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Abstract: The most accurate remote Point of Gaze (PoG) estimation methods that allow free
head movements use infrared light sources and cameras together with gaze estimation models.
Current gaze estimation models were developed for desktop eye-tracking systems and assume
that the relative roll between the system and the subjects’ eyes (the ’R-Roll’) is roughly constant
during use. This assumption is not true for hand-held mobile-device-based eye-tracking systems.
We present an analysis that shows the accuracy of estimating the PoG on screens of hand-held mobile
devices depends on the magnitude of the R-Roll angle and the angular offset between the visual and
optical axes of the individual viewer. We also describe a new method to determine the PoG which
compensates for the effects of R-Roll on the accuracy of the POG. Experimental results on a prototype
infrared smartphone show that for an R-Roll angle of 90◦, the new method achieves accuracy of
approximately 1◦, while a gaze estimation method that assumes that the R-Roll angle remains
constant achieves an accuracy of 3.5◦. The manner in which the experimental PoG estimation errors
increase with the increase in the R-Roll angle was consistent with the analysis. The method presented
in this paper can improve significantly the performance of eye-tracking systems on hand-held
mobile-devices.
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1. Introduction

Remote eye tracking systems that measure the point of gaze (PoG) have been used in many domains
including the measurement of advertising efficacy [1,2], reading studies [3–5], and human-machine
interfaces [6]. Applications in these domains have been demonstrated largely on specialized, stationary
and expensive eye tracking devices. The development of hand-held eye tracking systems date back
to the 2000s [7,8] when research groups built fully-custom devices. Recent work has begun to bring
eye-tracking technology to widely available, and less expensive mobile devices including smart phones
and tablets. This has brought exciting applications that are explicitly designed with mobile context in
mind [9,10].

Eye tracking on hand-held devices bring significant challenges beyond those in traditional desktop
systems. Key among these is the movement of the eye-tracking device relative to the subject: during the
operation of a mobile eye tracker the distance between the device and the user can vary by a factor
of 2–3 and the roll angle of the device relative to the user’s eyes (R-Roll) can routinely change by 90◦.
Using an eye tracking model robust to these types of movements is essential for high performance
in a mobile context. In addition when considering smart phones, the small size of a screen requires
more accurate PoG estimates if one wanted to differentiate between the same number of regions as on
a larger display such as on a tablet.
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Recent mobile eye tracking work has largely focused on unmodified commercial devices [11–18].
The eye-tracking systems on these devices are based on the analysis of eye images from the mobile
devices’ RGB cameras where the eyes are not illuminated by specialized light sources (e.g., infrared).

These systems use geometric projections of the boundary between the iris and the limbus,
the distance between the iris center and a corneal reflection or machine learning appearance-based
methods to calculate the PoG. Two dimensional geometric appearance methods, such as limbus back
back-projection [6,19,20] use the eccentricity of the ellipse that defines the boundary between the
iris and the sclera to estimate the visual axis of the eye. The more elliptical this boundary becomes,
the greater the deviation between the visual axis of the eye and the optical axis of the camera, which can
be converted into an estimate of the PoG. This technique is simple to implement, but it is least accurate
when there are small deviations between the optical axis of the eye and the camera, which is nearly
always the case on the small screen of a smartphone. In a study with a gaze estimation system that used
an 11-inch tablet (with a screen-size of 27 × 18 cm) the reported gaze estimation error was 6◦ when the
user’s eye was at a distance of 20 cm from the camera [11]. A similar configuration was used in [21]
but only achieved 15◦ accuracy. A method that uses the distance between the iris center and a corneal
reflection to calculate the PoG is described in [13]. In this method a glint (virtual image created by the
front surface of the eye’s cornea) is created by the information displayed on the screen of the mobile
device. This method can achieve a point of gaze with an accuracy of 2.9◦. While these approaches can
work on an unmodified device they are not robust to any device motion after calibration, especially
device roll. If a subject were to rotate the device or reposition their head relative to the device the gaze
estimation accuracy would significantly worsen until calibration was redone.

Machine learning appearance-based approaches to mobile gaze estimation have some robustness
to natural head and devices movements (insofar as they are represented in the training data).
An approach using random forests on an unmodified tablet [14] has demonstrated 3.1 cm gaze
estimation error (which is 5.9◦ at 30 cm distance). Using deeper neural networks such as those found
in [6,12] a gaze estimation error as low as 1.34 cm has been reported on a standard iPhone. If one
assumes an average distance of 20 cm between the eye tracker and the user’s eye (which we base on
an analysis of the images in the data set and known field of view ranges for modern iPhone cameras)
this error is equivalent to about 3.8◦.

The key advantages of mobile eye-tracking systems that use visible light techniques is that
they don’t require special hardware. However, these systems have not yet been able to achieve the
accuracy of desktop infrared model-based gaze estimation systems which report 0.5◦ estimation
accuracy [22–24]).

Artificial infrared illumination in eye tracking has been widely adopted in indoor settings by
commercial companies such and has been shown to produce high quality eye tracking systems with
under 1◦ of estimation error in a variety of conditions [22–24]. Using artificial illumination, the eye
model-based approach [22] provides the best performance when the head is free to move relative to the
eye-tracker. To achieve this performance, gaze estimation requires an infrared camera and infrared LEDs
not currently available on standard mobile devices. However, recently, Apple Inc. (Cupertino, CA, USA)
has integrated an infrared camera and infrared light sources in a commercial mobile device (iPhone X)
to enhance face tracking and identification algorithms. With only slight modifications, this approach
could also support eye tracking methods that use infrared gaze estimation models to calculate
the PoG. Many other smart-phone manufacturers are experimenting with native infrared cameras.
Google’s Tango development smartphone [25] has a usable infrared camera (although on a back-facing
camera), some modern Samsung devices have front facing sensors for iris scanning which use an
infrared camera and the prototype device we use in this work, which was provided by Huawei Inc.
(Shenzhen, China), has a front-facing infrared camera. We believe infrared front facing cameras may
become a standard feature of devices in the near future and one use for them could be artificially
illuminated gaze estimation in conjunction with other gaze estimation techniques. We hope that our
work helps motivate these changes.
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Therefore, in contrast to previous works, our approach, is to assume that infrared illumination and
infrared cameras will soon be integrated into commercial mobile devices and by using a model-based
method to estimate the PoG achieve accuracy that is similar to that of desktop methods [22–24].

This paper presents a novel model-based method for the estimation of the PoG on displays of
mobile devices. Since a mobile device can be moved freely in the hands of subjects, several issues arise
in PoG estimation on mobile devices that are not as present in stationary desktop systems. All subjects
gave their informed consent for inclusion before they participated in the study. The first issue is
associated with the need to use more than one coordinate system to describe all the parameters of the
gaze estimation model. In desktop systems all model parameters (camera and light sources locations,
eye-parameters, display parameters, etc.) are measured in one fixed world coordinate system. In an
eye-tracking system that is free to move, some model parameters are continuously changing with the
movements of the device (e.g., camera and light source locations) and some model parameters are
measured only once in a fixed coordinate system (such as the subjects’ eye parameters). Therefore,
for PoG estimation on mobile devices, model parameters that are measured in different coordinate
systems must be transformed into a single coordinate system for the estimation of the PoG.

The second issue that arises relates to the common assumption that the relative roll angle between
the eye tracking system (which is comprised of the camera, the light sources and the display) and
the subjects’ eyes (R-Roll) is approximately 0◦ [22]. This is a reasonable assumption for stationary
desktop eye-tracking systems where the head is approximately erect, but not for hand-held eye
tracking systems.

We focus in this work on extending an infrared model-based approach found in [22] however the
theory provided here is applicable to any hand-held system that may experience R-Roll and computes
the PoG using a reconstruction of the optical and visual axis of the eye, even if that is done in the
visible light domain.

The objectives of this paper are to (a) describe a novel method that will enable the use of accurate
model-based estimation of the PoG on mobile devices; (b) extend the model of [22] by incorporating the
R-Roll in the computation of the PoG and (c) provide experimental data to demonstrate the importance
of such an extension in mobile devices with limited screen-sizes. The paper is organized as follows:
Section 2.1 provides a description of a model-based method for the estimation of the PoG on mobile
devices. Section 2.2 presents an analysis of the expected changes in the estimation of the PoG as a
function of the R-Roll between the eye tracking system and the subjects’ eyes. Section 2.3 describes the
experimental methodology used and Section 3 shows results of these experiments with a prototype
industrial device. Finally, in Section 4 we discuss the results and additional sources of errors that affect
the estimation of the PoG on mobile devices.

2. Materials and Methods

2.1. Mathematical Model

This work is based on the model for PoG estimation developed in [22] for desktop systems,
which we will refer as the prior model. The prior model estimates the PoG on a desktop stationary
display by determining the intersection of the visual axis of the eye with the display. To determine
unit vectors in the direction of the visual axis of the eye this model first estimates the direction of the
optical axis of the eye and then uses the fact that the angular separation between the optical and visual
axes is constant to calculate the direction of the visual axis. The direction of the optical axis of the eye
(Figure 1) is defined by a line connecting the center of curvature of the cornea, c, and the center of the
pupil, p. As shown in the prior model, the direction of the optical axis, ω, is given by:

ω ≡ p− c
‖p− c‖ =

 sin(θeye)cos(φeye)

sin(φeye)

−cos(θeye)cos(φeye)

 (1)
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where p and c are measured in a right handed 3-D Cartesian World Coordinate System (WCS) and θeye

and φeye are the horizontal (yaw) and vertical (pitch) angles of the eye (not shown in Figure 1) with
respect to this system. The pupil center, p, and the center of curvature of the cornea, c, are estimated
by the prior model using the coordinates of the pupil-center and the virtual images of the light sources
that illuminate the eye (corneal reflections) in images from the camera. The visual axis of the eye, ν,
also illustrated in Figure 1, is defined by a line connecting the center of curvature of the cornea, c,
and the fovea, the highest acuity region of the retina. In the eye coordinate system, the visual axis
has a fixed horizontal and vertical angular offsets (αeye, βeye) from the optical axis. These offsets are
subject-specific and are estimated, in the prior model, with respect to the horizontal and vertical axes
of the WCS during subject calibration procedures. The direction of the visual axis, ν, is given by:

ν =

 sin(θeye + αeye)cos(φeye + βeye)

sin(φeye + βeye)

−cos(θeye + αeye)cos(φeye + βeye)

 (2)

In the prior model, all parameters are defined in a fixed world coordinate system (WCS) that is
rigidly attached to the display of the system where the x-axis and y-axis of the WCS are parallel to
the rows and the columns of the display and the z-axis is perpendicular to the display and pointing
towards the subject.

c p

visual axis
fovea

p: center of the pupil
c: center of curvature of the cornea

zworld

xworld

yworld

xdevice

ydevice

zdevice

x, y, zworld
x, y, zeye
x, y, zdevice

: world coordinate system (WCS)
: eye coordinate sysem (ECS)
: device coordinate system (DCS)

α

β

zeye|| optical axis

yeye

xeye

Figure 1. Mobile Eye Tacking System.

In a mobile eye tracking system, if the pupil center, p, and the center of curvature of the cornea,
c, are estimated in a device coordinate system (DCS) that is rigidly attached to the mobile device,
Equation (1) can be used to describe the direction of the optical axis of the eye in this coordinate
system. In such a system, p and c can be estimated with the prior model using estimates of the
pupil-center and corneal reflection locations in images from the mobile device camera. Similar to the
definition of the WCS in [22], the mobile device coordinate system is defined as a right-handed 3-D
Cartesian coordinates system whose XDCS, and YDCS axes are parallel to the rows and columns of the
display of the mobile device, the XY-plane is coincident with the plane of the display and the Z-axis
is perpendicular to the display pointing from the display towards the subject. To determine the PoG
on the screen (i.e., the intersection of the visual axis of the eye with the screen), a unit vector in the
direction of the visual axis, ν, must be calculated in the DCS. Note, however, that since the DCS is
continuously moving, αeye and βeye (subject-specific eye parameters that were estimated, in the prior
model, with respect to the horizontal and vertical axes of the WCS) are not necessarily measured in the
DCS so one cannot use Equation (2) to estimate the direction of the visual axis.
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To help in the estimation of, νDCS, (the direction of the visual axis in the DCS) we define an Eye
Coordinate System (ECS) that is rigidly attached to the eye (see Figure 1). In such a system the angle
between the optical and visual axes does not change with eye rotations or translations. If the ECS is
defined as a right handed 3-D Cartesian coordinate system whose axes are labeled xeye, yeye, zeye where
the zeye-axis is coincident with the optical axis of the eye, pointing forwards out of the eye and towards
the world, νECS can be written as:

νECS =

sin(αeye)cos(βeye)

sin(βeye)

cos(αeye)cos(βeye)

 (3)

where αeye and βeye are the horizontal and vertical angular offsets between the optical and visual axes.
Using Equation (3) we can formally write:

ν ≡ νDCS = RDCS
ECS ∗ νECS (4)

where RDCS
ECS is the rotation matrix of the ECS with respect to the DCS and can be expressed as

RDCS
ECS =

[
xDCS

eye yDCS
eye zDCS

eye

]
. (5)

The notation xDCS
eye corresponds to a unit vector in the direction of the xeye-axis but described in

the device coordinate system. Note that by definition the unit vector in the direction of zeye-axis of the
ECS with respect to the DCS is given by

zDCS
eye = ω, (6)

If the R-Roll (the rotation angle of the xeye-axis and yeye-axis with respect to the DCS, λeye,
in Figure 2) is assumed to be 0◦ (this assumption will be relaxed later on in the derivation) then a unit
vector in the direction of the xDCS

eye -axis of the ECS with respect to the DCS is:

xDCS
eye,λ=0 =

yDCS
device ×ω

‖yDCS
device ×ω‖ (7)

where

yDCS
device =

0
1
0

 (8)

is the unit vector in the direction of the Y-axis of the DCS. Next, a unit vector in the direction of the
yeye-axis of the ECS with respect to the DCS for λeye = 0 is:

yDCS
eye,λ=0 = zDCS

eye × xDCS
eye,λ=0. (9)

When the R-Roll angle between the DCS and the ECS is λeye (i.e., we no longer assume that the
R-Roll angle is 0◦), the direction of the unit vectors in the rotation matrix of the ECS with respect to the
DCS can be calculated by:

xDCS
eye = cos(λeye)xDCS

eye,λ=0 + sin(λeye)yDCS
eye,λ=0 (10)

and,

yDCS
eye = −sin(λeye)xDCS

eye,λ=0 + cos(λeye)yDCS
eye,λ=0 (11)
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In summary, the method to estimate the PoG on displays of mobile devices first estimates the
direction of the optical axis of the eye in the device coordinate system using (Equation (1)). Then,
using values for αeye, βeye, λeye and Equations (3)–(11) an estimate of the direction of the visual axis in
the DCS is determined. Finally, the intersection of a vector aligned with the visual axis and the display,
Zdcs = 0 is calculated, providing the PoG estimate on the display of the mobile device.

ydevice

xdevice

λeye

xeye
yeye

(coincident with ω)
zeye

Figure 2. Illustration of λeye translation from DCS to ECS.

2.2. Quantifying the Effects of Relative Roll on POG Estimation

In this section we derive an expression for the difference between the estimated PoGs when
λeye = 0◦ (using Equations (1) and (3)–(11)) and when λeye = R-Roll (using Equations (1) and (3)–(11)).
The purpose of this derivation is to determine the model parameters that mediate the effects of the
R-Roll angle on the estimation of the PoG and to determine the expected magnitude of these effects.
To simplify the derivation, the pitch and yaw angles of the eye were set to 0◦.

Let ν0 be the direction of the visual axis when λeye is set to 0 and ν the direction of visual axis
when λeye = R-Roll. From Section 2.1 we have

ν0 = RDCS
ECS (λeye = 0◦)νECS (12)

and,

ν = RDCS
ECS (λeye)ν

ECS (13)

where

RDCS
ECS (λeye = 0◦) =

1 0 0
0 1 0
0 0 −1

 (14)

and,

RDCS
ECS (λeye) =

cos(λeye) −sin(λeye) 0
sin(λeye) cos(λeye) 0

0 0 −1

 (15)

The angular difference between ν and ν0, δ, can be obtained from:

ν · ν0 = |ν||ν0|cos(δ). (16)

Substituting Equations (12) and (13), into (16) and using Equation (3) (noting that both ν and ν0

are unit vectors), yields δ as a function of λeye, αeye, βeye.
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δ = cos−1[cos(λeye)
[
sin2(αeye)cos2(βeye) + sin2(βeye)

]
+ cos2(αeye)cos2(βeye)

]
. (17)

Figure 3 shows the expected difference between the directions of the visual axes, δ◦, when λeye is
set to 0◦ (the assumption of the prior model) and when λeye is set to R-Roll. In Figure 3, λeye changes
from 0 to 180 degrees. The four curves in Figure 3 are for four values of αeye and βeye. These values
were selected to span the full range of expected angular offsets between the optical and visual axes in
adults. The curve for αeye = 3.0◦ and βeye = 1.5◦ shows the expected effects of the R-Roll angle on the
estimated direction of the visual axis for an average adult human eye. For an average eye, during an
orientation change of the mobile device from landscape to portrait (λeye = 90◦) the value of δ is 4.7◦.

If the eye is at a distance of 30 cm from the display this orientation change would result in a PoG
estimation error of approximately 2.5 cm, or more than one third the display-width of a typical smart
phone. Figure 3 also shows that individuals with larger offsets between the optical and visual axes
are expected to have larger differences between the directions of their estimated visual axis (δ) due to
R-Roll. Moreover, the change in δ is approximately linear for a large range of R-Roll angle values, λeye.
The relatively modest slopes of the lines in Figure 3 (1/50 to 1/11), indicate that the sensitivity of δ to
errors in the estimation of λeye is small. For an average eye, a 1◦ error in the estimation of λeye will
affect the estimation of the direction of the visual axis by only 0.04◦.
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Figure 3. Expected estimation error (δ) as a function of the R-Roll angle (λeye) for four different angular
offsets (α and β) between the optical and visual axes.

2.3. Experimental Procedure

We conducted a study with four subjects to determine the performance of the model-based gaze
estimation method in the presence of R-Roll that was developed in Section 2.1. The four subjects
looked at targets on the display of a mobile device while the R-Roll angle was configured to one of
3 angles, 0, 45, and 90 degrees. The mobile device that we used in the experiments is a prototype
that was provided by Huawei Corporation. It employs an Android-based operating system and has
two infrared LEDs, a 4K front-facing infrared camera with a 80◦ field of view and a 5 inch display
as shown in Figure 4. An 80◦ field of view is larger than average for the front facing camera of a
typical smartphone and will increase the likelihood that the subject’s eye are in the frame. The full
software eye-tracking system, illustrated in Figure 5, has the following components: (a) a head and
facial feature tracker that was used to determine the location of the left and right eye regions in images
of the infrared camera; (b) an image processing system to estimate the locations of the pupil center and
corneal reflections (of the infrared LEDs) in each eye region; and (c) a gaze estimation model. The gaze
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estimation model uses parameters that describe the location and size of relevant components on the
prototype device, the user’s eye (e.g., αeye and βeye) and the R-Roll angle (λeye).

115mm

65
m

m
Infrared LEDs

infrared camera
80◦ field of view

Figure 4. Prototype IR mobile device.
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Figure 5. Eye Tracking Modules and Software Flow.

During the experiment, four videos from the camera of the eye-tracking system were collected
for each of the four subjects in the following way: the device was held in a stand capable of being
set at a fixed roll angle, and the head of the subject was positioned on a chin rest at a distance of
30 cm from the device. The chin rest and device stand acts to minimize several sources of variance on
the final gaze estimation error that could result from head or device movements. Using a chin rest
in this way allows us to isolate the change in gaze estimation error due only to R-Roll between the
subject and the device. During the recording of each video, subjects looked at five known targets on
the display as shown in Figure 6. The first video (during which calibration is performed) was used to
determine subject-specific eye parameters that included αeye and βeye. These parameters, together with
parameters that describe the optical and physical characteristics of the system (the location of the LEDs
and camera) and estimates of the physical locations of the pupil center and the corneal reflections
were used to generate estimates of the direction of the optical axis. These estimates were generated by
the gaze estimation model described in [23]. Then, using the estimated direction of the optical axis,
the measured head tilt (measured by the head-tracker) and the method described in Section 2.1 the
PoGs in three subsequent videos were computed. These videos were recorded with three set R-Roll
angles: 0, 45 and 90 degrees relative to the orientation of the eye-tracking system during the calibration
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video. This rotation was archived by rotating the mobile device with respect to gravity while the
subject head orientation remained fixed with a chin rest. At each R-Roll angle, subjects were instructed
to gaze at five fixation targets for 5 s (150 frames) each.

Calibration Targets Estimation Targets 0◦ Estimation Targets 45◦ Estimation Targets 90◦

Figure 6. Calibration and Estimation Targets.

In general, the R-Roll angle is a combination of the head tilt angle with respect to the device
and the eye’s counter-roll [26]. In the experiments described in this here the R-Roll angle between
the eye and the eye-tracker is determined by the head tilt since the eyes’ counter-roll eye movements
were minimized by supporting the subject’s head on a chin rest. Based on our theoretical predictions
from (17) we don’t expect counter roll to be a significant source of error however for subjects sitting
upright. In the experiments head tilt was measured by the system’s head tracker; we used one provided
by Visage Technologies.

PoG estimates for each frame were computed (If the pupil center and corneal reflection of the
eyes were detected by the feature extractor in that frame) using one of the two following methods:
Method 1 assumed that the R-Roll angle was 0◦ when estimating the PoG (i.e., λeye was set to 0◦,
for all test conditions) and Method 2 where λeye was set to the R-Roll that was measured by the head
tracker. Comparing the results of the two methods provides a direct estimate of the improvement to
the accuracy of PoG estimation when the R-Roll angle is used by the model. Since both methods used
the same estimates of pupil center and corneal reflections (because these results are computed through
off-line processing of the recorded videos), we can ensure that the only difference between the PoG
estimates of the two methods is associated with the use of the R-Roll angle in the computation.

The PoG estimation error for each sample video was computed by first calculating the average
absolute distance between the PoG estimates and the position of the fixation target for these estimates
and averaging the errors of the 5 targets.

3. Experiment Results

Figure 7a,b show the PoG estimates of one subject (subject 02) when the R-Roll angle is 90◦.
Figure 7a shows the PoG estimates using Method 1 (λeye set to 0◦) and Figure 7b shows estimates
using Method 2 (λeye is estimated by the head-tilt). The crosses in each figure shows the location of the
targets, and the scatter plot of dots are the of estimated PoGs. When Figure 7a,b are compared it is
clear that when the estimated R-Roll angle is used in the calculations of the PoG the accuracy of the
PoG estimation improves.

Table 1 presents the PoG estimation errors for each of the four subjects at three R-Roll angles
(0◦, 45◦ and 90◦). The column labeled Method indicates if Method 1 or Method 2 were used in the
estimation of the PoG. The results show that the average error for Method 2 is approximately 1 degree
and that the magnitude of the errors for the three roll angles are similar. The average error increased
by 3.2% (0.92◦ to 0.95◦) when the R-Roll angle chnaged from was 0◦ to 45◦ and by 26% (0.92◦ to 1.16◦)
when the R-Roll angle changed from 0◦ to 90◦. When Method 1, in which the R-Roll angle was assumed
to remain constant during the experiment (i.e., λeye is set to 0◦), was used for the computation of the
PoG, the average error increased by 251% (0.90◦ to 2.26◦) when the R-Roll angle was changed from 0◦

to 45◦ and by 389% (0.90◦ to 3.50◦) when the R-Roll angle was changed from 0◦ to 90◦.
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(a) (b)

Figure 7. Gaze estimates for subject 02 at 30 cm device distance and λeye = 90◦. The 5 crosses represent
the fixation points. The point [0,0] is the center of the display. (a) PoG estimates computed with Method
1 (no-compensation for R-Roll = 90◦); (b) PoG estimates computed with Method 2 (with compensation
for the R-Roll = 90◦).

To highlight the importance of using the R-Roll angle in the estimation of the PoG in
mobile-device-based eye tracking systems (i.e., limited screen sizes) consider a metric that describes
the radius of the circle that includes 95% of the PoG estimates around a fixation target. When Method 2
is used for a 90◦ relative roll, 95% of the estimates are within a radius of 12 mm from the fixation
target. When Method 1 is used for 90◦ relative roll, the 95% enclosing radius is much larger, at 28 mm.
If one assumes that for applications that use gaze-selection, reliable operation requires that 95% of the
estimates are associated with the intended fixation target, the use of Method 2 will allow 45 distinct
fixation targets on a 5 inch display while Method 1 will allow for only 8 distinct fixation targets.

Table 1. Gaze estimation errors for R-Roll angles of 0◦, 45◦ and 90◦. In Method 1 λeye set to 0◦ when
estimating the PoG while in Method 2 λeye set to the measured R-Roll from the head tracker.

Average Gaze Error (mm) Average Gaze Error (Degrees)

Subject Method R-Roll = 0◦ R-Roll = 45◦ R-Roll = 90◦ R-Roll = 0◦ R-Roll = 45◦ R-Roll = 90◦

01 2 5.07 4.7 5.05 0.96 0.89 0.96
1 4.91 11.11 15.96 0.93 2.12 2.75

02 2 3.73 4.55 5.18 0.71 0.86 0.98
1 3.52 9.08 14.39 0.67 1.73 2.74

03 2 3.15 4.77 4.12 0.60 0.91 0.78
1 3.14 11.91 18.42 0.59 2.27 3.51

04 2 7.23 5.94 10.05 1.38 1.13 1.91
1 7.31 15.44 24.66 1.39 2.94 4.69

Average 2 4.80 4.99 6.10 0.92 0.95 1.16
1 4.72 11.88 18.36 0.90 2.26 3.50

Table 2 shows, for each of the four subjects, differences in PoG estimation when λeye is set to 0◦

in the computation of the PoG and when λeye is set to R-Roll angle. The Table shows the differences
computed by our model, δtheory, (derived as δ in Section 2.2, Equation (17)) and the experimentally
measured differences, δmeasured. The last row of the Table gives the absolute difference between δmeasured
and δtheory for each R-Roll angle. The average error between the measured and predicted differences
is 0.28◦ which is approximately 15% of the average measured differences (1.82◦). This data provides
further evidence that the model in Section 2.1 can be used to accurately determine the PoG when the
R-Roll angle changes. In Table 2, the measured αeye and βeye of each subject are presented in the first
two rows. As predicted by Equation (17), the magnitude of the measured differences is correlated
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with the magnitude of the offset between the optical and visual axes (αeye and βeye), with a correlation
factor of 0.89 at a R-Roll angle of 90◦.

Table 2. Predicted and measured differences between PoG estimations when the R-Roll angle is used
in the computation of the PoG (Method 2) and when it is assumed to be 0 (Method 1).

Subject 01 02 03 04

|αeye| 1.73 1.21 1.78 2.67
|βeye| 0.5 0.28 0.92 0.25
λeye 45◦ 90◦ 45◦ 90◦ 45◦ 90◦ 45◦ 90◦

δtheory 1.37◦ 2.54◦ 0.94◦ 1.75◦ 1.53◦ 2.83◦ 2.06◦ 3.81 ◦

δmeasured 1.22◦ 2.08◦ 0.86◦ 1.76◦ 1.36◦ 2.72◦ 1.81◦ 2.78◦

|δtheory − δmeasured| 0.15◦ 0.46◦ 0.08◦ 0.01◦ 0.17◦ 0.11◦ 0.25◦ 1.03◦

4. Discussion and Conclusions

Using the method that was described in this paper, when the R-Roll angle is approximately 0◦,
(which is a testing condition similar to tests on desktop eye-tracking systems) the RMS PoG estimation
error on the display of the mobile system is approximately 1.0◦. This is substantially more than the
typical 0.5◦ RMS error in desktop systems [22] that use a similar gaze estimation model to calculate
the PoG. The main reasons for the larger errors on mobile devices are associated with the difficulty to
accurately estimate the pupil center and the corneal reflections locations in images from the camera of
the mobile device and the inability to estimate the subject’s specific eye parameters as accurately as it
can be done on desktop systems. In mobile systems the combination of smaller size sensors, inferior
optics and reduced IR illumination (due to the need to conserve battery power) reduces the quality of
eye images from the cameras of these systems when compared with the quality of images from the
cameras of desktop systems. In the four subjects that were tested in this study, difficulties to determine
eye-features in subject 04 increased the average PoG estimation error for this subject to about 1.4◦,
which is significantly higher than the PoG estimation errors in the three other subjects. The reduced
precision of the estimated eye features alongside the smaller physical display size of mobile devices
leads to a reduced ability to estimate accurately the subject’s specific eye parameters (e.g., αeye and
βeye), as the angular separation between the calibration targets on the display is limited.

The lower accuracy in the estimation of αeye and βeye in mobile eye-tracking systems explains
some of the differences between the expected and observed changes in gaze estimation due to R-Roll
(shown in Table 2). For subjects 02 and 03, the expected and observed changes in gaze estimations
due to R-Roll are relatively small (less than 0.25◦) which indicates that estimated subject-specific
eye-parameters were relatively accurate. For subject 04, the estimated subject specific eye-parameters
are relatively inaccurate and therefore the expected and observed changes due to R-Roll are much larger
(1◦ when R-Roll was 90◦). These results suggest that the calibration procedure for small screen mobile
eye trackers are particularly vulnerable and should be improved in future iterations of this work.

Another parameter that affects the accuracy of the estimated PoG in smart-phone-based
eye-tracking systems is the accuracy of the measured R-Roll angle. In general, the R-Roll angle
is a combination of the head tilt angle with respect to the device and the eye’s counter roll [27]. In our
experiments the impact of counter roll on the estimation of the R-Roll angle was minimized with the
use of a chin rest that minimizes head movements (i.e., minimize the eye’s counter roll movements)
and the R-Roll angle was measured by a head-tracker that provided estimates of the head tilt. Noise in
the estimation of the head-tilt by the head-tracker that was used in this study is less than 1◦ and
therefore, for a typical eye, the effect on PoG estimation due to errors in the estimation of head tilt
are relatively small (0.02◦ to 0.09◦). When the head is not supported on a chin rest so the head-tilt
can change during the experiment, the R-Roll angle between the eye-tracker and the eyes will be
affected by counter roll (torsional eye movements, note that in this study we minimized torsional
eye movements by using a chin-rest). Although the amount of counter roll is a non-linear function of
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head-tilt and it varies between subjects its gain is less than 0.1 [27]. This means that for a subject who
chnages posture from standing or sitting to lying horizontally (a change of 90◦), a counter roll of as
much as 9◦ might be observed. If the value of the R-Roll angle for this situation was estimated based
on the measurement head-tilt from the head tracker (accurate to within a degree), the overall error
in λeye could be as high as 10◦. For the range of possible offsets between the optical and visual axes
(Figure 3), a 10◦ error in the estimation of λeye would change the PoG estimation by 0.2◦ to 0.9◦.

To obtain more accurate measurements of the R-Roll angle one can measure the rotation of iris
structures in images of the eye-tracker’s camera [28]. This technique can provide accurate estimates
of the R-Roll regardless of the root cause for the relative movements, whether it is device rotation,
head rotation, eye counter-roll or torsional eye movements that are governed by Listings law [29]
(rotations in the plane orthogonal to the visual axis as a function of gaze direction). This method,
however, is impractical for current-generation mobile devices because of insufficient resolution to
detect iris patterns in images from the front facing cameras. Alternatively, one can use a model that
describes the typical counter roll as a function of head tilt to estimate the R-Roll angle. In this approach,
the orientation of the mobile device relative to gravity would be estimated using the accelerometer
on the device and the orientation of the head relative to the device would be measured by the head
tracker. When combined, the tilt of the head relative to gravity can be computed and the expected
counter roll can be estimated from the model. λeye will then be computed by subtracting the estimated
eye counter-roll from the measured head-tilt.

The infrared model-based eye tracking method presented in this paper is tolerant of both head
and devices movements and has PoG estimation accuracy of 1◦. The method is much more accurate
than methods that do not use models to estimate the point of gaze (limbus back projections and
measurement of the distance between the center of the iris and a corneal reflection) and is less sensitive
to relative movements between the eyes and the mobile device. When compared or to deep leaning
appearance based systems [12], which are robust to relative movements between the eyes and the
mobile device the accuracy of the method presented in this paper is significantly better than that
reported in [12] (1◦ vs. 3.8◦). That isn’t to say that our approach isn’t without some significant
limitations however, as discussed in the following section.

4.1. Limitations

The eye tracking gaze-estimation model in this paper can be used to estimate gaze position on
screens of smart phones with accuracy of 1 degree. The performance of the gaze estimation model
depends on the accuracy in which the pupil-center and the coordinates of the corneal reflections can
be estimated.

The ability to accurately estimate these parameters depends on operational parameters such as
rapid changes in eye illumination due to rapid changes in the distance between the smartphone and
the subject, interference from sunlight, reflections of the IR light from eye-glasses, upper and lower
eyelid interference with the pupil-iris boundary and situations in which the subject’s eyes are no longer
within the field of view of the smartphone’s camera [30]. Solving these issues is a non trivial task
and can be rather specific to the hardware implementation of the eye-tracker (i.e., it is best solved by
companies that design eye-tracking systems), but, the work presented in this paper shows that when
these issues are solved properly, one can estimate the gaze position on the screen of a smartphone with
an accuracy of 1 degree.

One promising approach to overcome some of the above limitations is to augment the gaze
estimation model that is described in this paper (i.e., using IR illumination) with a gaze estimation
model that relies on ambient illumination. In a gaze estimation model that relies only on ambient
illumination the center of the pupil and the center of rotation of the eye in 3D space are used to
reconstruct the direction of the optical axis of the eye [31]. Then, the method that is described in this
paper can be used to reconstruct the direction of the visual axis and estimate the PoG on the screen of
the mobile device.
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4.2. Conclusions

In summary, in this paper we presented a novel method to determine the PoG on displays of
mobile-device-based eye tracking systems. The method uses measurements of the R-Roll angle between
the eye-tracking system and the subject’s eyes to provide more accurate PoG estimates when the mobile
device is free to rotate in the hands of the user. Using a prototype smartphone-based eye-tracking
system we showed that when the R-Roll angle is used in the calculations of the PoG the average error
in the estimation of the PoG is approximately 1◦. When the R-Roll between the eye-tracking system
and the subject’s eyes is assumed to remain constant during use, the average PoG estimation error
when the hand-held device changes from portrait to landscape mode increased to 3.5◦. These results
clearly demonstrate that by using the novel method that is described in this paper one can significantly
improve the performance of mobile-device based eye tracking systems.
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