used in VPR [3] also uses simulated annealing, and

avoids block overlap, but it operates on blocks of the same size placed in a grid that

accommodates one block per grid square. Therefore, the placement problem tackled by

VPR is very regular in nature – involving block swaps and movement between grid

squares.

There are also many algorithms available to perform one-dimensional and two-

dimensional compaction. Layout compaction, in particular, is a popular topic. A layout

compaction algorithm discussed in [7] is based on constraint graphs. A constraint graph is

used to represent blocks that one-dimensional compaction is to be performed on, along

with minimum and maximum distance constraints. Constraint-graph compaction involves

finding the longest path in a directed graph. This algorithm does not operate directly on a

 29

layout, it requires the construction and analysis of a constraint graph. Consequently, this

compaction-focused optimization does not simultaneously consider other optimization

goals while performing compaction and it is difficult to model other optimization goals

within the framework of this algorithm

Another algorithm discussed in [7] tries to generate a layout with small area by

examining equations expressing block area as a function of block aspect ratio (shape

functions). By considering the shape functions of lower- level blocks, composite blocks

made from those lower- level blocks can be characterized by their own shape functions. In

a bottom-up fashion, higher and higher levels of block composition can be considered

and, ultimately, a low-area layout aspect ratio can be determined for the overall layout.

The consequences of this aspect ratio choice for the layout can be propagated down the

composite block hierarchy to define the aspect ratios of all the lower-level blocks. This

floorplanning does not deal with actual block positioning (an actual layout/placement)

and, consequently, it does not simultaneously deal with other optimization objectives

while determining the constraints necessary to produce a small layout. Another limitation

of this approach (in the context of ATL and this research) is that cells first have to be

characterized (shape functions determined) and then laid out to satisfy their imposed

aspect ratios. As mentioned earlier, cell layouts are a subject of concurrent and future

work, and, consequently, such layout characterization was not available. The idea of

using ATL to determine cell aspect ratios and pin positions was briefly investigated and it

is discussed in 5.2 as a possible avenue of future investigation.

 30

Chapter 3
NEW OPTIMIZATION INFRASTRUCTURE

3.1 GOAL

The goal of this research was to develop placement heuristics that could be

incorporated into the Automatic-FPGA Tile Layout (ATL) tool that attempt to: (1)

minimize the area of laid out tiles, (2) minimize the wire length needed to interconnect

the cells and ports within the tile, and (3) balance the wiring requirements over the tile

area to prevent localized over-demand of wiring resources and, hence, avoid routing

congestion.

The focus of this research was to achieve objectives (1) and (2). A congestion

model, along with heuristics and costs designed to reduce congestion measured by the

model, were developed to address objective (3). Nevertheless, techniques used to achieve

objective (3) are considered tentative because an FPGA tile router was not available at

the time of this research; therefore, verification of the assumptions used to address

objective (3) is left to future work that can examine the behaviour and performance of a

tile router. Details regarding these assumptions are provided in 4.3.3.

To meet the objectives stated above, several changes were made to ATL. These

changes can be categorized into three major classes: (1) restructuring of the general

optimization flow; (2) modification of existing algorithms in the simulated-annealing-

based optimization engine; and (3) addition of new heuristics and costs. The first two

classes do not notably improve placement results (layout quality); they provide the

 31

foundations and infrastructure needed for the heuristics and costs to operate effectively

and efficiently. It is changes belonging to the third class that directly attempt to satisfy

the research objectives.

The first two classes are the primary subjects of this chapter. The next section

describes the first class of changes in detail and the following section describes the

second class of changes in detail. The last section briefly introduces the new heuristics

and costs so the reader can be familiar with all of them before they are described in detail

in the next chapter.

3.2 RESTRUCTURING OF GENERAL OPTIMIZATION FLOW

3.2.1 MULTI-PHASE OPTIMIZATION

The single-anneal optimization of ATL was replaced by a single initial anneal

optimization phase followed by successive iterations of tile-shrinkage and annealing

(these anneals are called reheat anneals). This multi-phase mechanism was introduced to

permit the optimizer to decrease tile area while performing placement optimization. The

initial incarnation of ATL did not shrink tile area during optimization. An initial tile area

was calculated and the optimizer tried to work within that constraint. If the optimizer

could not create an initial placement within the tile area specified, it would give up. This

research showed that smaller tile areas could be achieved (balanced with adequate

fulfillment of other placement objectives), if tile shrinkage is performed during

optimization.

Here is pseudo-code describing this multi-phase optimization:

 32

PERFORM INITIAL ANNEAL, SIMILAR TO THAT PERFORMED BY THE ORIGINAL ATL, RECORDING HIGHEST TEMPERATURE (?) THAT
PRODUCES AN PROPOSED MOVE ACCEPTANCE RATIO BELOW ?

BEGIN REHEAT AND TILE-SHRINK ITERATIONS
SHRINK TILE
RECORD TILE AREA IMPROVEMENT ?
REHEAT ANNEAL TEMPERATURE TO ?
PERFORM REHEAT ANNEAL
EXIT WHEN TILE-AREA IMPROVEMENT (?) IS BELOW THRESHOLD d, FOR e SUCCESSIVE ANNEALS

END REHEAT AND TILE-SHRINK ITERATIONS

It should be noted that there is an optimization tradeoff present in the selection of

the reheat anneal temperature. If a higher temperature is selected, the reheat anneals can

perform better cost “hill climbing” – perhaps, better exploring the cost space to find

better layouts. If a lower temperature is selected, the reheat anneals will better preserve

the decisions made during the initial anneal and previous reheat anneals; therefore, past

optimization effort can be better leveraged. This issue is discussed more thoroughly when

the detailed optimization heuristics are described.

3.2.2 TILE COMPACTION BETWEEN REHEAT ANNEALS

Tile compaction between anneals is performed to permit tile shrinkage during

optimization. The tile is compacted by moving all cells as a unit, until the lower-left

corner of the imaginary bounding box tightly enclosing them touches the lower-left

corner of the port perimeter. The ports are then collapsed around these cells completing

the shrinkage. Figure 3-1 illustrates this. Notice how the relative cell positions and the

port ordering are maintained so that the optimization effort of previous anneals is not lost

during compaction and subsequent reheat anneals have a good global starting point to

work from. That is why ports are also not moved more than necessary to achieve tile

collapse. This is not as important, however, because ports tend to sort themselves out

quickly during optimization because they can swap freely with one another – no partial

 33

overlap problems like cells have to contend with.

Ports 1 2 3

4

5

6

789

10

11

12

Cells

Imaginary Bounding-Box
Surrounding all Cells

Step One:
Translate all cells, maintaining
relative positions, to lower-left corner.

1 2 3

4

5

6

789

10

11

12

1

1

2

2

3

3

4 4

5 5

6 610 10

11 11

12 12

Step Two:
Move ports on left and right downwards.
Move ports on top and bottom leftwards.
Preserve relative ordering of ports and
do not move ports a greater distance than
the cell will shrink, in this case, 5 horizontally
and 6 vertically.

Step Three:
Collapse ports and shrink tile.

7 78 89 9

Figure 3-1 Illustrating Tile Compaction Between Reheat Anneals

 34

3.3 MAJOR MODIFICATION OF EXISTING FEATURES IN
SIMULATED-ANNEALING-BASED OPTIMIZATION ENGINE

As mentioned in 2.5.2, there are four major components in a simulated annealer

adapted to create FPGA tile layouts: (1) initial placement; (2) annealing schedule; (3)

layout cost; and (4) move generation and move cost arbitration.

The major modifications made to each of these components are described in turn.

3.3.1 INITIAL-PLACEMENT MODIFICATIONS

This research extended the tool so that more than one port can be placed at a port

location. This extension required not only changes to initial placement, but also to move

generation. The extension is necessary because the compaction of some tiles is not

limited by cell area, it is limited by the size of the port perimeter. It turns out (according

to this research) that an overlap of two ports per port location is sufficient to prevent

compaction of all tiles experimented with from being constrained by ports. It is

physically possible to have more than one port at a location because of the existence of

more than one metal layer. Future work on the tile router has to be careful, however, that

matching or paired ports, on opposite ends of the tile, end up on the same metal layer.

3.3.2 ANNEALING-SCHEDULE MODIFICATIONS

Instead of using a single exit criterion to determine when an anneal is complete,

different exit criteria are used for the initial anneal and the subsequent reheat anneals.

 35

The exit criteria are based on a temperature threshold and a cost- improvement percentage

threshold. If the current temperature is below the temperature threshold and the cost

improvement over the last temperature is less than the cost-improvement percentage

threshold, the exit criterion is satisfied. The use of these two parameters permits flexible

tuning of how hard the annealer tries to thoroughly exp lore the final local cost minima

before exiting an anneal. That way, effort can be diverted from over-optimizing local

minima of earlier anneals in favour of deeply exploring the local minima of the final

anneal. This change was motivated for the sake of run-time; experiments showed, if

tuned appropriately, the run-time can be cut, at least, in half, without sacrificing quality.

3.3.3 LAYOUT COST MODIFICATIONS

The wirelength cost, originally used in ATL, was maintained because of its

fruitfulness in leading towards many optimization goals. This cost is designed to penalize

moves that increase the total estimated bounding-box wirelength used to make all the cell

connections. This encourages the general movement of cells closer to cells with which

they are connected. This minimizes the total amount of routing (metal) needed by the

router to make all the connections and it should decrease the length of any given

connection. Hence, this cost directly tries to satisfy objective (2), which is the reduction

in overall wirelength. In fact, the experimental measure used, to determine the extent that

objective (2) is satisfied, is the value of the wirelength cost. As a side benefit,

minimization of wirelength should also decrease general routing delay and improve the

speed of the circuit; of course, more targeted optimization for timing, based on timing

analyses, would produce better (more focused) timing results; timing-oriented

 36

optimization is left to future work. Another side benefit of wirelength reduction is the

overall reduction in routing also reduces overall routing capacitance and total resistance;

this should also reduce power consumption to a certain degree. Detailed study and

focused power optimization is left to future work, however.

The precise formulation of the wirelength cost was revised. Wirelength is still

measured based on bounding boxes, however, the bounding boxes are now precise

instead of pessimistic (as originally implemented in ATL). That is, the bounding box

corresponding to a net is stretched around all the attached cell pins and ports exactly. The

formulation of the cost initially in ATL meant that the corresponding bounding box

stretched around all the respective cells and ports (not considering actual cell pin

positions). Figure 3-2 illustrates the new notion of a bounding box with respect to a net

(compare this to Figure 2-9).

Placement/Routing Grid

Routing

Bounding Box

Net

Cells

Cell Pins
(Contacts)

Figure 3-2 Illustration of a Net and Its Bounding Box

 37

3.3.4 MOVE GENERATION AND MOVE COST ARBITRATION MODIFICATIONS

The move generator was changed to permit better movement of larger cells. It

turns out that larger cells that lie near the perimeter of the tile are the bottleneck to tile

compaction (achievement of objective (2) – small tile areas). The generally large number

of connections attached to larger cells and their bulk size make them difficult to move; if

they lie near the edge of the tile, they will inhibit compaction. Consider Figure 3-3, the

move generator proposes to move the larger block (primary block) upwards one unit

away from the tile perimeter. This would cause overlap with the smaller block above it.

The original move generator would propose an inverse move of one unit downwards for

the smaller block. This would result in an illegal placement and so the move is aborted.

As mentioned earlier, if the proposed move of the primary cell is (?x, ?y), the original

move generator proposes the inverse move (-? x, -? y) for group B cells (refer to 2.5.2.4

for more details). The modified move generator ensures an inverse move covers distances

at least equal to the respective dimensions of the primary block. The modified move

generator proposes the inverse move:

(SGN(-?X) ? MAX (ABS(?X), WIDTHPRIMARY BLOCK), SGN(-?Y) ? MAX (ABS(?Y), HEIGHTPRIMARY BLOCK))

where sgn(?) is 1 if ? > 0, -1 if ? < 0, and 0 if ? = 0.

The modified move generator would produce an inverse move, in Figure 3-3, of

three units downwards. This results in a successful move.

 38

Original Move
Generator -
Rejects

Port Perimeter

Modified Move
Generator -
Accepts

Modified Move
Generator -
Final

1 Unit 3 Units

1 Unit 1 Unit

Figure 3-3 Move Generator Modification: Example 1

Port Perimeter

Original Move
Generator -
Rejects

Modified Move
Generator -
Accepts

Modified Move
Generator -
Final

2 Units 3 Units

2 Units 2 Units

Figure 3-4 Move Generator Modification: Example 2

Consider another example in Figure 3-4. The proposed move is to move the larger

cell two units upwards. The original move generator would create an inverse move for

the smaller cell of two units downwards. This would result in an illegal placement. The

modified move generator proposes an inverse move of three units downwards resulting in

a legal placement.

Even though this mechanism is a heuristic that does not solve all proposed move

feasibility problems, it represents a slight tweak targeted to address the fundamental

problem of nudging cells off edges. It turns out that despite the fact that it changes the

notion of what constitutes an inverse move, it otherwise does not affect placement results

 39

(other than indirectly helping facilitate tile compaction) ; it solely helps swap larger cells

away from the tile perimeter. Finally, notice that the inverse move is a function of the

primary cell dimensions and displacement alone. This is necessary to ensure that the

same inverse move is applied to all the respective cells (group B cells, referred to in

2.5.2.4); otherwise, if differing inverse moves are applied, additional overlaps may be

created.

This research found that a minimum range- limit a small multiple (1 or 2) of the

largest cell’s longest dimension further facilitates this nudging of cells off edges. Notice

that in the examples presented (Figure 3-3 and Figure 3-4), the proposed move must

displace the larger cell by a distance at least equal to the smaller cell’s relevant dimension

for the move to be successful. Otherwise, not enough room is evacuated to accommodate

the smaller cell. By basing the range limit on the largest cell’s dimensions, the move

space is adapted somewhat to the size of cells in the netlist. Consider this adaptability

opposed to the static minimum range limit originally defined in ATL that was a fixed size

of 20x20. It turns out that because the largest cell dimensions in the netlists experimented

with are approximately 20 units, this modification has little affect on any placement

optimization results other than tile compaction and ensuring adequate nudging can

always be performed to permit tile shrinkage.

3.4 OVERVIEW OF NEW HEURISTICS AND COSTS

This section provides short descriptions of the mechanisms added to ATL to

address the various optimization objectives. The various mechanisms are briefly

described to provide general context before each, in turn, is described and examined in

 40

detailed, in the next chapter.

3.4.1 TILE-SIZE COST

This cost has two components. One component is designed to penalize moves that

increase the area of an imaginary bounding box enclosing all the cells (not ports) in the

tile. This encourages “crunching” of the cells together away from the tile edge to promote

and facilitate tile shrinkage during the reheat and tile-shrink iterations. The other cost

component is designed to penalize moves that increase the number of cells on the edge of

the imaginary bounding box enc losing all of the cells. This encourages evacuation of the

imaginary bounding box perimeter, hopefully, leading to a collapse of the box.

3.4.2 TILE-SLOPE COST

This cost is designed to penalize moves that increase the distance of a block from

the geometric center of the tile. This encourages “bunching” of the cells together towards

the center of the tile to promote and facilitate tile shrinkage. By constantly tugging cells

inwards, this cost works with the tile-size cost by moving “central cells” further from the

edge, so cells on the edge have space to move off the edge of the imaginary bounding

box. Its name suggests the effect the cost has on the placement; the cost creates an

effective slope inclined towards the edge of the tile that cells tend to tumble down.

3.4.3 WIRE-OVERUSE COST

This cost is designed to penalize moves that create routing hotspots in the

 41

placement or increase the “hotness” of a hotspot. Routing hotspots are areas of the

placement identified as being problematic routing areas; these areas are identified as

locations the placer thinks the router will route many distinct nets (distinct electrical

nodes) over. These nets will have to occupy different routing layers and consequently

hotspots indicate areas of the chip containing nets the router may fail to route because it

does not have enough routing resources in the local area. The more nets the placer deems

will have to be routed over a given spot, the “hotter” the hotspot and the greater the

anticipated routing difficulty. By encouraging the reduction in the “hotness” and number

of hotspots, the routing difficulty should be decreased. This cost, in particular, may fight

tile compaction and the minimization of wirelength; for example, increasing the area

required to route nets (over hotspots) decreases the magnitude of the hotspots by giving

the router more options (metal) to complete the respective routes. This cost represents

work in progress because its formulation relies on a placement model of routing

congestion that must be confirmed and tuned (in future work) to that encountered by an

actual FPGA tile router.

3.4.4 BLOCK-OFF-EDGE MOVE

This move is designed to encourage cells to move off the edge of the imaginary

bounding box enclosing all cells. This encourages the collapse of the imaginary bound ing

box, hopefully, leading to tile compaction. The need for this type of move originates from

the following. Once the general locations of blocks settle during placement, the move

acceptance function tends to reject moves that span a great distance and the range-limit

move generator tends to propose moves in a local region. To shrink the tile, however,

 42

sometimes moves have to be accepted that transport cells across a large distance because

cells can only move to locations that can accept them (possibly with a bit of cell juggling)

without producing an overlap. This move type addresses both cost arbitration and move

generation issues that would otherwise prevent the type of long-distance move often

needed for the sake of tile compaction. The block-off-edge move reduces the magnitude

of cost increase associated with moves that would successfully move cells off the edge; it

also removes the standard range- limit, imposing its own range- limit geared to explore

moving a cell off an edge of the imaginary bounding-box to a location somewhere just

inside that edge. This move type works in conjunction with the tile-size compaction cost.

3.4.5 COMPACTION MOVE

This “compound” move is designed to encourage cells to converge towards the

center of the tile, making room for the outer cells to move off the edge of the imaginary

bounding box surrounding all cells. This move type works in conjunction with the tile-

slope compaction cost. This move actually involves all cells (hence, it is a “compound”

move) in a focused effort to take immediate advantage of gaps and spacings for cells to

move closer to the center of the tile. Each compaction move tries to move all cells. Cells

closer to the center are moved inwards first, hopefully, opening gaps that outer cells can,

in turn, fill. Each individual cell move is arbitrated with the cost function like a normal

move. It is the move sequencing which makes compaction moves useful.

3.4.6 BLOCK ROTATION AND FLIP

 43

This move expands the move space by exploring cell re-orientation possibilities.

Cells can be flipped (horizontally and vertically) and rotated (90 degree angles) because

the routing grid and the cell layouts are orientation independent to a certain extent ; that is,

in terms of design rules, layouts can be flipped and rotated as indicated.

3.4.7 BLOCK EQUIVALENT-PIN SWAP

Certain cells have groups of input pins and output pins whose respective

connections can be swapped because the functionality of the circuit is independent of

exactly which signals are routed to the various pins on each cell. This move expands the

move space by exploring these pin swap possibilities. During cell topology generation

(during netlist generation), care is taken to distribute cell input and output pins in

positions across the cell that reflect their actual positions in the layout. These pin

positions are not motivated by netlist and placement considerations and, hence, from a

placement and netlist perspective, the actual positions are random. Furthermore, netlist

generation does not take into account placement and cell topology, and, hence, from a

placement perspective, connections are made to essentially random cell locations. The

netlist generator actually attempts to ensure that there is no systematic bias tying related

connections to adjacent cell pin locations, etc.. This move type, and the previous move

type (3.4.7), attempt to explore better positions for those connections than those

randomly assigned by the netlist generator.

3.4.8 INITIAL LARGE-GRID PLACEMENT

 44

Cells are placed on a large tile initially to allow globally good placements for cells

to be determined without cell overlap inhibiting move generation freedom. Placements

with little free space tend to have a lot of proposed moves rejected for legality reasons

solely (not cost reasons). Therefore, if placement optimization begins with a dense

placement, cells will have a hard time achieving globally good positions relative to one

another because many proposed moves will be rejected. This technique inflates the initial

tile size and modifies the move generator so cells can be swapped freely with one another

without overlap considerations. Cells are spaced out on the large initial tile, so a given

cell move involves at most two cells in a swap. Once initially good global placements for

cells are found, normal cell movement ensues and compaction techniques are used to

reduce the tile size from this initial large tile configuration.

3.4.9 SRAM REWEAVE

SRAM word and bit lines are assigned randomly to SRAMs by the netlist

generator to avoid systematically associating certain SRAMs together by connecting

them to the same programming lines. As discussed in 2.4.2, word and bit line

assignments are arbitrary because FPGA SRAM programming can be adjusted to

program the target SRAMs to any values for any fixed word and bit line assignment.

SRAM Reweaving gives the layout optimizer the freedom to initially place SRAMs

without considering word and bit line costs. After all the SRAMs are assigned good

global positions (close to logic they are attached to), word and bit lines can be assigned to

SRAMs (rewoven) based on SRAM placement. That way, the arbitrariness of word and

bit line assignments can be leveraged to minimize word and bit line length and to

 45

minimize consideration of programming line length when determining globally good

positions for SRAMs.

 46

Chapter 4
OPTIMIZATION TECHNIQUES AND COSTS

Each of the major optimization techniques (heuristics) and costs (summarized in

Table 4-1) that were developed for ATL to help meet the objectives stated in 3.1 are

described, in detail, throughout this chapter. The techniques and costs are organized by

type and the goals they address.

The first section of this chapter discusses the FPGA tiles used during

experimentation (the benchmark set). The second section points the reader to pseudo-

code descriptions of the overall optimization flow and the move generation process. The

third section examines the cost-based optimizations. The fourth section examines the

move-based optimizations. The fifth section examines the optimizations which do not

completely fall under either of these classifications. The last section presents an overall

performance comparison between the version of ATL produced by this research and the

initial version of ATL, produced by [1].

Table 4-1 Technique and Cost Summary

Techniques and Costs
Cost-Based Move-Based Other

Minimum Area Tile-Size Cost
Tile-Slope Cost

Block-Off-Edge Move
Compaction Move

Minimum Wire Length Block Rotation and Flip
Block Equivalent-Pin

Swap

Initial Large-Grid
Placement

SRAM Reweave G
o

al

Balanced Wiring
Requirements

Wire-Overuse
Cost

4.1 EXPERIMENTAL BENCHMARK SET

As each of the techniques and costs are examined, results are presented to

 47

quantify their significant effects and examine observable trends. These results are based

on experiments conducted during this research. Most of the experiments conducted (and

all of the results presented in 4.3, 4.4, 4.5) were based on the set of ten “benchmark tiles”

used in [1]. These benchmark tiles were created by [1], based on architecture files that

were found to result in high-quality FPGAs [3]. The electrical parameters used to size

buffers and switches, which were specified in the architecture files, were based on

TSMC’s 0.18 µm technology and were taken from work done in [8]. The ten benchmark

tiles created by [1], and used in this research, all had 40 wires per FPGA routing channel

and a differing number of LUTs per tile (1 to 10).

As mentioned earlier, the results of this research, to a certain extent are

independent of the exact cell sizes and net connectivity of FPGA tiles. In fact, the

generality of the results make the heuristics useful for the exploration of diverse FPGA

architectures, from which cells and ports can be abstracted.

4.2 PSEUDO CODE

If a better understand ing of the interrelationship between and the integration of

the various techniques is desired, the reader is encouraged to examine the pseudo code

presented in Appendix A and B, as each of the techniques and costs are described.

Appendix A contains the pseudo code that summarizes the overall placement flow.

Appendix B contains pseudo code that illustrates the details of move generation.

4.3 COST-BASED OPTIMIZATIONS

 48

First cost-based optimizations are presented which leverage the cost-based move

arbitration of simulated annealing to achieve layout goals.

4.3.1 TILE-SIZE COST

Actual tile compaction only occurs between reheat anneals; therefore, the reheat

anneals need to monitor and encourage congregation of cells towards the center of the

tile, so compaction can actually occur between the anneals. If the annealer tries to

optimize wirelength and other measures of placement merit without directly considering

eventual tile compaction, active re-arrangement of cells will have to be performed during

the tile compaction phase. This is because the annealer will make no direct attempt to

group cells (compact cells together); consequently, they may spread out, attempting to

satisfy other constraints, over the entire tile area. If cells are actively re-arranged, during

the tile compaction phase, either only tile compaction concerns are considered (reducing

overall placement quality) or extra complexity has to be added to that phase to monitor

all the quality aspects the annealer is designed to monitor.

To allow tile compaction efforts to consider general placement quality, a tile-size

cost is added to monitor progress towards tile shrinkage during the anneal (that can be

balanced with other placement costs). That way, tile compaction can be balanced with

wirelength improvement, for example, and moves that greatly benefit eventual tile

compaction can be immediately recognized and accepted.

This cost is based on an “imaginary” bounding box that encloses all the tile cells

(not ports) (described in 3.2.2 and Figure 3-1). This bounding box is incrementally

maintained as the cells are moved. The cost has two components, as follows:

 49

COST = (WIDTHIMAGINARY BOUNDIN G BOX ? HEIGHTIMAGINARY BOUNDING BOX) + NUM_BLOCKSLEFT SIDE + NUM_BLOCKSRIGHT SIDE + NUM_BLOCKSTOP SIDE +

NUM_BLOCKSBOTTOM SIDE

One component of the cost is the “imaginary” bounding box area. Moves that

decrease the area of the bounding box improve this component of the tile-size cost. The

second component of the cost is the number of cells lying on the edge of the “imaginary”

bounding box. This component of the cost is designed to encourage movement of cells

off the edge of the “imaginary” bounding box so that collapse of box area eventually

occurs. A tile-size cost multiplier is applied to the calculated tile-size cost so it can be

weighted with respect to the bounding-box wirelength cost.

The area of the imaginary bounding box is used instead of the perimeter, for

example, because of the interaction with the second component of the cost. The area

component of the cost is the only meaningful aspect of the cost. The cell count on the

edge affects the second component of the cost but it does not affect the tile-compaction

potential which is strictly a function of the imaginary bounding-box area. Therefore, the

second component is designed to be a tie-breaking cost in the sense that given the same

area, the cell count on the edge is the deciding factor. This means that if a side of the

imaginary bounding-box collapses by one unit, even if the cell count on the edge

increases, the overall cost should show the merit of the respective move. For example, by

monitoring the imaginary bounding-box area, shrinking a WxH bounding box to Wx(H-

1) results in a cost improvement of the first component by W units. As few as one cell

can be on the edge that collapsed, and, following the collapse, as many as W cells can be

on that edge (maximum one cell per grid square). Therefore, in general, despite the

maximum cost increase of the second component (W – 1), the cost decrease of the first

 50

component is sufficient for the tile-size cost to recognize the merit in shrinking the

imaginary bounding-box area.

The cost factor that is used to weight this cost relative to the bounding-box

wirelength is re-determined between reheat anneals. It is calculated so that the weighted

tile-size cost is a certain multiple of the bounding-box wirelength cost. The precise

multiple (fraction) is increased over the course of the anneal up to a certain value. This

upper-bound value is adjusted during experimentation. It turns out that one can not

completely “turn off” this cost because the placement run times grow unreasonably large

as tile compaction occurs slowly and randomly over a long period of time. Therefore,

experiments adjust the maximum tile-size cost fraction, but do not set it to 0.

Table 4-2 Tile-Size Cost Fraction Comparison

 Tile-Size Cost Fraction: 0.01
(?)

Tile-Size Cost Fraction: 5
(?)

Improvement
(? Result/? Result)

Number of
LUTs

Free Space
/ Cell Area

Run
Time
(s)

Wirelength Free Space
/ Cell Area

Run
Time
(s)

Wirelength Free Space
/ Cell Area

Run
Time

Wirelength

1 0.67 317 38363.2 0.13 193 34525.5 0.19 0.61 0.90
2 0.28 721 40991.8 0.16 267 41394.2 0.57 0.37 1.01
3 0.46 802 50532.2 0.12 437 48248.8 0.26 0.54 0.95
4 0.28 1120 48698.3 0.13 399 46896.6 0.47 0.36 0.96
5 0.34 1415 62175.8 0.12 598 60563 0.35 0.42 0.97
6 0.23 1834 70322.9 0.10 1019 68170.9 0.46 0.56 0.97
7 0.19 1975 74099.4 0.11 858 72614.3 0.62 0.43 0.98
8 0.20 2152 81387.9 0.10 1150 78154.4 0.53 0.53 0.96
9 0.22 2024 91470.5 0.10 1550 87457.8 0.45 0.77 0.96

10 0.12 4333 103764 0.10 1741 102187 0.85 0.40 0.98
Average 0.47 0.50 0.97

It turns out that the average percentage free space in the tile is cut in half (reduced

by a factor of 2.11) by increasing the tile-size cost fraction from 0.01 to 5. The run-time

is similarly cut in half and the wirelength is improved by 3.5%. Higher cost fractions start

to increase the overall wirelength because tile-size cost reduction is prioritized over

wirelength optimization. Therefore, a tile-size cost fraction of 5 was settled upon. It

should be noted that smaller tile sizes reduce the total amount of wire used up to a certain

 51

point, however, there is a wirelength penalty incurred by incessantly compacting cells

within the rectangular tile – wrenching them away from their globally good positions.

Table 4-2 illustrates the experimental results obtained from the benchmark set for two

cost fractions. Graph 4-1 illustrates the change of free space, run time, and wirelength as

the tile-size cost fraction is adjusted; note the logarithmic horizontal scale.

Free Space, Run-Time, Wirelength vs.
Tile-Size Cost Fraction

0

0.2

0.4

0.6

0.8

1

1.2

0.01 0.1 1 10 100

Tile-Size Cost Fraction

Normalized Extra Area Normalized Run-Time Normalized Wirelength

Graph 4-1 Free Space, Run Time, Wirelength vs. Tile-Size Cost Fraction

4.3.2 TILE-SLOPE COST

The tile-size cost is designed to decrease the size of the imaginary bounding box

enclosing all cells. The cost encourages movement of the cells inwards just off the edge

of the bounding box so the bounding box can collapse. Nevertheless, unless there is a

general evacuation of cells away from the edge towards the tile center, there will be a

buildup of cells just inside the edge. This is because other costs (optimization goals) may

motivate cell movement towards the bounding-box edge (closer to the ports, for

 52

example). After successive imaginary bounding-box shrinks, a larger collection of cells

will build up just inside the box perimeter; this general trend will result in an overall

placement of cells, which inhibit further “imaginary” bounding-box collapse.

To prevent the cell buildup that inhibits imaginary bounding-box collapse, the

tile-slope cost was created. This cost refers to a tile slope because it creates a virtual slope

inclined towards the edge of the tile that encourages cells to “tumble” towards the center.

It is a “weak” cost in the sense that it is designed to tug slightly on all cells without

disrupting general placement quality (measured through other costs). It is designed to

break cost “ties” and generally encourage movement of cells away from the tile edge so

that the annealer, with its tile-size cost, can effectively achieve imaginary bounding-box

collapse.

This cost (for each cell) is formulated as follows:

COST = MAX(HORIZONTAL DISTANCE OF CELL CENTER FROM VERTICAL LINE THROUGH TILE CENTER / TILE WIDTH, VERTICAL
DISTANCE OF CELL CENTER FROM HORIZONTAL LINE THROUGH TILE CENTER / TILE HEIGHT)

The effect of this cost formulation can be visualized by envisioning the concentric

rings of equal cost that it creates (Figure 4-1). The center of a cell can move along a

rectangular ring, without affecting the respective cost. A move which translates the center

of a cell to a rectangular ring which is outside the current rectangular ring results in a tile-

slope cost increase. By using the max of the two dimensions rather than the sum, for

example, is motivated by the tile shape and orientation. The sides of the rectangular rings

are parallel to the tile sides, so that cells do not conglomerate to form shapes distinctly

different from that of the tile (like in Figure 4-2). This would be unbeneficial and would

waste area; it is better that the cell conglomeration “match” the tile boundary so the latter

can collapse snugly over the former without any area wastage.

 53

Figure 4-1 Rings of Equal Tile-Slope Cost

Figure 4-2 Rings of Equal Tile-Slope Cost Incongruent with Tile Boundary and Resulting Placement

The normalization of horizontal and vertical distance with respect to tile width

and height has the effect of biasing which direction of cell migration the cost prefers.

Imagine the tile width is twice the magnitude of the tile height. A move which decreases

the horizontal distance by one unit has half the cost benefit of a move which decreases

the vertical distance by one unit. Therefore, in general, vertical collapse is promoted. The

cost structure has the effect that collapse is promoted in the direction that corresponds

with the smaller dimension. Smaller height than width encourages vertical collapse and

smaller width than height encourages horizontal collapse. By promoting skewing of tile

 54

aspect ratio, better compaction (final tile area) results were observed (7% reduction in tile

free space). One can understand this better by considering that a one unit collapse in one

dimension of a 400x300 tile results in a 400 square-unit area reduction while a one unit

collapse in the other results in a 300 square-unit area reduction. Therefore, the

experimental result seems to indicate that it is equally easy to achieve collapse in both

dimensions, so biasing collapse in the already smaller dimension is beneficial.

The tile-slope cost factor is set just like the tile-size cost factor to normalize it

between reheat anneals to be a certain multiple of the bounding-box wirelength cost. It

turns out that as long as the fraction (multiple) is kept to a reasonably low value, there is

no change in wirelength results or final tile free space as the precise fraction is varied. It

turns out that this cost is merely a time saver. By pulling all cells inwards before they

inhibit further compaction, overall run-time is decreased. A total run-time savings of 16%

was achieved without sacrificing placement quality.

4.3.3 WIRE-OVERUSE COST

Monitoring just overall wire utilization is not sufficient to ensure route-ability. If

too many different connections have to be routed in a given area, the router will either be

unable to route all the connections because there are not enough metal layers in the given

region (available in the given technology), or the router will have to try extending the

routes outside of the current region, if it is possible. If there are enough non-optimal

routes, even if there is “enough wire” in the chip theoretically to route all the

connections, the router will use up all available wiring leaving some connections not

routed. Non-optimal routes also increase the actual length of connections beyond their

 55

expected length (defined within the placer’s net bounding boxes) leading to increased

path delays. A timing-driven router can avoid extending connections that are “critical”

for timing; nevertheless, forcing the router to take non-optimal routes is generally

unbeneficial because the increased wire usage increases the overall pressure on routing

resources – making the router’s job more difficult. If the tile can not be routed, the router

may also have to resort to growing the tile in certain areas to make room for the

respective routing. This is disadvantageous because it increases the overall tile area.

If the severity of the routing “hotspots” can be reduced (less severe local wiring

demand), and the overall wire utilization is sufficiently low, the router may also complete

its job with fewer layers of metal. This ultimately could reduce the expense of producing

the FPGA and would consequently be beneficial. Reducing the amount of non-optimal

routing the router has to resort to also reduces the total routing capacitance and

resistance, reducing the overall power consumed due to the routing.

4.3.3.1 CONGESTION MODEL

This research was conducted in the absence of a router. Therefore, to measure

routing congestion, a router congestion metric was developed. This congestion metric

was adapted to form a placement cost to monitor congestion. If future work shows a

correlation between this congestion metric and router congestion, this congestion model

and metric can be tuned to reduce final congestion.

The congestion model used considers overlapping bounding boxes. The

congestion over each placement grid square is calculated. It is calculated by adding

contributions from each of the wirelength bounding boxes overlapping the grid square.

 56

The contribution of a bounding box is equal to the total wirelength of the corresponding

net divided by the number of routing grid squares covered by the bounding box (net

routing density). This estimate of congestion is based on several assumptions. It assumes

the router can, typically, route all the connections of a net without violating the respective

bounding box perimeter. It is also assumes the amount of extra routing square segments

needed for metal hops (vias) is relatively small; note that when a via is used, two routing

square segments at the respective placement grid square is used instead of one. It is also

assumed the router can chose any number of possible paths to route all the net

connections within the bounding-box; hence, probabilistically, the larger the area of the

bounding box, generally, the smaller the probability the router will use a given grid

square – actually, it is the area to perimeter ratio that matters because wire-use increases

with perimeter. By basing the contribution of a net on the probability the router will use

the respective placement/routing grid square, it is hoped that potential router choice can

be incorporated in the congestion assessment.

It should be noted that this model’s view of routing flexibility is overly optimistic.

A better modeling of router options would consider that near points of connection (to cell

pins and ports), the net must establish the appropriate connections. Consequently, near

net sinks and sources, the probability of the router using a routing square segment

increases. This affect can be approximately modeled by carefully considering the area

around sinks and sources (adding the relevant high probability bonuses to the respective

placement grid squares); this modification to the routing model was experimented with

briefly and should be reconsidered when future work assesses overuse modeling and

costing with reference to a tile router. Infrastructure was put in place to bonus routing

 57

grid squares around relevant cell pins and ports, however, the cost described next and the

experimental results do not incorporate this cost or model feature since the respective

bonus magnitudes are highly speculative without considering a tile router carefully.

4.3.3.2 CONGESTION COST

To avoid introducing routing hotspots in the placement and to reduce overall

routing congestion, a placement wire-overuse cost was created. This wire-overuse cost is

based on the congestion model proposed. Monitoring the overuse with the preciseness of

the proposed model is too expensive (in terms of run time). To make the run-time

practical, a few approximations are made that do not impede the placer’s ability to reduce

placement congestion as measured by the proposed model.

Instead of considering each placement grid square individually, a coarser

congestion grid is monitored. The coarseness of the grid is specified in terms of the

number of routing grid squares each congestion grid square should enclose when the tile

is highly compacted – most of the tile area filled with cells. If the tile is loosely

compacted, the coarseness of the grid is artificially increased so the height and width of

the congestion grid matches the height and width of the grid if the tile was highly

compacted. Refer to Figure 4-3 for an illustration of this. As will soon become evident,

the run-time of the algorithm and the “realism” of the cost are both a function of the

coarseness of the grid. Therefore, this decrease in coarseness as the tile is shrunk was

motivated by several reasons, which will be discussed later.

 58

2x2 Placement Grid Squares per
Congestion Grid Square when

tile is highly compacted.
Congestion Grid: 3x3

4x4 Placement Grid Squares per
Congestion Grid Square when

tile is loosely compacted.
Congestion Grid: 3x3

Figure 4-3 Coarseness of Congestion Grid as a Function of Tile Compactness

The congestion cost of a congestion grid square is:

AREA OF CONGESTION GRID SQUARE (NUMBER OF PLACEMENT/ROUTING GRID SQUARES ENCLOSED) ? MAX(0, CONGESTION
MEASURED – (CONGESTION THRESHOLD – 1.0))2

The measured congestion is a function of the net routing density of all nets that intersect

the congestion grid square. The net routing density of all nets which intersect the square

are added together to get the worst-case congestion value (as if all the nets actually

intersected over one placement grid square within the congestion grid square). By

 59

considering the worst-case congestion value, a coarse congestion grid will report

congestion even if there is not any, and, it will never fail to recognize congestion.

Currently, a congestion threshold of 5.0 is used, because it seems to work well to reduce

the congestion reported by the congestion model. A value of 5.0 also seems reasonable

because the congestion reported at a placement grid square is equal to the expected

amount (expected value) of metal lines needed over that square. Consequently, there

should be a correlation between the maximum congestion measure and the number of

layers of metal needed for routing. A threshold of 5.0 would imply that congestion should

be limited to five layers of metal and overuse should be reported above that amount.

Assuming an eight-layer metal process (achievable by state-of-the-art processes, now, or

in the near future [9]), five layers of metal for inter-cell routing seems reasonable; this

would leave 3 layers of metal for intra-cell routing and routing of power and ground

(which are not in the tile netlists). Nevertheless, this threshold value should be

experimented with in future work.

The amount the measured congestion exceeds one less than the threshold value is

squared so that congestion can be balanced throughout the tile. That is, an excess

congestion value of 6.0 at one location is penalized more than two excess congestion

values of 3.0 at two locations. 1 is subtracted from the threshold value so that at the

threshold value, 1 unit of congestion cost is measured. If this is not done, the optimizer

will almost never reduce the congestion below the threshold value because values slightly

above the threshold would have negligible cost.

Finally, by multiplying MAX(0, CONGESTION MEASURED – (CONGESTION THRESHOLD – 1.0))2 by the

congestion-grid “placement square area”, a cost is determined that assumes the worst-

 60

possible congestion in the congestion grid square occurs at all positions within the region.

Of course, because of this the greater the coarseness of the congestion grid, the greater

the worst-case analysis is overly pessimistic. Therefore, finer grids tend to estimate

congestion more realistically.

Generally, the coarser the congestion grid, in general, the fewer the number of

congestion grid squares (“bins”) crossed by a given net. That is why, increasing the grid

coarseness reduces the run-time; the number of bins that have to be updated for a given

net is reduced.

It turns out a better balance between precision and run-time can be achieved,

without sacrificing placement quality, as measured by the overuse model. By only

monitoring certain nets with respect to wire-overuse cost, the optimizer can avoid having

to make as many updates during an anneal. Nets that have a low net routing density do

not greatly affect congestion measures. Furthermore, they tend to be large-area nets that

span a large number of “congestion bins”. Therefore, not considering these nets is

beneficial because of their low affect on congestion measures and the fact that the

expense in updating bins is greatly reduced if they are ignored. The threshold density

below which nets are ignored is based on the congestion threshold and the maximum

number of nets which cross a placement/routing grid square in the tile. By dividing the

congestion threshold by the maximum number of nets which cross a placement/routing

grid square, the threshold density is obtained. The contribution of nets below this

threshold is minimal because even if many of those nets overlap (up to the maximum

number of overlapping nets) only a maximum density equal to the overuse threshold will

be contributed.

 61

All the nets are considered when re-computing the overuse cost between anneal

temperatures, but during a temperature only non- ignored nets are updated when

performing overuse updates. It turns out that using this technique with the density

threshold described earlier, only 13% percent of the nets are typically ignored, the

placement results are not affected, and the run time is improved by approximately an

order of magnitude.

Taking a step back, by reducing the coarseness of the congestion grid in step with

tile shrinkage, several advantages are obtained. The preciseness of the congestion

measurement is increased as more local placement improvements are made near the end

of optimization. When the tile is larger, nets tend to be spread out over a larger distance;

in fact, all features of the tile tend to be spread out, so a coarser congestion grid at this

time makes sense; coarse features and regions are coarsely monitored. This also keeps the

relative number of bins crossed by a set of nets grossly at the same value throughout the

anneal. When the regions and features shrink, the coarseness grid shrinks with them,

keeping the same relative areas of the tile under supervision by the same squares of the

congestion grid.

The specification of grid coarseness is made in terms of the number of routing

grid squares enclosed by a congestion grid square (when the tile is highly compacted).

Therefore, tiles with more cell area will have a greater number of congestion grid

squares. Consider this opposed to the increased number of routing grid squares in a

congestion grid square, for tiles with larger cell area, if the width and height of the

congestion grid was specified instead. Assuming that local regions in tiles with a larger

total cell area are similar to local regions in tiles with a smaller total cell area (with

 62

respect to routing congestion), a congestion grid square should have the same number of

constituent routing grid squares to monitor the congestion appropriately for differing tile

sizes. Experiments show that this assumption is reasonably accurate (allows for better

optimization of the congestion model). One would expect, however, that the longer

average distance of cell interconnections within larger tiles would tend to result in extra

routing passing over cells that is connecting more remote parts of the tile. Nevertheless,

this affect would tend to suggest more metal layers are needed to route such tiles,

changing the congestion threshold but not the congestion grid coarseness or precision.

The coarseness of the congestion grid was specified so that 15x15 placement grid

squares lie within a congestion grid square when the tile is highly compacted. This degree

of coarseness seemed to produce the best results in terms of run-time and placement

quality.

Of course, all these considerations and assumptions, and the underlying

congestion model, which motivated the various decisions, should be tested when a router

is available. That is why, other than the results presented next, the experimental results

presented in this paper do not consider overuse cost and the congestion model.

To control how strongly the layout optimizer prioritizes overuse reduction, an

overuse cost factor is multiplied by the raw overuse cost before adding it to the total cost.

Graph 4-2 illustrates the effects of different overuse cost factors. The overuse threshold

used is 5.0; as indicated earlier, this value produced good results as measured by the

overuse model. Values higher than this did not restrain hotspot magnitude as much and

values lower than this could not be satisfied, even with considerable placement

degradation.

 63

The maximum overuse measured in a placement grid square (Graph 4-2) is a

measure of the overuse in the hottest hot-spot in the tile (usage above the overuse

threshold). Wirelength, free space, and run time are all normalized with respect to a run

which does not monitor overuse and does not suffer from any of the overhead of the

respective computations. The number of hot-spots in the tile was measured, at the end of

optimization, by counting how many placement grid squares had a predicted quantity of

routing above them greater than the overuse threshold. The percentage of placement

squares, which were “hot”, was below 4% for all (> 0) overuse cost factor values tested.

An overuse cost factor of 10 reduced this count to 0 for all tiles in the benchmark set.

Wirelength, Run-Time, Free-Space, Overuse vs.
Overuse Cost Factor

0

1

2

3

4

5

6

7

0.0001 0.001 0.01 0.1 1 10

Overuse Cost Factor

Normalized Wirelength Normalized Run-Time Normalized Free-Space Maximum Measured Overuse in a Placement Grid Square

Graph 4-2 Wirelength, Run-Time, Free-Space, Overuse vs. Overuse Cost Factor

Notice how the run-time increases as the overuse cost factor increases. This effect

is due to the fact that congestion monitoring inhibits tile compaction because the

respective moves that lead to tile compaction tend to increase congestion. Therefore, tile

 64

compaction occurs over a longer period of time as the optimizer struggles to balance all

the optimization goals. Therefore, the final optimizer exit criteria (based on tile

compactness) are not satisfied as quickly when the optimizer focuses on reducing

congestion. This effect is minimized by lower overuse cost factor values. The actual

overhead of computations performed to monitor congestion can be more readily observed

at those lower values. An overhead of about 60% run time is incurred due to the

monitoring of congestion. This relatively small overhead is due to the carefully chosen

algorithmic tradeoffs discussed above.

Of course, the maximum measured overuse is decreased as the overuse cost factor

is increased. This comes at the expense of increased overall wirelength and tile free-space

as these optimization goals are sacrificed in favour of limiting overuse.

4.4 MOVE-BASED OPTIMIZATIONS

Secondly, moved-based optimizations are presented, which expand, direct, skew,

or modify the annealer’s move space to facilitate the achievement of optimization goals.

4.4.1 BLOCK-OFF-EDGE MOVE

At lower placement temperatures, large cost increases are likely to be rejected.

Therefore, cell movements over great distances that destroy good global placement

choices are likely to be rejected. The starting temperature of the reheat anneals is chosen

to be high enough that useful progress (tile shrinkage and wirelength improvement, for

example) through cost “hill climbing” can be achieved; nevertheless to prevent the

destruction of globally good placement decisions, a lower temperature is beneficial. In

 65

general, to preserve placement decisions, the temperature is selected to be relatively low.

To achieve adequate tile compaction, however, some cells have to be moved great

distances – in order to get off the edge of the “imaginary” bounding box – despite the fact

that competing costs resist such a move. The reason for long-range moves is generally

because near the end of placement optimization, when the center of the tile is highly

compacted, large clusters of cells often congregate in one section near the edge of the tile.

There is no room to move the cells towards the tile center and no short sequence of local

moves (likely to be proposed) can move the respective cells off the tile edge. The tile-

slope and tile-size compaction cost factors can be increased to the point where they

dominate so that such long-distance moves are accepted, but such increased focus on tile

compaction generates lower-quality placements. Furthermore, there is a more

fundamental problem that such long-distance moves are generally not proposed during

the reheat anneals because the relatively low temperatures motivate small range limits.

Consider Figure 4-4 which was captured from an actual placement run without block-off-

edge moves. Notice how there are cells near the edge of the tile preventing tile collapse,

even though there is free space available to accommodate them. A combination of the

range-limit imposed on them and the cost penalty in moving them limits tile compaction.

 66

Cells on Edge of Tile
Limiting Collapse

Room to Accommodate
Cells

Room to Accommodate
Cells

Figure 4-4 Example of Cells Limiting Collaps e and Space that can Accommodate Them

Block-off-edge moves are strictly designed to propose the long-distance moves

necessary to permit tile compaction and to provide the cost bonuses needed to ensure

those specific moves are accepted by the annealer. These moves ignore particular range

limits. Whenever a cell on the edge of the “imaginary” bounding-box is selected for

moving, the range limit in the direction parallel to the edge is removed, so that the

proposed move destination can be anywhere along the edge (but just inside the edge).

Refer to Figure 4-5 for an illustration of how the range- limit is modified for this move.

This solves the problem of beneficial move proposal by allowing long-range moves

specifically for cells that need to be moved to facilitate compaction. If the proposed move

 67

is to a location that can accept the cell without disturbing other cells and that location is

inside the edge of the “imaginary” bounding-box, a cost bonus is applied. This solves the

problem of ensuring such “necessary” moves are accepted. The cost bonus is simply

performed by dividing the resulting cost difference by a cost-bonus divisor before the

difference is used to determine proposed move acceptance or rejection. If the cost

difference indicates a cost decrease, the bonus has no effect; the move is accepted no

matter what. If the cost difference indicates a cost increase, the perceived magnitude of

the cost increase will be reduced, so the move is more likely to be accepted. Of course,

large cost increases are still likely to be rejected (maintaining some degree of cost

arbitration). Nevertheless, if the cost-bonus factor is adjusted appropriately, “necessary”

moves can be more frequently proposed and accepted without seriously harming the

overall placement quality; such a decrease in overall placement quality manifests if the

alternative of increasing the compaction cost factors is employed instead.

Standard Range Limit

Block-Off-Edge Move Range Limit

Imaginary Bounding Box

Figure 4-5 Effect of Block-Off-Edge Move on Range Limit

It turns out that even if the range- limit is extended, the cost division (cost bonus)

is necessary to achieve any sort of difference in results. Furthermore, if the cost bonus is

implemented in isolation, placement results degrade without compaction benefits. Graph

 68

4-3 illustrates the affect on placement results of changing the cost divisor for Block-Off-

Edge moves. The results are presented assuming that Block-Off-Edge moves are

executed half of the time when it is possible to execute them (the move involves a block

on the imaginary-bounding box edge); it turns out that this value produces the best

results. It should be noted that as the divisor is increased, the final free space area is

almost immediately reduced to a good value. The run-time decrease is similarly

immediate; run time decrease makes sense because tile compaction occurs more

effectively, and, the optimizer’s exit criteria based on tile compaction is satisfied sooner

(refer to Appendix A for more details). The wirelength increase is steady as the divisor is

increased, which makes sense, because any increase in wirelength cost is diluted by the

divisor. Notice how the wirelength dips for small divisor values, however; this is

probably because the decrease in area benefits overall wirelength mitigating the impact of

the cost divisor. A cost divisor of 8 is selected because it achieved the free space and run-

time benefit without affecting wirelength. Table 4-3 indicates the detailed results of a

comparison between a cost divisor of 1 and a cost divisor of 8 for the netlists in the

benchmark set. Notice the general improvement in free space and run time without the

large impact on wirelength.

 69

Free Space, Run-Time, Wirelength vs.
Cost-Difference Divisor

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 10 100 1000

Cost-Difference Divisor

Normalized Extra Area Normalized Run Time Normalized Wirelength

Graph 4-3 Free Space, Run-Time, Wirelength vs. Cost-Difference Divisor

Table 4-3 Effect of Block-Off-Edge Move Divisor

 Cost Difference Divisor: 1
(?)

Cost Difference Divisor: 8
(?)

Improvement
(? Result/? Result)

Number of
LUTs

Free Space
/ Cell Area

Run
Time
(s)

Wirelength Free Space
/ Cell Area

Run
Time
(s)

Wirelength Free Space
/ Cell Area

Run
Time

Wirelength

1 0.14 332 36712.5 0.12 229 34934.9 0.85 0.69 0.95
2 0.36 341 41867.1 0.11 313 40676.6 0.31 0.92 0.97
3 0.24 548 47611.4 0.12 368 49379.9 0.48 0.67 1.04
4 0.33 400 47963.2 0.13 362 50119.5 0.38 0.91 1.04
5 0.35 685 62061.7 0.12 603 59356.1 0.34 0.88 0.96
6 0.18 969 67861.3 0.12 804 69523.7 0.63 0.83 1.02
7 0.25 1140 74078.3 0.11 900 73966 0.43 0.79 1.00
8 0.19 1382 80286.5 0.13 1002 80581.8 0.67 0.73 1.00
9 0.21 1302 87013.5 0.11 1087 88724.5 0.53 0.83 1.02

10 0.19 1687 98628.2 0.12 1393 100638 0.62 0.83 1.02
Average 0.52 0.81 1.00

4.4.2 COMPACTION MOVE

Even with tile-compaction cost bonuses designed to benefit moves that lead to

smaller tiles, combinations and sequences of those moves have to be proposed by the

move generator for tile compaction to result. It is unlikely that the move generator is able

 70

to generate the proper sequences randomly and frequently. For example, consider the

following sets of blocks, with the indicated connections, that have to move to the right to

permit tile-area shrinkage (Figure 4-6):

Figure 4-6 All blocks must move right to permit tile shrinkage.

Assuming the blocks are “tightly” held in their respective relative positions by the

connections that run between them, any “out-of-order” moves which drastically change

the relative positions of the blocks are likely to be rejected (Figure 4-7):

Figure 4-7 Move likely rejected because of unfavourable impact on other optimization goals.

Consequently, each block can move to the right only after the block ahead of it is

moved (Figure 4-8):

The tile-slope compaction cost will bonus moves to the right so that moves which

result in connection cost tie-breaks will tend to be resolved in favour of rightward

movement (over time). Nevertheless, the correct succession of moves have to be

proposed for this to happen efficiently (reasonable run-time) and effectively (for

example, taking advantage of gaps which temporarily open between blocks by squeezing

a block between them).

 71

Figure 4-8 The "correct" move sequence will successfully move the blocks off the edge.

The solution is to introduce a type of multiple-block move, which attempts to

successively move all blocks to the center of the tile one after another. By making

compaction a priority of the move generator, more efficient, and effective tile compaction

can take place.

On average the move generator selects this multiple-block move a particular

number of times per temperature. The move considers all blocks, one after another.

Blocks closer to the tile center (Manhattan-wise) are considered first. The following

pseudo-code summarizes the compaction move process:

COMPACTION_MOVE_TYPE := SELECT ONE OF FOUR COMPACTION MOVE TYPES
FOR EACH CELL, STARTING WITH CELLS CLOSER TO TILE CENTER

PICK A DIRECTION TO NUDGE THE CELL CLOSER TO THE CENTER (BASED ON THE COMPACTION MOVE TYPE AND THE
CELL POSITION)

IF THE CELL MOVE WOULD CREATE AN ILLEGAL PLACEMENT

REJECT PROPOSED MOVE
ELSE IF PROPOSED MOVE IS REJECTED FOR COST REASONS

DO NOT PERFORM MOVE
ELSE

PERFORM PROPOSED MOVE AND UPDATE COST

Notice that all cells may be moved by a compaction move. In that sense, this

move is an all-block or all-cell move. There are four types of compaction moves: (1)

move blocks above center downwards and move blocks below center upwards (Figure

4-9); (2) move blocks left of center rightwards and move blocks right of center leftwards

 72

(Figure 4-10); (3) move blocks above center downwards and move blocks below center

upwards, only if they are not horizontally (as opposed to vertically) more distant from the

center (Figure 4-11); (4) move blocks left of center rightwards and move blocks right of

center leftwards, only if they are not vertically (as opposed to horizontally) more distant

from the center (Figure 4-12).

Figure 4-9 Proposed Moves of First Compaction Move Type

Figure 4-10 Proposed Moves of Second Compaction Move Type

 73

Figure 4-11 Proposed Moves of Third Compaction Move Type

Figure 4-12 Proposed Moves of Fourth Compaction Move Type

Move types (1) and (2) tend to produce t-shaped arrangements as blocks are

squashed along vertical and horizontal central axes (Figure 4-13). Move types (3) and (4)

tend to produce x-shaped arrangements (Figure 4-14). Therefore, if either (1) and (2), or

(3) and (4) are used in isolation, large portions of free space are left at the edges of the

tile. By utilizing all four types of moves, overall compaction takes place to fit the

rectangular shape of the tile.

 74

Figure 4-13 t-Shaped Arrangement Produced by Compaction Move Types (1) and (2)

Figure 4-14 x-Shaped Arrangement Produced by Compaction Move Types (3) and (4)

One unit (distance) moves are suggested (proposed) for each of the blocks. These

proposed “shift” moves are still subject to the same cost arbitration as a normal move.

 75

Therefore, all the specialized move generation really does is sequence and promote

“beneficial” moves instead of relying on fortune and long run times.

Multiple-unit (distance) moves were experimented with and showed no advantage

over single-unit moves. The compaction move types all propose one-dimensional moves.

Two-dimensional moves were experimented with; however, there was no perceivable

advantage over one-dimensional moves. In fact, blocks tended to get in the way of each

other, obstructing efficient compaction.

Since compaction moves affect all cells, they are performed relatively

infrequently. The frequency they are performed with is specified as the average number

of times they are performed per temperature. If compaction moves are not performed, the

run time of the tool increases greatly because compaction occurs very slowly. Therefore,

when the performance of 0 compaction moves per temperature was compared with the

performance of 4 compaction moves per temperature (in Table 4-4), the tool was

terminated in the former case once the respective run times were over twice as long as in

the latter case; therefore, the reported free space percentages for the former case are not

final values. Nevertheless, notice the dramatic improvement in free space and run time.

Table 4-4 Compaction-Move Effect

 Average of 0 Compaction
Moves per Temperature (?)

Average of 4 Compaction
Moves per Temperature (?)

Improvement
(? Result/? Result)

Number of
LUTs

Free Space / Cell Area Run Time (s) Free Space / Cell Area Run Time (s) Free Space /
Cell Area

Run
Time

1 2.60 1148 0.12 236 0.047 0.206
2 2.83 907 0.12 372 0.044 0.410
3 3.61 1886 0.11 595 0.031 0.315
4 1.81 2341 0.10 509 0.057 0.217
5 4.14 5821 0.13 852 0.030 0.146
6 2.71 15501 0.13 1116 0.049 0.072
7 1.37 > 2798 0.11 1399 N/A N/A
8 5.05 > 3146 0.12 1573 N/A N/A
9 4.79 > 4040 0.11 2020 N/A N/A

10 5.34 > 4460 0.11 2230 N/A N/A
Average 0.043 0.228

 76

By changing the average number of multiple-block compaction moves per

temperature, the following trends can be observed (Graph 4-4).

Free Space, Run-Time, Wirelength vs.
Average Number of Tile-Compaction Moves Per

Temperature

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

0 5 10 15 20 25 30 35

Average Number of Tile-Compaction Moves Per Temperature

Normalized Extra Area Normalized Run-Time Normalized Wirelength

Graph 4-4 Free Space, Run-Time, Wirelength vs. Average Number of Tile Compaction Moves per
Temperature

Notice the run time improves as the tile-compaction frequency is increased. This only

happens up to a point because the tile-compaction moves are relatively expensive (each

move involves all blocks). The reason an upwards trend in run-time is not observed is

because once rapid compaction takes place, the optimizer is likely to experience a series

of reheat anneals without additional compaction; hence, the optimizer’s exit criterion is

satisfied and the optimizer exits (terminating execution and keeping the run time small).

Overall wirelength begins to increase somewhat. This relatively “weak increase”

is probably due to the fact that rapid tile compression results in compacted tiles sooner.

Compacted tiles inhibit the ability of blocks to achieve adequately “good positions”

 77

relative to one another because a large portion of proposed moves are infeasible due to

block overlap.

Extra area (free space) is reduced up to a point. As the more effective tile-

compaction move frequency is increased, surplus tile area is initially reduced because

compaction opportunities can be better and more frequently leveraged (for example,

squeezing between blocks temporarily separated). This trend continues until the tile-

compaction rate is increased to the point where the essentially greedy multiple-block

compaction takes place almost immediately after compaction opportunities present

themselves. If rapid tile compaction takes place, followed by a series of reheat anneals

without apparent forward progress, the optimizer’s exit criterion will be satisfied and the

optimizer will terminate before the other compaction mechanisms can effectively engage

and explore compaction possibilities.

4.4.3 BLOCK ROTATION AND FLIP (CELL TEMPLATE SWAP)

The cell specification in the netlist assumes particular layout orientations for the

cells. Cell layout orientation determines cell pin placement and, consequently, the

particular layout orientation affects placement quality. There is nothing that necessitates a

particular layout orientation because cell layouts can be flipped and rotated to a certain

extent re-arranging the relative cell pin positions. The netlist builder does not consider

cell placements when determining the orientation, therefore, the orientation it chooses

may be highly sub-optimal.

By expanding the placer move space to explore cell layout possibilities, cell

orientations can be considered and explored during placement optimization.

 78

Nevertheless, not only does this move potentially rotate cells and change relative pin

placements, it also potentially affects cell aspect ratio s allowing cells to better abut and

squeeze between other cells. Nevertheless, currently the netlist builder chooses aspect

ratios for all of the cells, which are close to square, so such benefits are not readily

realized during actual placement.

Block rotation and flip moves are facilitated by the creation of cell templates in

the placer. These templates are loaded from the initial netlist specification to represent all

possible flips and rotations the cell can undergo without requiring re- layout. During

placement, each cell has a set of templates that can be imposed to re-arrange pin positions

and resize the cell to represent flip and/or rotation possibilities. When the block rotation

and flip move imposes a new cell template, it maintains the position of the lower-left

corner of the cell. The placement change this move results in is measured with the

standard cost arbitration scheme and the move can be accepted or rejected (undone)

based on the resulting cost difference and the current placement temperature.

Experiments were formed to determine if cell repositioning, at the same time as

template swapping, was beneficial. It turns out that there is no advantage in coupling

those two types of moves. Therefore, for the sake of move generation simplicity, both

types of moves are proposed independently (and do not occur together). Perhaps, there is

an added benefit in that this encourages smaller overall placement changes. Annealers

appear to function best when the cost space is uniform and the moves selected from the

move space result in small placement perturbations. If the move space is such that

drastically different placements result from every move, the placer randomly explores

wider scattered regions of the cost space rather than carefully considering one local

 79

region before moving on to another.

While design rules permit all cell re-orientations, transistor characteristics, due to

uncertain mask alignment and patterning in orthogonal directions in modern

semiconductor processes, might be largely affected by 90-degree rotations. [9] Assuming

CMOS-technology is used, speed would only be affected, circuit functionality should not.

Therefore, the degrees of freedom offered to this type of move should be reconsidered

when speed (performance) considerations are integrated into the tool or the cells are laid

out using a technology other than CMOS whose functionality is affected by transistor

characteristics.

Furthermore, currently the tool does not consider cell layouts that are beyond

simple re-orientations of the cell specification in the netlist. One natural extension is to

permit the tool to read in several different layout possibilities for several cells allowing it

to explore highly different cell aspect ratios and pin possibilities when placing cells. At

that point, the decoupling between cell translations and template changes might be

reconsidered, because a compound move might be able to explore areas of the cost space

not readily reachable by a series of independent translations and template changes. That

said, as discussed in 5.2, experimentation indicates that highly non-square aspect ratios

are generally detrimental; hence, exploring drastically different cell aspect ratios might

not be beneficial. Regardless, adding consideration of many cell templates, to explore an

expanded range of layout possibilities, should be relatively easy and should not require

changes to the optimizer, only changes to the optimizer’s data structure loaders

(informing it of the layout possibilities); that is, the template swapping code is currently

general enough to handle such swaps.

 80

The frequency of template moves (percentage of moves which are template

moves) is varied to produce Graph 4-5. There is no noticeable change is free space

percentage as the frequency of this move is changed within reasonable values. Notice the

increase in run time as the template move frequency is increased. This increase in run

time is not due to the fact that template moves are more expensive than regular moves.

The increase in run time is due to the fact that by performing template moves, the

optimizer is distracted from performing other moves, especially those that contribute to

tile compaction. Therefore, the optimizer does not complete (with a highly compacted

tile) until it has run for a longer time. Nevertheless, notice the improvement in wirelength

due to this type of move. The trend of improving wirelength reverses itself when this

move is performed very frequently because this biased emphasis on template moves

detracts from overall placement quality. Table 4-5 indicates that template moves reduce

wirelength by about 3%.

Table 4-5 Effect of Template Moves

 Template Move Frequency: 0
(?)

Template Move Frequency: 0.08
(?)

Improvement
(? Result / ?
Result)

Number of
LUTs

Run Time (s) Wirelength Run Time (s) Wirelength Run Time Wirelength

1 539 35826 552 34250.3 1.02 0.96
2 808 44826.5 784 41743.4 0.97 0.93
3 1134 50149.1 1176 49894.2 1.04 0.99
4 1077 48382.8 976 47729.6 0.91 0.99
5 1860 62605.7 1956 60973.1 1.05 0.97
6 2468 71493.2 2578 69401.9 1.04 0.97
7 3107 79121.9 3225 75749.3 1.04 0.96
8 2773 84448.8 3043 79296.3 1.10 0.94
9 3520 91003.4 3517 89498.3 1.00 0.98

10 5400 104721 5979 100888 1.11 0.96
Average 1.03 0.97

 81

Run-Time, Wirelength vs.
Template-Move Frequency

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Template-Move Frequency

Normalized Run-Time Normalized Wirelength

Graph 4-5 Run Time, Wirelength vs. Template Move Frequency

4.4.4 BLOCK EQUIVALENT-PIN SWAP

Particular cells have equivalent pins in the sense that a given set of connections

attached to those pins can be swapped without affecting the functionality of the circuit.

For example, a programmable multiplexer’s inputs are equivalent in the sense that

connections to its inputs can be swapped freely because the SRAM cells which control

the multiplexer can be programmed to any values. Netlist generation makes the various

connections to equivalent pins without considering placement, therefore, it makes no

effort to optimize the relevant connections for placement considerations.

A mechanism is created (block equivalent-pin swap) to allow the placer to swap

connections to equivalent pins. That way, as the placer places cells, the connectivity can

be swapped (arbitrated by the cost function) to achieve greater placement improvement

through an expansion of the proposed move space. During netlist loading, atomic pin

 82

groups and compatible pin groups are formed based on the cells read in. Each compatible

group contains a set of two or more atomic pin groups. An atomic pin group defines a set

of pins whose connections must be swapped with those of another atomic pin group (in

the same compatible group). All the connections corresponding to an atomic pin group

must be swapped with the corresponding connections of the other atomic pin group; that

is, the atomic pin grouping must be maintained (hence, the term atomic).

A few examples can help illustrate this. Cons ider the control pins of a

multiplexer. To facilitate swapping of control pins the netlist loader would create the

following compatible group with the corresponding atomic pin groups:

COMPATIBLE_GROUP_1 {
 ATOMIC_PIN_GROUP_1(CONTROL_A, NOT_CONTROL_A)
 ATOMIC_PIN_GROUP_2(CONTROL_B, NOT_CONTROL_B)
 ATOMIC_PIN_GROUP_3(CONTROL_C, NOT_CONTROL_C)
}

During the anneal, if a pin swap move is selected, and compatible_group_1 of the

respective block is selected (a connection swap between control pins),

atomic_pin_group_1, atomic_pin_group_2, and atomic_pin_group_3 would be available

for swapping. If atomic_pin_group_1 and atomic_pin_group_2 are selected for swapping,

the connections attached to CONTROL_A and CONTROL_B will be swapped and the

connections attached to NOT_CONTROL_A and NOT_CONTROL_B will be swapped.

Therefore, the respective atomic pin group ings are maintained; that is, swapping

CONTROL_A and CONTROL_B can not occur in isolation because the atomic pin

groupings of compatible_group_1 guarantee both the CONTROL pins and the

NOT_CONTROL pins will be swapped together. This is important because the

functionality of the multiplexer could not be preserved if SRAM ? was connected to

CONTROL_A and NOT_CONTROL_B, for example.

 83

Of course, single pin swaps are also supported by this scheme by including only a

single pin in each atomic pin group. Consider the three additional compatible pin groups:

COMPATIBLE_GROUP_2 {
 ATOMIC_PIN_GROUP_1(CONTROL_A)
 ATOMIC_PIN_GROUP_2(NOT_CONTROL_A)
}
COMPATIBLE_GROUP_3 {
 ATOMIC_PIN_GROUP_1(CONTROL_B)
 ATOMIC_PIN_GROUP_2(NOT_CONTROL_B)
}
COMPATIBLE_GROUP_4 {
 ATOMIC_PIN_GROUP_1(CONTROL_C)
 ATOMIC_PIN_GROUP_2(NOT_CONTROL_C)
}

These groups would facilitate swapping of the connections attached to the

CONTROL and NOT_CONTROL pins ; logically, this is permitted because of the

flexibility offered by the arbitrariness of SRAM programming – simply programming an

SRAM bit to its complement value would make the resulting circuit function

equivalently.

Another potential application of the connection-swapping mechanism is in the

utilization of layout options. Often cell layouts provide a choice of several locations

where a particular signal can be connected. These options may take the form of several

exposed ports that a signal can be connected to or a location where a via can be placed to

get a signal out. In any case, these options allow flexible use of the cell in that

connections can be made to the closest convenient option rather than having to target a

single pin. By creating compatibility groups to represent these options, a given

connection can be swapped between these various possibilities with the placer cost

function arbitrating the choice. Consider the following compatible group as an example:

COMPATIBLE_GROUP_5 {
 ATOMIC_PIN_GROUP_1(CLOCK_OPTION_1)
 ATOMIC_PIN_GROUP_2(CLOCK_OPTION_2)
 ATOMIC_PIN_GROUP_3(CLOCK_OPTION_3)
}

 84

This compatible group can be used to represent the various pins to which a clock

signal can be routed. The netlist generator will randomly select a given option (such as

CLOCK_OPTION_1) to connect the clock to. The pin-swapping mechanism in the placer

will then automatically consider swapping the clock connection to the other options. The

placer currently supports option optimization, however, the netlists explored do not

specify options and consequently their introduction is left to future work.

For the cells considered in the explored netlists, multiplexers, SRAMs, and LUTs

are viable candidates for equivalent-pin swapping. All the input pins of a multiplexer are

candidates for connection swapping, because the programming of the SRAM control bits

of the multiplexer can be adjusted. The connections attached to a control pin and its

complement can be swapped as discussed above. Pairs of control/control_complement

pins can be swapped, as long as the pairings are maintained through atomic pin groups as

discussed above. Connections attached to the output pins of an SRAM can be swapped,

again because of programming flexibility. Finally, LUT inputs can be swapped (in pairs)

because the SRAM programming bits programming the LUT can be adjusted in response;

the connections attached to a LUT-input pin and its complement pin can be similarly

swapped; also, the connections programming the LUT from SRAM cells can be swapped

freely as well.

It turns out that a 1.4% improvement in wirelength can be achieved without

sacrificing tile area compaction or run-time speed. This modest improvement is over that

achieved by block rotation and flips which sort out inappropriate cell connectivity (for a

given placement) to a certain extent. Nevertheless, the power of this move type will be

uncovered primarily through the exploration of options in the cell layouts that should be

 85

explored in future work.

4.5 OTHER OPTIMIZATIONS

Thirdly, optimizations which are not entirely move-based or cost-based are

presented.

4.5.1 INITIAL LARGE-GRID PLACEMENT

Achieving small area tiles is an optimization goal. Earlier work on ATL started

off with a relatively small tile area and tried to optimize wirelength within that area (there

was no mechanism to shrink the tile throughout the anneal). The initial tile area was 1.4

times the total area occupied by the cells, and this value was empirically determined as a

good value because initial placement would fail for lower values. Besides the limitation

of having tile area determined by initial placement capability, there is a fundamental

optimization problem/tradeoff created by this approach. The smaller the initial tile area,

the better the final tile area and, hence, the greater the satisfaction of a low-area goal.

Nevertheless, the smaller the tile area, the less freedom of movement available to the

move generator. More compact placements are inherently crowded with cells. The

placement move generator operates by picking a random cell to move and a random

location to move the cell to; as described in 2.5.2.4, the placer move generator gives up if

it can not quickly select a set of cells to move which will result in a post-move legal

placement. Therefore, the more crowded the cells, the more difficult it is to find legal

moves to propose. This lack of move freedom reduces the optimization effectiveness of

 86

the placer because the annealer can not explore the cost space effectively. Therefore,

there is a trade-off, between smaller tile areas and lower utilization of routing resources

(effective optimization of wirelength cost), present in the earlier work on ATL.

This tradeoff in the initial version of ATL can be readily observed. Notice in

Graph 4-6 how the legal move percentage increases as the AREA_FUDGE_FACTOR is

increased (increasing the tile area). Also notice how the normalized wirelength improves

steadily as the area is initially increased. This is despite the fact that larger tile areas mean

larger port/pin distances and more spread out nets (more wiring). Therefore, the ability of

the optimizer to perform effectively is greatly inhibited by small initial tile sizes because

of cell crowding.

Legal Move Percentage, Wirelength Cost vs.
AREA_FUDGE_FACTOR

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1 1.5 2 2.5 3 3.5 4 4.5

AREA_FUDGE_FACTOR

N
or

m
al

iz
ed

 W
ire

le
ng

th

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Le
ga

l M
ov

e
P

er
ce

nt
ag

e

Normalized Wirelength Legal Move Percentage

Graph 4-6 Legal Move Percentage, Wirelength vs. AREA_FUDGE_FACTOR

This research modified ATL so it currently optimizes for tile area by alternating

between arranging the cells to permit tile shrinkage (balanced with other optimization

 87

objectives) and collapsing the tile, until further tile collapse can not “easily” be achieved.

Therefore, there is no advantage in selecting a small initial tile size because the tile area

will be optimized throughout the placement (balanced dynamically with other

optimization goals). Considering the impact of cell crowding on wirelength and other

optimization goals, it is advantageous to select a large initial tile size to permit cells to

achieve globally good positions, with local optimizations occurring as the tile is shrunk.

An initial large-grid placement (refer to Figure 4-15 for an illustration of the spacing

between cells that characterizes this large-grid placement) anneal serves this purpose.

Subsequent reheat anneals between tile shrinks serve to make the local optimizations

necessary to fix changes due to the tile shrink and to further optimize the placement as

cells find good positions around each other in the context of the smaller tile.

Figure 4-15 Initial Large-Grid Placement

The goal of the large-grid initial placement is to give cells the movement freedom

and flexibility to achieve good global positions relative to one another. Therefore, the

 88

initial grid is sized large enough so there is enough space available to place all cells and

cells are separated at regular distances (determined by the largest cell dimensions) so they

can swap freely with one another. That way, illegal moves are no longer a consideration.

This freedom of movement tends to produce good global placement results despite the

fact that cells are artificially kept apart, and are prevented from bunching. Global

placement seems to be at least as important, if not more important, than locally realistic

placement – perhaps, because the sorting out of local positions occurs in the later phases.

The ports are still placed in “standard” port slots because they can always swap freely

with one another. The large initial placement grid also has an added bonus of making

initial placement trivial (the tile is sized to explicitly fit every cell in a separate non-

overlapping section).

There is a natural reduction of cell movement freedom (a gradual solidifying of

position) as the tile collapses. Cells can only jiggle around because substantial moves are

likely to cause irreconcilable overlap with other cells (illegal proposed moves).

Nevertheless, the good cell arrangements determined by the initial large-grid placement

anneal and earlier reheat anneals should be more explicitly preserved. Consequently, the

reheat anneals start with a low enough placement temperature to preserve placement

quality for the most part, while leaving room for some hill-climbing capability.

This research considered acceptance ratio a good measure of anneal progress

independent of the circuit netlist – precise temperature values are a certain function of

cost and, hence, are netlist dependent. Therefore, the reheat anneal temperature is

selected to be the temperature that achieves a particular acceptance ratio during the initial

large-grid placement. Experiments show an acceptance ratio of 0.2875 yields good

 89

results. The minimum range-limit used for the initial large-grid placement permits cells to

swap with cells up to a distance equal to two times the “largest-cell dimension” away. It

was found that this value gave cells adequate freedom to move while restricting the move

space sufficiently (at lower temperatures) to adequately narrow the search space (propose

fruitful moves).

Consider the difference this technique has on final wirelength (Table 4-6). The

technique reduces wirelength by 37%. Both runs produced the same final free space

results (within experimental noise). Notice how the run with no initial large-grid

placement, that starts with a smaller initial tile size, terminates sooner because tile

compaction occurs sooner and consequently the final optimizer exit criterion is satisfied

earlier.

Table 4-6 Effect of Initial Large-Grid Placement without Run-Time Adjustment

 No Initial Large-Grid Placement
(Initial Tile Size 1.4 Times Cell
Area) (?)

Initial Large-Grid
Placement (?)

Improvement
(? Result / ?
Result)

Number of
LUTs

Run Time (s) Wirelength Run Time (s) Wirelength Run
Time

Wirelength

1 29 46300.2 40 33187.9 1.38 0.72
2 41 61070.1 56 41846.9 1.37 0.69
3 55 76340.6 74 50587.1 1.35 0.66
4 38 79032.1 55 48972.8 1.45 0.62
5 64 100415 137 59091.6 2.14 0.59
6 90 119091 172 69541.4 1.91 0.58
7 112 126008 206 74605.5 1.84 0.59
8 119 128286 266 76651.6 2.24 0.60
9 146 142934 249 88005.3 1.71 0.62

10 183 158069 275 97323.9 1.50 0.62
Average 1.69 0.63

To ensure that both runs could be evaluated more fairly, the no initial large-grid

placement run was allowed to spend more time on each anneal and reheat anneal

temperature to balance the run times (Table 4-7). Again, essentially, the same final free

space results were produced by both runs (within experimental noise). Notice how the

technique still produces better wirelength results. In fact, the extra run time does very

 90

little to improve the no initial large-grid placement results because of the inability to

adequately explore the cost space.

Table 4-7 Effect of Initial Large-Grid Placement with Run-Time Adjustment

 No Initial Large-Grid Placement (Initial
Tile Size 1.4 Times Cell Area) (?)

Initial Large-Grid
Placement (?)

Improvement
(? Result / ?
Result)

Number of
LUTs

Wirelength Wirelength Wirelength

1 43304.7 33187.9 0.77
2 61466.3 41846.9 0.68
3 72534.2 50587.1 0.70
4 68205.2 48972.8 0.72
5 93268 59091.6 0.63
6 109340 69541.4 0.64
7 122972 74605.5 0.61
8 118497 76651.6 0.65
9 133225 88005.3 0.66

10 154299 97323.9 0.63
Average 0.67

4.5.2 SRAM REWEAVE

The netlist generator does not consider the placement of the cells when it assigns

SRAMs to word and bit lines. Therefore, for the most part, the word and bit line

assignments are random in that cells ultimately placed in two remote locations of the tile

may be attached to SRAMs driven by the same programming lines. Since the word and

bit lines run the length of the tile, reducing the amount of zigzagging necessary to route

them can result in a large savings of routing resources. Another way of looking at this is

the placer will try hard to minimize the routing resources needed to route the SRAM

word and bit lines, consequently tugging them away from logic they are attached to (or

tugging that logic away with them). Either way, these two effects produce conflicting

optimization goals (which the placer can not satisfy). Furthermore, the tradeoff created is

artificial in the sense that it is a function of the arbitrary word and bit line assignments

made by the netlist generator.

 91

Consider Figure 4-16 for an illustration of a bad programming line assignment.

The lines emanating from the SRAM, enclosed by the solid oval close to the center,

connect to SRAMs (enclosed in dotted ovals) attached to this one by programming lines.

Notice how the programming line assignments are such that the respective SRAM cell is

attached to SRAMs throughout the tile because those SRAMs gravitate towards the logic

they are attached to.

Programming-Line Ports

Programming-Line PortConnected SRAMs

Programming-Line Port

Figure 4-16 Illustration of Bad Programming-Line Assignment

A mechanism was created that is invoked between the reheat anneals to reweave

the SRAM word and bit lines depending on the current placement. This decouples

placement consideration of SRAM programming lines from the arbitrary assignments

made by the netlist generator. In fact, the initial large-grid placement does not consider

the cost of the programming lines at all. That way, the SRAMs can be tugged by the logic

they are attached to without the arbitrary SRAM programming lines impairing

movement. During the reheat anneals, the SRAM programming lines are monitored,

 92

however, because they eventually have to be routed and should be considered when

optimizing for wirelength and congestion.

The SRAM reweaving mechanism simply rips up all currently connected SRAM

programming lines and then re-connects the SRAMs to their closest bit and word lines in

order; it is performed between reheat anneals. To preserve the tile-ability of the tile, the

ports associated with a given programming line are placed opposite one another at

opposite ends of the tile. Therefore, the programming lines would ideally be one unit in

width. The placement of their respective ports determine a natural ordering of the

programming lines from left to right and from bottom to top. This ordering determines

the reweaving. The bottom-most line is woven through the bottom-most SRAMs until the

line is full. The next-bottom-most line is woven through the next-bottom-most SRAMs

until that line is full. This process repeats until all the SRAMs are rewoven. Refer to

Figure 4-17 for an illustration of the result of reweaving. In fact, it is the association of

the SRAMs more than which ports they are associated with that matters, because the

ports tend to move more freely to match the position of the SRAMs they are tied to rather

than the other way around. This is probably due to the fact that the ports can move and

swap with other ports without experiencing the overlap problems faced by the cells; also,

the ports are not tied down like the SRAMs are to associated logic.

 93

Programming-Line Ports

Ideal Line Paths

Post-Reweave
Connectivity

SRAM Cells

Figure 4-17 Example of an SRAM Re weaving

Notice how SRAM reweave capability can correct the bad programming- line

assignment situation illustrated in Figure 4-16. The tile layout shown in Figure 4-18

illustrates a good programming line assignment achieved through the SRAM reweaving

technique. Notice how the SRAMs, connected to the one inside the solid oval (same

SRAM as in previous illustration, but simply rotated due to block rotation move), are

aligned close to the ideal programming line paths; consequently, the connectivity is much

less spread out.

 94

Programming-Line Port

Programming-Line Port

Connected SRAMs

Programming-Line Port

Programming-Line Port

Figure 4-18 Illustration of Good Programming Line Assignment Achieved by SRAM Re weave

Table 4-8 Effect of SRAM Reweaving

 No SRAM Reweaving (?) SRAM Reweaving (?) Improvement
(? Result / ? Result)

Number of LUTs Wirelength Wirelength Wirelength
1 37679.8 33187.9 0.88
2 45947.8 41846.9 0.91
3 54596.2 50587.1 0.93
4 53482.9 48972.8 0.92
5 69831.6 59091.6 0.85
6 78806.2 69541.4 0.88
7 85432.9 74605.5 0.87
8 89288.7 76651.6 0.86
9 100515 88005.3 0.88

10 110434 97323.9 0.88
Average 0.89

Consider the impact SRAM reweaving has on wirelength results (Table 4-8). The

no SRAM reweaving run constantly monitored programming lines throughout

optimization because ultimately the respective connections were static (because of the

lack of reweaving) and would have to be routed as is. The run times and the free space

results of the two runs were the same (within experimental noise). Notice how the 11%

 95

wirelength improvement is greater than the 4% observed in [1] (2.5.3) (when SRAMs

were allowed to swap only within a regular row and column arrangement).

4.6 CUMULATIVE EFFECT OF OPTIMIZATION TECHNIQUES AND
COSTS

The following results summarize the effect the implemented heuristics and costs

have on placement quality (wirelength and tile area) considering placement run time.

Both the initial ATL and the ATL produced by this research do not rely on particular cell

sizes or the number of cells. They are designed to lay out FPGA tiles that consist of the

respective cell types, irregardless of exact composition. To illustrate this, the results

presented in Table 4-9 are based on 1-10 LUT architectures with more realistic amounts

of wires per FPGA routing channel than those used in the benchmark circuits created by

[1]; the wire counts were extrapolated from the number of wires (indicated in datasheets)

used in Xilinx Inc.’s Virtex-E [10] and Virtex-II [11] architectures. Nevertheless, it

should be noted that the results of the comparison apply to many varying architectures

because both tools are independent of precise architecture details. Initial ATL run time

was adjusted so that it had equal CPU time to that of the ATL from this research by

increasing the number of moves it explores per temperature. The smallest tile (1 LUT,

436 ports and 542 cells) is laid out in about 30 seconds while the largest tile (10 LUT,

3256 ports and 4475 cells) takes about 1.5 hours to lay out. Initial ATL was modified to

report final wirelength using the improved bounding-box measurement (3.3.3), after it

completed optimization using its standard worst-case bounding-box measurement

(2.5.2.3).

 96

Table 4-9 Results of this Research Compared with those of Initial ATL (Tile-Area Factor: 1.4)

 Initial ATL
(Tile-Area Factor: 1.4) (?)

ATL with Heuristics from
this Research (?)

Improvement
(? Result / ? Result)

Number
of LUTs

Tile-Area
(Placement/Routing

Grid Squares)

Wirelength Tile-Area
(Placement/Routing

Grid Squares)

Wirelength Tile-Area
(Placement/Routing

Grid Squares)

Wirelength

1 24336 38207.41 20083 30990.1 0.83 0.81
2 52441 101136.7 41814 75985.3 0.80 0.75
3 86436 182827.1 68096 131265 0.79 0.72
4 135424 227825.7 64770 159542 0.48 0.70
5 207025 358311.8 117294 256768 0.57 0.72
6 313600 496295.9 148980 339182 0.48 0.68
7 369664 594107.8 177177 410557 0.48 0.69
8 480249 727683 197132 477889 0.41 0.66
9 579121 864912 230868 550271 0.40 0.64

10 665856 978329 276315 629134 0.41 0.64
Average 0.56 0.70

The only mechanism available to decrease tile area using the initial version of

ATL involved manually re-running the tool with lower and lower tile-area factors until

initial placement failure or tile area was limited by port perimeter size (only one port per

port location was supported).

Table 4-10 Results of this Research Compared with those of Initial ATL (Minimum Tile Area)

 Initial ATL
(Minimum Tile Area) (?)

ATL with Heuristics from
this Research (?)

Improvement
(? Result / ? Result)

Number
of LUTs

Tile-Area
(Placement/Routing

Grid Squares)

Wirelength Tile-Area
(Placement/Routing

Grid Squares)

Wirelength Tile-Area
(Placement/Routing

Grid Squares)

Wirelength

1 22500 41967.36 20083 30990.1 0.89 0.74
2 49284 103646.6 41814 75985.3 0.85 0.73
3 82944 184952.3 68096 131265 0.82 0.71
4 135424 227825.7 64770 159542 0.48 0.70
5 207025 358311.8 117294 256768 0.57 0.72
6 313600 496295.9 148980 339182 0.48 0.68
7 369664 594107.8 177177 410557 0.48 0.69
8 480249 727683 197132 477889 0.41 0.66
9 579121 864912 230868 550271 0.40 0.64

10 665856 978329 276315 629134 0.41 0.64
Average 0.58 0.69

It turns out the initial version of ATL can only reduce the tile area of 1-, 2-, and 3-

LUT architectures (Table 4-10). The other architecture tiles are limited by port perimeter.

It should be noted that the tiles Initial ATL did shrink are still, at least, 10% larger than

the tiles produced automatically by this research’s ATL because Initial ATL can not fit

 97

the cells within the tile (initial placement fails). Notice also how the decrease in tile area

produced manually using Initial ATL is accompanied by an increase in wirelength. This

is because even though the tile dimensions are smaller, non-optimal cell arrangements

result because the tool can not optimize wirelength as effectively within the constraints of

the smaller tile. This research’s ATL produces smaller tile areas combined with less

overall wirelength.

 98

Chapter 5
CONCLUSION

5.1 FINAL RESULTS

As stated earlier, the goal of this research was to develop placement heuristics that

could be incorporated into the Automatic-FPGA Tile Layout (ATL) tool that attempt to:

(1) minimize the area of laid out tiles, (2) minimize the wire length needed to

interconnect the cells and ports within the tile, and (3) balance wiring requirements over

the tile area to prevent localized over-demand of wiring resources and, hence, avoid

routing congestion.

This research has shown that various heuristics, some of which make use of

knowledge of the circuitry within an FPGA, can be used to improve the layout

performance of the tool. As presented in 4.6, the heuristics and costs added to ATL

reduce the size of the tiles produced by 42%. The techniques developed also manage to

simultaneously reduce overall wire length by 31%. Currently, the empty space in the

layouts generated by ATL is, approximately, 10% of the actual cell area.

As discussed in 4.3.3, a congestion model was created to measure localized over-

demand of wiring resources. A placement cost was developed along with heuristics to

effectively and efficiently minimize the size and number of routing congestion “hot

spots” across the chip, as measured by the congestion model proposed. It was shown that

adjustment of the relevant overuse cost weighting can reduce congestion at the expense

of increased overall wirelength and tile area. Further study and validation of the

 99

congestion model, congestion cost, and the relevant heuristics are left to future work and

analysis, in the presence of an FPGA tile router.

5.2 FUTURE WORK

The outcome of this research motivates several avenues of further investigation,

some of which are discussed below.

As mentioned earlier, concurrent work was ongoing at the University of Toronto

to develop an FPGA tile router. This router performs multi- layer metal routing of the

connections attached to the cells and ports positioned (laid out) by the placement

optimizer of ATL (the focus of this research). Future work can examine the congestion

models and costs created by this research in the context of an actual FPGA tile router,

once it is complete. Future work on the router can also examine the impact of routing the

VDD, GND, and other “global signals” across the tile. It should be investigated whether

the layout (placement) optimizer should consider those signals (currently ATL does not

consider VDD and GND, but it does consider clocks) or whether their “global” nature

implies direct consideration is detrimental.

Concurrent work was also ongoing at the University of Toronto to create actual

transistor-level layouts for the functional cells floorplanned by the placement optimizer.

Future work can incorporate those layout details in the netlists produced by

VPR_LAYOUT so that ATL can generate layouts based on actual cell sizes and pin

positions rather than the current estimates made by VPR_LAYOUT. Mechanisms should

also be created to automatically generate transistor- level layouts of the cells to more fully

automate the process.

 100

Once layouts are created based on actual cell sizes and pin positions and those

layouts are successfully routed (with the FPGA tile router and adequate congestion

monitoring), performance of this integrated automatic layout mechanism can be

compared with actual hand-layouts of FPGA tiles to analyze the time-quality trade-offs

involved in the automation and convenience provided by VPR_LAYOUT and ATL.

Future work can also explore incorporating direct optimization of timing

requirements within the FPGA tile. As mentioned in Chapter 1, the speed of operation of

digital circuits implemented in FPGAs is an important factor that affects their practical

use. By imposing strict timing requirements (carefully determined and monitored) when

creating the FPGA tile, FPGAs can be produced that can implement high-speed digital

designs. This work may also involve dynamic insertion and modification of logic in

addition to layout optimization. Such work can also be extended to try to reduce FPGA

power consumption. As mentioned previously in this paper, the reduction of wirelength

(and, hence, resistance and capacitance) serves as a starting point for both these goals.

Other future work can examine, in more detail, fundamental assumptions in the

netlist builder. For example, as discussed in 2.4.3, the cells considered by ATL have been

bloated so that cells can be abutted against each other. That is, well spacing design rules

are accommodated by increasing the cell sizes. Perhaps, directly monitoring well spacing

during layout (placement) is more beneficial to reduce the overall cell area. Current, this

research produces tile layouts with 10% free space, so any additional dramatic savings in

tile area will be achieved by reducing cell area. Any effort on this front might also

consider breaking up the cells into their constituent wells so that they can be placed next

to each other, well contacts can be shared, etc.. A similar degree of abutment can be

 101

achieved by pitch-matching the various cells like in a standard-cell flow. However, such

constraints reduce the ability of the cells to “float” freely with respect to one another –

hopefully, achieving more ideal positions. Also such constraints limit the freedom of the

cells to be laid out in as little space as possible (no matter what shape, aspect ratio, they

may end up in). It is this freedom to consider a range of highly- tuned cell layout

alternatives that allows the tool to explore the range of possibilities available to a custom-

layout engineer. Too large a space of layout possibilities may encumber the tool,

however, so future work should examine these and similar tradeoffs in more detail.

The template moves and pin swaps discussed in 4.4.3 and 4.4.4 support different

implementations of cells and different routing “options” associated with a cell

(electrically equivalent contact points). Future work can explore this capability by

creating new cell layouts that the tool can use during layout that have routing “options”

that the tool can leverage. For example, good layouts of a cell with different aspect ratios

can be created so the tool can dynamically determine which layouts are suited to the

current tile placement. The move generator can also be experimented with to

simultaneously move a cell at the same time as its aspect ratio is changed, for example.

That said, this research did experiment which such moves, however, the particular move

type experimented with allowed any area-preserving aspect ratio change to be made. It

turned out that highly skewed (non-square) aspect ratios inhibited placement quality

because long-thin cells tend to highly interfere with one another. Therefore, if

experimentation is performed along these lines, highly skewed aspect ratios should be

avoided or, at least, carefully explored.

 102

By providing ATL with a variety of proposed cell templates to work with, the tool

can also investigate the benefits of different cell layout alternatives prior to actual cell

layout. Modifications can also be made to ATL to change cell aspect ratios and pin

positions freely, outside of the confines of cell templates. This free exploration can be

used to impose (determine) layout constraints for the cells. As indicated, experiments

performed during this research suggest that aspect ratios should be constrained to be

close to square. That said, since it is difficult for a layout designer (or custom-layout tool)

to satisfy highly-specific (tight) cell constraints, it is unclear how fruitful this line of

research is. The bottom-up flow is probably better, where cell layout engineers create a

variety of highly-optimized cell layouts that the tool uses as effectively as it can.

As mentioned in 3.2.1, a multi-phase optimization scheme was developed to

facilitate tile compaction during placement optimization. This research has shown that a

tight integration between tile compaction and placement optimization is advantageous for

balancing all the various optimization goals. Future work should explore a tighter

integration between optimization and compaction that may be necessary to adequately

avoid routing congestion – experienced by an actual FPGA tile router. If a new placement

move responsible for tile shrinking (port collapse around cells) is implemented, this move

can be made subject to the placement cost function like any other move. Therefore, tile

shrinks can be aborted if the placement of cells imply a port collapse would create too

much congestion around the edges, for example. Right now, the tile is shrunk between

reheat anneals as much as the cell arrangement permits. By creating a tile-shrink

placement move, compaction can be gradually (and slowly) performed as the anneal

 103

proceeds; this would hopefully result in a smooth collapse of the tile and a gradual

satisfaction of all placement goals.

From all these suggestions, it is clear that VPR_LAYOUT and ATL have opened

up many avenues of future work that may profit from and build upon this research.

 104

Appendix A
LAYOUT OPTIMIZER FLOW

The following pseudo-code summarizes the overall placement-phase flow:

BEGIN PLACEMENT-PHASE FLOW
READ CELL-LEVEL AND TRANSISTOR-LEVEL NETLISTS FOR CELL AND PORT INFORMATION
COMPUTE INITIAL PLACEMENT GRID SIZE TO ALLOW CELLS TO SWAP FREELY WITHOUT INTERFERENCE
PERFORM INITIAL PLACEMENT TO CREATE AN INITIAL LEGAL PLACEMENT
COMPUTE ALL PLACEMENT COSTS
DETERMINE WHICH NETS UPDATE OVERUSE COST
REMOVE COSTING OF SRAM LINES
INITIALIZE TILE-SLOPE AND TILE-SIZE COST MULTIPLIERS TO 0
COMPUTE INITIAL TEMPERATURE
BEGIN INITIAL PLACEMENT ANNEAL

FOR EACH PLACEMENT TEMPERATURE
PERFORM EITHER A STANDARD RANGE-LIMIT MOVE, BLOCK ROTATION AND FLIP, OR BLOCK

EQUIVALENT-PIN SWAP, KEEPING PORTS ALONG THE EDGE, CELLS INSIDE THE PORT
PERIMETER, AND THE TILE SIZE CONSTANT

REPEAT FOR DESIRED NUMBER OF MOVES IN TEMPERATURE

RECORD MAXIMUM TEMPERATURE (ß) THAT PRODUCES PROPOSED-MOVE ACCEPTANCE RATIO BELOW

a
REDUCE TEMPERATURE
ACCURATELY RE-COMPUTE WIRE OVERUSE COST BECAUSE INACCURACIES IN THIS COST BUILD UP

BECAUSE ONLY CERTAIN NETS UPDATE IT DURING AN ANNEAL TEMPERATURE
RE-DETERMINE WHICH NETS UPDATE OVERUSE COST
EXIT WHEN TEMPERATURE BELOW G AND THE COST DID NOT IMPROVE BY ? PERCENT OVER THE

TEMPERATURE
END PLACEMENT TEMPERATURE

END INITIAL PLACEMENT ANNEAL
ADD BACK COSTING OF SRAM LINES
BEGIN RE-HEAT AND TILE-SHRINK ITERATIONS

SHRINK TILE BY MOVING ALL CELLS, AS A GROUP, MAINTAINING RELATIVE CELL POSITIONS, TO
BOTTOM-LEFT EDGE OF TILE, AND COLLAPSE PORTS AROUND CELLS

RECORD TILE AREA IMPROVEMENT ?
RE-WEAVE SRAM LINES
RE-COMPUTE PLACEMENT COSTS
ADJUST TILE-SLOPE AND TILE-SIZE COST MULTIPLIERS TO IMPROVE SHRINKAGE POTENTIAL
BEGIN RE-HEAT PLACEMENT ANNEAL

REHEAT ANNEAL TEMPERATURE TO ß
FOR EACH PLACEMENT TEMPERATURE

PERFORM EITHER A STANDARD RANGE-LIMIT MOVE, A BLOCK-OFF-EDGE MOVE, BLOCK
ROTATION AND FLIP, BLOCK EQUIVALENT PIN SWAP, OR COMPACTION
MOVE, KEEPING PORTS ALONG THE EDGE, CELLS INSIDE THE PORT
PERIMETER, AND THE TILE SIZE CONSTANT

REPEAT FOR DESIRED NUMBER OF MOVES IN TEMPERATURE

REDUCE TEMPERATURE
ACCURATELY RE-COMPUTE WIRE OVERUSE COST BECAUSE INACCURACIES IN THIS COST

BUILD UP BECAUSE ONLY CERTAIN NETS UPDATE IT DURING AN ANNEAL
TEMPERATURE

RE-DETERMINE WHICH NETS UPDATE OVERUSE COST
DETERMINE (?,?) BASED ON WHETHER TILE-AREA IMPROVEMENT HISTORY DICTATES

THIS WILL BE THE LAST RE-HEAT ANNEAL
EXIT WHEN TEMPERATURE BELOW ? AND THE COST DID NOT IMPROVE BY ? PERCENT

OVER THE TEMPERATURE
END PLACEMENT TEMPERATURE

END RE-HEAT PLACEMENT ANNEAL
EXIT WHEN TILE-AREA IMPROVEMENT (?) IS BELOW THRESHOLD d, FOR e SUCCESSIVE ANNEALS

END RE-HEAT AND TILE-SHRINK ITERATIONS

 105

END PLACEMENT-PHASE FLOW

NOTE: A LEGAL PLACEMENT IS ONE WITH THE PORTS ARRANGED ON THE PERIMETER SO THE TILE IS TILEABLE; LESS THAN ?

PORTS ARE PLACED IN A GIVEN PORT POSITION; CELLS ARE PLACED IN THE INTERIOR OF THE TILE SO THEY DO
NOT OVERLAP WITH EACH OTHER.

 106

Appendix B
MOVE GENERATOR DETAILS

To support the variety of new placement moves, the move generator was modified

to perform these moves. The following pseudo-code indicates the current steps in move

generation:

MOVE_TYPE := RANDOMLY SELECT THE TYPE OF MOVE

SWITCH(MOVE_TYPE) {

CASE STANDARD RANGE-LIMIT MOVE OR BLOCK-OFF-EDGE MOVE:
PICK PRIMARY CELL TO MOVE AND DESTINATION LOCATION FOR CELL BASED ON RANGE LIMIT (OR

MODIFIED RANGE LIMIT FOR BLOCK-OFF-EDGE MOVE)
GATHER OTHER CELLS (GROUP B) THAT THIS PRIMARY CELL DISPLACES TO MAINTAIN A LEGAL NON-

OVERLAPPING CELL PLACEMENT
CONSIDER MOVING THESE CELLS INTO THE REGION THAT WOULD BE ABANDONED BY THE PRIMARY CELL
GATHER THE CELLS AROUND THE PRIMARY CELL DISPLACED BY GROUP B CELLS; THESE CELLS, ALONG

WITH THE PRIMARY CELL, FORM GROUP A
CONSIDER SWAPPING GROUP A AND B WITHOUT CREATING CELL OVERLAP

IF THE MOVE WOULD CREATE AN ILLEGAL PLACEMENT

REJECT PROPOSED MOVE
ELSE IF PROPOSED MOVE IS REJECTED FOR COST REASONS (OR MODIFIED COST DIFFERENCE FOR BLOCK-

OFF-EDGE MOVE)
DO NOT PERFORM MOVE

ELSE
PERFORM PROPOSED MOVE AND UPDATE COST

CASE BLOCK ROTATION AND FLIP:
PICK PRIMARY CELL TO ROTATE OR FLIP
PICK ROTATION AND FLIP TO PERFORM

IF SELECTED RE-ORIENTATION OF CELL, IN PLACE, CREATES ILLEGAL PLACEMENT

REJECT PROPOSED MOVE
ELSE IF PROPOSED MOVE IS REJECTED FOR COST REASONS

DO NOT PERFORM MOVE
ELSE

PERFORM PROPOSED MOVE AND UPDATE COST
CASE BLOCK EQUIVALENT-PIN SWAP:

PICK PRIMARY CELL WHOSE CONNECTIONS WILL BE SWAPPED
PICK PIN GROUP A ON THE BLOCK
PICK PIN GROUP B ON THE BLOCK WHOSE CONNECTIONS CAN BE SWAPPED WITH CONNECTIONS ATTACHED TO

PIN GROUP A
CONSIDER SWAPPING CONNECTIONS BETWEEN PIN GROUP A AND PIN GROUP B

IF PROPOSED MOVE IS REJECTED FOR COST REASONS

DO NOT PERFORM MOVE
ELSE

PERFORM PROPOSED MOVE AND UPDATE COST
CASE COMPACTION MOVE:

COMPACTION_MOVE_TYPE := SELECT ONE OF FOUR COMPACTION MOVE TYPES
FOR EACH CELL, STARTING FROM CELLS CLOSER TO TILE CENTER

PICK A DIRECTION TO NUDGE THE CELL CLOSER TO THE CENTER (BASED ON THE COMPACTION
MOVE TYPE AND THE CELL POSITION)

IF THE CELL MOVE WOULD CREATE AN ILLEGAL PLACEMENT

REJECT PROPOSED MOVE
ELSE IF PROPOSED MOVE IS REJECTED FOR COST REASONS

DO NOT PERFORM MOVE

 107

ELSE
PERFORM PROPOSED MOVE AND UPDATE COST

}

NOTE: THERE ARE TWO LEVELS OF MOVE REJECTION IN MOVE GENERATION AND ACCEPTANCE. MOVES MUST MAINTAIN LEGAL
PLACEMENTS; THEREFORE, PROPOSED MOVES CAN BE REJECTED BECAUSE THEY WOULD CREATE ILLEGAL PLACEMENTS. THIS IS
THE FIRST LEVEL OF MOVE REJECTION. MOVES CAN ALSO BE REJECTED BECAUSE THE LEGAL PLACEMENT THEY WOULD RESULT IS
DEEMED WORSE THAN THE CURRENT PLACEMENT BECAUSE OF COST REASONS. THIS SECOND LEVEL OF MOVE REJECTION IS
CONTROLLED BY THE PLACEMENT OPTIMIZATION SCHEME (SIMULATED-ANNEALING).

 108

Appendix C
GRAPHICAL ILLUSTRATION OF ATL CELL

PLACEMENT RUNS

ATL includes a graphical tool that displays the current cell placement of the

FPGA tile under consideration. Using this tool, cell placements can be observed at

various stages during the optimization process. This tool was initially created by [3],

ported to the Microsoft Windows platform by [12], and extended by [1].

Two ATL layout runs are presented.

Both these runs use the version of ATL produced by this research. Both runs use

the experimentally determined best (default) settings of the tool used to generate the

experimental results in 4.6. These default settings turn off optimization of predicted

routing congestion. It is recommended that this be the default behaviour of the tool until

the underlying congestion model can be confirmed through experimentation, with a tile

router.

The first layout run illustrates the interim layouts generated by the ATL tool at

various stages during optimization of the 4-LUT architecture used to generate the

experimental results in 4.6.

 109

PLACEMENT TIME (0%)
WIRELENGTH COST: 1,597,020

TILE SIZE: 767X767 -- INITIAL ANNEAL (LARGE-GRID PLACEMENT)

PLACEMENT COMPLETION (24%)
WIRELENGTH COST: 432,122

TILE SIZE: 757X757 -- AFTER INITIAL ANNEAL (LARGE-GRID PLACEMENT)

 110

PLACEMENT COMPLETION (27.5%)
WIRELENGTH COST: 412,160

TILE SIZE: 733X714 -- BETWEEN RE-HEAT ANNEALS

PLACEMENT COMPLETION (30%)
WIRELENGTH COST: 383,053

TILE SIZE: 496X473 -- BETWEEN RE-HEAT ANNEALS

 111

PLACEMENT COMPLETION (32.5%)
WIRELENGTH COST: 242,256

TILE SIZE: 388X323 -- BETWEEN RE-HEAT ANNEALS

PLACEMENT COMPLETION (35%)
WIRELENGTH COST: 200,355

TILE SIZE: 338X308 -- BETWEEN RE-HEAT ANNEALS

 112

PLACEMENT COMPLETION (42.5%)
WIRELENGTH COST: 188,367

TILE SIZE: 305X279 -- BETWEEN RE-HEAT ANNEALS

PLACEMENT COMPLETION (45%)
WIRELENGTH COST: 181,254

TILE SIZE: 285X268 -- BETWEEN RE-HEAT ANNEALS

 113

PLACEMENT COMPLETION (50%)
WIRELENGTH COST: 176,396

TILE SIZE: 265X258 -- BETWEEN RE-HEAT ANNEALS

PLACEMENT COMPLETION (77.5%)
WIRELENGTH COST: 167,088

TILE SIZE: 256X254 -- BETWEEN RE-HEAT ANNEALS

 114

PLACEMENT COMPLETION (100%)
WIRELENGTH COST: 159,542

TILE SIZE: 255X254 -- FINAL LAYOUT

The second layout run illustrates the interim layouts generated by the ATL tool at

various stages during optimization of the 10-LUT architecture used to generate the

experimental results in 4.6.

 115

PLACEMENT TIME (0%)
WIRELENGTH COST: 6,689,960

TILE SIZE: 1294X1294 -- INITIAL ANNEAL (LARGE-GRID PLACEMENT)

PLACEMENT COMPLETION (15%)
WIRELENGTH COST: 1,491,480

TILE SIZE: 1285X1286 -- AFTER INITIAL ANNEAL (LARGE-GRID PLACEMENT)

 116

PLACEMENT COMPLETION (16%)
WIRELENGTH COST: 1,393,750

TILE SIZE: 1265X1247 -- BETWEEN RE-HEAT ANNEALS

PLACEMENT COMPLETION (17%)
WIRELENGTH COST: 1,386,340

TILE SIZE: 1015X1056 -- BETWEEN RE-HEAT ANNEALS

 117

PLACEMENT COMPLETION (19%)
WIRELENGTH COST: 908,144

TILE SIZE: 753X804 -- BETWEEN RE-HEAT ANNEALS

PLACEMENT COMPLETION (21%)
WIRELENGTH COST: 835,789

TILE SIZE: 648X715 -- BETWEEN RE-HEAT ANNEALS

 118

PLACEMENT COMPLETION (23%)
WIRELENGTH COST: 828,060

TILE SIZE: 592X656 -- BETWEEN RE-HEAT ANNEALS

PLACEMENT COMPLETION (27%)
WIRELENGTH COST: 729,575

TILE SIZE: 554X604 -- BETWEEN RE-HEAT ANNEALS

 119

PLACEMENT COMPLETION (54%)
WIRELENGTH COST: 670,399

TILE SIZE: 521X561 -- BETWEEN RE-HEAT ANNEALS

PLACEMENT COMPLETION (79%)
WIRELENGTH COST: 653,537

TILE SIZE: 509X548 -- BETWEEN RE-HEAT ANNEALS

 120

PLACEMENT COMPLETION (100%)
WIRELENGTH COST: 629,134

TILE SIZE: 507X545 -- FINAL LAYOUT

 121

 REFERENCES

[1] Padalia, K.. Automatic Transistor-Level Design and Layout Placement of FPGA

Logic and Routing from an Architectural Specification. Bachelor’s Thesis.

University of Toronto, 2001.

[2] Betz, Vaughn, Marquardt, Alexander, and Rose, Jonathan. Architecture and CAD for

Deep-Submicron FPGAs. Kluwer Academic Publishers: Boston, 1999.

[3] Betz, Vaughn. Architecture and CAD for Speed and Area Optimization of FPGAs.

Ph.D. Thesis. University of Toronto, 1998.

[4] Cheng, C.. “RISA: Accurate and Efficient Placement and Routing Modeling”,

ICCAD, 1994. pp. 690-695.

[5] Fogel, D. B. and Michalewicz Z.. How to Solve It: Modern Heuristics. Springer:

Germany, 2000.

[6] Swartz, W.P.. Automatic Layout of Analog and Digital Mixed Macro/Standard Cell

Integrated Circuits. Ph.D. Thesis. Yale University, 1993.

[7] Gerez, Sabih H.. Algorithms for VLSI Design Automation. John Wiley & Sons: New

York, 1999.

[8] Ahmed, E.. The Effect of Logic Block Granularity on Deep-Submicron FPGA

Performance and Density. M.A.Sc. Thesis. University of Toronto, 2001.

[9] Najm, F.. VLSI Systems. Course Notes, University of Toronto, 2002.

[10] Xilinx Inc.. Virtex-E Extended Memory: Detailed Functional Description. Revision

2.0. http://www.xilinx.com/partinfo/databook.htm. November 16, 2001.

[11] Xilinx Inc.. Virtex-II: Introduction and Ordering Information. Revision 1.7.

http://www.xilinx.com/partinfo/databook.htm. October 2, 2001.

[12] Leventis, P.. Placement Algorithms and Routing Architecture for Long-Line Based

FPGAs. Bachelor’s Thesis. University of Toronto, 1999.

