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An ongoing issue in mass spectrometry is the time it takes to search DNA sequences with MS/MS

peptide fragments (see, e.g., Choudary et al., Proteomics 2001; 1: 651–667.) Search times are far longer

than spectra acquisition time, and parallelization of search software on clusters requires doubling

the size of a conventional computing cluster to cut the search time in half. Field programmable gate

arrays (FPGAs) are used to create hardware-accelerated algorithms that reduce operating costs and

improve search speed compared to large clusters. We present a novel hardware design that takes

full spectra and computes 6-frame translation word searches on DNA databases at a rate of approxi-

mately 3 billion base pairs per second, with queries of up to 10 amino acids in length and arbitrary

wildcard positions. Hardware post-processing identifies in silico tryptic peptides and scores them

using a variety of techniques including mass frequency expected values. With faster FPGAs protein

identifications from the human genome can be achieved in less than a second, and this makes it an

ideal solution for a number of proteome-scale applications. Copyright# 2005 JohnWiley & Sons, Ltd.

Although it is possible to generate the de novo sequence of a

peptide given its tandem (MS/MS) mass spectra, full length

sequencing of proteins remains a significant challenge.1,2

Common approaches to protein identification use protein

databases to either compare experimental with theoretical

spectra with cross-correlation measures,3 or compare experi-

mental peptide masses with theoretical peptide maps.4 Inher-

ent in both approaches is the assumption that gene

predictions are comprehensive and accurate so as to identify

all protein open reading frames and splice variants. EST

sequencing has increased the coverage of these peptides,

but EST sequences are known to contain errors. In contrast,

a DNA-based search for protein identification has become

more feasible with the recent production of several high-

quality drafts of the human genome and of a growing number

of organisms, combined with improvements in MS/MS

instrumentation leading to higher quality peptide sequen-

cing.5 By searching through unannotated DNA sequences

researchers can identify peptides that are mis-predicted or

missed altogether by gene prediction algorithms; such cases

are appreciable, even for organisms like Saccharomyces cerevi-

siae, for which a complete set of coding regions is thought to

be known.6 If the protein-coding region could be quickly

located with a DNA search, then this sequence and any pre-

dicted splice variants can be compared with other MS-

derived peptides and can be used for protein identification.

In addition, an exclusion list containing peptide masses

from an unambiguously identified protein or expected pep-

tide masses that need not be analyzed could be constructed

on the fly, allowing the MS operator (or an automated

approach) to target novel features, such as alternative splice

variations and post-translational modifications (PTMs),

while reducing the amount of sample consumed.

With standard MS techniques, sample is rapidly consumed

during analysis. Purified samples are hard to acquire and

prepare,7 and thus fast and sensitive analysis is crucial (Sciex.

Toronto, ON, Canada). However, search algorithms are

limited by available memory and the latency imposed by

conventional PC memory architectures. A common solution

to this problem is to parallelize search jobs across a cluster,

although the associated costs of cluster acquisition and

maintenance can be high. Furthermore, the inherent com-

munication delay in a conventional network cluster demands

a non-linear increase in cluster size to realize enhanced

performance.

Often when a parallelizable task, such as a search, contains

simple repeatable operations at its core, custom hardware

offers a practical solution. Field-programmable gate arrays

(FPGAs) are essentially programmable circuits that can be

customized to maximize the memory bandwidth and suffer

none of the overhead associated with a sequential micro-

processor-based program. The work presented here

describes an FPGA-based solution to searching DNA with

an initial peptide and mass spectrum.
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DESCRIPTION AND METHODS

The hardware solution presented here is divided into three

blocks: a search engine that takes a query peptide and locates

all possible coding sequences within DNA sequences; a pep-

tide mass calculator that translates the coding sequence in six

frames to a set of peptides; and a scoring unit that compares

the set of peptides with those detected by MS (Fig. 1).

Upon initialization, the DNA sequence, which may be

agglomerated from multiple organisms, is loaded into

memory that is directly connected to the FPGAs. The query

peptide is translated into the set of all possible DNA

sequences in the six reading frames using the appropriate

amino acid to nucleic acid codon translation table. Amino

acids encoded by redundant codons are represented using

wildcards, as shown in Fig. 2. All query translations are sent

to the search engine, while the masses detected by MS are sent

to the scoring unit.

The search engine reads a set of nucleotides from the DNA

sequence (this is called the memory word) and compares it

with the query translations. The standard nucleotide encod-

ing scheme uses 3 bits, but this can be extended to 4-bit

encoding to accommodate known single-nucleotide poly-

morphisms (SNPs). In the 3-bit scheme the two least

significant bits encode the nucleic acid, while the third bit

indicates the presence of a wildcard. In the 4-bit scheme each

bit position corresponds to the four possible bases and a

wildcard is represented by asserting all 4 bits. In either

scheme the hardware is customized to mask wildcard

positions in both the query translations and the memory

word. This masking signals an automatic match to the search

engine at the corresponding position, reducing the amount of

computation necessary to process strings with wildcards.

To exploit the advantages of customizable architecture,

multiple copies of the query translations are staggered across

the word by one nucleotide and compared with every

nucleotide in the entire memory word simultaneously

(Fig. 2). When a match occurs, a variable-sized nucleotide

memory buffer (3000 nucleotides for yeast, 12 000 for

human), approximating the size of two genes, is centered

on the match and is passed to the peptide mass calculator.

The peptide mass calculator translates the nucleotide

memory buffer in six frames, identifies proteolytic cleavage

points (tryptic in our current implementation), and generates

a set of possible digested peptides for comparison with the

peptide masses detected by MS (Fig. 3). Multiple calculator

units process each codon in the memory word, allowing the

simultaneous translation of multiple nucleotides. Each codon

is translated into its corresponding amino acid residue mass,

and the remaining codons in the word are buffered within the

calculator and passed to subsequent calculation units.

Additional units detect peptide cleavage points and wild-

cards within the memory word to ensure accurate transla-

tion. Although the calculator operates continuously, the

resulting masses are stored only after a hit is detected by the

search engine.

Masses are stored on the FPGA using the content

addressable memory (CAM) style of addressing, so that the

memory address of the mass corresponds to its value. In the

scoring unit, calculated tryptic masses are compared with

peptide masses using the four most significant bits (i.e., the 4

leftmost bits) of the mass. For example, a calculated tryptic

peptide mass of 71 (stored as 1000111) will match a parent

mass of 70 (stored as 1000110) using ‘1000’ as the address. If

the difference between these masses remains within a user-

defined threshold, a match is signaled. This technique allows

Figure 1. Device architecture: the flow of data through the system occurs as follows. (0) The mass

spectrometer analyzes the sample and produces a list of precursor ion masses as well as fragment ion

masses for a selected precursor ion. The fragment ion spectrum is translated to a peptide string using de novo

techniques.2 This translated peptide is sent as a query to the hardware along with the parent mass list. (1)

The search engine reads the DNA sequences from external memory and locates potential coding regions for

the query. (2) A sequence of nucleotides around the hit is sent to the calculator for translation. (3) The

translated nucleotide sequence is digested, and tryptic peptide (precursor) masses are calculated. (4) The

calculated masses are compared with the precursor mass list sent by the mass spectrometer. (5) Peptide

masses are selectively added to the exclusion list to reduce analysis time and sample consumption.
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Figure 2. Search engine: the memory word is 63 bits in length and consists of 21 3-bit bases. As a simple

example consider searching for the amino acid alanine, which can be coded by any of {CG*, AGA, AGG}. In

the single time step illustrated, a match is found in the first row of query block 1, as every nucleic acid in the

row matches its corresponding memory word (matches are underlined). Note that inclusion of the wildcard

encoding (100) allows compression of the query such that each of the four nucleotides need not be explicitly

stored in the hardware.

Figure 3. Example search against the yeast genome. (1) A single fragment ion is picked from the MS/MS

spectrum of the original precursor ion, and its sequence (including possible wildcards) is obtained by de novo

methods. (2) The search engine identifies and ranks sets of potential coding locations (thatched boxes) for

this query across the 16 chromosomes of the yeast genome. (3) Each potential coding location is translated

in six frames to produce sets of tryptic masses. (4) Each calculated tryptic fragment list is then compared with

the original list of precursor masses. Matches from the highest scoring region are added to the exclusion list,

effectively truncating the list of remaining precursor masses to be analyzed.
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the hardware to compare a single mass value with a large list

in a single operation.

MS efficiency and sample conservation is often aided by

the use of an exclusion list. These lists typically contain

peptide masses that are considered to be of little interest, such

as those from trypsin or keratin, and are filtered by the mass

spectrometer datasystem so as to be eliminated from MS/MS

analysis. The hardware-matching units described above take

the original list of masses detected by MS and dynamically

build an exclusion list consisting of other tryptic peptide

masses from a match to a high-scoring query peptide (Fig. 3).

This approach not only increases the confidence of locating

multiple peptides close to the query hit location, but also

ensures that unidentified peptides and novel unexpected

peptides will be further analyzed. Thus, the ability to

generate dynamic exclusion lists greatly reduces analysis

time and the amount of sample required.

We developed two simple scoring methods to rank the

list of possible hit locations for the query peptide. The

simplest scoring scheme ranks the hits by the number of

tryptic matches in the original mass spectra. The second

scoring scheme extends the first scoring method by using a

hardware-encoded frequency of mass occurrence histo-

gram, based on the MOWSE algorithm,8 to assign a

confidence score to mass matches. A higher score reflects

the increased likelihood that the mass matches correspond

to true coding regions, and lower scores that fail to meet a

threshold can be filtered from the result set. In cases where

genes contain large introns and the size of the gene exceeds

the scoring window, multiple hits would be treated

independently. However, post-processing could cluster

the hit locations to known gene locations and increase

overall match confidence.

To investigate sensitivity and specificity of naively search-

ing DNA sequences, we determined the number and size of

peptide queries required to uniquely identify a protein on

both the yeast and human genomes. We found that peptide

queries of only 6 amino acids uniquely matched coding

locations across the yeast genome, and that 2 peptides of

length 5 or 5 peptides of length 4 would be required to

identify the true coding region. In comparison, a single query

peptide of length 8, two peptides of length 7, or 3 peptides of 6

residues, were required to uniquely identify a coding region

on human chromosome 13.

To determine whether the scoring algorithm increases

accuracy, we considered a set of 3617 proteins identified from

S. cerevisiae protein complexes using liquid chromatogra-

phy/tandem mass spectrometry (LC/MS/MS) and commer-

cial search engines.9 After in silico digestion, we determined

the number and length of generated peptides required for

unique matches to proteins located on theS. cerevisiaegenome

using our hardware. For example, 4 or 5 length peptide

queries from tryptic fragments of either the Rab escort protein

[NP_015015] or an SSB2 variant of the HSP70 family of heat

shock proteins [NP_014190] resulted in multiple matches

across the yeast genome, as expected. In all tested cases, the

best scoring hit identified the true coding region without

requiring additional queries. Queries consisting of three or

fewer residues significantly increased the number of false

positives, but again the use of multiple short query peptides

from the same protein resulted in a noticeable clustering of

hits around the true coding location. In the future, we plan

to pursue an improved scoring scheme that would take

into account the number of short length matches required to

identity the coding location from some predetermined

distribution.

After the search is complete, the hardware outputs a list of

the hit positions and scores. Our post-processing software

maps the hits to genomes, thereby allowing researchers to

interpret matches and visualize potential gene matches along

chromosomes, and potentially assist in the delineation of

intron and exon ranges within a gene. For higher organisms,

genes are mapped to the Unigene EST clusters, providing

insight into tissue expression. We are pursuing a graphical

user interface using a three-dimensional model of the human

body capable of highlighting major organs corresponding to

the tissue in which a match is expressed. Cross-referencing

with sufficiently detailed anatomy ontology with disease

dictionaries will provide a future framework for clinical

diagnostics.

The hardware was originally designed and implemented

using the University of Toronto’s Transmogrifier 3A (TM3-A)

hardware prototyping board (M. van Ierssel, D. Galloway,

P. Chow and J. Rose, Dept. of Electrical and Computer

Engineering, University of Toronto). It has since been

implemented on the Gidel ProcStar 40-3 board (Gidel

Ltd.10), with PCI interface and 2 GB of RAM. TM3-A designs

were implemented using Synplify 7.2 and Xilinx ISE 5.2.3,

while designs for the commercially available Gidel board

were synthesized and placed using Altera’s Quartus II 3.0.

Our hardware implementation requires 1.6 s to locate a

query within the human genome. By comparison, a software

implementation of the search algorithm against an unan-

notated human genomic sequence can process at an average

rate of 210 s per query on a 600 MHz Pentium III.1 Scaling this

to current processor speeds, and assuming an optimistic

linear increase in speed, such a search would require 52.5 s on

a 2.4 GHz processor. Extrapolating this to a cluster of 2.4 GHz

processors, a search time of 0.8 s could in theory be achieved

with a 64 processor cluster. In contrast, two hardware units

could deliver this performance at a cost 40 times lower than

that of an equivalently capable software cluster.

The performance of the hardware solution is also influ-

enced by the underlying scoring algorithm. The hardware

search engine alone can process 4.1� 109 bases per second,

whereas the simple score search processes 3.2� 109 bases per

second and the improved scoring scheme based on frequency

processes 2.025� 109 bases per second. In addition, the re-

programmable fabric of the FPGA can be easily modified to

accommodate a variety of scoring schemes customized to the

user’s needs.

SUMMARY

The hardware-accelerated protein identification solution pre-

sented here addresses a number of important issues in mass

spectrometry. In particular, we have devised a high-perfor-

mance machine that is capable of searching entire genomes

in a time-frame comparable to spectra acquisition time. More-

over, our focus on DNA searching provides a framework for
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the identification of novel or short peptides which cannot be

found in common protein databases. The architecture,

coupled with comparatively high-performance low-cost

custom hardware, makes it an ideal solution for a number

of proteome-scale applications.
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