

Energy Efficient Object Detection on the Mobile GP-
GPU

Fitsum Assamnew Andargie†, Jonathan Rose††, Todd Austin§ , and Valeria Bertacco§

†School of Electrical and Computer Engineering, Addis Ababa University, Addis Ababa
††The Edward Roger Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto

§Computer Science and Engineering Department, University of Michigan, Ann Arbor

Abstract— Smartphones and tablets now include General
Purpose Graphics Processing Units (GP-GPUs) that can be used
for computation beyond driving the high-resolution screens. In
this paper we present a mobile GP-GPU-based object detection
algorithm and system, based on the work by Viola and Jones
(which is also used in the OpenCV library). This implementation
achieved twofold speed up compared to OpenCV running on the
CPU of the same smartphone, and up to 84% energy saving.
Interestingly, the new implementation saves energy vs. the CPU
even when it executes slower than the OpenCV implementation,
because the GPU consumes less power than the CPU, something
that is not typical in desktop or laptop systems.

Keywords— smartphones; GP GPU; object detection; Adreno
GPU;OpenCL

I. INTRODUCTION
Fueled by the exponential advances in semiconductor

technology, smartphones have progressed dramatically in the
last few years. This trend has enabled an explosion of
applications that are targeted for use on smartphones. However,
some applications such as computer vision still require more
computational power for an acceptable user experience. In
addition, any application running on smartphones needs to be
aware of its consumption of energy. There are several ways
this can be achieved. One way is the development and use of
better algorithms while the other is use of the already existing
energy efficient co-processors/accelerators found in the smart
phones. One example of these co-processors is the graphics-
processing unit (GPU).

 In recent years, the graphics-processing unit in smart
phones has followed suit of its desktop, laptop and server
counterparts in becoming capable of being used for general
purpose computing. Several vendors of smartphones processors
now include general purpose GPUs (known as GP-GPUs).
Examples are the Adreno series of GPUs from Qualcomm [1],
the Mali series from ARM [2] and the PowerVR Series from
Imagination Technologies [3]. These GP-GPUs can be
programmed using the Open Computing Language (OpenCL)
[4] for general purpose computing and many other graphics
libraries for graphics application. The use of OpenCL makes
the development of general software on the GPU
comparatively easier as compared to previously where general

problems had to be cast as graphics problems in order to use
the only available graphics libraries for programing the GPU.

The purpose of this work is to employ the mobile GP-GPU
for the development of an object detection library based on the
Viola-Jones[5] approach. We make use of the many
opportunities provided by the system-on-chip nature of a
smartphone processing system.

II. BACKGROUND
Computer vision algorithms allow computers to understand

their environment from visual inputs. The visual inputs can
come from images, videos, or a camera. The purpose of
computer vision is to interpret this visual input for some
purpose. The main barrier to the advancement of computer
vision is its requirement for large amounts of compute power.
There is an ongoing effort to make the algorithms efficient and
whenever possible utilize alternate computing facilities
available in a platform. One such effort is the Open Computer
Vision Collaboration (OpenCV)[6].

The Open Computer Vision collaboration is engaged in an
on-going development of a set of libraries that can be used free
of charge for many kinds of computer vision applications. The
OpenCV library has more than 2500 computer vision
algorithms incorporated. These algorithms are available for
different processor architectures and different languages. It
supports accelerating computer vision algorithms on GPUs
using CUDA [7] and recently OpenCL support has been added
(but only some algorithms are supported on mobile GP-GPUs).
It also supports Windows, Linux, Mac OSX, iOS, and Android
platforms.

Object detection algorithms are some of the algorithms
found in the Open Computer Vision (OpenCV) library. The
object detection algorithm based on the work by Viola and
Jones [5] that uses Haar like features is the topic of this work.
Listing 1 gives the algorithm for the object detection algorithm.
The input to the algorithm is an equalized gray scale image.

Listing 1. Object Detection Algorithm [8]

1. Build integral image I(F) and square integral image SI(F)

2. Set curScale=1.0

978-1-5386-2775-4/17/$31.00 ©2017 IEEE

3. For (all scales)

3.1. curScale*=S

3.2. For (curRegion in all regions X on the current scale)

3.2.1. For (Hi(x) in all cascade stages)

3.2.1.1. StageSum=0

3.2.1.2. For (hj(x) in all weak classifiers of Hi(x))

3.2.1.2.1. StageSum+=calculate weak
classifier hj(x) using I(F) and IS(F)

3.2.1.3. If(StageSum <StageThreshold)

3.2.1.3.1. Mark region as non-object and
proceed to next region

3.2.2. Mark region as object

4. Partition and filter regions marked as objects

As can be seen in Listing 1, the object detection algorithm
requires the computation of the integral image I(F) and square
integral image SI(F) before the cascade classifier is applied.
The integral image is computed as the cumulative sum of each
pixel value and is stored in the respective pixel. A pixel in an
integral image then contains all the intensity values that come
before it and including it. Such approach reduces the
computation of the sum of pixel values in a rectangular area
just to four array references in the integral image. An integral
image needs to be computed for all the scales of the original
image. In addition, the original image needs to be resized for
all the scales before computing the integral images. Of the two
methods used in the OpenCV library, the bilinear [9] resizing
method is used in this work.

III. RELATED WORK
The literature shows that many researchers used the mobile

GPUs for general-purpose applications. The graphics library
OpenGL ES was the go to programming interface in the earlier
days as the GPUs in the mobile devices did not support CUDA
(on the NVidia Tegra platform) or OpenCL (on the other
platforms) then. The literature in the following paragraphs
clearly shows this trend..

Lee et. al [10] used mobile GPU for augmented reality
application where they applied computer-vision techniques for
tagging spaces for augmentation. Their work involved the
learning of a patch of space to be augmented and then detecting
and tracking the tagged space. In addition, the used the phones
sensor’s for pose estimation. They conclude that the GPUs in
the phones enable a near real time Anywhere Augmentation.

Ensor and Hall [11] implemented the Canny edge detection
on mobile GPUs using OpenGL ES 2.0. The implementation
moved the entire pipeline in the Canny edge detector to the
GPU. The Gaussian blurring, the gradient vector computation,
the non-maximum suppression, double threshold and their own
tweaks to the Canny algorithm are all done on the GPU. They
report significant frame rate improvement with the GPU
implementation for some of the mobile devices that were tested
with 640x480 resolution.

Hofmann et. al [12] implemented an upright speeded up
robust features (SURF) descriptor on a mobile GPU called
uSURF-ES. They used OpenGL ES 2.0 and C++ for
programming their application. Their implementation on the
GPU was compared against the upright SURF in OpenCV,
which is not multi-threaded. The comparison was made on
different mobile devices and tablets, and speed-ups ranging
from 2x upto 14x were reported.

The work by Cheng et. al [13] mapped the face recognition
problem to a graphics-rendering paradigm. The face detection
part of this work was done using an Android API. For the
recognition part, they implemented the Gabor wavelet using
Fast Fourier Transform. They used OpenGL ES on an NVidia
Tegra SoC. The face recognition took about 8.5 seconds on the
CPU while taking only 4.6 seconds on the GPU while
consuming 16.3J of energy in contrast to the CPU only
implementation’s 29.8J. This shows an almost 2x speed up was
gained using the GPU while also lowering the energy
consumption by 45.3%.

 The work by Rister et. al. [14] implemented the Scale-
Invariant Feature Transform (SIFT) detector (which is often
used in object detection [15]) on a mobile GP-GPU sing
OpenGL ES. In their approach, data was partitioned between
the CPU and GP-GPU in order to maximize efficiency. They
used texture compression to reduce the data transfer
requirement needed by their implementation by packing the
grey image into an RBGA texture. They also report a
significant energy consumption reduction (87%) as compared
to CPU only implementation when using the heterogeneous
combination. An implementation of the SIFT detector on
mobile GPUs was also done by Wang et. al. [16]. They used
OpenCL for their work instead of OpenGL ES. In their
experiments they were able to achieve improved frame rates
for key point detection and descriptor generations. About 41%
energy consumption reduction was also reported when
compared to an optimized C++ implementation on the CPU.

Object removal from images using an exemplar-based in-
painting algorithm was implemented by Wang et. al. [17] on a
mobile GP-GPU using OpenCL. They modified the object
removal algorithm to be heterogeneous CPU-GPU application.
Parts of the algorithm that take longer to compute were
offloaded to the GPU. This heterogeneous implementation
reduced the runtime from 393 seconds on the CPU coded in
OpenCL to about 2 seconds on the GPU coded with OpenCL
as well.

Jones et. al. [18] used mobile GPUs and OpenCL for
acceleration of embodied robot simulation. They chose the
Stage robot simulator’s ray tracing algorithm to be accelerated
using OpenCL as it was found to be the most time consuming.
They report that 82% performance increase and around 30%
drop in energy usage for one of their experiment setups. They
also speculate that more performance and energy saving can be
achieved with rigorous OpenCL code optimization as the goal
of the current implementation was porting the ray tracing
algorithm with minimal coding effort.

IV. IMPLEMENTATION ON THE GP GPU
The purpose of this work is to implement the object

detection algorithm on a mobile GP-GPU and to measure the
resulting performance improvement both in runtime and energy
efficiency. The components of the algorithm described in
Listing 1 are implemented on the GP-GPU as described in the
subsequent sections.

A. Integral Image Computation

Before the integral image computation commences the
original image needs to be resized to the appropriate scale. In
order to do that the bilinear resizing method is used. The
bilinear algorithm uses the average of the neighboring pixels to
compute the value of the new pixel in the new resized image.
This algorithm was straightforward to implement on the GPU.
For the sake of efficiency, the original image was resized for
all the scales beforehand and the resulting images were stored
in memory.

Once the image is resized, the next step is to compute the
integral images. In order to compute the integral image on the
GP-GPU, the prefix sum [19] method is used. The prefix
method uses a down ward reduction operation on a summation
tree and an upward summation pass. The computation of the
integral image on the GPU in this way requires the
computation of the prefix sum on the rows of the image first
and then followed by the columns. However, doing this
directly will be very inefficient, as data locality will be affected
during the computation of the column prefix sum. Transposing
the image after the computation of the row prefix sum then
solves the problem of data locality. Another transpose was
done to return the integral image to an upright position after the
computation of the column prefix sum. In this work, the row
prefix sum and the first transpose as well as the column prefix
sum and the second transpose were combined in a single kernel
each to reduce the cost of kernel call overhead. This means we
will have only two kernel calls instead of four.

The threads on the GP-GPU for the computation of row and
column prefix sums were organized as [image height x 8] and a
workgroup of 8x8 work-items were used. Each row of eight
threads loops over a row of the image computing the prefix
sums. This way the need for synchronization and further need
for computation to generate a complete prefix sum over the
row is avoided as compared to if the threads were organized as
[image height x image width].

B. Searching for Objects

The next step in the object detection algorithm is the search
for objects in given image. As already discussed, the image has
been resized and integral image computed for different scales
and is stored in memory beforehand. Doing so reduces the need
to allocate memory, resize the image, and compute the integral
image on the fly for each scale, although this has a toll on
memory requirement.

A similar thread organization as in the case of the integral
image computation is used when searching for the objects. In
order to search for the object, each thread will apply the

cascade classifier to an assigned region of the image called a
window for each scale. In the naïve implementation of this
approach each thread applied the entire cascade classifier on
each window that results in some threads finishing work early
and waiting on all other threads that need to do further
processing.

As shown in [20], the first stage of the classifier is
processed on all the windows by all the threads. But not many
of the windows actually ‘pass’ the first stage test (meaning the
object is not likely to be found in this window and further
processing is not required). As a result, the algorithm shown in
Listing 1 was modified in such a way that all threads test the
first stage on all windows and then put the windows that pass
the first stage into a work queue. Once the processing of all
windows for the first stage is done, the same threads can be
utilized to pick work from the work queue to test for the second
stage and put back those that pass the second stage on the work
queue, so on. With this approach, the number of threads that
are stalled waiting on other threads to finish is significantly
reduced. We have two implementations of this approach on the
GPU. The first version directly access the integral image stored
in the global memory of the GPU and does the computation
there. The second version first copies blocks of the image in
global memory to the local memory of the GPU for use in
computation.

V. METHODOLOGY AND EXPERIMENTS
The Qualcomm Snapdragon 805 [21] mobile development

tablet from Intrinsyc was used in this work. It has four Krait
450 processors that run at speeds of up to 2.5 GHz, with 3GB
of LPDDR3 memory running at 800MHz. It also contains the
Adreno 420 GPU running at 600MHz and this GPU boasts
32KB local memory per compute unit. Moreover, both the
processor and the GPU share the same RAM. This is important
as it allows us to avoid memory copies as we can access the
same memory from the CPU and GPU.

The OpenCV library that we compared to in this work was
version 3.1. It has been compiled with multi-threading and
OpenCL enabled for Android. But while we have confirmed
the multi-threading works well, we were unable to make the
OpenCL version of the object detection from OpenCV work on
the mobile device. The OpenCL object detection version was
found to work on the desktop environment when the same
version of OpenCV was compiled for the desktop environment
with the same settings as in the case of the Android version.

For accurate timing measurements the software has been
run 50 times for each test image and the average has been
taken. In order to measure the energy consumption, we have
used a data logger from National Instruments to measure the
current drawn by the tablet when the object detection
application was running. The screen of the tablet was kept
turned of at all times and the tablet has been left idle for
sometime to measure the current drawn at rest.

The first experiment conducted was to measure the runtime
performance of the different implementations of the object
detection algorithm. We have tested the OpenCV Object
Detection that is multithreaded on the CPU (listed as OpenCV-
CPU in the results section below), our serial implementation on

the CPU (MyCPU), our implementation on the GPU that has
reduced thread count with work reduction (MyGPU RTC – as
described in section IV) and a reduced thread count with work
reduction on the GPU with local memory (MyGPU RTC -
LM). These algorithms were tested with images of different
sizes ranging from small to Full HD resolution. In addition the
images had a range of different numbers of objects being
searched for. The objects of interest in these experiments were
human faces. We have used the HAAR based classifier for
faces that comes with OpenCV. There is one difference
between our algorithm and the general OpenCV one:- our work
is limited to non-tilted features, meaning we can not find faces
that are at an angle.

We measured the energy consumption of the different
algorithms in the following way: the current drawn by the
tablet was measured while the implementations listed were
being run on the different images. In order to have reliable
measurements, each implementation was run for multiple times
as in the case of the runtime measurement. However, the
number of runs was dependent on the runtimes associated with
the test images. We used 20 runs for images that took longer to
process and 50 runs for images with lower runtimes. This was
done to have reasonable current measurement samples from the
data logger. Then the root mean square power usage was
computed from the collected data to arrive at the energy
consumption values.

VI. RESULTS

A. Runtime Performance

In this section, we present the results obtained from the
runtime performance and energy performance measurements.
The runtime measured, the number of detections and the speed
up against the baseline OpenCV CPU are given in Table 1. The
runtime measurements include the time it takes to compute the
resizing, the integral images and searching for objects in the
image for all scales of the image. We have observed the
standard deviation of multiple runs to be with in 9% of the
average runtimes overall and less than 1% for MyGPU RTC
implementation. Another observation is that the serial
implementation of the object detection algorithm, (called

MyCPU) is slower compared to the baseline OpenCV
implementation by almost 5 times. Note also that it detects the
same number of faces as the OpenCV version mostly.

The MyGPU RTC implementation has speed ups of up to

more than two times for Full HD resolution images. However,
for images that are smaller it is actually slower because
overhead of launching the object detection on the GPU for
smaller images out weighs the benefit. Similarly as the number
of objects in test images of Full HD resolution increases, the
performance of the MyGPU RTC shows a decline in
performance. This is caused by the fact that more and more
candidate windows pass for further processing in the classifier
cascade. One solution for this might be a heterogeneous
computing with GPU and CPU where the candidate windows
that pass the test on latter stages of the cascade classifier can be
pushed to the CPU for processing. Another observation for this
implementation is that there are fewer number of detections
compared to the OpenCV CPU implementation. Such behavior
is caused by the limited size of local memory that is necessary
to store the work queue.

The MyGPU RTC LM implementation, which tried to

utilize the high performance local memory that exists in the
Adreno GPU used in this experiments, was found to perform
poorly with regards to runtime performance. The cause for this
performance loss is the nature of the object detection algorithm
used. This algorithm uses the sliding windows approach which
means one has to copy adjacent windows to the local memory
as illustrated by the following example. Since the work-items
are grouped in a 8x8 workgroup size, one has to copy 8x8 = 64
adjacent windows to the local memory from the GPU’s global
memory. Each window is in turn 20x20 pixels which means a
28x28 block of image has to be copied to the local memory for
every set of workgroup. This leads to a huge amount (about
92%) of redundant memory copies that lead to significant
performance loss. In our implementation we have tried to
reduce this overhead by making copies of sixteen 8x8 blocks of
windows per workgroup in MyGPU RTC LM. Even though the
redundant memory copies were reduced to 62% with this
approach, performance was still reduced as the 62% redundant
copy is still significant.

 OpenCV CPU MyCPU MyGPU RTC MyGPU RTC LM
Images

Res - #Object
Runtime

(S) Detections Runtime
(S) Detections Speed

Up
Runtime

(S) Detections Speed
Up

Runtime
(S) Detections Speed Up

Full HD - 1 0.63 1 3.58 1 0.18 0.26 1 2.39 1.07 1 0.59
Full HD - 2 1.29 2 6.85 3 0.19 1.42 1 0.91 1.39 1 0.93
Full HD - 3 1.29 3 6.12 3 0.21 0.59 3 2.20 1.33 2 0.97
Full HD - 9 1.30 9 7.26 9 0.18 1.02 7 1.28 1.56 6 0.83
Full HD - 19 1.35 19 7.50 20 0.18 1.25 16 1.09 1.62 13 0.83
Full HD - 72 1.83 72 8.24 72 0.22 1.75 65 1.05 1.63 111 1.12
512x512 - 1 0.16 1 0.75 1 0.22 0.20 1 0.81 0.20 1 0.80
450x326 - 2 0.08 2 0.41 2 0.19 0.13 1 0.61 0.18 1 0.44
647x650 - 31 0.30 31 1.59 31 0.19 0.48 21 0.63 0.46 33 0.66

Table 1 – Runtime Performance Measurement

B. Energy Efficiency Measurement

In this measurement, the energy consumed by the tablet
while running the different implementations on the test images
used in this work is provided. Table 2 gives the energy
consumption measured in Joules and the improvement in
percentage as compared to the baseline, which is the OpenCV
CPU implementation. An immediate observation from the data
in Table 2 is that serial or multi-threaded implementations on
the CPU consistently consumed more energy compared to the
implementations on the GPU. The serial implementation
MyCPU consumed almost only twice as much as the
multithreaded OpenCV CPU implementation. This is a surprise
because OpenCV CPU was almost 5x faster than MyCPU. The
reason for this behavior may arise from the fact that all four
cores of the CPU are activated and the device draws more
current from the supply for the OpenCV version. It was
observed that the multi-threaded OpenCV CPU drew around
500mA while MyCPU drew about 200mA.

Both the GPU based implementations consistently showed
energy efficiency improvement over the OpenCV CPU
version. In particular, the best energy efficiency (about 84%)
improvement was achieved for MyGPU RTC when run with a
Full HD image with only one object in the scene. This can be
attributed to the nature of the algorithm that rejected most of
the candidate windows at the early stages of the cascade
classifier. Lower energy efficiency improvements were
measured for the smallest resolution images although they are
still significantly better than the OpenCV CPU implementation.

The MyGPU RTC LM had a maximum of 66% and a
minimum of 11% energy consumption improvement over the
baseline. Recall from the previous section that MyGPU RTC
LM was mostly slower in runtime compared to the OpenCV
CPU implementation. This shows that even when an
implementation is underperforming in runtime on the mobile
GP-GPU, there is a higher chance that energy can be saved by
pushing some computation to the GPU. This suggests that for
non-real time applications using the mobile GP-GPU will
definitely be beneficial in conserving battery charge levels.

VII. CONCLUSION
We have shown performance measurements of the Viola-

Jones-based object detection on mobile GP-GPUs. It is shown
that one can achieve the up to more than twofold speedup
while improving energy efficiency by up to 84% when
offloading general-purpose application to the mobile GP-GPU.
These results were found out to be in line with what is found in
the literature as well. In the future, we plan to apply the object
detector developed in this work for applications that are non-
real time in the area of health and agriculture.

REFERENCES

[1] Qualcomm Inc., Snapdragon 805 Processor.
https://www.qualcomm.com/products/snapdragon/processors/805
(accessed May 08, 2017)

[2] Mali graphics processing for ARM.
http://www.arm.com/products/graphics-and-multimedia/mali-gpu
(accessed May 08, 2017)

[3] PowerVR Graphics. https://www.imgtec.com/powervr/graphics/
(accessed May 08, 2017)

[4] Khronos OpenCL Working Group, “The OpenCL Specification”,
Version 2.0, 2014

[5] Viola, Paul, and Michael Jones. "Rapid object detection using a boosted
cascade of simple features." Computer Vision and Pattern Recognition,
2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society
Conference on. Vol. 1. IEEE, 2001.

[6] Open Computer Vision. http:/opencv.org (accessed May 08, 2017)
[7] Nvidia, C. U. D. A. "Programming guide." (2008).
[8] Wen-Mei, W. Hwu. GPU computing gems emerald edition. Elsevier,

2011.
[9] Lehmann, Thomas Martin, Claudia Gonner, and Klaus Spitzer. "Survey:

Interpolation methods in medical image processing." IEEE transactions
on medical imaging 18.11 (1999): 1049-1075.

[10] Lee, Wonwoo, et al. "Point-and-shoot for ubiquitous tagging on mobile
phones." Mixed and Augmented Reality (ISMAR), 2010 9th IEEE
International Symposium on. IEEE, 2010.

[11] Ensor, Andrew, and Seth Hall. "GPU-based image analysis on mobile
devices." arXiv preprint arXiv:1112.3110 (2011).

[12] Hofmann, Robert, Hartmut Seichter, and Gerhard Reitmayr. "A GPGPU
accelerated descriptor for mobile devices." Mixed and Augmented
Reality (ISMAR), 2012 IEEE International Symposium on. IEEE, 2012.

[13] Cheng, Kwang-Ting, and Yi-Chu Wang. "Using mobile GPU for
general-purpose computing–a case study of face recognition on
smartphones." In VLSI Design, Automation and Test (VLSI-DAT),
2011 International Symposium on, pp. 1-4. IEEE, 2011.

 OpenCV CPU My CPU MyGPU RTC MyGPU RTC LM

Images Energy(J) Energy(J) % Improvement Energy(J) % Improvement Energy(J) % Improvement

Full HD Object - 1 3.81 8.42 -121.00 0.61 83.99 2.23 41.47
Full HD Object - 2 7.66 16.15 -110.84 3.38 55.87 2.85 62.79
Full HD Object - 3 7.71 14.30 -85.47 1.33 82.75 2.65 65.63
Full HD Object - 9 7.89 17.29 -119.14 2.41 69.46 3.24 58.94

Full HD Object - 19 8.08 17.62 -118.07 2.88 64.36 3.35 58.54
Full HD Object - 72 9.78 19.56 -100.00 4.07 58.38 3.92 59.92

512x512 - 1 0.80 1.76 -120.00 0.44 45.00 0.42 47.50
450x326 - 2 0.43 0.95 -120.93 0.28 34.88 0.38 11.63

647x650 - 31 1.68 3.68 -119.05 1.07 36.31 0.92 45.24

Table 2 – Energy Performance Measurement

[14] Rister, Blaine, Guohui Wang, Michael Wu, and Joseph R. Cavallaro. "A
fast and efficient SIFT detector using the mobile GPU." In Acoustics,
Speech and Signal Processing (ICASSP), 2013 IEEE International
Conference on, pp. 2674-2678. IEEE, 2013.

[15] Lowe, David G. "Object recognition from local scale-invariant features."
InComputer vision, 1999. The proceedings of the seventh IEEE
international conference on, vol. 2, pp. 1150-1157. Ieee, 1999.

[16] Wang, Guohui, Blaine Rister, and Joseph R. Cavallaro. "Workload
analysis and efficient OpenCL-based implementation of SIFT algorithm
on a smartphone." InProceedings in IEEE global conference signal and
information processing (GlobalSIP), pp. 759-762. 2013.

[17] Wang, Guohui, Yingen Xiong, Jay Yun, and Joseph R. Cavallaro.
"Accelerating computer vision algorithms using OpenCL framework on

the mobile GPU-a case study." In Acoustics, Speech and Signal
Processing (ICASSP), 2013 IEEE International Conference on, pp.
2629-2633. IEEE, 2013.

[18] Jones, Simon, Matthew Studley, and Alan Winfield. "Mobile GPGPU
acceleration of embodied robot simulation." Artificial Life and
Intelligent Agents Symposium. Springer International Publishing, 2014.

[19] Harris, Mark, Shubhabrata Sengupta, and John D. Owens. "Parallel
prefix sum (scan) with CUDA." GPU gems 3.39 (2007): 851-876.

[20] Micikevicius, Paulius, “Maximizing Face Detection Performance”, GPU
Technology Confernece, 2015

[21] MDP Tablet based on the Qualcomm® Snapdragon™ 805 Processor by
Qualcomm Technologies, Inc., http://www.intrinsyc.com/snapdragon-
development-platforms/mdp-805-tablet/,(accessed April 19, 2014)

