
VPR: A New Packing, Placement and Routing Tool for
FPGA Research1

Vaughn Betz and Jonathan Rose
Department of Electrical and Computer Engineering, University of Toronto

Toronto, ON, Canada M5S 3G4 {vaughn, jayar}@eecg.toronto.edu

Abstract
We describe the capabilities of and algorithms used in a new FPGA CAD tool,

Versatile Place and Route (VPR). In terms of minimizing routing area, VPR outper-
forms all published FPGA place and route tools to which we can compare.
Although the algorithms used are based on previously known approaches, we
present several enhancements that improve run-time and quality. We present place-
ment and routing results on a new set of large circuits to allow future benchmark
comparisons of FPGA place and route tools on circuit sizes more typical of today’s
industrial designs.

VPR is capable of targeting a broad range of FPGA architectures, and the source
code is publicly available. It and the associated netlist translation / clustering tool
VPACK have already been used in a number of research projects worldwide, and
should be useful in many areas of FPGA architecture research.

1 Introduction
In FPGA research, one must typically evaluate the utility of new architectural fea-

tures experimentally. That is, benchmark circuits are technology mapped, placed and
routed onto the FPGA architectures of interest, and measures of the architecture’s
quality, such as speed or area, can then readily be extracted. Accordingly, there is con-
siderable need forflexible CAD tools that can target a wide variety of FPGA architec-
tures efficiently, and hence allow fair comparisons of the architectures.

This paper describes the Versatile Place and Route (VPR) tool, which has been
designed to be flexible enough to allow comparison of many different FPGA architec-
tures. VPR can perform placement and either global routing or combined global and
detailed routing. It is publicly available from http://www.eecg.toronto.edu/~jayar/soft-
ware.html.

In order to make meaningful FPGA architecture comparisons, it is essential that the
CAD tools used to map circuits into each architecture are of high quality. The routing
phase of VPR outperforms all previously published FPGA routers for which standard
benchmarks results are available, and that the combination of VPR’s placer and router
outperforms all published combinations of FPGA placement and routing tools.2

The organization of this paper is as follows. In Section 2 we describe some of the
features of VPR and the range of FPGA architectures with which it may be used. In
Sections 3 and 4 we describe the placement and routing algorithms. In Section 5, we
compare the number of tracks required by VPR to successfully route circuits with that
required by other published tools. In Section 6 we conclude and outline some future

1. This work was supported by a Walter C. Sumner Memorial Foundation Scholarship, an
NSERC 1967 Scholarship, and the Information Technology Centre of Ontario.

2. Again, for those tools which have standard benchmark results to which we can compare.

enhancements which will be made to VPR.

2 Overview of VPR
Figure 1 outlines the VPR CAD flow. The inputs to VPR consist of a technology-

mapped netlist and a text file describing the FPGA architecture. VPR can place the
circuit, or a pre-existing placement can be read in. VPR can then perform either a glo-
bal route or a combined global/detailed route of the placement. VPR’s output consists
of the placement and routing, as well as statistics useful in assessing the utility of an
FPGA architecture, such as routed wirelength, track count, and maximum net length.

Some of the architectural parameters that can be specified in the architecture
description file are:

• the number of logic block inputs and outputs,
• the side(s) of the logic block from which each input and output is accessible,
• the logical equivalence between various input and output pins (e.g. all LUT

inputs are functionally equivalent),
• the number of I/O pads that fit into one row or one column of the FPGA, and
• the dimensions of the logic block array (e.g. 23 x 30 logic blocks).

In addition, if global routing is to be performed, one can also specify:
• the relative widths of horizontal and vertical channels, and
• the relative widths of the channels in different regions of the FPGA.

Finally, if combined global and detailed routing is to be performed, one also specifies:
• the switch block [1] architecture (i.e. how the routing tracks are interconnected),
• the number of tracks to which each logic block input pin connects (Fc [1]),
• the Fc value for logic block outputs, and
• the Fc value for I/O pads.
The current architecture description format does not allow segments that span more

than one logic block to be included in the routing architecture, but we are presently
adding this feature. Adding new routing architecture features to VPR is relatively
easy, since VPR uses the architecture description to create a routing resource graph.
Every routing track and every pin in the architecture becomes a node in this graph, and
the graph edges represent the allowable connections. The router, graphics visualiza-

Technology-Mapped
Netlist

Architecture
Description File

Existing Placement
or Placement from
Another CAD Tool

VPR

Place Circuit or Read in Existing Placement

Perform either Global or Combined

Placement and Routing Output Files,
Placement and Routing Statistics

Fig. 1. CAD flow.

Global / Detailed Routing

tion and statistics computing routines all work only with this routing resource graph,
so adding new routing architecture features only involves changing the subroutines
that build this graph.

Although VPR was initially developed for island-style FPGAs [2, 3], it can also be
used with row-based FPGAs [4]. VPR is not currently capable of targeting hierarchi-
cal FPGAs [5], although adding an appropriate placement cost function and the
required routing resource graph building routines would allow it to target them.

Finally, VPR’s built-in graphics allow interactive visualization of the placement,
the final routing, the available routing resources and the possible ways of interconnect-
ing the routing resources.

2.1 The VPACK Logic Block Packer / Netlist Translator
VPACK reads in a blif format netlist of a circuit that has been technology-mapped

to LUTs and flip-flops, packs the LUTs and flip flops into the desired FPGA logic
block, and outputs a netlist in VPR’s netlist format. VPACK can target a logic block
consisting of one LUT and one FF, as shown in Figure 2, as this is a common FPGA
logic element. VPACK is also capable of targeting logic blocks that contain several
LUTs and several flip flops, with or without shared LUT inputs [6]. These “cluster-
based” logic blocks are similar to those employed in recent FPGAs by Altera, Xilinx
and Lucent Technologies.

3 Placement Algorithm
VPR uses the simulated annealing algorithm [7] for placement. We have experi-

mented with several different cost functions, and found that what we call alinear con-
gestion cost function provides the best results in a reasonable computation time [8].
The functional form of this cost function is

where the summation is over all the nets in the circuit. For each net, bbx and bby
denote the horizontal and vertical spans of its bounding box, respectively. The q(n)
factor compensates for the fact that the bounding box wire length model underesti-
mates the wiring necessary to connect nets with more than three terminals, as sug-
gested in [10]. Its value depends on the number of terminals of net n; q is 1 for nets
with 3 or fewer terminals, and slowly increases to 2.79 for nets with 50 terminals.
Cav,x(n) and Cav,y(n) are the average channel capacities (in tracks) in the x and y direc-
tions, respectively, over the bounding box of net n.

This cost function penalizes placements which require more routing in areas of the
FPGA that have narrower channels. All the results in this paper, however, are obtained
with FPGAs in which all channels have the same capacity. In this case Cav is a con-

Inputs
K-Input
LUT

Clock

D Flip
Flop

Out

Fig. 2. Basic FPGA logic block.

Cost q n()
bbx n()

Cav,x n()

bby n()
Cav,y n()
---------------------+

n 1=

Nnets

∑=

stant and the linear congestion cost function reduces to a bounding box cost function.
A good annealing schedule is essential to obtain high-quality solutions in a reason-

able computation time with simulated annealing. We have developed a new annealing
schedule which leads to very high-quality placements, and in which the annealing
parameters automatically adjust to different cost functions and circuit sizes. We com-
pute the initial temperature in a manner similar to [11]. Let Nblocks be the total num-
ber of logic blocks plus the number of I/O pads in a circuit. We first create a random
placement of the circuit. Next we perform Nblocks moves (pairwise swaps) of logic
blocks or I/O pads, and compute the standard deviation of the cost of these Nblocks dif-
ferent configurations. The initial temperature is set to 20 times this standard deviation,
ensuring that initially virtually any move is accepted at the start of the anneal.

As in [12], the default number of moves evaluated at each temperature is

. This default number can be overridden on the command line,

however, to allow different CPU time / placement quality tradeoffs. Reducing the
number of moves per temperature by a factor of 10, for example, speeds up placement
by a factor of 10 and reduces final placement quality by only about 10%.

When the temperature is so high that almost any move is accepted, we are essen-
tially moving randomly from one placement to another and little improvement in cost
is obtained. Conversely, if very few moves are being accepted (due to the temperature
being low and the current placement being of fairly high quality), there is also little
improvement in cost. With this motivation in mind, we propose a new temperature
update schedule which increases the amount of time spent at temperatures where a sig-
nificant fraction of, but not all, moves are being accepted. A new temperature is com-
puted as Tnew = α Told, where the value ofα depends on the fraction of attempted
moves that were accepted (Raccept) at Told, as shown in Table1.

Finally, it was shown in [12, 13] that it is desirable to keep Raccept near 0.44 for as
long as possible. We accomplish this by using the value of Raccept to control a range
limiter -- only interchanges of blocks that are less than or equal to Dlimit units apart in
the x and y directions are attempted. A small value of Dlimit increases Raccept by
ensuring that only blocks which are close together are considered for swapping. These
“local swaps” tend to result in relatively small changes in the placement cost, increas-
ing their likelihood of acceptance. Initially, Dlimit is set to the entire chip. Whenever
the temperature is reduced, the value of Dlimit is updated according to

, and then clamped to the range 1≤ Dlimit ≤

Table 1. Temperature update schedule.

Fraction of moves accepted (Raccept) α

Raccept> 0.96 0.5

0.8 < Raccept≤ 0.96 0.9

0.15 < Raccept≤ 0.8 0.95

Raccept≤ 0.15 0.8

10 Nblocks()1.33⋅

Dl imi t
new

Dl imi t
old

1 0.44– Raccept
old

+()⋅=

maximum FPGA dimension. This results in Dlimit being the size of the entire chip for
the first part of the anneal, shrinking gradually during the middle stages of the anneal,
and being 1 for the low-temperature part of the anneal.

Finally, the anneal is terminated when T < 0.005 * Cost / Nnets. The movement of
a logic block will always affect at least one net. When the temperature is less than a
small fraction of the average cost of a net, it is unlikely that any move that results in a
cost increase will be accepted, so we terminate the anneal.

4 Routing Algorithm
VPR’s router is based on the Pathfinder negotiated congestion algorithm [14, 8].

Basically, this algorithm initially routes each net by the shortest path it can find,
regardless of any overuse of wiring segments or logic block pins that may result. One
iteration of the router consists of sequentially ripping-up and re-routing (by the lowest
cost path found) every net in the circuit. The cost of using a routing resource is a func-
tion of the current overuse of that resource and any overuse that occurred in prior rout-
ing iterations. By gradually increasing the cost of oversubscribed routing resources,
the algorithm forces nets with alternative routes to avoid using oversubscribed
resources, leaving only the net that most needs a given resource behind.

For the experimental results in this paper we set the maximum number of router
iterations to 45; if a circuit has not successfully routed in a given number of tracks in
45 iterations it is assumed to be unroutable with channels of that width. To avoid
overly circuitous routes and to save CPU time, we allow the routing of a net to go at
most 3 channels outside the bounding box of the net terminals.

One important implementation detail deserves mention. Both the original Path-
finder algorithm and VPR’s router use Dijkstra’s algorithm (i.e. a maze router [15]) to
connect each net. For a k terminal net, the maze router is invoked k-1 times to perform
all the required connections. In the first invocation, the maze routing wavefront
expands out from the net source until it reaches any one of the k-1 net sinks. The path
from source to sink is now the first part of this net’s routing. The maze routing wave-
front is emptied, and a new wavefront expansion is started from the entire net routing
found thus far. After k-1 invocations of the maze router all k terminals of the net will
be connected.

Unfortunately, this approach requires considerable CPU time for high-fanout nets.
High-fanout nets usually span most or all of the FPGA. Therefore, in the latter invoca-
tions of the maze router the partial routing used as the net source will be very large,
and it will take a long time to expand the maze router wavefront out to the next sink.
Fortunately there is a more efficient method. When a net sink is reached, add all the
routing resource segments required to connect the sink and the current partial routing
to the wavefront (i.e. the expansion list) with a cost of 0. Do not empty the current
maze routing wavefront; just continue expanding normally. Since the new path added
to the partial routing has a cost of zero, the maze router will expand around it at first.
Since this new path is typically fairly small, it will take relatively little time to add this
new wavefront, and the next sink will be reached much more quickly than if the entire
wavefront expansion had been started from scratch. Figure 3 illustrates the difference
graphically.

5 Experimental Results
The various FPGA parameters used in this section were always chosen to allow a

direct comparison with previously published results. All the results in this section
were obtained with a logic block consisting of a 4-input LUT plus a flip flop, as shown
in Figure 2. The clock net was not routed in sequential circuits, as it is usually routed
via a dedicated routing network in commercial FPGAs. Each LUT input appears on
one side of the logic block, while the logic block output is accessible from both the
bottom and right sides, as shown in Figure 4. Each logic block input or output can
connect to any track in the adjacent channel(s) (i.e. Fc = W). Each wire segment can
connect to three other wiring segments at channel intersections (i.e Fs = 3) and the
switch box topology is “disjoint” -- that is, a wiring segment in track 0 connects only
to other wiring segments in track 0 and so on.

5.1 Experimental Results with Input Pin Doglegs
Most previous FPGA routing results have assumed that “input pin doglegs” are

possible. If the connection box between an input pin and the tracks to which it con-
nects consists of Fc independent pass transistors controlled by Fc SRAM bits, it is pos-
sible to turn on two of these switches in order to electrically connect two tracks via the
input pin. We will refer to this as an input pin dogleg. Commercial FPGAs, however,

Current partial

Expansion
wavefront

Sink reached

Unconnected
sink

(a) Expansion reaches a sink

Expansion
wavefront

(b) Traditional method:
restart wavefront

(c) VPR method: maintain
wavefront and expand

around new wire

Expansion
wavefront

Fig. 3. When a sink is reached (a), a new wavefront can be built from scratch (b), or
incrementally (c).

Re-expand around
new wire

Routing

in1

in2

in3

in4

out

out

clk

Fig. 4. Logic block pin locations.

implement the connection box from an input pin to a channel via a multiplexer, so only
one track may be connected to the input pin. Using a multiplexer rather than indepen-
dent pass transistors saves considerable area in the FPGA layout. As well, normally
there is a buffer between a track and the connection block multiplexers to which it con-
nects in order to improve speed; this buffer also means that input pin doglegs can not
be used. Therefore, while we allow input pin doglegs in this section in order to make a
fair comparison with past results, it would be best if in the future FPGA routers were
tested without input pin doglegs.

In this section we compare the minimum number of tracks per channel required for
a successful routing by various CAD tools on a set of 9 benchmark circuits.1 All the
results in Table2 are obtained by routing a placement produced by Altor [16], a min-
cut based placement tool. Three of the columns consist of two-step (global then
detailed) routing, while the other routers perform combined global and detailed rout-
ing. VPR requires 10% fewer tracks than the second best router, and the third best
router consists of VPR’s global route phase plus SEGA for detailed routing.

Table3 lists the number of tracks required to implement these benchmarks when
new CAD tools are allowed to both place and route the circuits. The size column lists
the number of logic blocks in each circuit. VPR uses 13% fewer tracks when it per-
forms combined global and detailed routing than it does when SEGA is used to per-
form detailed routing on a a VPR-generated global route. FPR, which performs
placement and global routing simultaneously in an attempt to improve routability,
requires 87% more total tracks than VPR. Finally, allowing VPR to place the circuits
instead of forcing it to use the Altor placements reduces the number of tracks VPR
requires to route them by 40%, indicating that VPR’s simulated annealing based placer
is considerably better than the Altor min-cut placer.

5.2 Experimental Results Without Input Pin Doglegs
Table4 compares the performance of VPR with that of the SPLACE/SROUTE tool

1. These benchmarks are available for download at http://www.eecg.toronto.edu/~lemieux/sega.

Table 2. Tracks required to route placements generated by Altor.

Global R. LocusRoute [17] GBP
[20]

OGC
[21]

IKMB
[22]

VPR TRACER
[24] VPR

Detail R. CGE [18] SEGA [19] SEGA [23]

9symml 9 9 9 9 8 7 6 6

alu2 12 10 11 9 9 8 9 8

alu4 15 13 14 12 11 10 11 9

apex7 13 13 11 10 10 10 8 8

example2 18 17 13 12 11 10 10 9

k2 19 16 17 16 15 14 14 12

term1 10 9 10 9 8 8 7 7

too_large 13 11 12 11 10 10 9 8

vda 14 14 13 11 12 12 11 10

Total 123 112 110 99 94 89 85 77

set, which does not allow input pin doglegs. When both tools are only allowed to route
an Altor-generated placement VPR requires 13% fewer tracks than SROUTE. When
the tools are allowed to both place and route the circuits, VPR requires 29% fewer
tracks than the SPLACE/SROUTE combination. Both VPR and SPLACE are based
on simulated annealing. We believe the VPR placer outperforms SPLACE partially
because it handles high-fanout nets more efficiently, allowing more moves to be evalu-
ated in a given time, and partially because of a more efficient annealing schedule.

5.3 Experimental Results on Large Circuits
The benchmarks used in Sections 5.1 and 5.2 range in size from 54 to 358 logic

blocks, and accordingly are too small to be very representative of today’s FPGAs.
Therefore, in this section we present experimental results for the 20 largest MCNC
benchmark circuits [27], which range in size from 1047 to 8383 logic blocks. We use
Flowmap [28] to technology map each circuit to 4-LUTs and flip flops, and VPACK to

Table 3. Tracks required to place and route circuits.

Placement
Number of

Logic Blocks
in Circuit

FPR [25]
VPR

VPRGlobal Routing

Detailed Routing SEGA

9symml 70 9 6 5

alu2 143 10 7 6

alu4 242 13 8 7

apex7 77 9 5 4

example2 120 13 5 5

k2 358 17 10 9

term1 54 8 5 5

too_large 148 11 7 6

vda 208 13 9 8

Total -- 103 62 55

Table 4. Tracks required to place and route circuits with no input doglegs.

Placement Altor SPLACE [26]
VPR

Global + Detailed Route SROUTE [26] VPR SROUTE

9symml 7 6 7 5

alu2 9 8 8 6

alu4 12 10 9 7

apex7 9 9 6 4

example2 11 10 7 5

k2 15 14 11 9

term1 8 7 5 4

too_large 11 9 8 7

vda 12 10 10 8

Total 94 83 71 55

combine flip flops and LUTs into our basic logic block. The number of I/O pads that
fit per row or column is set to 2, in line with current commercial FPGAs. Each circuit
is placed and routed in the smallest square FPGA which can contain it. Input pin dog-
legs are not allowed. Note that three of the benchmarks, bigkey, des, and dsip, are pad-
limited in the FPGA architecture assumed.

Table5 compares the number of tracks required to place and completely route cir-
cuits with VPR with the number required to place and globally route the circuits with
VPR and then perform detailed routing with SEGA [23]. Table5 also gives the size of
each circuit, in terms of the number of logic blocks. The entries in the SEGA column
with a ≥ sign could not be successfully routed because SEGA ran out of memory.
Using SEGA to perform detailed routing on a global route generated by VPR increases
the total number of tracks required to route the circuits by over 68% vs. having VPR
perform the routing completely. Clearly SEGA has difficulty routing large circuits
when input doglegs are not allowed.

To encourage other FPGA researchers to publish routing results using these larger
benchmarks, we issue the following “FPGA challenge.” Each time verified results
which beat the previously best verified results on these benchmarks are announced, we
will pay the authors $1 (sorry, $1 Cdn., not $1 U.S.) for each track by which they
reduce the total number of tracks required from that of the previously best results. The
technology-mapped netlists, the placements generated by VPR and the currently best
routing track total are available at http://www.eecg.toronto.edu/~jayar/software.html.

6 Conclusions and Future Work
We have presented a new FPGA placement and routing tool that outperforms all

such tools to which we can make direct comparisons. In addition we have presented
benchmark results on much larger circuits than have typically been used to character-
ize academic FPGA place and route tools. We hope the next generation of FPGA
CAD tools will be compared on the basis of these larger benchmarks, as they are a
closer approximation of the kind of problems being mapped into today’s FPGAs.

One of the main design goals for VPR was to keep the tool flexible enough to allow
its use in many FPGA architectural studies. We are currently working on several
improvements to VPR to further increase its utility in FPGA architecture research. In
the near future VPR will support buffered and segmented routing structures, and soon
after that we plan to add a timing analyzer and timing-driven routing.

Table 5. Channel widths required to place and route 20 large benchmark circuits.

Circuit # LBs SEGA VPR Circuit #
LBs SEGA VPR Circuit #

LBs SEGA VPR

alu4 1522 16 10 dsip 1370 9 7 s298 1931 18 7

apex2 1878 20 11 elliptic 3604 16 10 s38417 6406 10 8

apex4 1262 19 12 ex1010 4598 22 10 s38584.1 6447 12 9

bigkey 1707 9 7 ex5p 1064 16 13 seq 1750 18 11

clma 8383 ≥ 24 12 frisc 3556 18 11 spla 3690 26 13

des 1591 11 7 misex3 1397 17 10 tseng 1047 9 6

diffeq 1497 10 7 pdc 4575 ≥ 31 16 Total -- ≥ 331 197

References
[1] S. Brown, R. Francis, J. Rose, and Z. Vranesic,Field-Programmable Gate Arrays, Kluwer

Academic Publishers, 1992.
[2] Xilinx Inc., The Programmable Logic Data Book, 1994.
[3] AT & T Inc., ORCA Datasheet, 1994.
[4] Actel Inc.,FPGA Data Book, 1994.
[5] Altera Inc.,Data Book, 1996.
[6] V. Betz and J. Rose, “Cluster-Based Logic Blocks for FPGAs: Area-Efficiency vs. Input

Sharing and Size,” CICC, 1997, pp. 551 - 554.
[7] S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi, “Optimization by Simulated Annealing,”

Science, May 13, 1983, pp. 671 - 680.
[8] V. Betz and J. Rose, “Directional Bias and Non-Uniformity in FPGA Global Routing

Architectures,” ICCAD, 1996, pp. 652 - 659.
[9] V. Betz and J. Rose, “On Biased and Non-Uniform Global Routing Architectures and CAD

Tools for FPGAs,” CSRI Tech. Rep. #358, Dept. of ECE, University of Toronto, 1996.
[10] C. E. Cheng, “RISA: Accurate and Efficient Placement Routability Modeling,” DAC, 1994,

pp. 690 - 695.
[11] M. Huang, F. Romeo, and A. Sangiovanni-Vincentelli, “An Efficient General Cooling

Schedule for Simulated Annealing,” ICCAD, 1986, pp. 381 - 384.
[12] W. Swartz and C. Sechen, “New Algorithms for the Placement and Routing of Macro

Cells,” ICCAD, 1990, pp. 336 - 339.
[13] J. Lam and J. Delosme, “Performance of a New Annealing Schedule,” DAC, 1988, pp. 306

- 311.
[14] C. Ebeling, L. McMurchie, S. A. Hauck and S. Burns, “Placement and Routing Tools for

the Triptych FPGA,” IEEE Trans. on VLSI, Dec. 1995, pp. 473 - 482.
[15] C. Y. Lee, “An Algorithm for Path Connections and its Applications, “IRE Trans. Electron.

Comput., Vol. EC=10, 1961, pp. 346 - 365.
[16] J. S. Rose, W. M. Snelgrove, Z. G. Vranesic, “ALTOR: An Automatic Standard Cell Layout

Program,” Canadian Conf. on VLSI, 1985, pp. 169 - 173.
[17] J. S. Rose, “Parallel Global Routing for Standard Cells,” IEEE Trans. on CAD, Oct. 1990,

pp. 1085 - 1095.
[18] S. Brown, J. Rose, Z. G. Vranesic, “A Detailed Router for Field-Programmable Gate

Arrays,” IEEE Trans. on CAD, May 1992, pp. 620 - 628.
[19] G. Lemieux, S. Brown, “A Detailed Router for Allocating Wire Segments in FPGAs,”

ACM/SIGDA Physical Design Workshop,1993, pp. 215 - 226.
[20] Y.-L. Wu, M. Marek-Sadowska, “An Efficient Router for 2-D Field-Programmable Gate

Arrays,” EDAC, 1994, pp. 412 - 416.
[21] Y.-L. Wu, M. Marek-Sadowska, “Orthogonal Greedy Coupling -- A New Optimization

Approach to 2-D FPGA Routing,” DAC, 1995, pp. 568 - 573.
[22] M. J. Alexander, G. Robins, “New Performance-Driven FPGA Routing Algorithms,” DAC,

1995, pp. 562 - 567.
[23] G. Lemieux, S. Brown, D. Vranesic, “On Two-Step Routing for FPGAs,” Int. Symp. on

Physical Design, 1997, pp. 60 - 66.
[24] Y.-S. Lee, A. Wu, “A Performance and Routability Driven Router for FPGAs Considering

Path Delays,” DAC, 1995, pp. 557 - 561.
[25] M. J. Alexander, J. P. Cohoon, J. L. Ganley, G. Robins, “Performance-Oriented Placement

and Routing for Field-Programmable Gate Arrays,” EDAC, 1995, pp. 80 - 85.
[26] S. Wilton, “Architectures and Algorithms for Field-Programmable Gate Arrays with

Embedded Memories,” Ph.D. Dissertation, University of Toronto, 1997.
[27] S. Yang, “Logic Synthesis and Optimization Benchmarks, Version 3.0,” Tech. Report,

Microelectronics Centre of North Carolina, 1991.
[28] J. Cong and Y. Ding, “Flowmap: An Optimal Technology Mapping Algorithm for Delay

Optimization in Lookup-Table Based FPGA Designs,” IEEE Trans. on CAD, Jan. 1994, pp.
1 - 12.

