
An Energy-Efficient, Fast FPGA Hardware
Architecture for OpenCV-Compatible Object

Detection
Braiden Brousseau, Jonathan Rose

Electrical and Computer Engineering, University of Toronto
10 Kings Collage Road, Toronto, Ontario, Canada, M5S3G4

brousse1@eecg.toronto.edu
jayar@eecg.toronto.edu

Abstract—The presence of cameras and powerful computers
on modern mobile devices gives rise to the hope that they can
perform computer vision tasks as we walk around. However,
the computational demand and energy consumption of computer
vision tasks such as object detection, recognition and tracking
make this challenging. At the same time, a fixed vision hard core
on the SoC contained in a mobile chip may not have the flexibility
needed to adapt to new situations, or evolve as new algorithms
are discovered. This may mean that computer vision on a mobile
device is the killer application for FPGAs, and could motivate the
inclusion of FPGAs, in some form, within modern smartphones.
In this paper we present a novel hardware architecture for
object detection, that is bit-for-bit compatible with the object
classifiers in the widely-used open source OpenCV computer
vision software. The architecture is novel, compared to prior
work in this area, in two ways: its memory architecture, and its
particular SIMD-type of processing. The implementation, which
consists of the full system, not simply the kernel, outperforms a
same-generation technology mobile processor by a factor of 59
times, and is 13.5 times more energy-efficient.

I. INTRODUCTION

The modern smartphone is a revolutionary device that brings
together sensors, networking and compute power that has been
reshaping the way we interact with the world [1]. They enable
users to capture, record and process the information previously
captured only by their senses. One of the highest bandwidth
and most compelling capabilities of these mobile devices is the
camera, which together with processing capability brings the
promise of computer vision. Tasks such as object detection,
face recognition and threat detection require real-time, low
latency processing that prevent useful off-device (in the Cloud)
processing. In the mobile context, the energy consumption of
such tasks is a hard constraint, and so video processing on
one of the applications processors is likely slow and energy-
inefficient. While an on-SOC hard core [2] will provide a point
solution, flexible hardware will permit more domain-specific
solutions that can more easily evolve as new algorithms are
developed. We believe that this motivates the inclusion of
an FPGA within a mobile device that, once there, could
be programmed to process other camera and sensor data as

needed.
In this paper we describe the design of an FPGA-based

hardware architecture for object detection in the mobile con-
text. While there has been significant prior work on FPGA
implementations of object detection, we make four new
contributions: a novel memory architecture, a novel SIMD
processing architecture, a full-system implementation and a
version that is compatible with the classifiers employed in
the widely-used open source Open Computer Vision project,
OpenCV [3]. We should note that the mobile context of this
paper rests in the motivation, and in the comparisons given
at the end. The architecture we describe is also applicable to
non-mobile contexts.

We begin by providing the relevant background on computer
vison - the object detection algorithm employed, and prior
work in Section II. Section III presents the new hardware
architecture for this algorithm. Section IV describes the mea-
surement methodology and Section V gives performance,
resource utilization, power and energy comparisons with other
systems.

II. OBJECT DETECTION ALGORITHM AND PRIOR WORK

Computer vision applications seek to to extract information
about the world and their surroundings from a digital image or
sequences of digital images. The output of a vision application
will generally become the input for a more complex real world
application. The code complexity of those tasks are increasing
as researchers find ways to make them more generic and
better able to cope with the variability found in the world.
This is in part what drove the development of the Open
Source Computer Vision project, OpenCV [3], which allows
developers to explore the applications that use the results of
computer vision while at the same time allowing researchers
to continue to improve the underlying implementations.

OpenCV was released in 2006 as collaboration between
computer vision researchers and Intel [3]. It currently contains
more than 2500 algorithms addressing different aspects of
computer vision. They have been submitted by the open-source
community and are optimized by Intel to take advantage of the978-1-4673-2845-6/12/$31.00 c© 2012 IEEE

highest-performance capabilities of CPUs, such as the vector-
like instructions. OpenCV is being used all over the world and
has been downloaded more than 2.5 million times.

Among the highest level and most directly useful functions
provided by OpenCV is the object detection algorithm known
as Multi-scale Haar Cascade Detection (MSHCD). A key
contribution of the present paper is a hardware implementation
that can accept the same inputs, and produce the same output,
as the OpenCV implementation of MSHCD. Our implemen-
tation preserves the generality and parameterization of the
OpenCV implementation. By making our hardware ‘compat-
ible’ with OpenCV MSHCD in this way, it could potentially
be used by developers who are using the OpenCV software. It
also permits a very fair comparison to the software version, as
it will have identical quality, and the software implementation
will be of high quality. The next section describes the MSHCD
algorithm.

A. Multi-Scale Haar Cascade Detection Algorithm

The MSHCD algorithm was introduced by Viola-Jones
in 2001 [4]. The approach provides both high quality and
relatively fast object detection with a fairly simple underlying
algorithm. Since its publication, there have been more complex
object detection algorithms proposed [5][6], but the method
proposed by Viola-Jones still remains an active area of re-
search due to its architectural simplicity and high available par-
allelism. This parallelism has been exploited on various com-
putation platforms, including CPUs [7] GPUs [8][9], custom
hardware [10] and FPGAs [11][12][13]. Vision researchers
attempt to make detection algorithms smarter by making more
complex and intelligent decisions, while engineering research
has sought to evolve the the simpler approaches to achieve the
greatest speed on available hardware platforms. The present
work is an example of the latter.

We will now describe the structure of the computation for
the MSHCD algorithm, and leave the reader to gain the details
from [4]. The input to the MSHCD algorithm is the image
to be searched (consisting of 8-bit grey scale pixels) and a
classifier cascade (which is a characterization of the object
being searched for). The output of the algorithm is a list
containing the found (x, y) locations of each object, and a
scale value which represents how large or small the object
was. The MSHCD algorithm works by sliding a window across
multiple scales of an image and at each window evaluating a
classifier cascade.

In the sliding window approach, calculations are done on
a group of pixels in a small bounding box around a central
pixel. This bounding box is called a window. The center of this
window moves to every location across the input as illustrated
in Figure 1. At each location a computation is done and the

Image Image Image

Fig. 1. Window Sliding Across an Image

algorithm can access any pixel that is contained within the
window. Typically the window will step in the horizontal or
vertical direction by one pixel. To achieve detection of objects
at different sizes in the image, sliding window process is
performed on a series of successively scaled images because
the object is characterized at only one physical window size.
Figure 2 illustrates constant size window relative to succes-
sively smaller versions of an input image. Eventually the image
is small enough that the object that is being searched for, in
this case a face, is roughly the size of window and can be
detected.

Increasing Scale

Image : Scale 1
Scale 2

Scale 3
Scale 4

Scale 5

Fig. 2. Multiple Scales of Image

The Core Image Matching Computation
Once a window has been isolated, it is searched to see if the
object exists in it at the given scale. The searched-for object
is characterized by a hierarchy of structures, called, from
simplest to most complex, a Haar Feature, a Haar Classifier,
and a Haar Cascade. We describe each of these in turn.

Haar Features. A Haar feature is the fundamental unit of
object characterization used by MSHCD. It is a standardized
way of describing a few rectangles that should be present
in an image window that the searched-for object. OpenCV
employes five types of Haar features which are illustrated
in Figure 3. Each is composed from either two or three

vertical edge horizontal edge point/gaussian horizontal line vertical line

harr features with two rectangles each
harr features with three
rectangles each

Fig. 3. Five Supported Haar Feature Types

rectangles and describe a point, line or edge. The size and
location of these rectangles are specified relative to a window
as seen in Figure 4. The characterization of more complex
objects is done by grouping multiple features into classifiers.
See [4] for a precise description of the computation.
Haar Classifiers. A Haar classifier is a collection of Haar
features. Each window produced by the sliding window
process is tested for every feature in the classifier. A sufficient
number of features must present in the window for that
window to be declared (as part of MSHCD) ‘passed’ for that
classifier. This creates a trade-off between runtime and the
quality of results: a classifier with a large number of features

horizontal edge feature
filtering for eyes

point feature filtering
for mouth

Fig. 4. Application of Haar Features

will likely do a better job of characterizing an object but
each window will take longer to evaluate with that classifier,
and there are a large number of windows. This trade-off
is exploited by employing a cascade of successively larger
classifiers, described next.

Haar Cascades. A cascade is a grouping of many varying-
sized classifiers. The first classifiers contain a small number
of features and then gradually increase in size. If a window
passes the first classifier, it is sent to the second classifier
and so forth. If any classifier in the sequence fails, the object
is deemed not to have been detected and the process starts
again on the next window. This is illustrated in Figure 5.
This mechanism is efficient because it allows the algorithm
to reject a window quickly if the earlier/smaller classifiers
have failed when the window looks nothing like the object
that is being searched for. The quality of results remains high
because, for an object to be detected it has to pass all the
classifiers which represent a very large number of features.
This cascade methodology gives a significant performance
advantage since one can assume the vast majority of windows
in an image will not contain the object. It also means that
work that aims to accelerate this algorithm should optimize
for the common case – when windows fail after a small
number of classifiers.

FailInput Window

C
la

ss
ifi

er
1

C
la

ss
ifi

er
2

C
la

ss
ifi

er
3

C
la

ss
ifi

er
n

Pass

Fig. 5. Computation of a Cascade of Classifier Stages

B. Prior Work on Hardware for MSHCD

Figure 6 illustrates the basic structure that any MSHCD
hardware architecture must have. The performance of this
structure is limited by the effective memory bandwidth access-
ing two blocks of data: the classifier cascade and the image.
The image size is roughly 1.2-4.8 Mbits, and for the OpenCV
face classifier, roughly 2 Mbits. Prior work has evolved this
basic structure in ways seeking to exploit the parallelism
inherent in this algorithm. Previously the cascade memory
has been split into multiple logical memories for independent
access of different classifiers of the cascade [11]. In cases of
small cascades all of the classifiers can be stored in registers

and the amount of computational logic can reflect the size of
the cascade [12].

Cascade Memory

Image
Processing

Fig. 6. Basic Compute Architecture

To dramatically increase how quickly the processing hard-
ware could access data but at the same time manage total
register usage, [13] stored the window and a parametrizable
number of the classifiers in registers rather than memory, as
illustrated in Figure 7. In this method, a parameterized number
of classifiers are evaluated on a single window completely in
parallel. Since each pixel of the window is in registers, all
the values needed by all of the features can be read directly
from wires in a single cycle. If the window failed earlier
than the number of classifiers computed in parallel it would
fail in a fixed number of cycles. If it did not this method
would fall back to reading a cascade memory and computing
the remaining classifiers sequentially. This method requires
the classifier data values to be available at synthesis time,
limiting flexibility of the system, but resulting in extremely
good overall performance.

Image

PE Remaining Cascade

Window Cache Loader

Parallel Features

Window Registers

F1 F2 F3 FN

Sequential Features

Fig. 7. Register Based Windows

This work, like ours, is a complete system that focused on
large image sizes, large classifier cascade sizes, appropriate
scaling factors, and high quality of results.

III. NEW MSHCD HARDWARE ARCHITECTURE

A key goal in our work was to build a complete end-to-
end OpenCV-compatible hardware system, that performs and
accelerates all of the of the Open CV MSHCD software, rather
than a more simple kernel as was often done in prior work.
This section describes the architecture of the full system,
and then focuses on the core computation that performs
the MSHCD algorithm. Note that there are many specific
components involved in making the system exactly match
OpenCV that are neither performance-critical nor particularly
novel which are not discussed here. The top level of the system
is shown in Figure 8. It consists of storage for input images,
cascades and software parameters, the USB communication
interface to the host processor, and the MSHCD hardware.
The host processor sends an OpenCV cascade of classifiers to

the device and then an 8-bit image. The hardware processes
the image and writes the (x, y) location results to a FIFO
which is transmitted back upon request to the host processor.

Multi-Scale
Harr Cascade
Detection

Image Mem

Cascade Mem

Param Mem

Result FIFO

Data Loader

Result Unloader

FPGA

USB
Core

Host
Processor

Fig. 8. Top Level Hardware Diagram

A. Main Computation Hardware

The main MSHCD hardware is illustrated in Figure 9. The
input image is scaled and then transformed into an integral
and square integral image, as described in [3]. The integral
images are simple transforms that make it possible to compute
Haar features constant time, regardless of the size of the
rectangle. An array of processing elements (PEs) have the
sliding window data loaded from these image transforms. The
PEs also read from the cascade memories to evaluate classifiers
on their windows. If the object was found in that window, that
result is written to an output FIFO.

Scalling Parameter Generation

Image Resizer

Scaled Image

Integral Generator

Integral Image Square Integral

Window Cache Loader Variance Cache Loader

PE 1 PE 2 PE 3 PE N

E
n
co
d
e
R
es
u
lt
s

Control

C
as
ca
d
e
M
em

Image Mem

S
of
tw

ar
e

Image

P
ar
am

s

Fig. 9. Top Level of Computation Hardware

Each PE has a double buffered memory that can store the
image data for one window. The input window is fed into
a block which evaluates the cascade of classifiers while the
secondary memory is being loaded with the next input window.
The number of PEs in the system is a compile-time parameter
called Cores.

B. Neighbouring Window Similarity

Architecturally, the system is performance-limited by mem-
ory transactions to load window caches in each PE and by

memory transactions to read the feature data from the cascade
data memory. Our solution to both of these bottleneck stems
from the realization that neighbouring image windows look
very similar as illustrated in Figure 10.

Image

window
21 3 4

Fig. 10. Commonality Between Neighbouring Windows

From this observation we realize that a single pixel from
the image belongs to many windows and we can speculate
that neighbouring windows should take approximately the
same amount of time to process because they look so similar.
This drove the two major architecture decisions: performing
parallel loading of the window cache, and employing SIMD-
style processing between the PEs. Each of these innovations
are discussed in detail in the next sections.

C. Parallel Window Cache Loading
A 20x20 pixel window, loaded one pixel at time, will require

400 cycles to load. For OpenCV cascades the first 4 to 5
classifiers can be read in roughly 400 cycles, and recall by
design MSHCD creates these cascade to promote windows
failing early. Therefore even if only one PE is used, every
window that fails in less than 400 cycles will cause the PE to
stall while it is waiting for new classifier data.

In this work we make use of the series of overlapping
windows to enable low average load times per window.
Figure 11 illustrates how we can take a single read from the
image memory and put it into multiple window caches. In
this example the entire first row could be loaded into all three
windows in 8 cycles. If this is done for all 6 rows, it will take
48 cycles. In contrast it would take 6∗6∗(3 windows) = 108
reads if these were loaded independently. The benefit increases
with the number of windows loaded.

Window 1 Window 2 Window 3

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20
1 2 3 4 2 3 4 3 4

Fig. 11. Loading One Pixel into Multiple Windows

A second way to speed the window cache loading is by
structuring on-chip image memory to allow multiple pixels
to be read in every cycle. This can be accomplished simply
by making the memory wider. The number of pixels that can
be read per cycle is called the PixelRate and is a compile-
time parameter of the system. Loading multiple windows
simultaneously with a PixelRate of 3 is shown in Figure 12.

Notice that each block of data that is written to a window is
a shifted version of the data stream read from the image. We

Window 1

1 2 3 4 5 6
1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

Image Pixels Window 2 Window 3 Window 4

Read cycle 2

Write Cycle 1

7 8 9
1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

Read cycle 3

Write Cycle 2

4 5 6

1 2 3 2 3 4 3 4 5

Fig. 12. Loading Multiple Pixels into Multiple Windows

call this process window alignment. The maximum amount
of amount of alignment required is equal to the PixelRate-1.
To avoid using costly mux trees or barrel shifters a series of
fixed registers are used. The exact connections between the
registers is controlled by a synthesis parameter as illustrated
in Figure 13. These two memory arrangements - re-using
memory reads and multiple pixel reads result in a much higher
effective on-chip memory bandwidth from the image memory
to the PEs.

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

41

2

3

4

2 cycle input shifted output

5

6

7

offset 0
offset 3

Fig. 13. Simple Alignment Hardware with Various Offsets

D. SIMD Processing

In order to make more efficient use of each read from the
cascade of classifiers, we processes input windows using a
SIMD-style approach. Here the data from the cascade can be
considered the ‘instructions’ to be executed, as as they tell
the PEs what to compute on their window caches. Once every
window cache is filled with data, each PE is started at the same
time but only one, the master processing element, addresses
the cascade as illustrated in Figure 14. The data returned

Image
PE1

Cascade Memory

PE2 PE3

Window Cache Loader

Master

A
d
d
r

Data

PE N

Fig. 14. SIMD Haar Detection Architecture

is broadcast to all PEs which simultaneously process their
windows classifier by classifier. Recall from Section II that
a window being processed can potentially fail at the end of

every classifier. In our work, when an individual PE fails at
the end of a classifier, it stops processing data, saving energy.
However the PEs which have not failed still need data from
deeper in the cascade memory and thus prevent PEs that are
finished from starting again until every PE has finished.

IV. MEASUREMENT METHODOLOGY

Our goal is to build an FPGA-based hardware architecture
for object detection that is significantly faster and more energy
efficient than than the same algorithm implemented on mobile
and other processors. In this section we describe the hardware
and software platforms on which the MSHCD algorithm was
implemented, and the nature of the input set used in the
related measurements. This includes the input image set and
the OpenCV classifier cascades that were used, as well as our
methodology for measuring performance and power.

A. Platform Descriptions

We have measured the OpenCV software and our hardware
on three different platforms: A desktop computer, a mobile
processor and an FPGA, described below.

Desktop Computer. This machine uses a 6-core Intel
980x CPU over-clocked to 4.0GHz with 12MB of L3 cache.
The system had 6GB of DDR3-2100MHz memory, and was
running the Ubuntu Linux 10.04 operating system. The CPU
is built on a 32nm CMOS process technology and was first
available in the first quarter of 2010. This machine ran the
MSHCD algorithm based on OpenCV 2.1, a single threaded
configuration with low level SIMD optimizations (optimized
by Intel) was used.

Mobile Phone. The mobile phone is an HTC Google
Nexus One which employes a single core 1GHz Qualcomm
QSD 8250 Snapdragon ARM SoC and has 512MB of RAM.
The operating system is Google Android version 2.3.6. This
processor was built on a 65nm CMOS process technology,
and the first commercial device that has this processor was
launched on December 7th, 2009. The mobile phone ran
the MSHCD algorithm based on OpenCV 2.1. The library
was compiled into native binaries linked to from the Java
application environment of Android.

FPGA. The FPGA used was a Stratix IV GX EP4SGX530
which has 531K Altera ALUTs, 27Mbits of on-chip memory
and 1024 18x18 multipliers [14]. The FPGA is built on
a 40nm CMOS process technology and was available in
the second quarter of 2010. It is part of the Terrasic DE4
Development board. This board is connected to a host
computer via a USB connection and data is transferred to and
from the FPGA though that connection. All designs discussed
in this work were running on this FPGA and were clocked at
125MHz.

While each of the key chips in these platforms were built on
different IC process nodes, they were all released at roughly

the same time and were considered high-end devices at the
time of launch.

B. Input Cascades

OpenCV comes with 19 classifier cascades [3] that were
generated with the OpenCV classifier training algorithms.
Most of them are large and contain thousands of features.
They all recognize some part of a person: the eyes, nose,
mouth, face, and body. Of these cascades, three were se-
lected to be used in our measurements. The exact three
cascades, as provided by OpenCV, that were used are: haarcas-
cade frontalface alt.xml, haarcascade eye.xml, and haarcas-
cade upperbody.xml. As the file names suggest these cascades
search for an upper body, face, eye or pair of eyes respectively
as illustrated in Figure 15. I shows the total number of features
and stages for the three cascades that were chosen.

Fig. 15. Object Detection

Haar Features per Classifier Stage
Eye Upper Body Face

Total # Classifiers 24 30 22
Total Features 1066 2432 2135

TABLE I
HAAR CASCADES USED IN MEASUREMENTS

C. Input Images

We created our own set of images that contained several
people facing the camera. For these pictures all of the OpenCV
cascades that were selected will detect objects when they are
run. The larger number of parts of the image that look like the
object sought the more windows will fail later in the cascade.
By selecting images that have multiple objects that should be
detected, our measurements are attempting to isolate a case
where the algorithm will be slow, and so we focus on the speed
of the algorithm in unfavourable conditions. The MSHCD
algorithm has been used in real applications at image sizes
as small as 160x120. As this algorithm, in practice, does not
need very large images to produce useful result we choose
a modest, but reasonable size for this application: 320x240
pixels.

D. Performance Measurement

The performance of the MSHCD algorithm will be mea-
sured as the time it takes to process an input image at all
scales and produce a final list of detected objects and their
scales. This time measurement is a function of the input

image, cascade and also the scale factor. In particular, a lower
scale factor results in a greater number of intermediate scaled
images that need to be processed. The amount of computation
when varying the scale factor will be the same for each
platform and thus will not affect the relative performance
between them. The scale factor is set for all our experiments
to 1.1 (10%).

We envision that a connection from a mobile processor to an
embedded mobile FPGA co-processor would be significantly
faster than the USB connection we implemented and certainly
fast enough to transmit 320x240 images at 30 frames per
second. This combined with double buffering of input data
means the transfer time of the input data from the host system
to the FPGA can be ignored in performance measurements.

E. Power and Energy Measurement

A key goal of this work is to gain an advantage in energy
consumption in the mobile context, but this can also be of
value in the server/desktop context. Bounds on the power
consumed by the desktop CPU were estimated: an upper bound
comes from the maximum thermal power dissipation from
the processor specification: 130 Watts. We estimated a lower
bound on power consumption of the processor as 60 Watts.

To measure the energy used by the mobile phone, we
recorded the percentage discharge of the battery, both while
it was idle and while performing the MSHCD algorithm. The
Nexus One has a 1400mAh battery that operates at 3.7V and
we estimated a voltage conversion efficiency of 90%. With
this information power can be calculated as below:

mAh = 1400mAh ∗% battery used
average mA = mAh/(discharge time)

mW = (average mA ∗ 3.7V ∗ 0.9)

The energy and power consumption of the FPGA system
was determined using software tools provided by the vendor,
Altera, and the Modelsim simulator. The power estimation
software, Altera’s PowerPlay Power Estimator, has detailed
power characterization models of the FPGA. When these
models are combined with with the exact signal switching
behaviour of a user’s circuit, generated from simulation, the
tool can generate an accurate estimation of the overall power
consumed.

V. EXPERIMENTAL RESULTS

As implied above, the Verilog hardware design of the
MSHCD algorithm implemented on the FPGA is highly pa-
rameterized. Using these parameters, a total of 34 hardware
systems were synthesised and tested with PixelRates of 1,2,4
and 8 and a total number of PE Cores ranging from 1 to
36. We begin by presenting the raw performance of the new
engine, and how it compares to previous work discussed in
Section II-A. First, we can report that the results from our
hardware are identical to those produced by the OpenCV
version 2.1 software, in line with our goal of compatibility.
Although this compatibility is not technically garmented due
to potential fixed-point errors it was true for the images tested

here and careful consideration was takin to minimize the
impact of these errors. Then we will compare the energy
efficiency of one configuration of our engine with a mobile
device and desktop CPU.

A. MSHCD Engine Performance

Figure 16 illustrates the impact of the pixelRate on the
performance of the system for different numbers of PE cores.
It gives the execution time speedup for each number of cores,
normalized to a pixelRate of 1 for each number of cores.
Note that the number cores must be an exact multiple of the
pixelRate, which is why some bars appear to be missing.

Fig. 16. Effectivness of PixelRate

The figure shows that having the ability to read multiple
pixels per cycle increases overall performance by more than
2 times, with diminishing returns when the pixelRate reaches
8. This is an indication that the system is consistently loading
new data before the SIMD cores have finished computing their
current windows. This performance improvement comes with
virtually no increased resource utilization as it just takes better
advantage of the flexible memory system on the FPGA.

Figure 17 shows how well the system performance scales as
the number of cores is increased. The figure gives the relative
performance increase of the hardware variants normalized to
the slowest system - one core and a pixelRate of one. Each
curve on Figure 17 represents different pixelRate. Table II
shows the raw performance data for a few of the system
configurations.

Fig. 17. Performance vs Number of Cores

Figure 17 shows consistent but sub-linear scaling up to
approximately 32 cores, at which point the performance im-
provements become negligible. The largest speed-up occurs

Execution Time of 320x240 Images in (ms)
Cores\PixelRate 1 2 4 8
1 381 NA NA NA
2 226 143 NA NA
4 142 87 64 NA
8 94 57 42 40
16 65 38 29 28
24 53 31 24 24
32 45 27 20 21

TABLE II
EXECUTION TIME PER FRAME FOR EACH HARDWARE CONFIGURATION

with a pixelRate of 4 and 32 cores is 18.4 times. We believe
the saturation of performance is due to the following effect: as
the number of cores increase, the number of windows being
processed in parallel increases. As this happens the windows
contain image data that is less correlated, as illustrated in Fig-
ure 18. When this happens the SIMD-executing PEs become
less efficient because it is more likely that the PEs failing at
an earlier classifier stages will be stalled waiting for the other
PEs to finish.

Image

window 1 window 2 window 15 window 16

Fig. 18. Distance Windows

B. Performance Comparison with Previous Work
Recall that [13], discussed in Section II, processes one

window at a time. However for that window every feature in
a fixed number of classifiers is computed simultaneously. The
larger number of classifiers processed in parallel, the faster
the system will run but the more hardware will be required.
In our system performance and resource utilization increases
with number of windows processed in parallel. Here we will
compare the two systems.

The comparison with [13] must be approximate because
the same cascade, images, window sizes and scaling factors
were not used. Normalizing where possible and knowing that
the cascades used in both works are roughly the same size a
performance comparison will be valuable even if it is only a
first-order approximation.

Figure 19 shows the number of lookup tables (ALUTs) and
registers used for both system as a function of a normalized
performance metric - the average number of cycles per window
computed. For the fastest configurations both designs perform
almost identically, 4.88 cycles per window vs 4.7 cycles per
window. This is quite a remarkable result given that the method
by which each design exploits parallelism in this algorithm is
quite different.

Fig. 19. Resource Utilization

Both works have to add significant resources to improve
performance at the high end, indicated by the steep slope of
the curves when cycles per window are low. If an end user can
accept slower performance the resource utilization savings for
our system are far greater than in [13]. This is a result which
is beneficial in the context of a mobile FPGA co-processor
where resources are likely to be more limited.

The work done by Hiromoto [13] does not measure power,
so a direct comparison cannot be done. Qualitatively we might
expect the power and energy usage of our engine to be lower
for two reasons: First, as was just shown, is that the total
resource utilization of our system tends to be better for a given
performance level resulting in less static power. The second
is that our system does not perform wasted calculations: each
SIMD PE will stop after the window it is working on has
failed a classifier. In [13] every feature in a fixed number of
stages is computed in parallel regardless of whether or not the
window would have failed before that stage.

C. Performance and Energy vs. Processors

We now compare the speed and energy usage of a 32
core engine with a PixelRate of 4 to the desktop and mobile
processors described in Section IV-A. Table III gives each
system, it’s power consumption, execution time per image,
and speedup relative to the mobile processor. Notice that the
hardware is 59 times faster than the mobile processor, and 3.9
times faster than a high-end desktop. More importantly, the
FPGA hardware engine is 13.5 times more energy efficient on
this problem than the mobile processor, and between 68 and
147 times more energy efficient than the desktop processor.
We can speculate this efficiency comes from the application
specific nature of the both the core computation and the cache
architecture as this is a memory access heavy application.

This efficiency is significant given how conservative the
result is. Our 32 core system only uses 30% of the logic
and half the DSPs of our FPGA. The Stratix IV FPGA is
also designed for performance and high logic capacity. This
is compared with a mobile processor designed for power
efficiency. One could expect this energy efficiency delta to
increase for a FPGA fabric designed for mobile.

VI. CONCLUSION

In this paper we have presented a new FPGA-based hard-
ware architecture for the multi-scale Haar classifier detection
algorithm. It employs a novel memory structure to increase the
effective bandwidth of the image memory, and a SIMD-style of
execution of the features that leverages the similarity between
neighboring windows. The implementation is significantly

Performance Per Computed 320x240 Image
Device Time (ms) Speed Up

Mobile QSD8250 1180 1
Intel 980x 77 15.3

FPGA EP4SGX530C2 20 59
Power Per Computed 320x240 Image

Device Power (W) Relative Power
Mobile QSD8250 0.777 1
Intel 980x (130W) 130 167
Intel 980x (60W) 60 77

FPGA EP4SGX530C2 3.4 4.38
Energy Per Computed 320x240 Image
Device Energy (J) Relative Energy

FPGA EP4SGX530C2 0.068 1
Mobile QSD8250 0.916 13.5
Intel 980x (60W) 4.62 68
Intel 980x (130W) 10.01 147

TABLE III
PERFORMANCE, POWER AND ENERGY PER OPERATION

faster than a mobile processor and consumers a factor of 13.5
times less energy. It is also faster than a high-speed desktop
by a factor of 4 while consuming at least 70 times less energy.
In the future, we will build this into a portable mobile system,
and enhance it in several ways, including vertical as well as
horizontal window sliding.

REFERENCES

[1] Samsung. (2012) Samsung Galaxy SIII - Designed for Humans.
http://www.samsung.com/global/galaxys3/.

[2] J. Oh and G. Kim, “A 320mW 342GOPS Real-Time Moving Object
Recognition ADS Processor for HD 720p Video Streams,” IEEE J. Solid-
State Circuits, pp. 220–221, 2012.

[3] W. Garage. (2006) OpenCV Wiki. [Online]. Available: opencv.
willowgarage.com/wiki/

[4] Viola and Jones, “Robust real-time object detection,” International
Journal of Computer Vision, vol. 57, no. 2, pp. 137–154, 2001.

[5] Gall and Lempitsky, “Class-specific Hough Forests for Object Detec-
tion,” IEEE Conference on Computer Vision and Pattern Recognition,
pp. 1022–1029, 2009.

[6] S. Maji and J. Malik, “Object Detection using a Max-Margin Hough
Transform,” IEEE Conference on Computer Vision and Pattern Recog-
nition, pp. 1038–1045, 2009.

[7] P. Sudowe, “Efficient Use of Geometric Constraints for Sliding-Window
Object Detection in Video,” International Conference on Computer
Vision Systems, pp. 11–20, 2011.

[8] D. Hefenbrock, “Accelerating Viola-Jones Face Detection to FPGA-
Level using GPUs,” IEEE Conference on Field-Programmable Custom
Computing Machines, 2010.

[9] M. Ebner, “Evolving Object Detectors with a GPU Accelerated Vision
System,” Evolvable systems: from biology to hardware, pp. 109–120,
2010.

[10] C.-R. Chen and W.-S. Wong, “A 0.64 mm 2 Real-Time Cascade Face
Detection Design Based on Reduced Two-Field Extraction,” IEEE Trans.
VLSI Syst., vol. 19, no. 11, pp. 1937–1948, 2011.

[11] C. Cheng, “An FPGA-based object detector with dynamic workload
balancing,” IEEE Conference on Field-Programmable Technology, 2011.

[12] Y. Wei, “FPGA Implementation of AdaBoost for Detection of Face
Biometrics,” IEEE International Workshop on Biomedical Circuits and
Systems, pp. 6–9, 2004.

[13] M. Hiromoto, “Partially Parallel Architecture for AdaBoost-Based De-
tection With Haar-Like Features,” IEEE Trans. Circuits Syst., vol. 19,
no. 1, pp. 41–52, 2009.

[14] Terasic. (2011) Altera DE4 Development and Education Board.
[Online]. Available: http://www.terasic.com.tw/cgi-bin/page/archive.pl?
Language=English&CategoryNo=138&No=501&PartNo=2

