A Detailed Router for Field-Programmable Gate Arrays

Stephen Brown, Jonathan Rose, and Zvonko Vranesic
Dept. of Electrical Engineering, University of Toronto, Ontario, Canada M5S 1A4

Abstract

The detailed routing of Field-Programmable Gate Arrays
(FPGAs) is a new and difficult problem because the wiring seg-
ments available for routing can only be connected together in a
limited number of ways. This paper presents the Coarse Graph
Expansion (CGE) detailed routing algorithm for FPGAs. The
algorithm has the ability to resolve routing conflicts by consider-
ing the side-effects of one connection on another, and can be
used over a wide range of FPGA interconnection architectures.

CGE has been used to obtain excellent routing results for
several industrial circuits with various FPGA routing architec-
tures. The results show that CGE is able to route relatively large
FPGAs in the absolute minimum number of tracks as deter-
mined by global routing, and that CGE has a linear run-time
over circuit size.

1. Introduction

Field-Programmable Gate Arrays are an exciting new
approach to Application Specific Integrated Circuits that reduces
IC manufacturing time from months to minutes, and manufac-
turing costs from thousands of dollars to under $100. An FPGA
has an array of logic cells connected by a general routing struc-
ture, like a Mask Programmable Gate Array, but it is pro-
grammed by the user like a PLD. The FPGA was first intro-
duced in [Cart86], with newer versions presented in [E1Ga89]
and [Wong89]. The complexity of FPGAs has increased to the
point where automatic design tools are essential.

A key problem in the detailed routing of FPGAs is that
the successful routing of some connection may rely on the
assignment of a specific wiring segment in the FPGA for that
connection. If this essential segment is assigned to some other
connection, then routing failure is guaranteed. Consider Figure
1, which shows three views of the same section of an FPGA.
Each view gives the routing options for one of connections A, B,
and C. In the figure, a routing switch is shown as an X, a wiring
segment as a dotted line, and a possible route as a solid line.
Now, assume that a router first completes connection A. If the
wiring segment numbered 3 is chosen for A, then one of connec-
tions B and C cannot be routed because they both rely on the
same single remaining option, namely the wiring segment num-
bered 1. The correct solution is for the router to chose the wir-
ing segment numbered 2 for connection A, in which case both B
and C are also routable. Although this is a simplified example, it
illustrates the essence of conflicts because of limited routing
options in FPGAs.

Common approaches used for detailed routing in other
types of devices are not suitable for FPGAs. Maze routers
[Lee61] are ineffective because they are inherently sequential
and so, when routing one connection, they cannot consider the
side-effects on other connections. Channel routers [Has71] are
not appropriate because the general routing problem cannot be

This work was supported by NSERC Operating Grants
#URF0043298, #OGP0005280 and research grants from Bell-Northem
Research and ITRC.

CH2924-9/90/0000/0382$01.00 © 1990 IEEE

Options for Connection B Options for Connection C

Options for Connection A
[1 [[:]
%]
ool oEolo

Figure 1 - Routing Conflicts

LR =

subdivided into independent channels. Note that a channel rout-
ing algorithm is used for FPGAs in [Gree90], but this only
applies for the particular case of an Actel-like FPGA [ElGa89],
which is arranged as rows of logic cells separated by channels.

This paper is organized as follows: Section 2 presents the
model of the FPGA, Section 3 defines the detailed routing prob-
lem, Section 4 describes the CGE algorithm, and Section 5
presents results from tests of the router.

2. The FPGA Model

The FPGA is modeled as a two-dimensional array of
logic cells interconnected by vertical and horizontal routing
channels, similar to [Cart86]. The FPGA comprises three major
parts: the Logic (L), Connection (C), and Switch (S) blocks, as
shown in Figure 2. In the figure, each L block has two pins, and
there are three tracks in each routing charmel. The figure also
defines several terms that are used throughout the paper - note
that a two-dimensional grid is overlayed on the FPGA. The L
blocks are programmable cells which house the combinational
and sequential logic that form the functionality of a circuit. An
L block has a number of pins that may each connect to the four
adjacent C blocks. Note that I/O blocks appear as L blocks on
the periphery of the chip.

The C blocks are rectangular switch boxes with connec-
tion points on all four sides, and are used to connect the L block
pins to the channels via programmable switches. Depending on
the topology, each L block pin may be switchable to all or any
fraction of the wiring segments that pass through the C block.
The fewer wiring segments connectable in the C blocks, the
harder the FPGA is to route. Connections may also pass straight
through a C block, but in a typical routing architecture no switch
would be involved for such connections.

The S blocks are also rectangular switch boxes. They are
used to connect wiring segments in one channel segment to
those in another. Depending on the topology of the S block,
each wiring segment on one side of an S block may be switch-
able to all or any fraction of the wiring segments on each other
side of the S block. The fewer wiring segments that can be
switched to, the harder the FPGA is to route. A connection that
passes through an S block may do so through a switch or it may
be hardwired.

Authorized licensed use limited to: The University of Toronto. Downloaded on July 20,2021 at 00:58:04 UTC from IEEE Xplore. Restrictions apply.

3. General Approach and Problem Definition

As in other design styles, FPGA routing is a combinatori-
ally complex problem, requiring the usual two-stage approach of
global routmg followed by detailed routing. The global router
used here is an adaptation of the LocusRoute global routing
algorithm for standard cells [Rose90b]. The global router
divides multi-point nets into two-point connections and routes
them in minimum distance paths. It distributes the connections
among the channels so that the channel densities are balanced.

Channel
segment

IG!

w ﬂ :
siﬂhaaﬂm

Grid
Ilne

Horizontal < 3 --[-}-|=5-- (l';ﬁd
Routing Channel Eu ‘II’E . ine
2. i .
Channel
Segment

4

3

L = Logic Block V' Verical

C = Connection Block Routing Channel
S = Switch Block

Figure 2 - The FPGA Model

The global router defines a coarse route for each connec-
tion, by assigning it a sequence of channel segments. Figure 3a
shows a representation of a typical global route for one connec-
tion. It gives a sequence of channel segments that the global
router might choose to connect some pin of a logic block at grid
location 2,2 to another at 4,4. The global route is called a coarse
graph, G(V,A), where the L block at 2,2 is the root of the graph
and the L block at 4,4 is the leaf. The vertices, V, and edges, A
of G (V,A) are identified by the grid of Figure 2. Since the glo-
bal router splits all nets into two-point connections, the coarse
graphs always have a fan-out of one.

Grid Grid
Block oordinates Block coordinates
L 22 L 22
c 23 c
expand
s 13 _> s 13

Figure 3a. Coarse graph, G Figure 3b. Expanded graph, D

Figure 3 - A Typical Coarse Graph and its Expanded Graph

After global routing the problem is transformed to the
following: for each two point connection, the detailed router
must choose specific wiring segments to implement the channel
segments assigned during global routing. As this requires com-
plete information about the FPGA routing architecture, CGE
uses the details of the L, C, and S blocks, as described in the fol-
lowing sections.

383

4. The CGE Detailed Router Algorithm

CGE routes in two phases. In the first phase, it
enumerates a number of alternatives for the detailed route of
each coarse graph, and then in the second phase, viewing all the
alternatives at once, it makes specific choices for each connec-
tion. The decisions made in phase 2 are driven by a costing
function that is based on the alternatives enumerated in phase 1.

4.1 Phase 1: The Expansion of the Coarse Graphs

During phase 1, CGE expands each coarse graph and
records a subset of the possible ways that it can be implemented.
For each G (V,A), the expansion phase defines a detailed graph,
called D(N,E). N are the vertices of D and E are its edges, with
each edge referring to a specific wiring segment in the detailed
FPGA. The edges are labelled with a number that refers to the
corresponding wiring segment.

The expansion algorithm is designed to allow CGE to
route arbitrary interconnection architectures by treating the pro-
cedures that define the connection topology of the C and S
blocks as black-box functions. This approach allowed the use of
CGE as a research tool in a recent paper on FPGA routing archi-
tectures [Rose90a]. The black-box function for a C block is
denoted as f.([d,,d;,l]l,d;) and for an S block as
f.(ld1,d3,1),d3). The parameters in square brackets define an
edge that connects vertex d, to vertex d, using a wiring seg-
ment labelled /. Such an edge is later referred to as e, where
e=(dy d,,1). The parameter d; is the successor vertex of d,.
The task of the function call can be stated as: "If the wiring seg-
ment numbered [is used to connect vertex d; to d,, what are the
wiring segments that can be used to reach d; from d,?" The
function call returns the set of edges that answer this question.
Figure 3b shows an expanded graph for the coarse graph of Fig-
ure 3a.

The graph expansion process for each coarse graph
proceeds as follows:

Create D and give it the same root as G. Make the immediate
successor to the root of D the same as for the root of G.
While traversing D breadth first, expand each added vertex
according to:
Expand a C vertex in D by calling f.(ec,n)=Z. ec is the
edge in D that has already been chosen to connect to
C from its predecessor. n is the required successor
vertex of C (in G) and Z is the set of edges returned
by £.(). Thecallto f,() adds |Z | edges to D.
Expand an S vertex in D by calling f;(es,n) =Z. s is the
edge in D that has already been chosen to connect to
§ from its predecessor. n is the required successor
vertex of S (in G) and Z is the set of edges returned
by £,(). The call to f;() adds | Z | edges to D.

Although the above description implies that all possible
paths in an FPGA are recorded during the expansion process,
this is not practical because the number of paths can be very
large in some architectures. Consequently, CGE reduces the
number of paths by pruning as it expands. At regular intervals,
as the coarse graph is expanded, heuristics are used to discard
selected paths. The heuristics choose which paths to keep based
on the wiring segments they use. To help prevent routing
conflicts, when choosing between two wiring segments the
heuristics will keep the one that has been used in fewer
expanded graphs thus far. Note that when paths are discarded
because of pruning, they are not necessarily abandoned per-
manently by the router. In phase 2, as CGE chooses connections,

Authorized licensed use limited to: The University of Toronto. Downloaded on July 20,2021 at 00:58:04 UTC from IEEE Xplore. Restrictions apply.

if routing conflicts consume all of the alternatives for some
graph, CGE re-invokes the graph expansion process to obtain a
new set of paths if some exist.

4.2 Phase 2: Connection Formation

After expansion, each D (N,E) may contain a number of
alternative paths. CGE places all the paths from all the
expanded graphs into a single path list. Based on a costing func-
tion, CGE then selects paths from the list; each selected path
defines the detailed route of its corresponding connection,
Because the costing function allows it to consider all the paths at
once, CGE is said to route the connections ’in parallel’. Phase 2
proceeds as follows:

Put all the paths in the expanded graphs into the path-list
While the path-list is not empty
If there are paths in the path-list that are known to be
essential
Select the essential path that has the lowest cost.
Else
Select the path with the lowest cost
Mark the graph corresponding to the selected path as
routed - remove all paths in this graph from the
path-list.
Find all paths that would conflict with the selected path
and remove them from the path list (see Note). If a
connection loses all of its alternative paths, re-
expand its coarse graph - if this results in no new
paths, the connection is deemed unroutable.
Update the cost of all affected paths.
Endwhile

Note: When a wiring segment is chosen for a particular connec-
tion, it and any other wiring segments in the FPGA that are
hardwired to it must be eliminated as possible choices for other
nets. This requires a function analogous to f,() and f,() that
understands the connectivity of a particular FPGA configuration.
CGE calls this routine update () - the parameter e is an edge in
the selected path. Update () returns the set of edges that are
hardwired to e.

4.2.1 Cost Function Design

Each edge in the expanded graphs has a cost, c(e), which
accounts for the competition between different nets for the same
wiring segments. The cost of a path is simply the sum of the
costs of its edges.

CGE'’s cost serves two purposes:

1. It is used to identify a path that is essential for a connec-
tion. Such a connection has only one path remaining in
the detailed FPGA, because previous path selections have
consumed its alternatives.

It allows CGE to select a path such that it has the least
negative effect on the remaining connections, in terms of
routability. The cost deters the selection of paths that
contain wiring segments that are in great demand.

To derive a cost expression, consider an edge e, in G,
that also appears in G, (which is in a different net), where it is
called e;. The more desirable e, is in G, the higher should be
the cost of e;. This desirability depends on the number of alter-
natives that exist in G, for e,. To reflect the desirability, the
term alt(e) is defined as the number of edges that are in parallel
with e in its graph - i.e. that could be used instead of e. Now, in
general, consider an edge e that has j other occurrences in the
forest of expanded graphs. The cost of e is defined as

Authorized licensed use limited to: The University of Toronto. Downloaded on July 20,2021 at 00:58:04 UTC from IEEE Xplore. Restrictions apply.

384

cle)=Y, 1/ak(e),
i

Because of the summing process in c(e), the more graphs
e occurs in, the higher will be its cost. This reflects the fact that
e is an edge that is in high demand and urges CGE to avoid
using e when there are other choices. Note that an edge that
only appears in its own graph will have a cost of 0. For the spe-
cial case when alt(e;) is 0, e; is an edge that is essential to the
associated connection because there are no alternatives. In this
case, any path in the graph that uses e; is called essential. When
the calculation of a cost reveals that a path is essential, CGE
gives it the highest priority for routing.

5. Results

CGE has been used to route several industrial circuits.
The routing results shown in this section are based on five cir-
cuits from four sources: Bell-Northern Research, Zymos, and
two different designers at the University of Toronto, Table 1
gives the name, size (number of logic blocks, and two-point con-
nections), source and the function of each circuit. For these
results, the L block used is the result of a previous study
[Rose89], and the S and C blocks will be described in the next
sub-section. Results are presented for a routing architecture
similar to a commercial FPGA.

Circuit | #Blocks | #Conn | Source Type
BUSC 109 392 UTD1 Bus Cnil
DMA 224 mn UTD2 DMA Cntl
BNRE 362 1257 | BNR | Logic/Data
DFSM 401 1422 UTD1 | State Mach.
203 586 2135 | Zymos 8-bit Mult

Table 1 - Experimental Circuits
5.1 FPGA Routing Structures

Since the routability of an FPGA is determined by the
topology and flexibility of its S and C blocks, those used in the
tests of the algorithm are presented here. The general nature of
the § block is illustrated in Figure 4a. Its flexibility is defined by
a parameter called F,, which defines the total number of connec-
tions offered to each wiring segment that enters the S block. For
the example shown in Figure 4a, the wiring segment at the top
left of the S block can connect to three other wiring segments,
and so F, is 3. Although not shown, the other wiring segments
are similarly connected.

e 1 2 ot 2

| 1] ;

N
o o [}

L L
Bloa 1

2 1

2 — i

T

[
Figure 4a. The S block.

o 1 2

Figure 4b. The C block.

Figure 4 - Definitions of S and C Block Flexibility

Figure 4b illustrates the test C block. The tracks pass
uninterrupted through it and are connected to L block pins via a
set of switches. The flexibility of the C block, F,, is defined as

the number of tracks that each L block pin can connect to. For
the example shown in the figure, each L block pin can connect
to 2 vertical tracks, and so F, is 2.

5.2 Routing Results

The familiar yardstick of channel density is used as a
measure of the quality of the detailed router. Table 2 gives the
largest channel density of all the channels for each circuit, as
determined by the global routing. However, the global router
assumes complete flexibility in the FPGA routing structures
(F,=3W and F, =W, where there are W tracks per channel),
and this is not practical for real FPGAs. For the results in Table
2 the FPGA parameters are based on the Xilinx 3000 series
[Xil89] FPGAs (F,=6, F,=0.6W). The table gives the
minimum number of tracks needed for CGE to route 100 percent
of the connections. The values for W are slightly greater than
the global router minimum, which are excellent results consider-
ing the low flexibility of the FPGA. Note that if F, is increased
to 0.8W, that CGE achieves the absolute minimum number of
tracks for all the circuits.

Circult | F, | Channel | W for 100% w CPU
density routing | for ‘maze’ | secs.
BUSC | 6 9 10 15 25
DMA 6 10 10 15 59
BNRE | 6 1 12 20 122
DFSM 6 10 10 18 103
203 6 11 13 18 215

Table 2 - CGE Minimum W for 100 % routing (F, = 0.6W)

For comparison purposes, the same problems have also
been routed using CGE with its cost facility disabled. In this
mode CGE is basically a sequential router, much like a maze
router. The connections are ordered for the ‘maze’ router by
descending length because the longest connections require the
most routing resources and intuitively should be the hardest to
route. The second from the right column in Table 2 gives the
number of tracks that the *maze’ router needed to achieve 100
percent routing. These results show that the ’maze’ router
requires an average of 68 percent more tracks than CGE. This
shows that resolving routing conflicts is important and that CGE
addresses this issue well. Figure 5 shows the detailed routing
for circuit BUSC, with the FPGA parameters in Table 2; the L
blocks are shown as solid boxes, whereas the S and C blocks are
dashed boxes.

5.3 Memory Requirements and Speed of CGE

For the examples used here CGE needs between 1.5 and
7.5 Mbytes of memory. As shown in the rightmost column of
Table 2, experimental measurements show that CGE is a linear-
time algorithm, requiring from 25 to 215 SUN 3/60 CPU
seconds for the smallest to the largest of the example circuits.

6. Conclusions and Future Work

This paper has described the implementation of a new
kind of detailed routing algorithm that can be used to route a
wide range of FPGA routing architectures. The algorithm is
able to consider the side-effects that routing decisions made for
one connection may have on another, and thus resolve routing
conflicts. In future research, routing delay optimization will be

385

added to CGE.

Acknowledgments

The authors would like to thank David Lewis and Paul
Chow for suggestions on the design of the router.

Clrcult: bus_entT4.oge, W = 10, F$ = 6, Fc =8 Tue Aug 7 16:43:38 1980

'l o] i B e O e B e O

20 b il

'
1

(FRl)

e - N 6 2 0 e N

fgls: u. g Ca JiCHT
o g [g D 1 i i 1 it m i m Pl m L
0D 1 2 3 4 5 & 7 8 9 10 11 12 13 14 1§ 16 17 18 19 20 21 22 23 24
Figure 5 - The Detailed Routing of Circuit BUSC
6. References
[Cart86] W. Carter et. al, "A User Programmable

Reconfigurable Gate Array," Proc. 1986 CICC, May
1986, pp. 233-235.

[E1Ga89] A. El Gamal, et. al, "An Architecture for Electrically
Configurable Gate Arrays," IEEE JSSC Vol. 24, No. 2,
April 1989, pp. 394-398.

[Gree90] J. Greene, V. Roychowdhury, S. Kaptanoglu, and A.
El Gamal, "Segmented Channel Routing," Proc. 27tk
DAC, pp. 567-572, June 1990.

[Has71] A. Hashimoto, and J. Stevens, "Wire routing by optim-
izing channel assignment within large apertures," Proc.
8th DAC, pp. 155-163, 1971.

[Lee61] C. Lee, "An algorithm for path connections and its
applications,” IRE Trans. on Electronic Computers,
VEC-10, pp. 346-365, Sept. 1961.

[Rose89] J.S. Rose, R.J. Francis, P. Chow, and D. Lewis, "The
Effect of Logic Block Complexity on Area of Programm-
able Gate Arrays," Proc. 1989 CICC, May 1989, pp.
5.3.1-5.3.5.

[Rose90a] J. Rose, and S. Brown, "The Effect of Switch Box
Flexibility on Routability of Field Programmable Gate
Arrays," Proc. 1990 CICC, pp. 27.5.1-21.5.4, May 1990.

[Rose90b] J. Rose, "Parallel Global Routing for Standard Cells,"
IEEE Transactions on CAD Vol. 9, No. 9, September
1990.

[Wong89] S.C. Wong, H.C. So, I.H. Ou, J. Costello, "A 5000-
Gate CMOS EPLD with Multiple Logic and Interconnect
Arrays," Proc. 1989 CICC, May 1989, pp. 5.8.1 - 5.8.4.

[Xil89] The Programmable Gate Array Data Book, Xilinx Co.,
1989.

Authorized licensed use limited to: The University of Toronto. Downloaded on July 20,2021 at 00:58:04 UTC from IEEE Xplore. Restrictions apply.

