
1

Abstract

In order to narrow the speed and density gap between
FPGAs and MPGAs we propose the development of “fami-
lies” of FPGAs. Each FPGA family is targeted at a single
maximum logic capacity, and consists of several “siblings”,
or FPGAs of different yet complementary architectures. Any
given application circuit is implemented in the sibling with
the most appropriate architecture. With properly chosen sib-
lings, one can develop a family of FPGAs which will have
better speed and density than any single FPGA. We apply
this concept to create two different FPGA families, one
composed of architectures with different types of hard-wired
logic blocks and the other created from architectures with
different types of heterogeneous logic blocks. We found that
a family composed of eight chips with different hard-wired
logic block architectures simultaneously improves density
by 12 to 14% and speed by 18 to 20% over the best single
hard-wired FPGA.

1 Intr oduction

Designing hardware with Field-Programmable Gate
Arrays (FPGAs) avoids the higher non-recurring engineer-
ing costs and longer development times of Mask-Pro-
grammed Gate Array (MPGA) solutions. These two key
advantages, shorter design cycles and lower development
costs, have made FPGAs an extremely popular technology
for prototyping and low-volume production runs. However,
the reprogrammability that allows such rapid and inexpen-
sive development exacts a cost; typically the speed and den-
sity of logic implemented in an FPGA is an order of
magnitude lower than that of logic implemented in an
MPGA [1]. This speed disadvantage makes FPGAs unsuit-
able for a large portion of hardware projects, while the area

penalty makes FPGAs more expensive than MPGAs for the
high-volume implementation of a hardware component.

We propose a method by which these speed and den-
sity disadvantages can be reduced. An FPGA architecture is
normally selected so that it can implement the largest possi-
ble class of application circuits as efficiently as possible.
This means that the FPGA must contain enough program-
mable switches and routing resources to giveany applica-
tion circuit a reasonable chance of successfully routing. The
vast majority of circuits will utilize only a small portion of
these routing switches, but since different circuits use differ-
ent switches, reducing the flexibility of the FPGA by replac-
ing some of these switches with metal links is difficult.
Some application circuits would fit into this less-flexible
FPGA very well, and would be smaller and faster than they
would have been on the original chip. Other circuits, how-
ever, might have made good use of the programmable
resources that have been removed, and will now be larger
and/or slower than they would have been on the original
chip.

If, however, one manufactures afamily of related
FPGA architectures, one can have the best of both worlds.
The FPGAfamily is a group of chips, each of which is based
on a somewhat different FPGA architecture, and each indi-
vidual chip in this family is called asibling. All siblings
have equivalent maximum logic capacities. Instead of
attempting to implement all application circuits in one very
flexible FPGA chip, we use the most suitable sibling for
each application circuit. Each sibling is tailored to a certain
class of application circuits in some way -- say by replacing
many programmable switches with hard-wired links
between logic blocks and by using longer routing segments.
This sibling implements certain circuits very efficiently, but
its reduced flexibility means that some circuits may no
longer fit into it at all. We overcome this reduced flexibility
by choosing the architecture of the remaining siblings so
that they can efficiently implement any circuit which will
not fit into this chip well. With good choices for the archi-
tecture of each chip, a small number of siblings will be able
to implement any application circuit more efficiently than a
single highly flexible FPGA.

Since a single FPGA is sufficient for prototyping but
even a small production run may require 50 chips, FPGA
revenues come primarily from sales of chips intended for

Using Architectural “Families” to Increase FPGA Speed and Density

Vaughn Betz and Jonathan Rose
University of Toronto
Toronto, ON, Canada

M5S 1A4
vaughn@eecg.toronto.edu

This work was supported by the Natural Sciences and Engi-
neering Research Council of Canada and MICRONET.

2

use in production hardware. This is precisely where the sib-
lings concept would be of the greatest use. As part of the
synthesis procedure, the CAD software would determine
not only the technology mapping, placement and routing of
the circuit, but also the best sibling to use. Since each sib-
ling should be smaller (and hence cheaper) than a general
purpose FPGA, the production volume at which it is cost-
effective to switch to mask programmed logic will be
increased. As well, the higher speed of siblings will allow
the FPGA implementation of circuits which previously
could not meet performance specifications without using
custom or semi-custom logic.

The structure of this paper is as follows. Section 2
examines the relationship between FPGAs and MPGAs and
shows that the sibling concept lies between these two
extrema in the architectural spectrum. In Section 3 the sib-
lings concept is applied to create a family of FPGAs com-
posed of different types of hard-wired logic block
architectures, and the performance gains are assessed. Sec-
tion 4 conducts a similar experiment in which the architec-
tures in the family contain different types of heterogeneous
logic blocks. Finally, we summarize our findings and draw
some conclusions in Section 5.

2 The Siblings Concept

The basic idea of siblings is to create FPGAs which
have higher performance and are smaller than current
FPGAs by removing some of their flexibility, i.e. some of
their programmable switches. The flexibility removed from
each individual sibling is recovered by having the choice of
several different siblings in which to implement an applica-
tion circuit.

It is instructive to consider the differences between
MPGAs and FPGAs in order to see how the siblings con-
cept fits into the spectrum of circuit implementation tech-
nologies. A single FPGA can implement any application
circuit (subject only to size constraints), so only one type of
FPGA is needed. A fully-fabricated MPGA, on the other
hand, implements exactly one circuit, so a new MPGA is
required for each new application. The MPGA achieves its
higher speed and smaller area by using small, low-delay
wires rather than larger and slower programmable intercon-
nect, and by only laying out the interconnect resources
required by this circuit. We view these two solutions as
extremes in a spectrum of possible implementation choices,
as Figure 1 shows. The idea of an FPGA family allows us to
choose other points on the architectural axis of Figure 1.

Figure 1: Speed and Density Variation with Number of
Distinct Chips Fabricated.

The best choice for the number of siblings in a family
must be determined experimentally; it depends on the area
and speed advantage each new sibling confers and on the
cost of developing each new sibling. Clearly it is desirable
to have the smallest number of siblings which provides the
necessary performance improvement, since smaller invento-
ries will then have to be maintained by the vendor or user,
and the family development costs will be lower. The archi-
tectural differences between siblings are also crucial. A poor
set of choices will result in little or no gain in speed and
density, or will require a large number of siblings to meet
the performance goals. A good set of choices will provide
larger speed and density gains with a smaller number of sib-
lings.

Another way of viewing the siblings concept is to
observe that along any FPGA architectural axis, for exam-
ple the granularity of the logic block, different circuits will
have different speed and density. While there may be a good
single choice based on the average behaviour over all cir-
cuits, previous experimental work has shown a significant
circuit-dependent fluctuation in speed and density for any
particular choice. Providing more implementation choices
will reduce this variation and improve both speed and den-
sity.

3 An FPGA Family Based on Hard-Wir ed
Logic Block Architectures

3.1 Hard-Wir ed Logic Blocks

A hard-wired logic block (HLB) is created by replac-
ing some programmable connections with simple metal
wires, or hard-wired connections, between logic blocks [2,
3]. Since a metal wire incurs a much smaller delay and
requires less area than a programmable connection, FPGAs

For a Fixed Logic Capacity
FPGA MPGA

of Separate
Chip Fabrications1

Many
(1 per Circuit)

Large Area Small

High Low

HighLow Speed

Unit Chip Cost for
High Volume Production

3

built using HLBs have the potential to be both smaller and
faster than FPGAs in which all connections are programma-
ble. In this work, as in [2,3], we will consider only HLBs
composed of look-up tables (LUTs). Figure 2 illustrates
both an example HLB composed of three four-input LUTs
(4-LUTs) hard-wired in a chain and a circuit implemented
with this HLB.

Figure 2: An Example HLB and Circuit
Implementation.

In the HLBs we study, the inputs of some LUTs are
permanently hard-wired to the outputs of others. The output
of each LUT in an HLB can also be directed to the program-
mable interconnect via the output and tapping buffers
shown in the figure. Figure 2b shows an example circuit
implemented with a (nonhard-wired) 4-LUT logic block,
while Figure 2c shows the same circuit implemented via the
HLB of Figure 2a. The circuit implemented with HLBs will
be faster, since it has replaced many of the slow program-
mable connections on the critical path with fast hard-wired
ones. The effect of HLBs on area is more difficult to predict.
Since many programmable connections are replaced with
simple metal wires, HLB circuit implementations can be
smaller than standard LUT realizations. On the other hand,
since HLBs are more coarse-grained, it is more difficult to
utilize them fully, so the area required by many circuits will
increase. In practice, one finds that HLBs with a large num-
ber of hard-wired connections generally cause an increase in
circuit area, while HLBs with only a few hard-wired con-

Tapping Buffer

Tapping Buffer

Output Buffer

(a) Example HLB

Programmable Connection
Hard-wired Connection

critical path

(b) Circuit mapped to basic
logic blocks

A

B

C

A

B

C

A

B

C

A

A

B

(c) Circuit mapped to HLBs
shown in (a)

nections can reduce the circuit area slightly compared to
nonhard-wired implementations [2,3].

We create families of FPGAs by simply choosing a
different HLB architecture for each sibling. Figure 3a shows
an example family with two siblings, and Figure 3b illus-
trates the fact that an application circuit is always imple-
mented in the most suitable sibling.

Figure 3: An Example Family and Circuit
Implementations.

3.2 Experimental Methodology

We use the results of a previous study [3] to evaluate
the density and speed improvements attainable by applying
the siblings concept to HLBs. The results of technology
mapping a set of fifteen mcnc benchmark circuits into 209
different HLB architectures are used to compare the “good-
ness” of each family. Each architecture is defined by the size
of its LUTs (from 2 to 7 inputs) and by the topology of the
hard-wired connections between these LUTs. For each
architecture we compute area and delay estimates for each
circuit and normalize them to those of the same circuit
implemented in a 4-LUT FPGA with no hard-wired connec-
tions. The 4-LUT has previously been shown to be a good
choice for an FPGA logic block architecture [4], and by nor-
malizing our area and delay results to it we can average
results from circuits with a wide variance of sizes and logic
depths in a meaningful way. All averaging is done with geo-
metric averages, since taking the arithmetic average of nor-
malized numbers can lead to misleading results [5].

The delay and area of a family with only one sibling
are taken to the geometric averages of that FPGA’s delay
and area metrics over our fifteen benchmark circuits,
respectively. The speed of an FPGA is simply the reciprocal
of delay. In a family with more than one sibling, we define
the “family score” on a circuit as the best area and/or delay

Programmable Connection
Hard-wired Connection

(a) A Two Sibling Family

(b) Mapping of Two Example
Circuits into This Family

Sibling A

Sibling B

Circuit 1 is best

suited to Sibling A

Circuit 2 is best
suited to Sibling B

4

metric achieved byany of the siblings on that circuit. Aver-
aging this “family score” over all the benchmark circuits
yields the performance of this family.

To assess the improvement in the performance of a
family as the number of siblings is increased, we must find
the best family with the given number of siblings that can be
constructed from our pool of possible architectures. For
families with three or fewer siblings we exhaustively check
the performance of all the possible families, so we are guar-
anteed to find the best family. With 209 architectures to
choose from the number of possible families grows very
rapidly as the family size increases. Hence for families with
four or more siblings we limit the search space by assuming
that a family of size n consists of the best family of size n-1,
plus one more sibling. Therefore for four or more siblings
we may not have the absolute best family that can be con-
structed, but our investigations have shown that the family
we obtain is either the best or one with only slightly lower
performance.

3.3 Area and Delay Models

The area and delay models used are deliberately kept
simple in order to allow the evaluation of the FPGA archi-
tectures after technology mapping; i.e. no place and route
step was undertaken. Note that only relative delay and area
metrics are necessary in this study, since we are simply
comparing architectures. The critical path delay consists of
the logic block delay plus the delay incurred by programma-
ble interconnect, since the delay of a hard-wired connection
is essentially zero [3].

DTot is the total delay, while NR and NL are the number
of programmable connections and the number of logic
blocks on the critical path, respectively. DLB and DR are the
delays of a logic block and of a programmable connection,
respectively. The architectures studied were all based on
LUTs with between 2 and 7 inputs. The delays of these logic
blocks have been found from SPICE simulations of 1.2µm
CMOS implementations [6], and are listed in Table 1.

TABLE 1. Lookup Table Delays in a 1.2µm
CMOS process.

Inputs to
LUT DLB (ns)

2 1.39

3 1.44

4 1.71

5 2.03

6 2.38

7 2.85

DTot NL DLB× NR DR×+=

Choosing a value for DR is more problematic, since
the delay of a programmable connection varies widely
depending on its fanout and the number of routing switches
through which it passes. We set DR to 4 ns, since in our
experience this is a reasonable value for the type of FPGA
architectures we are studying implemented in 1.2µm
CMOS. To ensure that the value chosen for DR does not
affect our conclusions, we also conduct experiments with
DR as low as 1 ns and as high as 10 ns.

Instead of referring to delay directly, we will often
refer to the speedup of one FPGA with respect to another.
The speedup of FPGAA with respect to FPGAB is defined as

The area of the logic blocks in a LUT-based FPGA is
mostly SRAM bits, while the routing area correlates well
with the total number of pins on the logic blocks. We there-
fore take the area of a circuit to be proportional to [7, 8]

where NHLB is the number of hard-wired logic blocks
required to implement the circuit and HLBBits, HLB-

Pins, and HLBLUTs are the number of bits, pins and
LUTs per HLB, respectively. Pinfac is the number of
logic bit equivalent area units consumed by each pin,
while FA is the number of logic bit equivalent area
units required by the fixed resources (a D flip flop and
output buffer) associated with each LUT. In a 1.2µm
CMOS process FA is 3.4 [3], while Pinfac is approxi-
mately 14 for the type of FPGA architectures we are
studying. As with the DR parameter, however, we also
conduct experiments with Pinfac set as low as 4 and as
high as 30, in order to ensure that its value does not
greatly influence our results.

3.4 Experimental Results

The technology mapping procedure could be set to
produce either area or delay-optimized circuits, and we
tested the performance of siblings on both types of circuits.
For the area-mapped case, we chose the sibling architec-
tures to minimize the area of the benchmark circuits. In the
case of delay-mapped circuits, however, choosing the sib-
ling architectures to minimize delay alone produces a family
with unacceptably large areas -- typically about four times
the area of a nonhard-wired 4 LUT implementation. Conse-
quently we chose siblings to minimize the sum of the area
and delay for the delay-mapped circuits. This slows down
the circuits only slightly, while reducing their area by a fac-
tor of approximately 4. Figure 4 shows the speed and area
improvements possible with siblings for both types of cir-
cuit mappings.

SpeedupAB

DelayB

DelayA
= .

Area NHLB HLBBi ts Pinfac HLBPins FA HLBLUTs×+×+()∝

5

Figure 4: Improvements in FPGA Performance and
Density Measures as a Function of Number of Siblings
for (a) Cir cuits Technology Mapped to Minimize Area,
and (b) Circuits Technology Mapped to Minimize Delay.

In Figure 4 we have normalized all our results to those
obtained by the best single FPGA architecture (i.e. the 1 sib-
ling case) so that the performance improvement due to
increasing the size of the family is immediately apparent.
From Figure 4, one sees that using a family with 8 siblings
would result in FPGAs that are 12.5% smaller and 20%
faster than any single FPGA for the area-mapped case, and
11.5% smaller and 19% faster for the delay-mapped case.

 Figures 5 and 6 show which FPGA architectures
formed the best families with between one and three sib-
lings for the area-mapped and delay-mapped circuits,

Number of Bits

Number of Pins

Speedup

Area

Number of Siblings

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

2 4 6 81 3 5 7

(a)

N
orm

alized F
P

G
A

 P
erform

ance and D
ensity M

easures

Number of Siblings

Number of Bits

Number of Pins

Speedup

Area

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1 2 3 4 5 6 7 8

(b)

N
orm

alized FP
G

A
 P

erform
ance and D

ensity M
easures

respectively. The label on a LUT denotes its size (number of
inputs), heavy lines between LUTs denote hard-wired con-
nections from the output of one to the input of the next, and
the lighter lines indicate programmable connections.

Figure 5: Architectures Constituting the Best Families
for the Ar ea-Mapped Circuits.

Figure 6: Architectures Constituting the Best Families
for the Delay-Mapped Circuits.

The most area-efficient single HLB architecture is
shown in the 1 sibling case of Figure 5. Notice that it con-
sists of two 4-LUTs, which have previously been shown to
be very area efficient [4], connected by 1 hard-wired con-
nection. Since every LUT must fan out, the technology
mapper can usually make good use of this hard-wire, so the
area efficiency of this architecture is not surprising. As the
number of siblings increases to 2 and 3, larger LUTs (7-
LUTs and 5-LUTs) tend to be selected, and the 1 sibling 4-
LUT HLB is eventually replaced by a 4-LUT HLB with 3
hard-wired connections. This is an expected result; the
choice of siblings in which to implement a circuit helps to
make up for the flexibility lost as we move toward coarser-
grained logic blocks. Hence, the utilization of these larger
logic blocks is high, and their lower routing area require-
ments translate into area-efficient circuits.

Figure 6 shows that a single 6-LUT is the best archi-
tecture for simultaneously minimizing the area and delay of
the delay-mapped circuits. While a 6-LUT is less area effi-
cient than a 4-LUT, it leads to faster circuits, and hence is a
good choice when both area and delay must be minimized.

Programmable Connection
Hard-wired Connection

1 Sibling 2 Siblings 3 Siblings

4

4

4

4

4

4 4

4
7

7

5

5

Programmable Connection
Hard-wired Connection

5
5

7 7 7

7

7

7 7 7

7

7

6

4

1 Sibling 2 Siblings 3 Siblings

6

In Figure 6, notice that when one goes from one to two sib-
lings, a single six-input LUT is replaced by a large 7-LUT
HLB and a single five-input LUT. The six-input LUT has
been replaced by one more coarse-grained HLB and one
more fine-grained HLB. Clearly, when forced to use only
one general-purpose FPGA architecture, we had to compro-
mise between the two and use the six-input LUT. Similarly,
one can see from Figure 5 that the single best FPGA archi-
tecture for area-mapped circuits (1 sibling) is not one of the
architectures chosen for the three-sibling family; again the
single architecture was a compromise choice.

Tables 2 and 3 show the effect of varying DR and Pin-
fac over a wide range. Notice that the parameter we are opti-
mizing, the area reduction for area-mapped circuits and the
sum of the area and delay reductions for the delay-mapped
circuits, is fairly constant regardless of the values of DR and
Pinfac. The sibling architectures chosen for each family
change somewhat when the extreme values of DR and Pin-
fac are used in our delay and area models, but the trends
observed as the family size increases are the same.

We also conducted experiments in whichboth the
area-mapped and delay-mapped circuits were implemented
in a single family. This case is of interest because some
applications may be limited by the capacity of an FPGA,
while others are limited by its speed. Consequently, manu-
facturers desire FPGA families capable of efficiently imple-

TABLE 2. Effect of Varying DR and Pinfac Parameters
for Ar ea-Mapped Circuits

DR
(ns)

Pin-
fac

5
Sibling
Ar ea
Red.

8
Sibling
Ar ea
Red.

5
Sibling

Speedup

8
Sibling

Speedup

4.0 14 10.6% 12.5% 1.19 1.20

1.0 14 10.6% 12.5% 1.16 1.15

10. 14 10.6% 12.5% 1.21 1.23

4.0 4 9.4% 10.4% 1.02 1.01

4.0 30 14.2% 15.6% 1.09 1.07

TABLE 3. Effect of Varying DR and Pinfac Parameters
for Delay-Mapped Circuits

DR
(ns)

Pin-
fac

5
Sibling
Ar ea
Red.

8
Sibling
Ar ea
Red.

5
Sibling

Speedup

8
Sibling

Speedup

4.0 14 10.3% 11.5% 1.15 1.19

1.0 14 11.7% 12.0% 1.07 1.09

10. 14 6.0% 8.7% 1.30 1.32

4.0 4 -0.5% -0.9% 1.23 1.31

4.0 30 2.9% 6.1% 1.24 1.25

menting circuits that have been optimized for either area or
delay. In this case we chose the siblings to minimize the
sum of area and delay, and found that a family with 8 sib-
lings was 13.7% smaller and 18% faster than the best single
HLB FPGA architecture for our benchmark circuits.

4 Performance of an FPGA Family Composed
of Heterogeneous Logic Block Architectures

As described in Section 3, we construct an FPGA fam-
ily by choosing an appropriate number of siblings from a
pool of possible architectures. The architectural “pool” used
in this section consisted of 45 different FPGAs with a heter-
ogeneous mixture of two different types of logic blocks. As
outlined in [9, 10], each FPGA has logic blocks of two dif-
ferent sizes. The defining parameters for each FPGA are the
size of the small LUT, s, the size of the large LUT, p, and
the ratio of the number of small logic blocks to large logic
blocks, r = NS/NP. Figure 7 shows an example of a heteroge-
neous FPGA with p = 4, s = 2, and r = 2.

Figure 7: Heterogeneous FPGA architecture with p=4, s
= 2 and r = 2.

The architectures in the “pool” used to create families
have all possible heterogeneous logic block architectures
with p between 3 and 7, s between 2 and 6, and r equal to
0.5, 1, or 2. The experimental procedure is very similar to
that described in Section 3.1, with two exceptions. First,
delay statistics were not computed in [10], so we select our
families to minimize area alone, and we cannot determine
the speedup. Secondly, since we are using a pool of only 45

4-LUT

2-LUT

2-LUT

Basic Tile of FPGA

FPGA = Array of these Basic Tiles

7

different architectures, it is feasible to exhaustively search
all possible families with up to 8 siblings in order to be sure
of finding the best family.

The gains provided by applying the siblings concept to
this architectural axis are not as great as those obtained from
hard-wired architectures. With 8 siblings, we obtain only a
6% area reduction, even though we are choosing our fami-
lies strictly to minimize area. Clearly, choosing the architec-
tural differences between siblings wisely is crucial to
obtaining large density and performance gains as the family
size is increased. In order to assess the influence of Pinfac
on these results, we let it vary from 4 to 30. Table 4 shows
that our results are not very sensitive to this parameter.

5 Conclusions

The concept of an FPGA family allows one to explore
points in the architectural spectrum between the usual
extremes of general-purpose FPGAs and nonprogrammable
MPGAs. We have run experiments with two families of
FPGAs, and found that a family consisting of different types
of hard-wired FPGA architectures outperforms one created
from different heterogeneous logic block architectures. We
found that a family of eight different HLB FPGAs can
implement circuits in 12 to 14% less area and with 18 to
20% faster critical paths than the best single HLB architec-
ture. While this improvement may not be enough to justify
the higher development and inventory costs associated with
marketing eight distinct FPGAs, we believe that greater
gains can be realized by clever choices of the sibling archi-
tectures, and are pursuing further research in this direction.
One promising direction of research involves varying not
only the logic block architecture of the siblings, but also the
routing architecture in order to increase the differences
between siblings.

Acknowledgments

The authors wish to thank Dr. Kevin Chung and Mr.
Jianshe He for providing and explaining the use of their data
and CAD software.

TABLE 4. Influence of Pinfac on results.

Pinfac
5 Sibling Area
Impr ovement

8 Sibling Area
Impr ovement

4 4.9% 5.1%

14 5.1% 6.0%

30 5.6% 6.9%

References

[1] J. Rose, A. El Gamal, and A. Sangiovanni-Vincentelli,
“Architecture of Field-Programmable Gate Arrays,”
Proceedings of the IEEE, Vol. 81, No. 7, pp. 1013-
1029, July 1993.

[2] K. Chung, S. Singh, J. Rose, and P. Chow, “Using
Hierarchical Logic Blocks to Improve the Speed of
FPGAs,” in FPGAs, W. Moore and W. Luk Eds.,
Abingdon 1991, pp. 103-113.

[3] K. Chung, “Architecture and Synthesis of Field-Pro-
grammable Gate Arrays with Hard-wired Connec-
tions,” Phd Dissertation, University of Toronto, 1994.

[4] J. S. Rose, R. J. Francis, D. Lewis and P. Chow,
“Architecture of Programmable Gate Arrays: The
Effect of Logic Block Functionality on Area Effi-
ciency,” IEEE Journal of Solid State Circuits, Vol. 26,
No. 3, pp. 277-282, March 1991.

[5] P. J. Fleming and J. J. Wallace, “How not to lie with
statistics: the correct way to summarize benchmark
results,”Communications of the ACM, Vol. 29, No. 3,
pp. 218-221, March 1986.

[6] S. Singh, J. Rose, D. Lewis, K. Chung, and P. Chow,
“The Effect of Logic Block Architecture on FPGA
Performance,”IEEE Journal of Solid State Circuits,
Vol. 27, No. 3, March 1992, pp. 281-287.

[7] S. D. Brown, R. J. Francis, J. Rose, and Z. G. Vrane-
sic,Field-Programmable Gate Arrays, Kluwer Aca-
demic Publishers 1992, pp. 93-96.

[8] D. Hill and N-S Woo, “The Benefits of Flexibility in
Look-up Table FPGAs,” inFPGAs, W. Moore and W.
Luk Eds., Abingdon 1991, pp. 127-136.

[9] J. He, J. Rose, “Advantages of Heterogeneous Logic
Block Architectures for FPGAs,”Custom Integrated
Circuits Conference 1993, pp. 7.4.1-7.4.5, May 1993.

[10] J. He, “Technology Mapping and Architecture of Het-
erogeneous Field-Programmable Gate Arrays,”
M.A.Sc. Thesis, University of Toronto, 1994.

