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ABSTRACT 

One of the most difficult and time-consuming steps in the creation 
of an FPGA is its transistor-level design and physical layout. 
Modern commercial FPGAs typically consume anywhere from 50 
to 200 man-years simply in the layout step. To date, automated 
tools have only been employed in small parts of the periphery and 
programming circuitry. The core tiles, which are repeated many 
times, are subject to painstaking manual design and layout. In this 
paper we present a new system (called GILES, for Good Instant 
Layout of Erasable Semiconductors) that automatically generates 
a transistor-level schematic from a high-level architectural 
specification of an FPGA. It also generates a cell-level netlist that 
is placed and routed automatically. The architectural specification 
is the one used as input to the VPR [3] architectural exploration 
tool. The output is the mask-level layout of a single tile that can 
be replicated to form an FPGA array. We describe a new 
placement tool that simultaneously places and compacts the layout 
to minimize white space and wiring demand, and a special-
purpose router built for this task.  

GILES can place and route a tile consisting of four 4-input LUT 
logic cells and all of its programmable wires in a 0.18µm CMOS 
process using 8 layers of metal and 25983µm2 of area. When we 
generate the layout of an architecture similar to the Xilinx Virtex-
E FPGA (built in a 0.18µm process) GILES requires only 47% 
more area than the original. The layout area of an architecture 
similar to the Altera Apex 20K400E (also built in a 0.18µm 
process) constructed by GILES requires 97% more area than the 
original. 
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1. Introduction 
The creation of a new FPGA requires a huge undertaking of 

manpower, starting with planning that creates the specification of 
the device features followed by a vast engineering effort to create 
high-quality implementations of those features, as well as the core 
programmable logic. A particularly labour-intensive and time-
consuming part of this process is the transistor-level design and 
layout of the FPGA's masks. The latter typically takes from 9 
months to a year, and currently requires the efforts of more than 
100 people. It has been considered a manual task because only 
humans (as opposed to computers) were deemed capable of 
achieving the quality of results required. Highly efficient layouts 
are required because an FPGA tile is repeated many times, 
currently on the order of 10,000. 

In this paper, we present a system that automates the 
transistor-level design and layout of the FPGA. It is based on the 
VPR [3] architecture exploration system, which is an architecture-
retargettable packing, placement and routing system. FPGA 
architects use VPR to explore different architectural alternatives 
by changing the architecture across a spectrum of choices, and 
running a number of benchmark circuits through each architecture 
[2][3][4][6][7][17]. The output of VPR provides circuit speed and 
area requirements for each circuit implemented on each 
architecture, allowing the architect to determine the value of 
different choices. 

One of the inputs to the VPR architectural exploration 
system is a file that describes the architecture of the logic block 
and its surrounding programmable routing. This compact, human-
readable file specifies the number of lookup tables in a clustered 
logic block [4], the number of inputs to the logic block, the 
amount of connectivity from the main routing into the block and 
at the intersection of the main routing channels, the length of the 
routing wires, the types of programmable switches associated with 
different programmable routing wires, and the input/output pins 
and their connectivity to the general routing. It is sufficient to 
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describe an FPGA to the level needed to achieve any input 
circuit’s packing, placement and detailed routing. It is also 
sufficient, with some small amount of added knowledge, to create 
the transistor-level circuit for the single FPGA tile that can be 
replicated to create an FPGA array. In this work we do exactly 
that, and create a higher, cell-level netlist describing the 
interconnections of basic units such as multiplexers, buffers, 
SRAM cells and, flip-flops. 

We have built a placement/compactor for those cells, and a 
multi-layer router to connect them, in an attempt to fully automate 
the architecture-to-layout process. Figure 1 gives an overview of 
the flow of this system. Note that it relies on the input of manually 
performed cell-level layout. 
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Figure 1 - Overview of Flow 

Since this work is specific to FPGA layout, we will be able to 
use domain-specific knowledge in the new tools that are created – 
because we know the end target is an FPGA, we have extra 
knowledge about certain circuit elements that can be leveraged 
(an example of which is that all programming bits can be 
considered logically equivalent). While it may have been possible 
to use commercial layout tools to attempt the same work, it would 
have been impossible to make use of this kind of domain-specific 
knowledge. 

There have been previous attempts at this type of work. 
Automated transistor-level layout of large systems has been an 
active area of research [8][10]. Cadabra [11] has a commercial 
tool for automating layout of standard cells, but that system is 
limited to cells on the order of 100, not the 10,000-20,000 
transistors more typical in an FPGA tile. Azegami et al. [12] 
describe an FPGA built on top of a gate array, which benefits 
from automated layout. They worked with a single architecture (as 
opposed to the broad range of architectures that GILES can 
implement) and the implementation would suffer from the 
additional inefficiency of a gate array. Phillips and Hauck [13] 
describe a system for automating the layout of a specific 
architecture using a standard cell flow. This system allows 
portions of the architecture that are not required by a specific 
application to be eliminated, reducing area requirements, but does 
not automate a layout from a base specification as we do here. 

This paper is organized as follows: the following section 
describes the generation of transistor- and cell-level netlists from 
the VPR FPGA architecture description file, including issues 
related to transistor sizing and tile replication. Section 3 describes 
the manual mask-level layout of the individual cells. Section 4 
describes a novel combined placement and 2-D compaction 
algorithm that simultaneously minimizes area and wirelength. 
Section 5 describes a multi-layer router for forming the 
connections between cells. Section 6 gives a sample of the tool 
output across a number of architectures and gives a comparison to 
two commercial devices. Section 7 concludes and presents 
avenues for future work. 

2. Netlist Generation and Tiling Issues 
As discussed above, the input to the system is the same 

architecture description file used by the VPR FPGA architecture 
exploration system [3]. A description of that file format can be 
found online [17]. The outputs of the first phase of the system are 
two netlists. The first is the transistor-level design of a single logic 
and routing tile of the architecture described by the architecture 
file. The second is a netlist of higher-level cells that describe that 
same tile. These cells consist of SRAM programming bits, 
multiplexers, buffers, inverters, pass transistor switches, flip-flops 
and LUTs. The following sections describe the input and output in 
more detail and the issues that arise in their automated generation. 

2.1 FPGA Architecture Input File 
The primary input is a human-readable description of the 

FPGA architecture. The architecture file can be used to describe a 
wide variety of FPGA architectures. Figure 2 shows a section 
from the architecture file that would be used to describe the FPGA 
architecture depicted in Figure 3. 

 

 

Figure 2 – Example Architecture File Section 

This architecture file specifies that every tile of the FPGA 
will have one 2-input look-up table (LUT) and a routing 
architecture with all buffered length-1 wires. It describes the 

 
# Simple Architecture Description – 1 2-LUT cluster  
# with all length-4 wires 
 
# Logic architecture parameters 
subblock_lut_size 2   # Using 2-LUT BLEs 
subblocks_per_clb 1   # One 2-LUT per tile 
 
# Routing architecture parameters 
switch_block_type subset 
Fc_output 1 
Fc_input 1 
 
switch 0 buffered: yes  R: 1000.0  Cin: 1.0e-15 \ 
Cout: 1.0e-15 
 
# All buffered length 1 wires 
segment frequency: 1.0 length: 1 wire_switch: 0 \ 
opin_switch: 0 Frac_cb: 1 Frac_sb: 1 \ 
Rmetal: 100.0 Cmetal: 1.0e-14 
 
# Process parameters 
R_minW_nmos 5000 
R_minW_pmos 10000 



switch-box and connection-box connectivity parameters Fc and Fs 
[3], as well as the different types of switches used in the 
architecture (there is only one switch in this example). It also 
specifies process parameters that are used for sizing transistors. 
Figure 3 shows the cell-level netlist that represents the 
architecture from Figure 2. For simplicity, the set of routing 
switches in the top-left corner has been replaced by one buffered 
switch – in the real cell netlist, every routing switch would be 
created in this way. Also missing from the figure are the word 
lines and bit lines used to program the configuration bits. 

2.2 Transistor-Level Netlists 
To turn the architecture file specification into a transistor-

level netlist that represents a tile of the FPGA, the netlist 
generator assumes specific transistor-level structures for each of 
the components in the FPGA. These are presented in detail in [1] 
and [3]. Figure 4 shows an example of the schematics we assume 
for the multiplexers in our FPGA tile. 

Most of the transistors in our netlists are minimum size, 
except for those that are used to make buffers. The buffers are 
sized to provide a certain drive capability, as was done in [3]. The 
driver resistance information specified in the architecture file also 
affects the driver size. 

2.3 Generation of Cell-Level Netlists 
The netlist generator also creates cell-level netlists that 

abstract away the detailed transistor-level circuitry of the FPGA 
tile. These netlists are placed and routed to form a cell-level 
layout that, combined with the layout of the various cell types, 
form the final layout of the tile. 

2.4 Tileability Constraints 
For the layout to represent a tile that can be repeated to form 

a full FPGA core, we must make sure that the signals entering or 
leaving the tile are located so that they connect to the appropriate 
points on the replicated adjacent tiles on all 4 sides. To 
incorporate this information in the netlist, the netlist generator 
creates ports to represent the signals that enter or leave the tile. It 
also specifies constraints on those ports that say which edge of the 
tile each port must be placed on and indicates pairs of ports that 
must be kept opposite to each other (at the same vertical or 
horizontal position). These constraints ensure that adjacent tiles 
will have the appropriate wires connected together. 

3. Manual Layout of Cells 
We have chosen to work with a cell-level netlist in order to 

reduce the complexity of the transistor-level placement problem. 
As such, we require manual layout of the cells in the netlist. The 
total number of unique cells in a typical netlist is roughly 15, a 
relatively small number. For the results presented in Section 6 that 
compare directly to commercial devices, the full manual layout of 
each cell was done. For the other results, we approximate the area 
of the cells as an inflated function of the total minimum width 
transistor area [3]. We considered each minimum width transistor 

to occupy 2.25 squares in the routing grid (to allow for the intra-
cell routing) and made sure there was also enough area to 
accommodate connections to inter-cell routing. We checked this 
approximation by comparing the layout of an FPGA tile using the 
estimated cell sizes against the tile area using actual layouts. The 
approximate layouts resulted in final layouts that were 35% to 
75% optimistic compared to the actual cell layouts. 
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Figure 3 – Cell Netlist of Architecture Described in Figure 2 
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Figure 4 – Multiplexer Schematic 

Our layout methodology is to allow the cells to use all active 
layers and the first two metal layers to form connections. Other 
metal layers, as described in Section 5, are used for inter-cell 
routing. 

4. Placement and Compaction  
Once the cell-level netlist has been generated and the 

dimensions and pin positions of each cell are known, the cells are 
passed to the placement and compaction tool. An important 
strength of this work is that the placement and 2-D compaction 
are combined into one optimization step. In this section we 
describe the highlights of the algorithm, some details of our move 
generation and cost function, as well as an FPGA-specific 
algorithmic optimization. For a detailed treatment of the complete 
algorithm, see [5]. 

4.1 Goals, Constraints and Grid 
The goal of the placement and compaction step is to 

determine the positions of cells and ports in a rectangular FPGA 
tile while respecting any tileability constraints of the form 



described in Section 2.4. We allow up to two ports to be placed at 
a single port position since they can be routed to on different 
metal layers. If doubling the port density is not done, the port 
perimeter became the limiting factor of the cell size for reasonable 
architectures. The units of the cell dimensions are based on the 
routing grid used by the router described in Section 5. The routing 
grid is sized to the width of a routing track plus inter-track 
spacing (assuming worst-case via spacing). 

4.2 Overview of Algorithm 
The engine is based on the simulated-annealing algorithm 

[9][15]. An overview of the algorithm is shown in Figure 5. 

The placement/compaction algorithm begins by optimizing a 
random initial placement of cells and ports. Initially, to optimize 
without being impeded by issues of cell overlap, a large-tile 
placement is used that keeps the cells spaced apart. Each cell 
occupies an MxM square large enough to accommodate the 
largest cell. The initial tile is kept as square as possible with 
enough space around the perimeter to accommodate all the ports. 
By spacing out the cells in this manner, a globally good 
positioning of cells can be found during this initial step. This 
technique, compared to an alternative starting with a random cell 
arrangement (in a tile sized 1.4 times the cell area [1]), reduces 
final wirelength by 33% (for the same run time and white space in 
the end). 

Has the Tile Not Shrunk
for N Iterations NO

YES

Perform Initial Large-Tile Optimization
with Cells Spaced Apart

to Find Good Global Placement of Cells

Perform Low-Temperature Optimization
to Fix Up and Compact Placement

for Further Tile Shrinkage

Shrink Tile

Shrink Tile

Perform Final Low-Temperature
Optimization  

Figure 5 – Placement/Compaction Algorithm 

After the initial optimization step, the algorithm alternates 
between tile shrinkage and low temperature simulated-annealing 
optimization steps. Tile shrinkage involves collapsing the port 
perimeter tightly around the cells in the interior of the tile. The 
cell and port positions relative to each other are preserved. Figure 
6 illustrates the tile shrinkage operation. The low-temperature 
optimization steps have two goals: to optimize the placement of 
the cells to improve wirelength and to arrange and gather the cells 
in the interior of the tile such that tile shrinkage becomes possible. 

There is an optimization trade-off present in the selection of 
the starting temperature of the low-temperature optimization 
steps. A higher temperature allows better “hill climbing” – 
perhaps better exploring the cost space to find better layouts. A 
lower temperature preserves more of the previous placement 
decisions. We found that the move acceptance ratio is a good 

measure of progress independent of the circuit (precise 
temperature values are a function of cost and hence are netlist-
dependent). Therefore, we selected the starting temperature to be 
the temperature that achieves a particular acceptance ratio during 
the initial large-tile optimization. Experiments showed that an 
acceptance ratio of 0.29 yields good results. 

4.3 Cost Function 
The cost function of the annealing engine focuses on the 

estimated total wirelength of the placement, with several 
modifications to encourage the compaction of the cells. The 
wirelength cost is based on the semi-perimeter net bounding-box 
metric used in [3][16]. 

4.3.1 Tile Size Cost 

The tile-size cost is used to encourage compaction, and 
operates on an imaginary bounding box enclosing all the cells 
(excluding ports) in the tile. It has two components: the first 
penalizes moves that increase the area of the imaginary bounding 
box. This encourages “crunching” of the cells away from the tile 
perimeter to facilitate tile shrinkage during the next compaction. 
The second cost component penalizes moves that increase the 
number of cells on the perimeter of the imaginary bounding box. 
This encourages evacuation of the imaginary bounding box 
perimeter, gradually making tile shrinkage possible. The tile-size 
cost function is defined as follows: 

cost = (widthimaginary bounding box × heightimaginary bounding box) + 
(num_blocksleft side + num_blocksright side +         
num_blockstop side + num_blocksbottom side) 

 
The area of the imaginary bounding box is used for the first 

component instead of the perimeter to give it a greater weight 
since it is directly related to whether the tile can be shrunk or not. 

 A multiplier is applied to the tile-size cost so that it can be 
weighted with respect to the bounding-box wirelength cost. The 
multiplier is calculated so that the weighted tile-size cost is a 
certain multiple X of the bounding-box wirelength cost at the 
beginning of each low-temperature optimization step. The value 
of X is increased over the course of placement, between the low-
temperature optimization steps, but is set to 0 for the final low-
temperature optimization. Increasing the tile-size maximum cost 
fraction from 0.01 to 5 cuts tile white space in half, halves the run 
time, and improves wirelength by 3.5% (it turns out that 
completely “turning off” this cost causes placement run times to 
grow too large to get similar quality results since tile compaction 
occurs randomly over long periods of time). 

4.4 Move Generation 
We chose to implement a move generator that only proposes 

moves that maintain the legality of the placement. This means that 
cell overlapping is not permitted. This has the effect of reducing 
the size of the search space, but increasing the complexity of the 
move generator. We have two types of move: general moves and 
compaction-oriented moves. 



4.4.1 General Moves 

The general moves begin by proposing a translation for a 
random cell A. They then propose additional translations for other 
cells to make room for cell A and cells displaced by cell A. If a set 
of translations cannot be found that constitute a move that will 
preserve placement legality, the move is aborted. 
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Figure 6 – Illustration of Tile Shrinkage  

A range limiter is used to limit the distance a single move 
can transport a cell or port; it is kept constant during a placement 
temperature and is gradually reduced over the course of placement 
based on measures of move acceptance and the temperature 
update schedule [15]. 

4.4.2 Compaction-Oriented Moves 

Two specialized moves facilitate tile compaction. The first, 
the block-off-edge move, is designed to encourage cells to move 
off of the perimeter of the imaginary bounding box monitored by 
the tile-size cost. This encourages the collapse of the imaginary 
bounding box, hopefully leading to eventual tile compaction. This 
type of move is needed because once the general locations of 
blocks settle during placement, the move acceptance function 
tends to reject moves that span a great distance (produce a large 
cost increase) and the range limiter of the general move generator 
tends to constrain translations (moves) to a local region. To shrink 
the tile, however, moves that transport cells across a large distance 
sometimes have to be accepted because the cells must be moved 
to locations with enough white space to accept them.  

This move type addresses both cost arbitration and move 
generation issues that would otherwise prevent the type of long-
distance move often needed for the sake of tile compaction. This 

move reduces the magnitude of cost increase associated with 
moves that successfully move cells off of the perimeter (to make 
acceptance of those moves more likely); it also removes the 
standard range-limit, imposing its own range-limit geared to 
explore moving a cell off of the perimeter of the imaginary 
bounding-box. Figure 7 illustrates a situation during placement 
when a block-off-edge move would move a cell on the perimeter 
of a tile a long distance to an empty area. This technique is an 
important one, as it cuts the final white space in half and reduces 
run-time by 19% without affecting wirelength. 

A second specialized move is the compaction move. It is a 
move type involving many cells in a focused effort to take 
immediate advantage of gaps in the placement and for cells to 
move closer to the center of the tile. A series of inward one-unit 
shifts are proposed for all the cells involved in the move. This 
move type begins with cells closer to the centre so gaps are 
opened that outer cells can move in to. Each individual cell move 
is arbitrated with the same cost function as above; it is the pre-
determined sequence of moves (as opposed to random choices) 
that makes these moves effective.  

 

 

Figure 7 – Motivation for Block-off-Edge Move 

Even with tile-compaction cost bonuses designed to benefit 
moves that lead to smaller tiles, combinations and sequences of 
those moves have to be proposed by the move generator for tile 
compaction to result. It is unlikely that the move generator will 
randomly be able to generate the proper sequences frequently. 
Compaction moves solve this by attempting to move blocks to the 
center of the tile one after another. By making compaction a 
priority of the move generator, we can do more efficient and 
effective tile compaction. During experimentation with this move 
type, we determined that multiple-unit (distance) shifts showed no 
advantage over single-unit shifts. Also, one-dimensional shifts 
were determined to be as effective as two-dimensional shifts. 

Since compaction moves affect all cells, they are performed 
relatively infrequently. If compaction moves are not performed, 
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the run time of the tool to get equivalent quality increases 
significantly (because compaction occurs very slowly). When 4 
compaction moves are performed per temperature instead of 0, the 
average run time was reduced by more than a factor of five and 
the average white space was reduced by a factor of 25. 

4.5 FPGA-Specific Placement  
Since this placement tool is designed for FPGA-based cells, 

we can leverage domain-specific knowledge. For example, the 
SRAM configuration bits of an FPGA are typically organized with 
word lines and bit lines just as in normal SRAMs. Word-and-bit-
line assignments are arbitrary because FPGA SRAM 
programming can be adjusted to program the target SRAMs to 
any values for any fixed word and bit line assignment. In our 
placement algorithm, we used a technique called SRAM 
reweaving to leverage this. Our placement optimizer initially 
places SRAMs without considering costs for word and bit-line 
nets. After all the SRAMs are assigned good global positions (i.e. 
close to the cells they are attached to), word and bit lines can be 
assigned to SRAMs (rewoven) based on where they have been 
placed. We thereby leverage the arbitrariness of word and bit line 
assignments to minimize word and bit line length and to avoid 
consideration of programming line length when determining good 
positions for SRAMs. 

The word and bit lines are ignored during the initial 
placement optimization, but are rewoven between the low-
temperature optimizations. This technique saves 11% wirelength 
without affecting run time or white space. 

5. Routing 
The output from the placement phase provides the absolute 

position, size, and orientation of each cell or tile port in the cell-
level netlist. These are passed to the routing step, which 
determines the detailed routing for connections between the cells. 
The input to the routing phase is the placed netlist, the dimensions 
of the tile, the number of metal layers available for inter-cell 
routing, and the metal and via wiring pitch (which is assumed to 
be the same for all layers). 

 
The routing algorithm is an extension of the classical maze 

router approach [20], with elements incorporated and adapted 
from various FPGA routing algorithms [3][19]. In the next section 
we describe the layer planning and basic routing grid definition 
used by the router. We then proceed to describe the enhancements 
we made to the basic router algorithm for this tool. For a detailed 
treatment of the complete algorithm, see [21]. 

5.1 Layer Planning 
We divide the routing connections into two distinct types: (1) 

intra-cell routing, which are connections localized within a single 
cell, (2) inter-cell routing, which consist of connections between 
two or more cells/ports within the FPGA tile. We also recognize 
there are specialized structures for power, ground, and clock nets 
(e.g. H-trees). We route these special signals between the cells, 
but not the distribution networks for the specialized structures 

(which are typically on the top metal layer(s)) or the routing to 
them. We assume a small amount of space between tiles and an 
additional metal layer is sufficient for these nets and the routing to 
them. 

As described in Section 3, the layout for each cell type is 
manually created using the MAX [14] tool. Two metal layers (M1 
and M2) have been allocated for all the intra-cell routing 
connections. The next n layers – where n is an input to the CAD 
tool – are used for inter-cell routing connections and for routing 
power/ground/clock signals between the cells. The link between 
intra-cell layouts (created manually) and inter-cell routing is 
realized by placing a via between metal 2 and metal 3 at the 
location of every cell pin.  

We employ a uniform, three-dimensional routing grid to 
represent the metal layers available for inter-cell routing 
connections. Each layer of the structure is partitioned into a 2-D 
array of equally sized routing grid squares; the size of a grid 
square is chosen such that two wire segments carrying different 
electrical signals can be positioned in adjacent squares, as is 
common in maze-grid type routers [20]. For the results presented 
in this paper, the grid size is chosen to be appropriate for a 0.18 
µm CMOS process, which, based on data from MOSIS [18], is a 
0.66µm x 0.66µm region. 

5.2 Router Algorithm & Enhancements 
The router utilizes an iterative rip-up/reroute strategy that is 

combined with the negotiated congestion approach [15]. The cost 
function for using a routing grid node is based on the approach 
taken by VPR [3], but is modified to include various “tile-wide” 
routing directives, which ultimately provide better routing results. 

First, we guide the router to route in only one orientation 
(horizontal or vertical) on any given layer by designating a 
preferred orientation for each layer. Second, we encourage the 
router to minimize the number of vias it uses. Third, 
experimentation determined that congestion was often found on 
the some edges of the tile, and so we encourage routes to avoid 
these edges. To achieve these goals, the cost function for each 
grid node used in a routing path is augmented by a penalty 
function for each routing directive. Specifically, the PathCost 
formula (see VPR [3]) is modified in the following manner to 
account for the effects introduced by bias factors: 
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BiasFactorPenaltyi(n) is the ith penalty for using node n. Note that 
BiasFactorPenaltyi(n) is always greater (or equal to) than unity.  

If the router fails on a given placement, an outer loop of the 
algorithm determines the areas of the FPGA tile that are the most 
congested. White space is added to the original cell-level 
placement in this area, and another routing attempt begins. 



6. Results 
In this section we describe the use of GILES to build several 

tiles and make comparisons to two commercial devices. These 
comparisons will be based on a 0.18µm CMOS process [18]. 
Figure 8 shows the placement and compaction of a simple 
architecture that consists of four 4-input lookup table and flip flop 
basic logic elements, 16 length 4 tracks with buffered switches 
and 16 length 4 tracks with un-buffered switches, Fs=3, 
Fcin=0.56 and Fcout=1 [3]. It is interesting to look at this picture 
in colour (which you can do if you are reading this paper onscreen 
or have printed it in colour) with the legend given in Table 1 and 
see where different types of the cells are placed. 

 

  
Figure 8 – Placement of 4x4-LUT Architecture 

 
Cell Type Colour 

Buffer Green 
Configuration SRAM Red 

Multiplexer Pink 
LUT Purple 

Flip-Flop Light Blue 
Pass Transistor Switch White 

Buffered Switch Grey 

Table 1 – Colour Legend for Placement Picture 

For this architecture we did not do the full transistor layout, 
but rather approximated cell areas as described in Section 3. 
Figure 9 shows the full placed and routed layout of this same tile. 
This tile required 7 layers of metal (excluding routing for the 
specialized networks but including power, ground, and clock 
routing between cells), and took up dimensions 84 x 81µm. Table 
2 gives a set of results for ten automatically generated FPGA tiles. 
The table gives the number of 4-input lookup tables per cluster 
and the number of tracks per channel specified in the architecture 
file. Half the tracks are length four buffered segments and half are 
un-buffered. The number of metal layers indicated in Table 2 is 
one greater than the number the tool used; the extra layer is added 

to try to account for the specialized distribution networks, as 
discussed earlier. 

The number of tracks is selected to be a reasonable number 
from our previous experimental experience. The fourth and fifth 
column give the value of the connection block input and output 
flexibility. In all ten examples, the switch block flexibility, Fs, is 
3. We give the number of metal layers required to route the tile, 
including the metal used to route within the basic cells and the 
power and ground routing. The next three columns give the 
dimensions and area of the tile. The final column gives the 
runtime of the entire tool in seconds on a 1GHz Pentium 3 
processor. Table 2 illustrates the power of our tool, which can 
layout radically different architectures. 

 

Figure 9 - Routed 4x4-LUT Architecture 

 

# 
LUTs

# 
Track Fc In

Fc 
Out

Metal 
Layers

Tile 
Width 
(um)

Tile 
Height 
(um)

Final 
Routed 

Area 
(um2)

Total 
Run 

Time 
(s)

1 32 0.56 1.00 7 84 81 6805 113
2 56 0.44 0.50 8 115 108 12430 585
3 80 0.30 0.33 8 143 134 19100 1174
4 96 0.23 0.25 8 169 154 25983 4029
5 120 0.19 0.20 8 184 179 32935 4520
6 144 0.15 0.17 8 209 203 42392 8889
7 160 0.13 0.14 8 249 228 56821 18427
8 176 0.11 0.13 8 246 255 62717 14755
9 192 0.10 0.11 8 261 281 73126 23397

10 200 0.10 0.10 8 304 275 83557 30475  

Table 2 –  Architectural Specifcation and Layout 
Results for Ten Different FPGAs 

6.1 Metal Layers – Area Tradeoff 
One interesting use of GILES is to have it measure the trade-

off between number of metal layers and the achieved final area. 
Figure 10 is a plot of the final placed and routed area achieved vs. 
number of inter-cell metal routing layers, for the first six 



architectures of Table 2. It shows that area increases significantly 
once a lower-limit on metal layers is achieved. 
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Figure 10 - Area vs. # Metal Layers 

6.2 Comparison to Commercial Devices 
In order to get a measure of the quality of our results, we 

have attempted to compare the automated layout of GILES with 
high-quality hand layout done for commercial devices. We created 
an input architecture file that resembles a commercial architecture 
and device, and compared the logic and routing tile areas between 
these proxy and real devices. Since our architecture file format 
isn’t flexible enough to describe the exact architecture of the 
commercial devices, this is a very approximate comparison. In 
particular we are unable to reproduce the detailed logic elements 
(such as special internal muxing, lookup table RAM, extra 
muxing, etc.) of commercial devices. We chose to compare to the 
Xilinx Virtex-E device (built in 0.18µm CMOS process from 
UMC) and the Altera Apex 20K400E device (built in a 0.18µm 
CMOS process from TSMC). Table 3 gives the characteristics of 
the proxy architectures for these devices, as specified in the input 
architecture file to our automated layout system.1 

Length # Length # Length #
Xilinx 
Virtex E 4 1 24 6 72 12 12 0.11 0.09 3

Altera 
Apex 
20K400E 10 20 140 45 90 n/a n/a 0.14 0.06 3

Device Fc In
Fc 
Out Fs

Rout Type 1 Rout Type 2 Rout Type 3# LUTs 
per 

Cluster

 

Table 3  - Characteristics of Proxy Architectures 

 
Table 4 gives the measured dimensions and area of the tiles 

for each of the real commercial devices [22], the area achieved for 

                                                                 
1 Note that the VPR architecture exploration system is constrained 

to model architectures with the same number of tracks in the 
horizontal and vertical direction. In order to model the Apex 
20K400E, which has a different number of tracks in each 
direction, we chose a quantity that would sum to the same total 
number of tracks in a tile. For the Virtex-E proxy architecture, 
all of the length six wires have connections at every channel 
intersection, whereas the real Virtex-E only makes connections 
in the middle. In addition, we can only model bi-directional 
segments and the Virtex-E employs some number of uni-
directional wires. In both cases, these effects will make our area 
larger than the real Virtex-E device. 

the proxy architectures by GILES, the percentage difference in 
areas and the number of metal layers required to achieve the 
routing. The Virtex E proxy layout is only 47% larger than the 
commercial device. The proxy Apex20K400E is almost twice as 
large as the original. We believe these results represent an 
exciting first step in what could become a viable and competitive 
method of layout for FPGA tiles. Figure 11 is a picture of a fully 
placed and routed proxy Virtex-E architecture tile generated by 
GILES. 

 

Device

Tile 
Actual X 

(um)

Tile 
Actual Y 

(um)

Measured 
Area 
(um2)

Proxy 
Area 
(um2)

% 
Diff

# Metal 
Layers

Virtex E 238 149 35462 52268 47% 8
Apex 
20K400E 156 404 63161 124161 97% 8  

Table 4  - Area of  Commercial Tiles and Proxy 
Automated Layout Architectures 

 

 
Figure 11 – Routed Proxy Virtex-E With Manually Laid Out 

Cells  

7. Conclusions and Future Work 
We have presented a CAD system, called GILES,  that 

performs the automated layout of FPGA tiles from an architectural 
specification. We have shown that GILES is capable of producing 
a wide spectrum of different architectures on a modern IC process. 
A comparison with manually designed commercial devices 
showed that it can produce reasonably dense layouts. We intend 
to take this work forward in several directions: we will augment 
the tools to allow the production of actual programming 
bitstreams, and will automate the sizing of all gates, buffers and 
pass transistors as part of the architectural generation process, 
making the sizes architecture-dependent. The layout tool also 
needs to be timing-driven so as to optimize the wires associated 
with critical parts of the cells. 



It would also be beneficial to tie the router back into 
placement to have the placement adjusted based on actual 
congestion. There are several optimizations we can make that 
should dramatically improve the final area, including using more 
aggressive metal spacing (with a smarter router) and using some 
of the first 2 layers of metal for inter-cell routing. Finally, we 
intend to fabricate a chip that is automatically generated in this 
way. 

8. Acknowledgements 
The authors would like to thank Vaughn Betz for providing 

the research and code base upon which this work is based, and 
much-appreciated guidance along the way. Elias Ahmed provided 
the 0.18 µm VPR 1-10 LUT architecture files and appropriate 
transistor sizing. William Chow and Chris Sun provided graphics 
packages, and Joshua Slavkin provided the manual layout 
infrastructure. Tomasz Czajkowski reverse-engineered important 
details of the Virtex-E architecture. David Galloway provided 
very helpful comments on this paper. Altera Corporation provided 
data on commercial chip die areas and a few architectural details 
of the APEX E. This work was funded by an NSERC research 
grant. 

9. References 

[1] K. Padalia, “Automated Transistor-Level Design and Layout 
Placement of FPGA Logic and Routing from an 
Architectural Specification”, Undergraduate Thesis, 
University of Toronto, 2001 
http://www.eecg.toronto.edu/~jayar/pubs/ATL/ketan_padalia
_2001_thesis.pdf 

[2] V. Betz, “Architecture and CAD for Speed and Area 
Optimization of FPGAs,” Ph. D. Thesis, University of 
Toronto, 1998. 

[3] V. Betz, J. Rose, and A. Marquardt, Architecture and CAD 
for Deep-Submicron FPGAs, Kluwer Academic Publishers, 
1999. 

[4] V. Betz and J. Rose, “Cluster-Based Logic Blocks for 
FPGAs: Area-Efficiency vs. Input Sharing and Size,” in 
IEEE CICC 1997, Santa Clara, CA, pp. 551-554. 

[5] R. Fung, “Optimization Of Transistor-Level Floorplans For 
Field-Programmable Gate Arrays”, Undergraduate Thesis, 
University of Toronto, 2001 
http://www.eecg.toronto.edu/~jayar/pubs/ATL/ryan_fung_20
02_thesis.pdf 

[6] E. Ahmed and J. Rose, “The Effect of LUT and Cluster Size 
on Deep-Submicron FPGA Performance and Density,” in 
FPGA 2000, ACM Symp. FPGAs, February 2000, pp. 3-12. 

[7] P. Hallschmid, S.J.E. Wilton, ``Detailed Routing 
Architectures for Embedded Programmable Logic IP Cores’’, 
in the ACM/SIGDA International Symposium on Field-

Programmable Gate Arrays, Monterey, CA, Feb. 2001, pp. 
69-74. 

[8] A. Stauffer, R. Nair, “Optimal CMOS Cell 
TransistorPlacement: A Relaxation Approach”, Proc. 
ICCAD, 1988, pp. 364-367. 

[9] S. Kirkpatrick, C. Gelatt and M. Vecchi, “Optimization by 
Simulated Annealing,” Science, May 13, 1983, pp. 671 – 
680. 

[10] T. Serdar and C. Sechen, “AKORD: Transistor Level and 
Mixed Transistor/Gate Level Placement Tool for Digital 
Data Paths”, International Conference on CAD, Nov. 1999, 
pp. 91-97. 

[11] http://www.numeritech.com/ntproducts/ 

[12] K. Azegami, S. Kashiwakura, K. Yamashita, “Flexible FPGA 
Architecture Realized of General Purpose Sea of Gates, 
FPGA ’96.  

[13] S. Phillips, S. Hauck, “Automatic Layout of Domain-
Specific Reconfigurable Subsystems for System-on-a-Chip,” 
FPGA 2002. 

[14] http://www.juniper.net/micromagic/max.html 

[15] C. Sechen and A. Sangiovanni-Vincentelli, “The 
TimberWolf Placement and Routing Package,” JSSC, April 
1985, pp. 510 – 522. 

[16] Cheng, C. “RISA: Accurate and Efficient Placement and 
Routing Modeling”, ICCAD, 1994. pp. 690-695 

[17] V. Betz, “VPR and T-Vpack: Versatile Packing, Placement 
and Routing for FPGAs”, 
http://www.eecg.toronto.edu/~vaughn/vpr/vpr.html 

[18] MOSIS Corporation, “MOSIS Scalable CMOS (SCMOS) 
Design Rules,” 
http://www.mosis.org/Technical/Designrules/scmos/scmos-
main.html  

[19] C. Ebeling, L. McMurchie, S. A. Hauck and S. Burns, 
“Placement and Routing Tools for the Triptych FPGA,” 
IEEE Trans. On VLSI, Dec. 1995, pp. 473-482. 

[20] C. Y. Lee, “An Algorithm for Path Connections and its 
Applications,” IRE Trans. Electron. Comput., Vol. EC=10, 
1961, pp. 346-365. 

[21] M. Bourgeault, J. Slavkin, and Y. Sun, “Automatic 
Transistor-Level Design and Layout of FPGAs”, 
Undergraduate Design Project, University of Toronto, 2002. 
http://www.eecg.toronto.edu/~jayar/pubs/ATL/Bourgeault_S
lavkin_Sun_2002_Project.pdf 

[22] Giles Powell and Srinvas Reddy, Altera Corporation, Private 
Communication.

 


