
ALL FIELD-PROGRAMMABLE GATE ar-

rays contain both programmable logic blocks

and programmable routing. The nature of the

logic block strongly influences an FPGA’s

speed and density. FPGAs are approximate-

ly 10 times less dense and three times slower

than mask-programmed gate arrays. Thus, we

have strong motivation to explore new logic

blocks that help close this gap—for example,

logic blocks composed of groups, or clusters,

of lookup tables and flip-flops.

Most SRAM-based FPGAs use logic blocks

based on lookup tables (LUTs). A LUT-based

logic block can implement any function of

its inputs. Accordingly, we normally de-

scribe lookup tables by their number of in-

puts. A lookup table with more inputs can

implement more logic, and hence we need

fewer logic blocks to implement a circuit.

Using fewer blocks saves routing area by re-

ducing connections between logic blocks.

However, LUT complexity grows exponen-

tially with the number of inputs, so using a

lookup table with a large number of inputs

as a logic block is impractical.

Instead of creating a larger logic block by

increasing the number of inputs, we can sim-

ply group several LUTs together and inter-

connect them with local routing. The

resulting block is a logic cluster.1 Figure 1

shows a circuit implemented in an FPGA in

which each logic cluster contains two 4-

input lookup tables. Notice that many con-

nections can be made via the local inter-

connect within a cluster. Because this local

interconnect can be faster than the general-

purpose routing between logic blocks, clus-

ter-based logic blocks can improve FPGA

speeds. Moreover, an FPGA in which every

cluster contains several LUTs needs fewer

logic blocks to implement a circuit than an

FPGA in which each logic block is a single

LUT. Thus, clusters reduce the size of the

placement and routing problem consider-

ably. Since placement and routing is usual-

ly the most time-consuming step in mapping

a design to an FPGA, clusters can signifi-

cantly reduce design compilation time. As

FPGAs grow larger, it is important to keep

compilation time from growing too large, or

key FPGA advantages—rapid prototyping

and design—will be lost.

A more complex issue, the area impact of

grouping multiple LUTs into a logic cluster,

is our focus here. On the one hand, group-

ing related LUTs into a single logic block re-

duces the number of connections between

logic blocks, saving routing area. Since gen-

eral-purpose interconnect consumes most

of the die area in SRAM-based FPGAs, this is

a significant area savings. On the other hand,

in the logic clusters we study, the area re-

quired by local routing within the clusters

grows quadratically with their size. For suf-

How Much Logic Should Go in
an FPGA Logic Block?

HOW MUCH LOGIC?

10 0740-7475/98/$10.00 © 1998 IEEE IEEE DESIGN & TEST OF COMPUTERS

The logic blocks of most
FPGAs contain clusters of
lookup tables and flip-
flops, yet little is known
about good choices for
key parameters: How
many lookup tables

should a cluster contain,
how should FPGA

routing flexibility change
as cluster size changes,
and how many inputs
should programmable
routing provide each

cluster?

VAUGHN BETZ
JONATHAN ROSE

University of Toronto

.

JANUARY–MARCH 1998 11

ficiently large clusters, then, the area used by local inter-

connect will exceed the area saved in general interconnect.

Here, we explore three questions concerning area-efficient

design of cluster-based logic blocks. First, how many distinct

inputs should the FPGA routing provide to a cluster of LUTs?

Reducing the number of inputs to a logic block saves routing

area. If the number is too low, however, many circuits will

be unable to use all the LUTs in a cluster, and area will be

wasted. Second, as the number of LUTs in a logic cluster

changes, how should the FPGA’s routing architecture

change? Finally, how many LUTs should we include in a clus-

ter? Recent FPGAs from Xilinx, Altera, Lucent Technologies,

and Actel have grouped several LUTs into logic clusters, but

little work investigating these questions has been published.

Although Aggarwal and Lewis2 investigated a strictly hierar-

chical FPGA, to our knowledge the work presented here is

the first to investigate the use of logic blocks with two levels

of hierarchy within an otherwise flat FPGA architecture.

Cluster-based logic blocks
Previous research3 has shown that a four-input lookup

table is the most area-efficient LUT. Since most commercial

FPGAs use LUTs of this size, all the logic clusters we study

here are groups of 4-input LUTs.

Although a 4-input LUT enables FPGAs to perform com-

binational functions, we cannot implement sequential cir-

cuits unless our logic blocks also contain flip-flops. Figure 2

shows how most commercial FPGAs combine a LUT and a

flip-flop to create a logic block that can perform both com-

binational and sequential functions. We call the structure

in Figure 2 a basic logic element, or BLE.

A complete logic block, or

logic cluster, consists of sev-

eral BLEs, plus the local rout-

ing required to interconnect

them, as shown in Figure 3.

The logic cluster has two pa-

rameters: N, the number of

BLEs, and I, the number of in-

puts. As the figure shows, not

all the LUT inputs (there are

4 × N) are accessible from

outside the cluster. Instead,

the FPGA provides only I ex-

ternal inputs to the logic clus-

ter—multiplexers within the

cluster allow arbitrary con-

nections of these inputs to

the BLE inputs. The same

multiplexers also connect to

each BLE output, allowing

the output of any BLE within

4-input
lookup
tables

Logic
cluster
(unused)

Main
(interblock)
routing

Local
routing

Local routing

Figure 1. Circuit implementation in an FPGA with a cluster size
of two lookup tables.

Inputs
4-input
lookup
table Clock

D
flip-flop

Out

Figure 2. Basic logic element (BLE).

BLE
#1

BLE
#N

N

N
BLEs

N
outputs

Clock

I
inputs

I

(b)(a)

Figure 3. Logic cluster structure (a); FPGA (b).

.

HOW MUCH LOGIC?

12 IEEE DESIGN & TEST OF COMPUTERS

the cluster to connect to any BLE input. All N outputs of the

logic cluster can also connect to the main FPGA routing for

use by other logic clusters.

Because each BLE input can connect to any cluster input

or any BLE output, we call these logic clusters fully con-

nected. For example, the logic block clusters in the Altera

8000 and 10000 FPGAs are fully connected, and the cluster

in the Xilinx 5200 FPGA is almost fully connected.

It is simpler to write CAD tools for fully connected logic

clusters than for clusters with less flexible local intercon-

nect. Determining if a group of BLEs can be implemented

in a single cluster is simple: If the BLEs need I or fewer dis-

tinct inputs, they can all go into one cluster. Also, in a fully

connected logic cluster, all cluster inputs and outputs are

logically equivalent. That is, all the inputs are functionally

identical, and all the outputs are functionally identical. This

means that a net that is input to a cluster can connect to any

cluster input, and a net driven by a cluster output can con-

nect to any cluster output. Therefore, the router has a great

deal of flexibility in routing intercluster nets.

Experimental methodology
Our goal was to determine the cluster parameters that

lead to the most area-efficient FPGA architecture. There are

no detailed analytic models of FPGA architectures and cir-

cuitry, so we must evaluate architectures experimentally.

In our experiments, we implemented a set of 20 bench-

mark circuits into each FPGA architecture of interest and

measured how much area the circuits require in each ar-

chitecture. For each circuit, we used an automatic CAD flow

similar to that used by typical FPGA users: technology map-

ping, placement, and routing. We took considerable care to

use high-quality CAD tools that fully exploited each archi-

tecture; low-quality tools or tools that favor particular archi-

tectures can lead to inaccurate conclusions. The benchmark

circuits are 20 of the largest MCNC (Microelectronics Center

of North Carolina) circuits, ranging in size from 500 to 3,690

BLEs.4 These circuit sizes are typical of the designs imple-

mented in current commercial FPGAs.

FPGA architecture assumptions. A logic block’s area

efficiency depends not only on the number of transistors re-

quired to implement the block itself but also on the number

of transistors required to route the connections between

blocks. Consequently, to determine FPGA area efficiency,

we must choose an FPGA routing architecture as well as a

logic block architecture. All of our experiments assumed an

island-style FPGA; both Xilinx and Lucent Technologies

FPGAs employ this type of architecture. As shown in Figure

4, an island-style FPGA consists of an array of logic blocks

surrounded by channels of wire segments. Input and output

pins are distributed around each logic block’s perimeter,

and programmable switches connect these pins to wire seg-

ments in the adjacent routing channels. At every routing

channel intersection, there is a switch block,5 a set of pro-

grammable switches that allows wiring segments to connect

to form longer connections.

To be as realistic as possible, we set Fs, the number of

wiring segments to which each segment can connect at a

switch block,5 to 3, the Fs value in most commercial FPGAs.

We defined two other important architectural parameters: W

is the number of wiring segments in each routing channel—

that is, the channel capacity. Fc is the number of wiring seg-

ments to which a logic block input or output pin can

connect in an adjacent channel.5 In Figure 4, for example,

W is 4 and Fc is 2.

CAD flow. Figure 5 illustrates the CAD flow we used in

these experiments. First, we performed technology-

independent logic optimization of each circuit using the SIS

synthesis package,6 which attempts to simplify the logic and

remove redundant circuitry. Next, we used the FlowMap al-

gorithm7 to map the technology of each circuit into a netlist

of 4-input LUTs and flip-flops. FlowMap takes a circuit de-

scription in terms of basic gates and implements it using only

4-input LUTs and flip-flops, the only logic resources avail-

able in the FPGAs we studied. Our VPack program1 then

mapped this netlist into logic clusters with the specified val-

ues of N and I. Thus, at this point, we had described the cir-

cuit as a set of interconnected logic blocks of the exact type

that exist in the FPGA we were targeting.

Finally, we used our VPR tool8 to place and route the cir-

cuit. Placement consists of choosing a position for each log-

ic block that minimizes the length of the wires needed to

interconnect the circuitry. Routing consists of choosing the

wires that will make each connection. As Figure 5 shows,

VPR repeatedly routes the circuit with different channel ca-

pacities until it finds the minimum number of wire segments

per channel needed to successfully route the circuit. At this

Switch
block

Wire
segments

Logic
block

Potential
connection

point

Figure 4. An island-style FPGA.

.

JANUARY–MARCH 1998 13

point, we had enough information to use our area model to

evaluate the architecture’s area efficiency.

Area model. We based the area model on the number of

minimum-width transistors required to implement a bench-

mark circuit in each FPGA architecture (counting larger tran-

sistors as several minimum-width transistors). To allow

averaging of results from different-size circuits, we used a

normalized area metric: number of transistors used per BLE

in a circuit. We have developed a detailed model of the num-

ber of transistors required to implement both logic clusters

and FPGA routing in an SRAM-based FPGA. This model tries

to build an FPGA with as few transistors as possible without

unduly compromising speed.

Experimental results
From our experiments, we obtained answers to the three

questions we asked at the outset—namely, what values of I,

Fc, and N lead to the most area-efficient FPGA architectures?

Cluster inputs vs. cluster size. Our first question was

how many distinct inputs, I, the FPGA routing should pro-

vide to a cluster of size N. Since the number of transistors re-

quired to implement each multiplexer shown in Figure 3

grows linearly with I (for large I), we would like to make I as

small as possible. On the other hand, if I is too small, many

of the BLEs in a logic cluster may become essentially unus-

able, reducing logic utilization and wasting area. To find the

minimum value of I that allows good cluster utilization, we

ran benchmark circuits through the first two steps in Figure

5, technology mapping and cluster packing. Then we mea-

sured the resulting logic utilization for different values of I.

We define logic utilization as the average number of BLEs

per cluster that a circuit can use, divided by N.

Figure 6 shows how the average logic utilization of our 20

benchmarks varies with I for three different logic cluster

sizes. The horizontal axis shows the number of distinct in-

puts to the cluster relative to the total number of BLE inputs

in a cluster—I/(4N). For very low values of I, logic utiliza-

tion is very low, as one would expect. It is interesting, how-

ever, that when I is only 50% to 60% of the total number of

BLE inputs, logic utilization is essentially 100%. Clearly, it is

possible to pack BLEs together so that they have many com-

mon inputs and can reuse locally generated outputs. The

relative amount of input sharing and output reuse increas-

es slightly with logic cluster size, causing the curves in Fig-

ure 6 to shift to the left as cluster size increases.

In Figure 7 (next page), the solid line shows the value of

I required to achieve 98% logic utilization as cluster size

varies. The dashed line shows how the average number of

logic cluster inputs actually used varies with cluster size. Al-

though there are 4N BLE inputs in a logic cluster of size N,

the number of inputs required to achieve 98% logic utiliza-

tion is only about 2N + 2. Furthermore, the average number

of logic cluster inputs actually used grows even more slow-

ly. On average, a cluster of size 1 uses 3.5 of its inputs, while

a cluster of size 16 uses only 19.7 of its inputs. That is, while

Circuit

Logic optimization (SIS)
Technology mapping to 4-input LUTs

(FlowMap)

Pack FFs and lookup
tables into logic clusters (VPack)

Placement (VPR)

Routing (VPR)

Record area

Minimum
number of

tracks?

Yes

Routing
architecture
parameters

(Fc, Fs)

Cluster
parameters

(N, I)

Adjust channel
capacities (W)

No

Figure 5. Architecture evaluation CAD flow.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Fraction of inputs accessible, I/(4N)

Fr
ac

tio
n

of
 B

LE
s

us
ed

N = 16
N = 8
N = 4

Figure 6. Logic utilization versus number of logic cluster inputs
(20-benchmark average).

.

HOW MUCH LOGIC?

14 IEEE DESIGN & TEST OF COMPUTERS

logic per cluster increases by a factor of 16, the average num-

ber of connections that must be routed to each cluster in-

creases by a factor of only 5.6.

Our results show that commercial FPGAs can be more ag-

gressive in reducing the value of I. For example, Altera Flex

8000 FPGAs use logic clusters with N = 8 and I = 24; our re-

sults indicate that I = 18 suffices for a cluster of this size. Sim-

ilarly, the Xilinx 5200 FPGA uses a logic cluster with N = 4

and makes all 16 LUT inputs accessible, but our results sug-

gest 10 inputs are sufficient. Reducing I in this manner sim-

plifies the cluster input multiplexers and reduces the number

of logic block pins that must be connected to the FPGA rout-

ing, resulting in considerable area savings.

Routing flexibility vs. cluster size. Before we can apply

the experimental CAD flow to see how area efficiency varies

with cluster size, we must choose Fc, the number of routing

tracks to which each logic block pin can connect. On the

one hand, using a smaller value of Fc reduces the number of

programmable switches in the FPGA routing, which improves

area efficiency. On the other hand, smaller values of Fc make

an FPGA less routable so that larger channel capacities (W)

will be required to successfully route circuits. This reduces

area efficiency by increasing the routing area. The goal is to

choose a value of Fc that balances these competing objec-

tives and achieves good area efficiency.

For a cluster of size 1, a good value of Fc is W; in other

words, each logic block pin can connect to any routing track

in an adjacent channel. For larger clusters, however, setting

Fc to W provides far more routing flexibility than necessary,

wasting area. Recall that full connectivity of a logic cluster

means that a net that must connect to a logic block input

can connect to any of the I inputs. Similarly, a net that must

connect to a logic block output can connect to any of the N

outputs. As N increases, keeping Fc fixed at W provides an ex-

cessive number of ways to connect to each logic block. For

example, a cluster of size 1 has four inputs and one output.

If Fc = W, there are 4W ways to connect to a cluster input and

W ways to connect to the cluster output. A cluster of size 16,

on the other hand, has 32 inputs and 16 outputs, so there are

32W ways to connect to a cluster input and 16W ways to con-

nect to a cluster output if Fc = W.

We found that a more appropriate level of routing flexi-

bility results when Fc is set to W/N, and all the experiments in

the next section used this value. This choice of Fc means that

each of the W routing tracks can be driven by one output pin

on each logic block. This ensures that the FPGA can readily

use all routing tracks in a channel to interconnect blocks.

Area efficiency vs. cluster size. We are now in a posi-

tion to examine which cluster size leads to the most area-

efficient FPGA. In these experiments, we chose the number

of inputs to a cluster of size N to be the minimum value that

allows VPack to achieve 98% logic utilization. This value of

I allows essentially full utilization of our logic clusters. At the

same time, it minimizes the complexity of the cluster input

multiplexers and the number of logic block pins to be con-

nected to the main FPGA routing. We ran the 20 benchmark

circuits through the experimental flow described earlier and

determined the area they required after placement and rout-

ing in each architecture.

Figure 8 shows how area efficiency varies with cluster size.

Notice that all clusters with sizes between 1 and 8 have area

efficiencies within a 10% range. Clearly, with proper choic-

es of I and Fc, any cluster in this range provides reasonable

area efficiency, except perhaps a cluster of size 2.

0

16

20

24

4

8

12

28

32

1 2 4 6 8 10 12 14 16

 Cluster size (N)

Nu
m

be
r o

f c
lu

st
er

 in
pu

ts

Inputs required for
98% logic utilization
Average inputs used

Figure 7. Variation in inputs required and inputs used with
cluster size (20-benchmark average).

1,100

1,300

1,350

1,400

1,150

1,200

1,250

1,450

1,500

1 2 4 6 8 10 12 14 16

 Cluster size (N)

Tr
an

si
st

or
s

re
qu

ire
d

pe
r B

LE

Figure 8. Area efficiency versus cluster size (20-benchmark
average).

.

JANUARY–MARCH 1998 15

As we increase cluster size from 1 to 2, area efficiency

worsens: A cluster of size 1 requires no local routing (it is a

single BLE), whereas a cluster of size 2 does. The addition

of this local routing to the FPGA requires a considerable

number of transistors, and at a cluster size of 2, the number

of connections between clusters has not decreased enough

to compensate. Further increases of cluster size, to 3 and 4,

improve area efficiency because now the local routing re-

duces the amount of routing required between logic blocks

more significantly. As cluster size rises past 10, area effi-

ciency rapidly degrades. The complexity of the local routing

grows quadratically with cluster size, and for sufficiently

large clusters, swamps area improvements gained by re-

ducing the routing required between logic blocks.

WE DRAW THREE MAIN CONCLUSIONS from our work.

First, the number of distinct inputs required by a logic clus-

ter grows fairly slowly with cluster size. A cluster of size N re-

quires approximately 2N + 2 distinct inputs (for N ≤ 16).

Second, because all input and output pins of a cluster are

logically equivalent, we can significantly reduce the number

of routing tracks to which each pin can connect as we in-

crease cluster size. Finally, the area efficiency of logic blocks

containing between one and eight BLEs is within a 10%

range, so any logic block in this range is a reasonable choice.

Cluster-based logic blocks have two significant advan-

tages over single BLE logic blocks: Larger clusters reduce

the size of the placement problem and tend to increase

FPGA speed. Since a cluster-based logic block with appro-

priate values of N, I, and Fc has an area efficiency compara-

ble to that of a single BLE logic block, an FPGA can gain

these advantages without any area penalty.

Acknowledgments
The Information Technology Research Centre of Ontario, the

Natural Sciences and Engineering Research Council of Canada,

and the Walter C. Sumner Foundation supported the work de-

scribed in this article.

References
1. V. Betz and J. Rose, “Cluster-Based Logic Blocks for FPGAs:

Area-Efficiency vs. Input Sharing and Size,” Proc. IEEE Custom

Integrated Circuits Conf., IEEE Computer Society Press, Los

Alamitos, Calif., 1997, pp. 551-554.

2. A. Aggarwal and D. Lewis, “Routing Architectures for Hierar-

chical Field Programmable Gate Arrays,” Proc. Int’l Conf. Com-

puter Design, IEEE CS Press, 1994, pp. 475-478.

3. J. Rose et al., “Architecture of Programmable Gate Arrays: The

Effect of Logic Block Functionality on Area Efficiency,” IEEE

J. Solid State Circuits, Oct. 1990, pp. 1217-1225.

4. S. Yang, Logic Synthesis and Optimization Benchmarks, Ver-

sion 3.0, tech. report, Microelectronics Center of North Car-

olina, Research Triangle Park, N.C., 1991.

5. S. Brown et al., Field-Programmable Gate Arrays, Kluwer Aca-

demic, Norwell, Mass., 1992.

6. E.M. Sentovich et al., SIS: A System for Sequential Circuit Analy-

sis, Tech. Report No. UCB/ERL M92/41, Univ. of California,

Berkeley, 1992.

7. J. Cong and Y. Ding, “FlowMap: An Optimal Technology Map-

ping Algorithm for Delay Optimization in Lookup-Table Based

FPGA Designs,” IEEE Trans. CAD, Jan. 1994, pp. 1-12.

8. V. Betz and J. Rose, “VPR: A New Packing, Placement and Rout-

ing Tool for FPGA Research,” Proc. Int’l Workshop Field-

Programmable Logic and Applications, 1997, Springer-Verlag,

Berlin, pp. 213-222.

Vaughn Betz is working toward his PhD in

electrical engineering at the University of

Toronto. His research interests are FPGA ar-

chitecture and CAD. Betz received his BSEE

degree from the University of Manitoba and

his MSEE degree from the University of Illinois

at Urbana-Champaign. He is an IEEE member.

Jonathan Rose is an associate professor of

electrical and computer engineering at the

University of Toronto. Previously, he worked

on a next-generation FPGA architecture as a

senior research scientist at Xilinx. Still earlier,

he was a research associate in the Computer

Systems Laboratory at Stanford University. He

is a cofounder of the ACM FPGA Symposium, and his research cov-

ers all aspects of FPGAs and field-programmable systems. Rose re-

ceived the PhD in electrical engineering from the University of

Toronto. He is an IEEE member.

Send questions or comments about this article to the authors at

University of Toronto, Dept. of Electrical and Computer Engineer-

ing, 10 King’s College Rd., Toronto, ON, Canada M5S 3G4; [vaughn,

jayar]@eecg.toronto.edu.

.

