
Automatic Transistor and Physical Design of FPGA Tiles
From An Architectural Specification

Ketan Padalia, Ryan Fung, Mark Bourgeault,
Aaron Egier, and Jonathan Rose

Edward S. Rogers Sr. Department of ECE
University of Toronto

Toronto, Ontario, Canada M5S 3G4

ketan.padalia@utoronto.ca, ryan.fung@utoronto.ca, mbourgea@rogers.com
aegier@eecg.toronto.edu, jayar@eecg.toronto.edu

ABSTRACT

One of the most difficult and time-consuming steps in the creation
of an FPGA is its transistor-level design and physical layout.
Modern commercial FPGAs typically consume anywhere from 50
to 200 man-years simply in the layout step. To date, automated
tools have only been employed in small parts of the periphery and
programming circuitry. The core tiles, which are repeated many
times, are subject to painstaking manual design and layout. In this
paper we present a new system (called GILES, for Good Instant
Layout of Erasable Semiconductors) that automatically generates
a transistor-level schematic from a high-level architectural
specification of an FPGA. It also generates a cell-level netlist that
is placed and routed automatically. The architectural specification
is the one used as input to the VPR [3] architectural exploration
tool. The output is the mask-level layout of a single tile that can
be replicated to form an FPGA array. We describe a new
placement tool that simultaneously places and compacts the layout
to minimize white space and wiring demand, and a special-
purpose router built for this task.

GILES can place and route a tile consisting of four 4-input LUT
logic cells and all of its programmable wires in a 0.18µm CMOS
process using 8 layers of metal and 25983µm2 of area. When we
generate the layout of an architecture similar to the Xilinx Virtex-
E FPGA (built in a 0.18µm process) GILES requires only 47%
more area than the original. The layout area of an architecture
similar to the Altera Apex 20K400E (also built in a 0.18µm
process) constructed by GILES requires 97% more area than the
original.

Keywords

FPGA, PLD, programmable logic, automatic layout

1. Introduction
The creation of a new FPGA requires a huge undertaking of

manpower, starting with planning that creates the specification of
the device features followed by a vast engineering effort to create
high-quality implementations of those features, as well as the core
programmable logic. A particularly labour-intensive and time-
consuming part of this process is the transistor-level design and
layout of the FPGA's masks. The latter typically takes from 9
months to a year, and currently requires the efforts of more than
100 people. It has been considered a manual task because only
humans (as opposed to computers) were deemed capable of
achieving the quality of results required. Highly efficient layouts
are required because an FPGA tile is repeated many times,
currently on the order of 10,000.

In this paper, we present a system that automates the
transistor-level design and layout of the FPGA. It is based on the
VPR [3] architecture exploration system, which is an architecture-
retargettable packing, placement and routing system. FPGA
architects use VPR to explore different architectural alternatives
by changing the architecture across a spectrum of choices, and
running a number of benchmark circuits through each architecture
[2][3][4][6][7][17]. The output of VPR provides circuit speed and
area requirements for each circuit implemented on each
architecture, allowing the architect to determine the value of
different choices.

One of the inputs to the VPR architectural exploration
system is a file that describes the architecture of the logic block
and its surrounding programmable routing. This compact, human-
readable file specifies the number of lookup tables in a clustered
logic block [4], the number of inputs to the logic block, the
amount of connectivity from the main routing into the block and
at the intersection of the main routing channels, the length of the
routing wires, the types of programmable switches associated with
different programmable routing wires, and the input/output pins
and their connectivity to the general routing. It is sufficient to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
FPGA’03, February 23-25, 2003, Monterey, California, USA.
Copyright 2003 ACM 1-58113-651-X/03/0002…$5.00.

describe an FPGA to the level needed to achieve any input
circuit’s packing, placement and detailed routing. It is also
sufficient, with some small amount of added knowledge, to create
the transistor-level circuit for the single FPGA tile that can be
replicated to create an FPGA array. In this work we do exactly
that, and create a higher, cell-level netlist describing the
interconnections of basic units such as multiplexers, buffers,
SRAM cells and, flip-flops.

We have built a placement/compactor for those cells, and a
multi-layer router to connect them, in an attempt to fully automate
the architecture-to-layout process. Figure 1 gives an overview of
the flow of this system. Note that it relies on the input of manually
performed cell-level layout.

Ne t lis t
G e n e r a tor

VP R FP GA
A rch it ect u r e F i le

T r ans i stor-
L eve l

N et l i st

Cel l-
L evel

N et list

Ce ll-Le ve l
P lacem e nt

a n d
C om p action

R o u t in g

L ayo u t
M a sk s

C e l l-
L evel

L ayo ut

Figure 1 - Overview of Flow

Since this work is specific to FPGA layout, we will be able to
use domain-specific knowledge in the new tools that are created –
because we know the end target is an FPGA, we have extra
knowledge about certain circuit elements that can be leveraged
(an example of which is that all programming bits can be
considered logically equivalent). While it may have been possible
to use commercial layout tools to attempt the same work, it would
have been impossible to make use of this kind of domain-specific
knowledge.

There have been previous attempts at this type of work.
Automated transistor-level layout of large systems has been an
active area of research [8][10]. Cadabra [11] has a commercial
tool for automating layout of standard cells, but that system is
limited to cells on the order of 100, not the 10,000-20,000
transistors more typical in an FPGA tile. Azegami et al. [12]
describe an FPGA built on top of a gate array, which benefits
from automated layout. They worked with a single architecture (as
opposed to the broad range of architectures that GILES can
implement) and the implementation would suffer from the
additional inefficiency of a gate array. Phillips and Hauck [13]
describe a system for automating the layout of a specific
architecture using a standard cell flow. This system allows
portions of the architecture that are not required by a specific
application to be eliminated, reducing area requirements, but does
not automate a layout from a base specification as we do here.

This paper is organized as follows: the following section
describes the generation of transistor- and cell-level netlists from
the VPR FPGA architecture description file, including issues
related to transistor sizing and tile replication. Section 3 describes
the manual mask-level layout of the individual cells. Section 4
describes a novel combined placement and 2-D compaction
algorithm that simultaneously minimizes area and wirelength.
Section 5 describes a multi-layer router for forming the
connections between cells. Section 6 gives a sample of the tool
output across a number of architectures and gives a comparison to
two commercial devices. Section 7 concludes and presents
avenues for future work.

2. Netlist Generation and Tiling Issues
As discussed above, the input to the system is the same

architecture description file used by the VPR FPGA architecture
exploration system [3]. A description of that file format can be
found online [17]. The outputs of the first phase of the system are
two netlists. The first is the transistor-level design of a single logic
and routing tile of the architecture described by the architecture
file. The second is a netlist of higher-level cells that describe that
same tile. These cells consist of SRAM programming bits,
multiplexers, buffers, inverters, pass transistor switches, flip-flops
and LUTs. The following sections describe the input and output in
more detail and the issues that arise in their automated generation.

2.1 FPGA Architecture Input File
The primary input is a human-readable description of the

FPGA architecture. The architecture file can be used to describe a
wide variety of FPGA architectures. Figure 2 shows a section
from the architecture file that would be used to describe the FPGA
architecture depicted in Figure 3.

Figure 2 – Example Architecture File Section

This architecture file specifies that every tile of the FPGA
will have one 2-input look-up table (LUT) and a routing
architecture with all buffered length-1 wires. It describes the

Simple Architecture Description – 1 2-LUT cluster
with all length-4 wires

Logic architecture parameters
subblock_lut_size 2 # Using 2-LUT BLEs
subblocks_per_clb 1 # One 2-LUT per tile

Routing architecture parameters
switch_block_type subset
Fc_output 1
Fc_input 1

switch 0 buffered: yes R: 1000.0 Cin: 1.0e-15 \
Cout: 1.0e-15

All buffered length 1 wires
segment frequency: 1.0 length: 1 wire_switch: 0 \
opin_switch: 0 Frac_cb: 1 Frac_sb: 1 \
Rmetal: 100.0 Cmetal: 1.0e-14

Process parameters
R_minW_nmos 5000
R_minW_pmos 10000

switch-box and connection-box connectivity parameters Fc and Fs
[3], as well as the different types of switches used in the
architecture (there is only one switch in this example). It also
specifies process parameters that are used for sizing transistors.
Figure 3 shows the cell-level netlist that represents the
architecture from Figure 2. For simplicity, the set of routing
switches in the top-left corner has been replaced by one buffered
switch – in the real cell netlist, every routing switch would be
created in this way. Also missing from the figure are the word
lines and bit lines used to program the configuration bits.

2.2 Transistor-Level Netlists
To turn the architecture file specification into a transistor-

level netlist that represents a tile of the FPGA, the netlist
generator assumes specific transistor-level structures for each of
the components in the FPGA. These are presented in detail in [1]
and [3]. Figure 4 shows an example of the schematics we assume
for the multiplexers in our FPGA tile.

Most of the transistors in our netlists are minimum size,
except for those that are used to make buffers. The buffers are
sized to provide a certain drive capability, as was done in [3]. The
driver resistance information specified in the architecture file also
affects the driver size.

2.3 Generation of Cell-Level Netlists
The netlist generator also creates cell-level netlists that

abstract away the detailed transistor-level circuitry of the FPGA
tile. These netlists are placed and routed to form a cell-level
layout that, combined with the layout of the various cell types,
form the final layout of the tile.

2.4 Tileability Constraints
For the layout to represent a tile that can be repeated to form

a full FPGA core, we must make sure that the signals entering or
leaving the tile are located so that they connect to the appropriate
points on the replicated adjacent tiles on all 4 sides. To
incorporate this information in the netlist, the netlist generator
creates ports to represent the signals that enter or leave the tile. It
also specifies constraints on those ports that say which edge of the
tile each port must be placed on and indicates pairs of ports that
must be kept opposite to each other (at the same vertical or
horizontal position). These constraints ensure that adjacent tiles
will have the appropriate wires connected together.

3. Manual Layout of Cells
We have chosen to work with a cell-level netlist in order to

reduce the complexity of the transistor-level placement problem.
As such, we require manual layout of the cells in the netlist. The
total number of unique cells in a typical netlist is roughly 15, a
relatively small number. For the results presented in Section 6 that
compare directly to commercial devices, the full manual layout of
each cell was done. For the other results, we approximate the area
of the cells as an inflated function of the total minimum width
transistor area [3]. We considered each minimum width transistor

to occupy 2.25 squares in the routing grid (to allow for the intra-
cell routing) and made sure there was also enough area to
accommodate connections to inter-cell routing. We checked this
approximation by comparing the layout of an FPGA tile using the
estimated cell sizes against the tile area using actual layouts. The
approximate layouts resulted in final layouts that were 35% to
75% optimistic compared to the actual cell layouts.

DFF

Clock

S
R

A
M

4-input MUX
(2-LUT)

S
R

A
M

S
R

A
M

S
R

A
M

B
U

F
B

U
F

BUF

BUF
SWITCH

Figure 3 – Cell Netlist of Architecture Described in Figure 2

SRAMdata data

In0

In2

In1

In3

SRAMdata data

Out

2 SRAM cells

In0
In1
In2
In3

Out

Schematic of a 4-input SRAM-controlled multiplexer.

Figure 4 – Multiplexer Schematic

Our layout methodology is to allow the cells to use all active
layers and the first two metal layers to form connections. Other
metal layers, as described in Section 5, are used for inter-cell
routing.

4. Placement and Compaction
Once the cell-level netlist has been generated and the

dimensions and pin positions of each cell are known, the cells are
passed to the placement and compaction tool. An important
strength of this work is that the placement and 2-D compaction
are combined into one optimization step. In this section we
describe the highlights of the algorithm, some details of our move
generation and cost function, as well as an FPGA-specific
algorithmic optimization. For a detailed treatment of the complete
algorithm, see [5].

4.1 Goals, Constraints and Grid
The goal of the placement and compaction step is to

determine the positions of cells and ports in a rectangular FPGA
tile while respecting any tileability constraints of the form

described in Section 2.4. We allow up to two ports to be placed at
a single port position since they can be routed to on different
metal layers. If doubling the port density is not done, the port
perimeter became the limiting factor of the cell size for reasonable
architectures. The units of the cell dimensions are based on the
routing grid used by the router described in Section 5. The routing
grid is sized to the width of a routing track plus inter-track
spacing (assuming worst-case via spacing).

4.2 Overview of Algorithm
The engine is based on the simulated-annealing algorithm

[9][15]. An overview of the algorithm is shown in Figure 5.

The placement/compaction algorithm begins by optimizing a
random initial placement of cells and ports. Initially, to optimize
without being impeded by issues of cell overlap, a large-tile
placement is used that keeps the cells spaced apart. Each cell
occupies an MxM square large enough to accommodate the
largest cell. The initial tile is kept as square as possible with
enough space around the perimeter to accommodate all the ports.
By spacing out the cells in this manner, a globally good
positioning of cells can be found during this initial step. This
technique, compared to an alternative starting with a random cell
arrangement (in a tile sized 1.4 times the cell area [1]), reduces
final wirelength by 33% (for the same run time and white space in
the end).

Has the Tile Not Shrunk
for N Iterations NO

YES

Perform Initial Large-Tile Optimization
with Cells Spaced Apart

to Find Good Global Placement of Cells

Perform Low-Temperature Optimization
to Fix Up and Compact Placement

for Further Tile Shrinkage

Shrink Tile

Shrink Tile

Perform Final Low-Temperature
Optimization

Figure 5 – Placement/Compaction Algorithm

After the initial optimization step, the algorithm alternates
between tile shrinkage and low temperature simulated-annealing
optimization steps. Tile shrinkage involves collapsing the port
perimeter tightly around the cells in the interior of the tile. The
cell and port positions relative to each other are preserved. Figure
6 illustrates the tile shrinkage operation. The low-temperature
optimization steps have two goals: to optimize the placement of
the cells to improve wirelength and to arrange and gather the cells
in the interior of the tile such that tile shrinkage becomes possible.

There is an optimization trade-off present in the selection of
the starting temperature of the low-temperature optimization
steps. A higher temperature allows better “hill climbing” –
perhaps better exploring the cost space to find better layouts. A
lower temperature preserves more of the previous placement
decisions. We found that the move acceptance ratio is a good

measure of progress independent of the circuit (precise
temperature values are a function of cost and hence are netlist-
dependent). Therefore, we selected the starting temperature to be
the temperature that achieves a particular acceptance ratio during
the initial large-tile optimization. Experiments showed that an
acceptance ratio of 0.29 yields good results.

4.3 Cost Function
The cost function of the annealing engine focuses on the

estimated total wirelength of the placement, with several
modifications to encourage the compaction of the cells. The
wirelength cost is based on the semi-perimeter net bounding-box
metric used in [3][16].

4.3.1 Tile Size Cost

The tile-size cost is used to encourage compaction, and
operates on an imaginary bounding box enclosing all the cells
(excluding ports) in the tile. It has two components: the first
penalizes moves that increase the area of the imaginary bounding
box. This encourages “crunching” of the cells away from the tile
perimeter to facilitate tile shrinkage during the next compaction.
The second cost component penalizes moves that increase the
number of cells on the perimeter of the imaginary bounding box.
This encourages evacuation of the imaginary bounding box
perimeter, gradually making tile shrinkage possible. The tile-size
cost function is defined as follows:

cost = (widthimaginary bounding box × heightimaginary bounding box) +
(num_blocksleft side + num_blocksright side +
num_blockstop side + num_blocksbottom side)

The area of the imaginary bounding box is used for the first

component instead of the perimeter to give it a greater weight
since it is directly related to whether the tile can be shrunk or not.

 A multiplier is applied to the tile-size cost so that it can be
weighted with respect to the bounding-box wirelength cost. The
multiplier is calculated so that the weighted tile-size cost is a
certain multiple X of the bounding-box wirelength cost at the
beginning of each low-temperature optimization step. The value
of X is increased over the course of placement, between the low-
temperature optimization steps, but is set to 0 for the final low-
temperature optimization. Increasing the tile-size maximum cost
fraction from 0.01 to 5 cuts tile white space in half, halves the run
time, and improves wirelength by 3.5% (it turns out that
completely “turning off” this cost causes placement run times to
grow too large to get similar quality results since tile compaction
occurs randomly over long periods of time).

4.4 Move Generation
We chose to implement a move generator that only proposes

moves that maintain the legality of the placement. This means that
cell overlapping is not permitted. This has the effect of reducing
the size of the search space, but increasing the complexity of the
move generator. We have two types of move: general moves and
compaction-oriented moves.

4.4.1 General Moves

The general moves begin by proposing a translation for a
random cell A. They then propose additional translations for other
cells to make room for cell A and cells displaced by cell A. If a set
of translations cannot be found that constitute a move that will
preserve placement legality, the move is aborted.

Ports 1 2 3

4

5

6

789

10

11

12

Cells

Imaginary Bounding-Box
Surrounding all Cells

Step One:
Translate all cells, maintaining
relative positions, to lower-left corner.

1 2 3

4

5

6

789

10

11

12

1

1

2

2

3

3

4 4

5 5

6 610 10

11 11

12 12

Step Two:
Move ports on left and right downwards.
Move ports on top and bottom leftwards.
Preserve relative ordering of ports and
do not move ports a greater distance than
the cell will shrink, in this case, 5 horizontally
and 6 vertically.

Step Three:
Collapse ports and shrink tile.

7 78 89 9

Figure 6 – Illustration of Tile Shrinkage

A range limiter is used to limit the distance a single move
can transport a cell or port; it is kept constant during a placement
temperature and is gradually reduced over the course of placement
based on measures of move acceptance and the temperature
update schedule [15].

4.4.2 Compaction-Oriented Moves

Two specialized moves facilitate tile compaction. The first,
the block-off-edge move, is designed to encourage cells to move
off of the perimeter of the imaginary bounding box monitored by
the tile-size cost. This encourages the collapse of the imaginary
bounding box, hopefully leading to eventual tile compaction. This
type of move is needed because once the general locations of
blocks settle during placement, the move acceptance function
tends to reject moves that span a great distance (produce a large
cost increase) and the range limiter of the general move generator
tends to constrain translations (moves) to a local region. To shrink
the tile, however, moves that transport cells across a large distance
sometimes have to be accepted because the cells must be moved
to locations with enough white space to accept them.

This move type addresses both cost arbitration and move
generation issues that would otherwise prevent the type of long-
distance move often needed for the sake of tile compaction. This

move reduces the magnitude of cost increase associated with
moves that successfully move cells off of the perimeter (to make
acceptance of those moves more likely); it also removes the
standard range-limit, imposing its own range-limit geared to
explore moving a cell off of the perimeter of the imaginary
bounding-box. Figure 7 illustrates a situation during placement
when a block-off-edge move would move a cell on the perimeter
of a tile a long distance to an empty area. This technique is an
important one, as it cuts the final white space in half and reduces
run-time by 19% without affecting wirelength.

A second specialized move is the compaction move. It is a
move type involving many cells in a focused effort to take
immediate advantage of gaps in the placement and for cells to
move closer to the center of the tile. A series of inward one-unit
shifts are proposed for all the cells involved in the move. This
move type begins with cells closer to the centre so gaps are
opened that outer cells can move in to. Each individual cell move
is arbitrated with the same cost function as above; it is the pre-
determined sequence of moves (as opposed to random choices)
that makes these moves effective.

Figure 7 – Motivation for Block-off-Edge Move

Even with tile-compaction cost bonuses designed to benefit
moves that lead to smaller tiles, combinations and sequences of
those moves have to be proposed by the move generator for tile
compaction to result. It is unlikely that the move generator will
randomly be able to generate the proper sequences frequently.
Compaction moves solve this by attempting to move blocks to the
center of the tile one after another. By making compaction a
priority of the move generator, we can do more efficient and
effective tile compaction. During experimentation with this move
type, we determined that multiple-unit (distance) shifts showed no
advantage over single-unit shifts. Also, one-dimensional shifts
were determined to be as effective as two-dimensional shifts.

Since compaction moves affect all cells, they are performed
relatively infrequently. If compaction moves are not performed,

Cells on Edge of
Tile Limiting
Collapse

Room to Accommodate
Cell
s

Room to Accommodate
Cell
s

the run time of the tool to get equivalent quality increases
significantly (because compaction occurs very slowly). When 4
compaction moves are performed per temperature instead of 0, the
average run time was reduced by more than a factor of five and
the average white space was reduced by a factor of 25.

4.5 FPGA-Specific Placement
Since this placement tool is designed for FPGA-based cells,

we can leverage domain-specific knowledge. For example, the
SRAM configuration bits of an FPGA are typically organized with
word lines and bit lines just as in normal SRAMs. Word-and-bit-
line assignments are arbitrary because FPGA SRAM
programming can be adjusted to program the target SRAMs to
any values for any fixed word and bit line assignment. In our
placement algorithm, we used a technique called SRAM
reweaving to leverage this. Our placement optimizer initially
places SRAMs without considering costs for word and bit-line
nets. After all the SRAMs are assigned good global positions (i.e.
close to the cells they are attached to), word and bit lines can be
assigned to SRAMs (rewoven) based on where they have been
placed. We thereby leverage the arbitrariness of word and bit line
assignments to minimize word and bit line length and to avoid
consideration of programming line length when determining good
positions for SRAMs.

The word and bit lines are ignored during the initial
placement optimization, but are rewoven between the low-
temperature optimizations. This technique saves 11% wirelength
without affecting run time or white space.

5. Routing
The output from the placement phase provides the absolute

position, size, and orientation of each cell or tile port in the cell-
level netlist. These are passed to the routing step, which
determines the detailed routing for connections between the cells.
The input to the routing phase is the placed netlist, the dimensions
of the tile, the number of metal layers available for inter-cell
routing, and the metal and via wiring pitch (which is assumed to
be the same for all layers).

The routing algorithm is an extension of the classical maze

router approach [20], with elements incorporated and adapted
from various FPGA routing algorithms [3][19]. In the next section
we describe the layer planning and basic routing grid definition
used by the router. We then proceed to describe the enhancements
we made to the basic router algorithm for this tool. For a detailed
treatment of the complete algorithm, see [21].

5.1 Layer Planning
We divide the routing connections into two distinct types: (1)

intra-cell routing, which are connections localized within a single
cell, (2) inter-cell routing, which consist of connections between
two or more cells/ports within the FPGA tile. We also recognize
there are specialized structures for power, ground, and clock nets
(e.g. H-trees). We route these special signals between the cells,
but not the distribution networks for the specialized structures

(which are typically on the top metal layer(s)) or the routing to
them. We assume a small amount of space between tiles and an
additional metal layer is sufficient for these nets and the routing to
them.

As described in Section 3, the layout for each cell type is
manually created using the MAX [14] tool. Two metal layers (M1
and M2) have been allocated for all the intra-cell routing
connections. The next n layers – where n is an input to the CAD
tool – are used for inter-cell routing connections and for routing
power/ground/clock signals between the cells. The link between
intra-cell layouts (created manually) and inter-cell routing is
realized by placing a via between metal 2 and metal 3 at the
location of every cell pin.

We employ a uniform, three-dimensional routing grid to
represent the metal layers available for inter-cell routing
connections. Each layer of the structure is partitioned into a 2-D
array of equally sized routing grid squares; the size of a grid
square is chosen such that two wire segments carrying different
electrical signals can be positioned in adjacent squares, as is
common in maze-grid type routers [20]. For the results presented
in this paper, the grid size is chosen to be appropriate for a 0.18
µm CMOS process, which, based on data from MOSIS [18], is a
0.66µm x 0.66µm region.

5.2 Router Algorithm & Enhancements
The router utilizes an iterative rip-up/reroute strategy that is

combined with the negotiated congestion approach [15]. The cost
function for using a routing grid node is based on the approach
taken by VPR [3], but is modified to include various “tile-wide”
routing directives, which ultimately provide better routing results.

First, we guide the router to route in only one orientation
(horizontal or vertical) on any given layer by designating a
preferred orientation for each layer. Second, we encourage the
router to minimize the number of vias it uses. Third,
experimentation determined that congestion was often found on
the some edges of the tile, and so we encourage routes to avoid
these edges. To achieve these goals, the cost function for each
grid node used in a routing path is augmented by a penalty
function for each routing directive. Specifically, the PathCost
formula (see VPR [3]) is modified in the following manner to
account for the effects introduced by bias factors:

∏
=

⋅⋅

+=
factorsnum

i
i nPenaltyBiasFactornHistCostnresCostP

mPathCostnPathCost
_

0

)()()(

)()(

BiasFactorPenaltyi(n) is the ith penalty for using node n. Note that
BiasFactorPenaltyi(n) is always greater (or equal to) than unity.

If the router fails on a given placement, an outer loop of the
algorithm determines the areas of the FPGA tile that are the most
congested. White space is added to the original cell-level
placement in this area, and another routing attempt begins.

6. Results
In this section we describe the use of GILES to build several

tiles and make comparisons to two commercial devices. These
comparisons will be based on a 0.18µm CMOS process [18].
Figure 8 shows the placement and compaction of a simple
architecture that consists of four 4-input lookup table and flip flop
basic logic elements, 16 length 4 tracks with buffered switches
and 16 length 4 tracks with un-buffered switches, Fs=3,
Fcin=0.56 and Fcout=1 [3]. It is interesting to look at this picture
in colour (which you can do if you are reading this paper onscreen
or have printed it in colour) with the legend given in Table 1 and
see where different types of the cells are placed.

Figure 8 – Placement of 4x4-LUT Architecture

Cell Type Colour

Buffer Green
Configuration SRAM Red

Multiplexer Pink
LUT Purple

Flip-Flop Light Blue
Pass Transistor Switch White

Buffered Switch Grey

Table 1 – Colour Legend for Placement Picture

For this architecture we did not do the full transistor layout,
but rather approximated cell areas as described in Section 3.
Figure 9 shows the full placed and routed layout of this same tile.
This tile required 7 layers of metal (excluding routing for the
specialized networks but including power, ground, and clock
routing between cells), and took up dimensions 84 x 81µm. Table
2 gives a set of results for ten automatically generated FPGA tiles.
The table gives the number of 4-input lookup tables per cluster
and the number of tracks per channel specified in the architecture
file. Half the tracks are length four buffered segments and half are
un-buffered. The number of metal layers indicated in Table 2 is
one greater than the number the tool used; the extra layer is added

to try to account for the specialized distribution networks, as
discussed earlier.

The number of tracks is selected to be a reasonable number
from our previous experimental experience. The fourth and fifth
column give the value of the connection block input and output
flexibility. In all ten examples, the switch block flexibility, Fs, is
3. We give the number of metal layers required to route the tile,
including the metal used to route within the basic cells and the
power and ground routing. The next three columns give the
dimensions and area of the tile. The final column gives the
runtime of the entire tool in seconds on a 1GHz Pentium 3
processor. Table 2 illustrates the power of our tool, which can
layout radically different architectures.

Figure 9 - Routed 4x4-LUT Architecture

LUTs

Track Fc In

Fc
Out

Metal
Layers

Tile
Width
(um)

Tile
Height
(um)

Final
Routed

Area
(um2)

Total
Run

Time
(s)

1 32 0.56 1.00 7 84 81 6805 113
2 56 0.44 0.50 8 115 108 12430 585
3 80 0.30 0.33 8 143 134 19100 1174
4 96 0.23 0.25 8 169 154 25983 4029
5 120 0.19 0.20 8 184 179 32935 4520
6 144 0.15 0.17 8 209 203 42392 8889
7 160 0.13 0.14 8 249 228 56821 18427
8 176 0.11 0.13 8 246 255 62717 14755
9 192 0.10 0.11 8 261 281 73126 23397

10 200 0.10 0.10 8 304 275 83557 30475

Table 2 – Architectural Specifcation and Layout
Results for Ten Different FPGAs

6.1 Metal Layers – Area Tradeoff
One interesting use of GILES is to have it measure the trade-

off between number of metal layers and the achieved final area.
Figure 10 is a plot of the final placed and routed area achieved vs.
number of inter-cell metal routing layers, for the first six

architectures of Table 2. It shows that area increases significantly
once a lower-limit on metal layers is achieved.

Area vs. # Metal Layers

5000

25000

45000

65000

85000

105000

125000

145000

3 5 7

Metal Layers for Inter-Cell Connections

A
re

a
in

 u
m

2

2x4LUT

3x4LUT

1x4-LUT

4x4-LUT

5x4-LUT

6x4-LUT

Figure 10 - Area vs. # Metal Layers

6.2 Comparison to Commercial Devices
In order to get a measure of the quality of our results, we

have attempted to compare the automated layout of GILES with
high-quality hand layout done for commercial devices. We created
an input architecture file that resembles a commercial architecture
and device, and compared the logic and routing tile areas between
these proxy and real devices. Since our architecture file format
isn’t flexible enough to describe the exact architecture of the
commercial devices, this is a very approximate comparison. In
particular we are unable to reproduce the detailed logic elements
(such as special internal muxing, lookup table RAM, extra
muxing, etc.) of commercial devices. We chose to compare to the
Xilinx Virtex-E device (built in 0.18µm CMOS process from
UMC) and the Altera Apex 20K400E device (built in a 0.18µm
CMOS process from TSMC). Table 3 gives the characteristics of
the proxy architectures for these devices, as specified in the input
architecture file to our automated layout system.1

Length # Length # Length #
Xilinx
Virtex E 4 1 24 6 72 12 12 0.11 0.09 3

Altera
Apex
20K400E 10 20 140 45 90 n/a n/a 0.14 0.06 3

Device Fc In
Fc
Out Fs

Rout Type 1 Rout Type 2 Rout Type 3# LUTs
per

Cluster

Table 3 - Characteristics of Proxy Architectures

Table 4 gives the measured dimensions and area of the tiles

for each of the real commercial devices [22], the area achieved for

1 Note that the VPR architecture exploration system is constrained

to model architectures with the same number of tracks in the
horizontal and vertical direction. In order to model the Apex
20K400E, which has a different number of tracks in each
direction, we chose a quantity that would sum to the same total
number of tracks in a tile. For the Virtex-E proxy architecture,
all of the length six wires have connections at every channel
intersection, whereas the real Virtex-E only makes connections
in the middle. In addition, we can only model bi-directional
segments and the Virtex-E employs some number of uni-
directional wires. In both cases, these effects will make our area
larger than the real Virtex-E device.

the proxy architectures by GILES, the percentage difference in
areas and the number of metal layers required to achieve the
routing. The Virtex E proxy layout is only 47% larger than the
commercial device. The proxy Apex20K400E is almost twice as
large as the original. We believe these results represent an
exciting first step in what could become a viable and competitive
method of layout for FPGA tiles. Figure 11 is a picture of a fully
placed and routed proxy Virtex-E architecture tile generated by
GILES.

Device

Tile
Actual X

(um)

Tile
Actual Y

(um)

Measured
Area
(um2)

Proxy
Area
(um2)

%
Diff

Metal
Layers

Virtex E 238 149 35462 52268 47% 8
Apex
20K400E 156 404 63161 124161 97% 8

Table 4 - Area of Commercial Tiles and Proxy
Automated Layout Architectures

Figure 11 – Routed Proxy Virtex-E With Manually Laid Out

Cells

7. Conclusions and Future Work
We have presented a CAD system, called GILES, that

performs the automated layout of FPGA tiles from an architectural
specification. We have shown that GILES is capable of producing
a wide spectrum of different architectures on a modern IC process.
A comparison with manually designed commercial devices
showed that it can produce reasonably dense layouts. We intend
to take this work forward in several directions: we will augment
the tools to allow the production of actual programming
bitstreams, and will automate the sizing of all gates, buffers and
pass transistors as part of the architectural generation process,
making the sizes architecture-dependent. The layout tool also
needs to be timing-driven so as to optimize the wires associated
with critical parts of the cells.

It would also be beneficial to tie the router back into
placement to have the placement adjusted based on actual
congestion. There are several optimizations we can make that
should dramatically improve the final area, including using more
aggressive metal spacing (with a smarter router) and using some
of the first 2 layers of metal for inter-cell routing. Finally, we
intend to fabricate a chip that is automatically generated in this
way.

8. Acknowledgements
The authors would like to thank Vaughn Betz for providing

the research and code base upon which this work is based, and
much-appreciated guidance along the way. Elias Ahmed provided
the 0.18 µm VPR 1-10 LUT architecture files and appropriate
transistor sizing. William Chow and Chris Sun provided graphics
packages, and Joshua Slavkin provided the manual layout
infrastructure. Tomasz Czajkowski reverse-engineered important
details of the Virtex-E architecture. David Galloway provided
very helpful comments on this paper. Altera Corporation provided
data on commercial chip die areas and a few architectural details
of the APEX E. This work was funded by an NSERC research
grant.

9. References

[1] K. Padalia, “Automated Transistor-Level Design and Layout
Placement of FPGA Logic and Routing from an
Architectural Specification”, Undergraduate Thesis,
University of Toronto, 2001
http://www.eecg.toronto.edu/~jayar/pubs/ATL/ketan_padalia
_2001_thesis.pdf

[2] V. Betz, “Architecture and CAD for Speed and Area
Optimization of FPGAs,” Ph. D. Thesis, University of
Toronto, 1998.

[3] V. Betz, J. Rose, and A. Marquardt, Architecture and CAD
for Deep-Submicron FPGAs, Kluwer Academic Publishers,
1999.

[4] V. Betz and J. Rose, “Cluster-Based Logic Blocks for
FPGAs: Area-Efficiency vs. Input Sharing and Size,” in
IEEE CICC 1997, Santa Clara, CA, pp. 551-554.

[5] R. Fung, “Optimization Of Transistor-Level Floorplans For
Field-Programmable Gate Arrays”, Undergraduate Thesis,
University of Toronto, 2001
http://www.eecg.toronto.edu/~jayar/pubs/ATL/ryan_fung_20
02_thesis.pdf

[6] E. Ahmed and J. Rose, “The Effect of LUT and Cluster Size
on Deep-Submicron FPGA Performance and Density,” in
FPGA 2000, ACM Symp. FPGAs, February 2000, pp. 3-12.

[7] P. Hallschmid, S.J.E. Wilton, ``Detailed Routing
Architectures for Embedded Programmable Logic IP Cores’’,
in the ACM/SIGDA International Symposium on Field-

Programmable Gate Arrays, Monterey, CA, Feb. 2001, pp.
69-74.

[8] A. Stauffer, R. Nair, “Optimal CMOS Cell
TransistorPlacement: A Relaxation Approach”, Proc.
ICCAD, 1988, pp. 364-367.

[9] S. Kirkpatrick, C. Gelatt and M. Vecchi, “Optimization by
Simulated Annealing,” Science, May 13, 1983, pp. 671 –
680.

[10] T. Serdar and C. Sechen, “AKORD: Transistor Level and
Mixed Transistor/Gate Level Placement Tool for Digital
Data Paths”, International Conference on CAD, Nov. 1999,
pp. 91-97.

[11] http://www.numeritech.com/ntproducts/

[12] K. Azegami, S. Kashiwakura, K. Yamashita, “Flexible FPGA
Architecture Realized of General Purpose Sea of Gates,
FPGA ’96.

[13] S. Phillips, S. Hauck, “Automatic Layout of Domain-
Specific Reconfigurable Subsystems for System-on-a-Chip,”
FPGA 2002.

[14] http://www.juniper.net/micromagic/max.html

[15] C. Sechen and A. Sangiovanni-Vincentelli, “The
TimberWolf Placement and Routing Package,” JSSC, April
1985, pp. 510 – 522.

[16] Cheng, C. “RISA: Accurate and Efficient Placement and
Routing Modeling”, ICCAD, 1994. pp. 690-695

[17] V. Betz, “VPR and T-Vpack: Versatile Packing, Placement
and Routing for FPGAs”,
http://www.eecg.toronto.edu/~vaughn/vpr/vpr.html

[18] MOSIS Corporation, “MOSIS Scalable CMOS (SCMOS)
Design Rules,”
http://www.mosis.org/Technical/Designrules/scmos/scmos-
main.html

[19] C. Ebeling, L. McMurchie, S. A. Hauck and S. Burns,
“Placement and Routing Tools for the Triptych FPGA,”
IEEE Trans. On VLSI, Dec. 1995, pp. 473-482.

[20] C. Y. Lee, “An Algorithm for Path Connections and its
Applications,” IRE Trans. Electron. Comput., Vol. EC=10,
1961, pp. 346-365.

[21] M. Bourgeault, J. Slavkin, and Y. Sun, “Automatic
Transistor-Level Design and Layout of FPGAs”,
Undergraduate Design Project, University of Toronto, 2002.
http://www.eecg.toronto.edu/~jayar/pubs/ATL/Bourgeault_S
lavkin_Sun_2002_Project.pdf

[22] Giles Powell and Srinvas Reddy, Altera Corporation, Private
Communication.

