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Abstract— Smartphones and tablets now include General 
Purpose Graphics Processing Units (GP-GPUs) that can be used 
for computation beyond driving the high-resolution screens. In 
this paper we present a mobile GP-GPU-based object detection 
algorithm and system, based on the work by Viola and Jones 
(which is also used in the OpenCV library). This implementation 
achieved twofold speed up compared to OpenCV running on the 
CPU of the same smartphone, and up to 84% energy saving. 
Interestingly, the new implementation saves energy vs. the CPU 
even when it executes slower than the OpenCV implementation, 
because the GPU consumes less power than the CPU, something 
that is not typical in desktop or laptop systems. 

Keywords— smartphones; GP GPU; object detection; Adreno 
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I. INTRODUCTION  
Fueled by the exponential advances in semiconductor 

technology, smartphones have progressed dramatically in the 
last few years. This trend has enabled an explosion of 
applications that are targeted for use on smartphones. However, 
some applications such as computer vision still require more 
computational power for an acceptable user experience. In 
addition, any application running on smartphones needs to be 
aware of its consumption of energy. There are several ways 
this can be achieved. One way is the development and use of 
better algorithms while the other is use of the already existing 
energy efficient co-processors/accelerators found in the smart 
phones. One example of these co-processors is the graphics-
processing unit (GPU).   

 In recent years, the graphics-processing unit in smart 
phones has followed suit of its desktop, laptop and server 
counterparts in becoming capable of being used for general 
purpose computing. Several vendors of smartphones processors 
now include general purpose GPUs (known as GP-GPUs). 
Examples are the Adreno series of GPUs from Qualcomm [1], 
the Mali series from ARM [2] and the PowerVR Series from 
Imagination Technologies [3]. These GP-GPUs can be 
programmed using the Open Computing Language (OpenCL) 
[4] for general purpose computing and many other graphics 
libraries for graphics application. The use of OpenCL makes 
the development of general software on the GPU 
comparatively easier as compared to previously where general 

problems had to be cast as graphics problems in order to use 
the only available graphics libraries for programing the GPU. 

The purpose of this work is to employ the mobile GP-GPU 
for the development of an object detection library based on the 
Viola-Jones[5] approach. We make use of the many 
opportunities provided by the system-on-chip nature of a 
smartphone processing system.  

II. BACKGROUND 
Computer vision algorithms allow computers to understand 

their environment from visual inputs. The visual inputs can 
come from images, videos, or a camera. The purpose of 
computer vision is to interpret this visual input for some 
purpose. The main barrier to the advancement of computer 
vision is its requirement for large amounts of compute power. 
There is an ongoing effort to make the algorithms efficient and 
whenever possible utilize alternate computing facilities 
available in a platform. One such effort is the Open Computer 
Vision Collaboration (OpenCV)[6]. 

The Open Computer Vision collaboration is engaged in an 
on-going development of a set of libraries that can be used free 
of charge for many kinds of computer vision applications. The 
OpenCV library has more than 2500 computer vision 
algorithms incorporated. These algorithms are available for 
different processor architectures and different languages. It 
supports accelerating computer vision algorithms on GPUs 
using CUDA [7] and recently OpenCL support has been added 
(but only some algorithms are supported on mobile GP-GPUs). 
It also supports Windows, Linux, Mac OSX, iOS, and Android 
platforms.  

Object detection algorithms are some of the algorithms 
found in the Open Computer Vision (OpenCV) library. The 
object detection algorithm based on the work by Viola and 
Jones [5] that uses Haar like features is the topic of this work. 
Listing 1 gives the algorithm for the object detection algorithm. 
The input to the algorithm is an equalized gray scale image. 

Listing 1. Object Detection Algorithm [8] 

1. Build integral image I(F) and square integral image SI(F)   

2. Set curScale=1.0   
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3. For (all scales)   

3.1. curScale*=S  

3.2. For (curRegion in all regions X on the current scale)   

3.2.1. For (Hi(x) in all cascade stages)  

3.2.1.1. StageSum=0  

3.2.1.2. For (hj(x) in all weak classifiers of Hi(x)) 

3.2.1.2.1. StageSum+=calculate weak 
classifier hj(x ) using I(F) and IS(F)  

3.2.1.3. If(StageSum <StageThreshold) 

3.2.1.3.1.  Mark region as non-object and 
proceed to next region  

3.2.2. Mark region as object  

4. Partition and filter regions marked as objects  

As can be seen in Listing 1, the object detection algorithm 
requires the computation of the integral image I(F) and square 
integral image SI(F) before the cascade classifier is applied. 
The integral image is computed as the cumulative sum of each 
pixel value and is stored in the respective pixel. A pixel in an 
integral image then contains all the intensity values that come 
before it and including it. Such approach reduces the 
computation of the sum of pixel values in a rectangular area 
just to four array references in the integral image.  An integral 
image needs to be computed for all the scales of the original 
image. In addition, the original image needs to be resized for 
all the scales before computing the integral images. Of the two 
methods used in the OpenCV library, the bilinear [9] resizing 
method is used in this work. 

III. RELATED WORK 
The literature shows that many researchers used the mobile 

GPUs for general-purpose applications. The graphics library 
OpenGL ES was the go to programming interface in the earlier 
days as the GPUs in the mobile devices did not support CUDA 
(on the NVidia Tegra platform) or OpenCL (on the other 
platforms) then. The literature in the following paragraphs 
clearly shows this trend.. 

Lee et. al [10] used mobile GPU for augmented reality 
application where they applied computer-vision techniques for 
tagging spaces for augmentation. Their work involved the 
learning of a patch of space to be augmented and then detecting 
and tracking the tagged space. In addition, the used the phones 
sensor’s for pose estimation. They conclude that the GPUs in 
the phones enable a near real time Anywhere Augmentation. 

Ensor and Hall [11] implemented the Canny edge detection 
on mobile GPUs using OpenGL ES 2.0. The implementation 
moved the entire pipeline in the Canny edge detector to the 
GPU. The Gaussian blurring, the gradient vector computation, 
the non-maximum suppression, double threshold and their own 
tweaks to the Canny algorithm are all done on the GPU. They 
report significant frame rate improvement with the GPU 
implementation for some of the mobile devices that were tested 
with 640x480 resolution.   

Hofmann et. al [12] implemented an upright  speeded up 
robust features (SURF) descriptor on a mobile GPU called 
uSURF-ES. They used OpenGL ES 2.0 and C++ for 
programming their application. Their implementation on the 
GPU was compared against the upright SURF in OpenCV, 
which is not multi-threaded. The comparison was made on 
different mobile devices and tablets, and speed-ups ranging 
from 2x upto 14x were reported.  

The work by Cheng et. al [13] mapped the face recognition 
problem to a graphics-rendering paradigm. The face detection 
part of this work was done using an Android API. For the 
recognition part, they implemented the Gabor wavelet using 
Fast Fourier Transform. They used OpenGL ES on an NVidia 
Tegra SoC. The face recognition took about 8.5 seconds on the 
CPU while taking only 4.6 seconds on the GPU while 
consuming 16.3J of energy in contrast to the CPU only 
implementation’s 29.8J. This shows an almost 2x speed up was 
gained using the GPU while also lowering the energy 
consumption by 45.3%.  

 The work by Rister et. al. [14] implemented the Scale-
Invariant Feature Transform (SIFT) detector (which is often 
used in object detection [15]) on a mobile GP-GPU sing 
OpenGL ES. In their approach, data was partitioned between 
the CPU and GP-GPU in order to maximize efficiency. They 
used texture compression to reduce the data transfer 
requirement needed by their implementation by packing the 
grey image into an RBGA texture. They also report a 
significant energy consumption reduction (87%) as compared 
to CPU only implementation when using the heterogeneous 
combination. An implementation of the SIFT detector on 
mobile GPUs was also done by Wang et. al. [16]. They used 
OpenCL for their work instead of OpenGL ES. In their 
experiments they were able to achieve improved frame rates 
for key point detection and descriptor generations. About 41% 
energy consumption reduction was also reported when 
compared to an optimized C++ implementation on the CPU.  

Object removal from images using an exemplar-based in-
painting algorithm was implemented by Wang et. al. [17] on a 
mobile GP-GPU using OpenCL. They modified the object 
removal algorithm to be heterogeneous CPU-GPU application. 
Parts of the algorithm that take longer to compute were 
offloaded to the GPU. This heterogeneous implementation 
reduced the runtime from 393 seconds on the CPU coded in 
OpenCL to about 2 seconds on the GPU coded with OpenCL 
as well. 

Jones et. al. [18] used mobile GPUs and OpenCL for 
acceleration of embodied robot simulation. They chose the 
Stage robot simulator’s ray tracing algorithm to be accelerated 
using OpenCL as it was found to be the most time consuming. 
They report that 82% performance increase and around 30% 
drop in energy usage for one of their experiment setups. They 
also speculate that more performance and energy saving can be 
achieved with rigorous OpenCL code optimization as the goal 
of the current implementation was porting the ray tracing 
algorithm with minimal coding effort.  



   

 
 

IV. IMPLEMENTATION ON THE GP GPU 
The purpose of this work is to implement the object 

detection algorithm on a mobile GP-GPU and to measure the 
resulting performance improvement both in runtime and energy 
efficiency. The components of the algorithm described in 
Listing 1 are implemented on the GP-GPU as described in the 
subsequent sections. 

A. Integral Image Computation  
 

Before the integral image computation commences the 
original image needs to be resized to the appropriate scale. In 
order to do that the bilinear resizing method is used. The 
bilinear algorithm uses the average of the neighboring pixels to 
compute the value of the new pixel in the new resized image. 
This algorithm was straightforward to implement on the GPU. 
For the sake of efficiency, the original image was resized for 
all the scales beforehand and the resulting images were stored 
in memory. 

Once the image is resized, the next step is to compute the 
integral images. In order to compute the integral image on the 
GP-GPU, the prefix sum [19] method is used. The prefix 
method uses a down ward reduction operation on a summation 
tree and an upward summation pass. The computation of the 
integral image on the GPU in this way requires the 
computation of the prefix sum on the rows of the image first 
and then followed by the columns. However, doing this 
directly will be very inefficient, as data locality will be affected 
during the computation of the column prefix sum. Transposing 
the image after the computation of the row prefix sum then 
solves the problem of data locality. Another transpose was 
done to return the integral image to an upright position after the 
computation of the column prefix sum. In this work, the row 
prefix sum and the first transpose as well as the column prefix 
sum and the second transpose were combined in a single kernel 
each to reduce the cost of kernel call overhead. This means we 
will have only two kernel calls instead of four. 

The threads on the GP-GPU for the computation of row and 
column prefix sums were organized as [image height x 8] and a 
workgroup of 8x8 work-items were used. Each row of eight 
threads loops over a row of the image computing the prefix 
sums. This way the need for synchronization and further need 
for computation to generate a complete prefix sum over the 
row is avoided as compared to if the threads were organized as 
[image height x image width]. 

 
B.  Searching for Objects  
 

The next step in the object detection algorithm is the search 
for objects in given image. As already discussed, the image has 
been resized and integral image computed for different scales 
and is stored in memory beforehand. Doing so reduces the need 
to allocate memory, resize the image, and compute the integral 
image on the fly for each scale, although this has a toll on 
memory requirement.  

A similar thread organization as in the case of the integral 
image computation is used when searching for the objects. In 
order to search for the object, each thread will apply the 

cascade classifier to an assigned region of the image called a 
window for each scale. In the naïve implementation of this 
approach each thread applied the entire cascade classifier on 
each window that results in some threads finishing work early 
and waiting on all other threads that need to do further 
processing.  

As shown in [20], the first stage of the classifier is 
processed on all the windows by all the threads. But not many 
of the windows actually ‘pass’ the first stage test (meaning the 
object is not likely to be found in this window and further 
processing is not required). As a result, the algorithm shown in 
Listing 1 was modified in such a way that all threads test the 
first stage on all windows and then put the windows that pass 
the first stage into a work queue. Once the processing of all 
windows for the first stage is done, the same threads can be 
utilized to pick work from the work queue to test for the second 
stage and put back those that pass the second stage on the work 
queue, so on. With this approach, the number of threads that 
are stalled waiting on other threads to finish is significantly 
reduced. We have two implementations of this approach on the 
GPU. The first version directly access the integral image stored 
in the global memory of the GPU and does the computation 
there. The second version first copies blocks of the image in 
global memory to the local memory of the GPU for use in 
computation.  

V. METHODOLOGY AND EXPERIMENTS 
The Qualcomm Snapdragon 805 [21] mobile development 

tablet from Intrinsyc was used in this work. It has four Krait 
450 processors that run at speeds of up to 2.5 GHz, with 3GB 
of LPDDR3 memory running at 800MHz.  It also contains the 
Adreno 420 GPU running at 600MHz and this GPU boasts 
32KB local memory per compute unit. Moreover, both the 
processor and the GPU share the same RAM. This is important 
as it allows us to avoid memory copies as we can access the 
same memory from the CPU and GPU.  

The OpenCV library that we compared to in this work was 
version 3.1. It has been compiled with multi-threading and 
OpenCL enabled for Android. But while we have confirmed 
the multi-threading works well, we were unable to make the 
OpenCL version of the object detection from OpenCV work on 
the mobile device. The OpenCL object detection version was 
found to work on the desktop environment when the same 
version of OpenCV was compiled for the desktop environment 
with the same settings as in the case of the Android version. 

For accurate timing measurements the software has been 
run 50 times for each test image and the average has been 
taken. In order to measure the energy consumption, we have 
used a data logger from National Instruments to measure the 
current drawn by the tablet when the object detection 
application was running. The screen of the tablet was kept 
turned of at all times and the tablet has been left idle for 
sometime to measure the current drawn at rest.  

The first experiment conducted was to measure the runtime 
performance of the different implementations of the object 
detection algorithm. We have tested the OpenCV Object 
Detection that is multithreaded on the CPU (listed as OpenCV-
CPU in the results section below), our serial implementation on 



   

 
 

the CPU (MyCPU), our implementation on the GPU that has 
reduced thread count with work reduction (MyGPU RTC – as 
described in section IV) and a reduced thread count with work 
reduction on the GPU with local memory (MyGPU RTC - 
LM). These algorithms were tested with images of different 
sizes ranging from small to Full HD resolution. In addition the 
images had a range of different numbers of objects being 
searched for. The objects of interest in these experiments were 
human faces. We have used the HAAR based classifier for 
faces that comes with OpenCV. There is one difference 
between our algorithm and the general OpenCV one:- our work 
is limited to non-tilted features, meaning we can not find faces 
that are at an angle. 

We measured the energy consumption of the different 
algorithms in the following way: the current drawn by the 
tablet was measured while the implementations listed were 
being run on the different images. In order to have reliable 
measurements, each implementation was run for multiple times 
as in the case of the runtime measurement. However, the 
number of runs was dependent on the runtimes associated with 
the test images. We used 20 runs for images that took longer to 
process and 50 runs for images with lower runtimes. This was 
done to have reasonable current measurement samples from the 
data logger. Then the root mean square power usage was 
computed from the collected data to arrive at the energy 
consumption values. 

VI. RESULTS 

A. Runtime Performance 
 

In this section, we present the results obtained from the 
runtime performance and energy performance measurements. 
The runtime measured, the number of detections and the speed 
up against the baseline OpenCV CPU are given in Table 1. The 
runtime measurements include the time it takes to compute the 
resizing, the integral images and searching for objects in the 
image for all scales of the image. We have observed the 
standard deviation of multiple runs to be with in 9% of the 
average runtimes overall and less than 1% for MyGPU RTC 
implementation. Another observation is that the serial 
implementation of the object detection algorithm, (called 

MyCPU) is slower compared to the baseline OpenCV 
implementation by almost 5 times. Note also that it detects the 
same number of faces as the OpenCV version mostly.  

 
The MyGPU RTC implementation has speed ups of up to 

more than two times for Full HD resolution images. However, 
for images that are smaller it is actually slower because 
overhead of launching the object detection on the GPU for 
smaller images out weighs the benefit. Similarly as the number 
of objects in test images of Full HD resolution increases, the 
performance of the MyGPU RTC shows a decline in 
performance. This is caused by the fact that more and more 
candidate windows pass for further processing in the classifier 
cascade. One solution for this might be a heterogeneous 
computing with GPU and CPU where the candidate windows 
that pass the test on latter stages of the cascade classifier can be 
pushed to the CPU for processing. Another observation for this 
implementation is that there are fewer number of detections 
compared to the OpenCV CPU implementation. Such behavior 
is caused by the limited size of local memory that is necessary 
to store the work queue.    

 
The MyGPU RTC LM implementation, which tried to 

utilize the high performance local memory that exists in the 
Adreno GPU used in this experiments, was found to perform 
poorly with regards to runtime performance. The cause for this 
performance loss is the nature of the object detection algorithm 
used. This algorithm uses the sliding windows approach which 
means one has to copy adjacent windows to the local memory 
as illustrated by the following example. Since the work-items 
are grouped in a 8x8 workgroup size, one has to copy 8x8 = 64 
adjacent windows to the local memory from the GPU’s global 
memory. Each window is in turn 20x20 pixels which means a 
28x28 block of image has to be copied to the local memory for 
every set of workgroup. This leads to a huge amount (about 
92%) of redundant memory copies that lead to significant 
performance loss. In our implementation we have tried to 
reduce this overhead by making copies of sixteen 8x8 blocks of 
windows per workgroup in MyGPU RTC LM. Even though the 
redundant memory copies were reduced to 62% with this 
approach, performance was still reduced as the 62% redundant 
copy is still significant.  

 OpenCV CPU MyCPU MyGPU RTC MyGPU RTC LM 
Images 

Res - #Object 
Runtime 

(S) Detections Runtime 
(S) Detections Speed 

Up 
Runtime 

(S) Detections Speed 
Up 

Runtime 
(S) Detections Speed Up 

Full HD - 1 0.63 1 3.58 1 0.18 0.26 1 2.39 1.07 1 0.59 
Full HD - 2 1.29 2 6.85 3 0.19 1.42 1 0.91 1.39 1 0.93 
Full HD - 3 1.29 3 6.12 3 0.21 0.59 3 2.20 1.33 2 0.97 
Full HD - 9 1.30 9 7.26 9 0.18 1.02 7 1.28 1.56 6 0.83 
Full HD - 19 1.35 19 7.50 20 0.18 1.25 16 1.09 1.62 13 0.83 
Full HD - 72 1.83 72 8.24 72 0.22 1.75 65 1.05 1.63 111 1.12 
512x512 - 1 0.16 1 0.75 1 0.22 0.20 1 0.81 0.20 1 0.80 
450x326 - 2 0.08 2 0.41 2 0.19 0.13 1 0.61 0.18 1 0.44 
647x650 - 31 0.30 31 1.59 31 0.19 0.48 21 0.63 0.46 33 0.66 

Table 1 – Runtime Performance Measurement 

 



   

 
 

B. Energy Efficiency Measurement 
 

In this measurement, the energy consumed by the tablet 
while running the different implementations on the test images 
used in this work is provided. Table 2 gives the energy 
consumption measured in Joules and the improvement in 
percentage as compared to the baseline, which is the OpenCV 
CPU implementation. An immediate observation from the data 
in Table 2 is that serial or multi-threaded implementations on 
the CPU consistently consumed more energy compared to the 
implementations on the GPU. The serial implementation 
MyCPU consumed almost only twice as much as the 
multithreaded OpenCV CPU implementation. This is a surprise 
because OpenCV CPU was almost 5x faster than MyCPU. The 
reason for this behavior may arise from the fact that all four 
cores of the CPU are activated and the device draws more 
current from the supply for the OpenCV version. It was 
observed that the multi-threaded OpenCV CPU drew around 
500mA while MyCPU drew about 200mA. 

Both the GPU based implementations consistently showed 
energy efficiency improvement over the OpenCV CPU 
version. In particular, the best energy efficiency (about 84%) 
improvement was achieved for MyGPU RTC when run with a 
Full HD image with only one object in the scene. This can be 
attributed to the nature of the algorithm that rejected most of 
the candidate windows at the early stages of the cascade 
classifier. Lower energy efficiency improvements were 
measured for the smallest resolution images although they are 
still significantly better than the OpenCV CPU implementation.    

The MyGPU RTC LM had a maximum of 66% and a 
minimum of 11% energy consumption improvement over the 
baseline. Recall from the previous section that MyGPU RTC 
LM was mostly slower in runtime compared to the OpenCV 
CPU implementation. This shows that even when an 
implementation is underperforming in runtime on the mobile 
GP-GPU, there is a higher chance that energy can be saved by 
pushing some computation to the GPU. This suggests that for 
non-real time applications using the mobile GP-GPU will 
definitely be beneficial in conserving battery charge levels. 

VII. CONCLUSION 
We have shown performance measurements of the Viola-

Jones-based object detection on mobile GP-GPUs. It is shown 
that one can achieve the up to more than twofold speedup 
while improving energy efficiency by up to 84% when 
offloading general-purpose application to the mobile GP-GPU.  
These results were found out to be in line with what is found in 
the literature as well. In the future, we plan to apply the object 
detector developed in this work for applications that are non-
real time in the area of health and agriculture.  
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