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Abstract

Field-Programmable Gate Arrays (FPGASs) have recently gedeas an attractive
means of implementing logic circuits as a customized VLSI chip. FPGAs have gained
rapid commercial acceptance because theirpregrammability diers instant manufac-
turing turnaround and low costs. HowevEPGAs are still relatively new and require
architectural research before the best designs can be discovered. One area of particular
importance is the design of an FP&#£outing achitectue, which houses the uspro-
grammable switches and wires that are used to interconnect thé FIBGiA resources.
Because the routing switches consume significant chip area and introduce propagation
delays, the design of the routing architecture greatly influences both the area utilization
and speed-performance of an FPGA. FPGA routing architectures have already been stud-
ied using experimental techniques in [1] [2] and [3]. This paper describes a stochastic
model that facilitates exploration of a wide range of FPGA routing architectures using a
theoretical approach.

In the stochastic model an FPGA is represented asxaN Brray of logic blocks, sep-
arated by both horizontal and vertical routing channels, similar to a Xilinx [4] [5] [6]
FPGA. Each routing channel comprises a number of tracks and each track consists of a set
of short wire segments. Routing switches are available to connect the pins of the logic
blocks to the wire segments, and to connect one wire segment to ambtheumber of
routing switches and their distribution over the wire segments are parameters of the sto-
chastic model. A circuit to be routed is represented by additional parameters that specify
the total number of connections, and each connestiength and trajectory

The stochastic model gives an analytic expression foratm@bility of the circuit in
the FPGA, which is defined as the percentage of the cgatotinections that can be
accommodated by the FPGArouting architecture. Practically speaking, routability can
be viewed as the likelihood that a circuit can be successfully routed in a given FPGA. The
routability predictions from the model are validated by comparing them with the results of
a previously published experimental study on FPGA routability



1 Introduction

Field-Programmable Gate Arrays (FPGAS) have become increasingly popular over the
past few years because, with their yzs&grammability and high logic capagitthey
offer inexpensive customized VLSI implementations of circuits and instant manufacturing
turnaround. HowevelFPGAs are still relatively new and have not yet approached their
full potential, where they hold the promise of replacing much of the market now held by
Mask-Programmable Gate Arrays (MPGAS). MPGAs are both faster and more dense than
FPGAs because interconnections between logic modules in an FPGA invajee glaw)
userprogrammable switches, whereas connections in an MPGA are hardwired. Although
this density and speed-performance gap is an inherent consequencepobgisanmabil-
ity, the diferences between the two technologies can be narrowed through architectural
improvements in FPGAs. Specificalthese improvements should focus on FRG#ting
architectues since this is where the ugemogrammable switches reside.

The stochastic model presented in this paper is parameterized to allow the study of a
wide range of FPGA routing architectures and the theory could be extended to handle
even more possibilities. Thus, the main purpose of the model is as a research vehicle for
studying the décts that various parameters of an FPSXAuting architecture have on the
routability of circuits. Theoretical studies of this sort are attractive because they are more
easily carried out than experimental ones due to the long time required to develop new
CAD tools for experimentation. The stochastic model as described in this paper is not
intended for use as a tool for predicting whether a given circuit will be routable in a com-
mercial FPGA product. Commercial products invariably comprise unique features that are
not represented in a general model. The stochastic theory can be extended to model spe-
cific parts, but this would entail some modifications to the probability expressions that are
presented in this paper

The characterization of FPGAs in the stochastic model is the same as that used in ear-
lier papers on FPGA architecture [1] [2] [7] and compaided design (CAD) algorithms
[8] [9]. As illustrated in Figure 1, the FPGA consists of a square array of logic blocks with
N blocks per side, and both horizontal and vertical routing channels. In terms of commer-
cially available devices, the structure depicted in the figure is most similar to that found in
Xilinx FPGAs [4] [5] [6], but it is more general. The FPGA in Figure 1 has two pins on
each side of a logic block (L) and three tracks per channel. The grid shown in the figure is
referenced throughout this paper as a means of describing connections to be routed. No
assumptions are necessary about the internal details of the logic blocks, except that each
block has some number of pins that are connected to the channels by routing switches. The
channels comprise two kinds of blocks, called Switch (S) and Connection (C) blocks,
described belowl'he S blocks hold routing switches that can connect one wire segment to
another and the C blocks house the switches that connect the wire segments to the logic
block pins.

The general nature of the S block is illustrated in Figure 28eXibility is set by the
parametel, which defines the number of other wire segments that a wire segment enter-

ing an S block can connect to. For the example shown in the figure, the wire segment at
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Figure 1 - An Nx N FPGA.

the top left of the S block can connect to six others an se 6 (routing switches are
shown as dashed lines in this figure). Although not shown in the figure, it is assumed that
all wire segments entering an S block have the same connedtiistglso assumed that a
routing switch is always involved when passing straight through an S block, meaning that
the tracks consist of short wire segments that span a single logic block. The implications
of relaxing this assumption are discussed in Section 3.1.

Figure 2b illustrates a C block. The tracks pass uninterrupted through the C block and
can be connected to the logic block pins via the set of switches. The flexibility of a C
block, F, is defined as the number of wire segments in the C block that each logic block
pin can connect to. For the example shown in the figure each pin can be connected to 2
vertical tracks, and sé is 2 (in the C block, a routing switch is drawn asxanit is
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a) The S block. b) The C block.

Figure 2 - Definitions of S and C Block Flexibilities.

assumed that all pins can connect to the same number of tracks and that the specific tracks



that can be connected to each pin are randomly chosen. The implications of this latter
assumption are discussed in Section 4.3.

A wide range of routing architectures can be represented by changing the number of
tracks per channel and the contents of the C and S blocks. In a routing architecture that has
an abundance of switches, circuits will be easily routed. From the point of view of design-
ing a good routing architecture, howevére number of switches should be limited
because each switch consumes chip area and has significant capacitance and resistance
[10]. This leads to routing architectures in which the number of routing switches is lim-
ited, which in turn produces routing problems that are not easily solved. As an example,
the following section illustrates thefeét on a routing problem when the C blocks allow
each logic block pin to connect to only a subset of the wire segments in a channel. The
example also serves as the motivation for designing the stochastic model that can account
for the side décts that the routing of one connection may have on others.

1.1 Example of a Routing Problem

Figure 3 shows three views of the same section of an FPGA routing channel, and three
connections that must be routed in that channel. Each view gives the routing options for
one of connections A, B, and C. In the figure, a routing switch is shownxasaanire
segment as a dotted line, and a possible route as a solid line. As indicated in the figure, it is
assumed that each logic block pin can connect to only two of the three tracks in the chan-
nel (F, = 2). Now, assume that connection A is completed first. If the wire segment num-

bered 3 is chosen for A, then one of connections B and C cannot be routed because they
both rely on the same single remaining option, namely the wire segment numbered 1. The
correct solution is for the router to choose the wire segment numbered 2 for connection A,
in which case both B and C are also routable.

Options for Connection A Options for Connection B Options for Connection C
L L L L L L
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr 1 e 1
rrrrrrrrrrrrrr 2 e 2 2
rrrrrrrrrrrrrr 3 e B 3
L L L L L L

Figure 3 - An Example Routing Bblem.

This example shows that even when there are only three connections to be routed, it is
possible for a routing decision made for one connection to unnecessarily block.another
This example shows connections within a single horizontal channel, but the problems are
compounded when connections have segments that are in both horizontal and vertical
channels. For these reasons, it is important for the stochastic model to consider the side-
effects that the routing of one connection may have on others.



This paper is @anized as follows. Section 2 provides an overview of the stochastic
model and summarizes the main results, Section 3 describes previous research that is used
to predict channel densities. Section 4 derives analytic expressions for calculating the
probability that a connection can be successfully routed. The theoretical predictions of
routability are given in Section 5 and Section 6 provides concluding remarks.

2 Overview of the Stochastic Model and Summary of Results

In the stochastic model, it is assumed that a circuit with a tot@} dfvo-point con-

nections is to be routed in an FPGA withkM logic blocks. The length of each connec-
tion is drawn from a probability distributiod?, . It will later be necessary to choose a

specific distribution folP . In Section 4.4, it is assumed thit is geometric, with mean

length R. This assumption is taken from earlier work on the stochastic modelling of two-
dimensional arrays of connected cell$][[lL2], and has the following physical interpreta-
tion in an FPGA: at each C block along the path of a connection, the connection will ter-

minate (at a logic block) with probability/ R and will continue (to the next C block) with
probability 1 - 1/R.

The Cy connections are individually referred t0@g C,, ..., Cc_and the statistical
event that each connection is successfully routed is cBieR; , ..., Re_ - The key to
T
the stochastic model is the calculation of the probabilitig&ofR. , ..., RCcT' Routabil-

ity is defined as the percentage of the connections in a circuit that can be successfully
routed. In terms oR¢ , R¢., ..., Re_ ,this corresponds to the ratio of the expected number
T

of successfully routed connections to the total number of connecign3hus, routabil-
ity is the average probability of completing a connection and can be calculated in the sto-
chastic model according to
1
Routability = — ) P(R:),
CTizl '

whereP(R.) is the probability of successfully routirtg).

2.1 Parameters of the Model

The main result presented in this paper is the solution of the above expression for
routability. It will be shown that routability is a function of several parameters that define
the properties of the FPGA and the circuit to be routed. These parameters are listed below
with an indication of how each one can be obtained for a given FPGA and circuit:



N is the number of logic blocks per side in thiex N FPGA.
* Wis the number of wiring tracks per channel in the FPGA.

* C; is the total number of two-point connections in the circuit.

« Ris the average length of a connection, measured in manhattan distance between logic
blocks. A typical value foR is 3, which can be measured by looking at real FPGA cir-
cuits. W& note that previous theoretical work has been done in estimating average con-
nection length for chips that consist of two-dimensional arrays of connected cells [12].

* P(Z) is the probability that a connection will pass straight though a channel, as

opposed to turning, each time it reaches the intersection of a horizontal and vertical
channel. A typical value faP(Z,) is 0.75.

+ F. andF, define the flexibilities of the FPGAC and S blocks.

* o, and a, represent the topology of the routing switches in the F®GAblocks.

These two parameters define the fanout that is available to a connection when it passes
through an S blockx, represents fanout when a connection passes straight through an

S block, andx,, corresponds to the case where a connections turns.

Using these parameters, the expression for routability is solved by calculating the
probability that each of th€, connections in the circuit can be successfully routed in the

given FPGA. For each connection, this involves finding the probability that a number of
statistical events occucorresponding to each step that the connection needs to make
through the FPGA routing channels. Section 4 describes this process in detail, giving
expressions for the probabilities involved. Section 5 shows the routability results produced
by the model and compares them to the results of a previously published experimental
study on routability

2.2 Model of Global Routing and Detailed Routing

The routing of FPGAs is modelled assuming that the classical two-stage approach of
global routing followed by detailed routing is used [13]. It is assumed that once a global
router assigns routing channels for a connection, a detailed router would restrict itself to
those channels. This corresponds to the normal case for two-stage routing where a global
router produces a set of restricted routing problems for the detailed. Mitée it is
probable that a detailed router would see some improvements if allowed to explore other
global routes for difcult connections, the feicts of this optimization would be small, as
discussed in [9].

In order to use a key research result by El Gamal [12] to predict the densities of the
routing channels in an FPGA, the following assumption is made concerning the way in



which a global routing algorithm would assign the two-point connections in a circuit to the
routing channels. It is assumed that each connection is assigned a single path through the
routing channels in such a way that the number of connections per routing channel is Pois-
son distributed. In Section 3, we justify this assumption empirically and illustrate its use.

In the stochastic model, the detailed routing of an FPGA is represented as a random
process. Given the assumption that a connection is assigned a single path through the rout-
ing channels, the probability of successfully performing the detailed routing of the con-
nection is calculated. The probability expressions account for the number of tracks per
routing channel, the flexibilities of the C and S blocks, and the dieletsethat the routing
of one connection has on others.

Recall that Section 1.1 showed that a key issue in the detailed routing of FPGASs is
how the routing of one connection mayeat other connectionsolcompute the value of
eachP(R.), it is necessary for the stochastic model to account for thésetsefD

accomplish this, the model accounts for the impact that each successfully routed connec-
tion would have on the densities of the FP&wuting channels. By this mechanism, the

probability of completing each successive connection is influenced because there are more
connections in a channel to compete with. The next section shows how El Gamal's results
can be used to calculate channel densities and following this, the probability expressions

for P(R.) are derived.

3 Previous Research for Predicting Channel Densities

In [12], a stochastic model is developed to predict the wiring requirements of Master
Slice integrated circuits that have a two-dimensional array of identical cells, with horizon-
tal and vertical routing channels between the rows and columns of cells. The model
divides the channels into segments that span the length or width of one cell and it is
assumed that all interconnections start at one cell and travel a minimum distance through
the channel segments to another cell. It is further assumed that the number of connections
per cell can be drawn independently from a Poisson distribution with paraxmeteere
A is defined as the quotient of the total number of connections in a circuit divided by the
total number of cells in the arrajhe average connection length, in number of cells tra-

versed, is calleiR. That paper also makes assumptions about the trajectories of connec-
tions, but they are not necessary for the results quoted here.

El Gamal shows that under the above assumptions, in an array tiNak hasouting
channels, the densities of the channel segments will be Poisson distributed, with the aver-

age density given byAR) /2. This result provides a convenient method of predicting
channel densities and holds as londRase, independent ofl.



3.1 Predicting Channel Densities in FPGAS

Although the results in [12] were developed for Master Slice circuits, they can also be
applied to the FPGAs considered here, since both types of devices are based on a two-
dimensional array of identical cells. The definitions of the routing channéds, dhéit
these diferences can be ignored since the tracks consist of short segments that span only
one cell in both cases.

Having made these assumptions, it is convenient to predict channel densities in
FPGAs using El Gamal's result. The accuracy of the predictions can be checked by com-

paring the ideal Poisson distribution with me&kR) /2 to the distribution of channel
densities in real FPGA circuits. Such comparisons were conducted for the example cir-
cuits that were used in the experimental study described in [2]. A typical result is shown in
Figure 4, which gives one curve for the ideal Poisson distribution and another curve for
the measured distribution of channel densities. As the figure shows, the actual densities
are very close to the Poisson predictions.
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Figure 4 - Predicted versus Actual Channel Densities.

It is interesting to discuss a physical interpretation of the Poisson distribution in this
context. Assume that an FPGA Nadtracks in each routing channel and consider a spe-
cific point along the channel. For each of Wiéracks at that point, defing as the proba-

bility of the statistical event that the track would be occupied after some circuit had been
routed in the FPGA. IV = 1, there will be a probabilityp,, that the track will be occu-

pied by some connection. W = 2, then there will be a probabilitp,, that each of the
two tracks will be occupied by some connection, ppet p,. Extending this to the gen-
eral case, ifW = n, then each track will be occupied with probabilify,, and



Pn<Py_1<... <p,<p,;. Furthermore, an - o, p, - 0. Sincep,, is small in the limit-

ing case, the event that a track is used is a rare event and the number of these events (den-
sity) can be approximated by the Poisson distribution. This discussion follows the
standard procedure that can be found in most probability texts (such as [14]) for showing
the applicability of the Poisson process as an approximation of the number of occurrences
of some event that occurs rarely in the limiting case.

In FPGAs in which the tracks consist of wire segments that span multiple logic blocks
(without travelling through any switches, as in the FPGA described in [6]), EI Gamal's
result may not be an accurate approximation of channel densities. In such catagm dif
method of calculating densities would be needed. For this reason, the probability expres-
sions that are developed in the following section are derived in a general way that does not
hinge upon any particular distribution for the channel densities. Howassuming a
Poisson distribution allows some expressions to be simplified, an example of which is
given in Section 4.1.

4 The Probability of Successfully Routing a Connection

This section derives analytic expressions for calculating the probability of successfully
performing the detailed routing of a single connection in an FPGA, accounting for the
effects of other connections that have been previously routed. As an example of a connec-
tion, consider Figure 5. The figure shows a connecti@n,that starts at logic block

(X1, y;) and travels through routing channels to logic blacky,). The length ofC; is

defined in terms of the number of logic blocks traversed (to be consistent with [12]), as
LC; = [X; = X{ *|Y, — Y,/ Also, the number of S blocks th@t passes through is given

by LC, - 1. To define the probabilityP(R.- ), of successfully routing,, it is assumed
that C, passes through S blocks, meaning thatC, = n+ 1. The statistical event that
corresponds to this assumption is writte], ;.

,,,,,,,,,,,,,,,,,,,,,,,,

Figure 5 - A Typical Connection.

The following statistical events are useful for calculat(B ):
I



X; - the event that the logic block pin associated Wttat(x,, y;) can connect to at
least one track at the first C block. Note that there are, by defirfitianacks that can
connect to the logic block pin, but any number of those tracks may already be used by

other connections that have been previously 'routed'.
* 5, S, ..., S, - the events thaf; can successfully reach at least one track on the outgo-

ing side of the first, second, up to 8 S block.

+ X, - the event that at least one of the tracks that are availaleabthe last C block
can be connected to the appropriate logic block pifxaty,) .

* R -the event tha€, can be successfully routed.
[

SinceC, is successfully routed only if all of the eves S, S,, ..., S, X, occut then

RCi‘Lan:leSlmSZm...mSnmX2

and the probability of successfully routi@ is given by
P(Rci‘ L.+ =PX;n§nSn..n§nX)
= PXPP(S) X)DP(S, S, n X)) ...P(§|S,-1n ... n S n X)) O

P(XZ‘Snm ..N S nX) 1

Since the eventX;, S, S,, ..., S, X, are not independent, it is necessary to determine
expressions for each of the terms in Equation 1. This is accomplished in the following sec-
tions by using combinatorial analysis that accounts for the flexibilities of the C and S
blocks F.andF,), the number of tracks per routing chaniw),(and the densities of the
routing channels. As discussed in Section 3, channel density is approximated by the Pois-
son distribution with parametgAR) /2, whereA is the number of connections per logic

block andR is the average connection length. Appropriate valued fand R are dis-
cussed in Section 5.

4.1 The Logic Block to C Block Event

The eventX; can be depicted as shown in Figure 6. The figure gives a routing channel
with W tracks and a logic block pin that can connecFjfoof the tracks, via routing

switches (shown by ax). The figure also shows a setldtracks, drawn as dashed lines,
that are already occupied by previously routed connections. In the figure,10,
F. = 5,andD = 5. The eventX; can then be viewed as a random process in which the

switches are randomly placed &g of theW tracks, and the logic block pin can connect

-10 -



to any of theF_ tracks that are not within the setdiused tracks.d derive an expression
for P(X)), it is convenient to define the eveNONE as the opposite 0K; — i.e.
P(X;)) = 1-P(NONE). The evenNONEoccurs when alF tracks are within the set of

D used tracks. As a first step to evaluatf{l ONE), assume thaDd = d and define the
corresponding evenb,. Assuming that thé=_. switches can appear on any of the

tracks, the probability dNONE conditional onD,; is the ratio of the number of ways in
which all F of the switches can lie within thitoccupied tracks to the number of ways in
which theF_ switches can appear on any of Weracks. By combinatorial analysis, this
can be expressed as

CF
WCr

where ;,C. means the combinations dthings takerF at a time. As a check, note that
c

P(NONE/ D) is 0 ifd<F_ and 1 ifd = W. Next, consider the evenB,, D, ..., D,
corresponding to the possible valuePofSince the occurrence NMONEimplies exactly
one ofDg, Dy, ..., Dy, then

P(NONE|D,) =

NONE = (NONE n D) O (NONE n D;) O ... 0 (NONE n Dy,)

and sinceD, D4, ..., D,y are mutually exclusive

P(NONE) = P(NONE n Dy) + P(NONE n D,) +... + P(NONE n Dy)
Using the relatioP(X n Y) = P(Y)P(X YY),
P(NONE) = P(D,)P(NONE| D) + P(D,)P(NONE|D,) + ... + P(D,,) P(NONE| D)
The termsP(D) are given by the Poisson distribution (as discussed in Section 3) with
parametei g’ written p(A g d), so that

W
P(NONE) = " p(A, d) CP(NONE| Dy)
d=0

and, substituting Equation 2,

w Cr
P(NONE) = Zp()\ dyo--° \NCF

Finally,

-11 -



w C
d
P(X) = 1-P(NONE) = 1~ § p(hy, d) 0. 3
d=0 WF

c

Note that Equation 3 involves an error because the Poisson distribution has an infinite
tail, whereas the summation has an upper limitoT his means that there is a non-zero
probability of channel densities abow but for practical values &l this error is very
small and can be ignored. This same statement also applies to other equations that appear
later in this paper

Logic Cell
Connection
I < Block
Fc=5
———————————— R e -
777777777777 [ D=5
W =10

Figure 6 - The Eveni;,.

Equation 3 has been developed in a way that does not depend upon the channel densi-
ties being Poisson distributed. This approach is taken because the densities in some
FPGAs, such as those having tracks with segments that span multiple logic blocks, may
have distributions that are not Poisson. The stochastic model can still be used for such

FPGAs, by replacing)()\g, d) with an appropriate distribution. It is interesting to note,

however that the properties of the Poisson distribution allow expressions like Equation 3
to be simplified, as described below

Equation 3 can be simplified by realizing that a Poisson distribution is divisible. In the
case of evenk,, this means that rather than considering a Poisson proces# tnaeks,

with meanA , it is suficient to deal with a smaller Poisson process éyetracks, with

Cc

F
W Then,P(NONE) is given byp()\gv—\;, F.. and Equation 3 can be expressed

meanA g

as

P(X,) = 1- P(NONE) = 1—p(?\g5\‘} Fo

-12 -



Similar simpliications can be made for other expressions shown later in this section, but
they are easily developed and so are not shown.

Equation 3 calculateB(X;) based on the relationship between the eXgnand the

eventNONE An alternative is to calculaf(X,) directly by definingAfl, Ag(l, A)F(l as

the events thaX; occurs with exactiy, 2, ..., F_ available tracks. Using this approach,
— Xy Xy Xy
X, = ATOAO .. DAFC
and sinceA>1<1, A)Z(l, A>F(l are mutually exclusive,
Cc

P(X,) = P(AYY) +P(AYY) + ... + P(ACY)

Although P(X,) can be calculated using Equation 3, eacﬁ(é%(l) will be required in
the next section, and so they are derived here. Consider the general Xaseaiirring

with exactly @) available tracks, and the corresponding e\/e_{i(”rt Assuming a specific
number of occupied trackd) = d, the conditional probabilityP(Azl‘ Dy can be

expressed using combinatorial analysis as

dC(F,-a) Hw-a)Ca

C

X
PN D =
a‘ Y WCE, - Bw- (F,-)Ca o

In words, this is the number of ways that a sef of a tracks can be withird} used
tracks times the number of ways of choosing a sef)dfgcks fromF . tracks, all divided
by the number of ways that two distinguishable seta)adrfdF . — a tracks can be within

W tracks. Since the occurrence/@?fl implies exactly one oD, D4, ..., Dy, following
the steps shown for Equation 3,

w
P(AZ) = Y POy &) CP(AY Dy
d=0

Wp()\ 00 dC(F,-a) Bw-a)Ca o
dZO 7 Wer - Uw- (F-2)Ca ¢ ?

4

As a check, it is easily verified thB{NONE) can be obtained using Equation 4 by setting
a = 0, which must be true sinddNONE) = P(Az)(l). Finally,
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I:C
POX) = 5 PALY
a=1

F
= v dC(F.-a) Hw-a)Ca
0. C

p(A_, d) O
azldzo ’ V\’C(Fc—a) D(W— (Fc—a))Ca c @

4.2 The S Block Events

All of the events that are associated with S blocks can be treated in a uniform way
This section first derives probability expressions3piX; and then shows how the result

can be applied to subsequent S blocks.

4.2.1 The First S Block Event, for F, = 3

Since P(Sl‘ X, will be affected by the flexibility of the S block, it is convenient to

assume a specific value Bf. In the following derivation, the casg, = 3 is assumed.

This is the easiest case to handle because it means that each wire segment that enters an S
block can connect to exactly one wire segment on each other side. Also, the derivation
need not be concerned with whether a connection turns or passes straight through an S
block since the éct is the same in both cases. Section 4.2.2 shows how the result can be

extended to any value 6.

The eventSl‘ X, is depicted in Figure 7, which shows an S block and a routing chan-

nel that hasV tracks. The figure shows a set/ot! tracks, drawn as bold lines, that are
available at the incoming side of the S block and a sbttodicks, drawn as dashed lines
on the outgoing side of the S block, that are already used by other connections. In the fig-

ure,D = 4, W = 10, and AXl = 3. Note that setting&x1 to three corresponds to the

eventA;(l, from Section 4.1. Figure 7 uses dotted lines to indicate S block switches and

shows that each track on the incoming side of the S block can be connected to one other
track on the outgoing side. The S block event can then be considered to be a random pro-

. . X, . : .
cess in which each of th& * incoming tracks can connect to one track on the outgoing
side of the S block, as long as that outgoing track is not amomyuked tracks. In other

. X . . . .
words, given that there ae * tracks that are available on the incoming side of the S
block, it is necessary to find the probability that one or more of these tracks are also avail-
able on the outgoing side.

-14 -
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D=4 side

X1 _
Side A=3

Figure 7 - The EvensS,.
The eventS;| X, can occur with one or more available outgoing trackscalculate

P(§ Xy), define A, Agl, A§1 as the events tha6, X; occurs with exactly
1,2, ..., F, available tracks on the outgoing side. Since

S|X = AMDAD ... OA”
andAfl, Ail, Aﬁl are mutually exclusive
P(S X,) = PAD) + P(AZ) + ... + P(Aﬁlc) 5

Solving for each term in this summation requires several steps. Consider the general
case wheresl‘ X, occurs with exactlk available outgoing tracks. The corresponding

event is writterAEl. The probability ofAE1 will depend on the number of tracks available

: : : : X -
on the incoming side, given b& *, and on the value dd. Assume a specific value of

X . . . .
A" = a. Since X, is known to have occurred, this corresponds to assumingXthat

occurred with exactlyd) available tracks. The appropriate statistical event for this

assumption is then written éél‘ X;. Also, assume thdd = d. A conditional probability

for Afl can then be expressed using combinatorial analysis as

C.._uyOw_C
d“(a-k) “(w-d)“k als)
wCa-k Hv- (a-k Ck

Equation 6 expresses the ratio of the number of ways in which exigctf the @)
available incoming tracks can end up on unoccupied tracks on the outgoing side of the S
block to the number of ways in which two distinguishable groupk)@&mnd & - K tracks
can appear on any of thé tracks. D expand Equation 6, following the steps outlined in

the previous section, consider the eveldis D4, ..., D\, corresponding to the possible

P((AS] (A1%,))| Dy =
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values of D. Since the occurrence o(Ail‘ (Azl‘ X;)) implies exactly one of
Dy Dy, ..., Dy, then

dCa-k) How-a)C«

W
X
PAY (A X)) = S p(A,, d) O 0c,
‘ 2 ‘ dZO g wC(a-k) Hw- (a-k))Ck
Next, consider the even(sﬁ\)fl‘ X1y en (A>F(l X;) corresponding to the possible val-
ues ofAXl. The occurrence oAfl implies exactly one of(A>1(1‘ X))y een (A>F(1 X;), SO
that

PAY) = FZ P(AY X)) D% o(A ., d) O d°(a- How-o % mfe 7
k/ — 1 ! k
L T & Y wWea Hw- @i &

As stated above, the terrI%A;(l‘ X;) express the probability that, given the occurrence of

eventX;, X, occurred with exactlya) available tracks. Each cﬁ(AZl‘ X,) is defned by
Bayes' rule [14], according to

X
P(A,?
P(AY| X,) = FC( ) 8
S P(A’)
j=1
WhereP(Ai(l), P(A>F(1) are given by Equation 4. Substituting Equations 7 and 8 into 5,

F

c

PSIX) = 3 PAY
K=1
FC FC X
~ P(AL) W dCa-k) How-a)C«
= 5 0) pAy O 3 = 0C,
KT1a=1 O X [ d=0 Wc(a—k) (W-(a-k)) “k
P(A'™)
12 P4
=1 9

4.2.2 The First S Block Event, for Any Value of F

Equation 9 assumes a specific value of S block flexipHity= 3. This section shows
how Equation 9 can be generalized for other valués ofn Equation 6, a one-to-one cor-

respondence was assumed between the subsa)ript/(:l‘ X;, on the left hand side of the
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equation, and the variabla)( on the right hand side. This relation holds fQr= 3 but
does not necessarily apply for other value& gfFor example, ifF, = 6 a more appro-

priate variable for the right hand side of the equatidaidn general, the subscripd)(
should be scaled by some factor and Equation 6 becomes

dC(aa-k) Bow-a)Ck

P((AY] (AY]X)))| Dy = 0..C, 10

WC(aa—k) D(W— (aa—k))Ck
Clearly, a depends on the value Bf, buta may also depend on whether a connection
passes straight through a particular S block, or turns. D&fias the event that a connec-
tion passes straight through an S block, Zpds the event that it turns. Also, idefa
anda, as the values oft corresponding t&; andZ,. SinceS,| X; implies one of
Z,andZ,, then

P(S)| X)) = P(Zy) TP((S] %;) | Zy) + P(Zy) TP((S] Xy)| Z,)
and using Equation 9 and 10,

P(S) Xy =
w Fe C Orw—a Cr
P(A a) d“(a,a-k) Hw-d)
P(zZ,) O O p()\ d) O C +
' kZlazl i z WC(G a-Kk) D(w (a,a- k))Ck E&la k
S PAY
=1
" pA l) W dC (a,a-k) Bow-a)Cx
P(Z,) O OY PR, d O C
: kzlazl dZ VVC(G a=Kk) D(W (aa- k))Ck sza X

Z P(A™)
i=1

Appropriate values foP(Z,) (note thatP(Z,) = 1-P(Z,)), a,, anda,, are discussed

in Section 5. Note that th&)(summation in Equationllhas an upper limit &\, whereas
the corresponding upper limit in Equation &g This change is required since it may be

possible to connect to &N tracks in a channel for valuesef that are greater than three.

11

4.2.3 The Remaining S Block Events

Thus far this section has dealt specifically with the eveptX;, but the derived
expressions are applicable to any of the other S block events, with two changes. First, for
the m™ S block event,(Sy) (Sp-1n ... N § n X)), all summations must reach an
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upper limit of W. Second, the probabilitid%(Afl), P(A>F<1) in Equation 1 are replaced

by P(Afm‘l), P(A\?Vm‘l), which are defined by Equation 12, with= m- 1. Applying
these changes, Equation 7 becomes

W
PAT = Y P (Sp1 0 o 0 Sy 0 X)) O
a=1

dCa-1 Hw-a) C«

w
Py d) O 0C,
dZO ’ wC(a-ky Hw- (a-1)) Sk 12
and Equation 1L becomes
PGSy (Sp-1n - n S nXyp) =
W w Sm-1 W C N C
P(A;"™Y) dC(aa-k Bow-d) Sk
P(Zl)DZ Z T DZ P(A,, d) DWC ! . c GGt
k=1a=1 U P(A.Sm-l)D d=0 (a,a-k) (W= (a,a-k)) “k
2 "B,
j=1
W w Sm-1 w C 0 C
P(A,;") d“(a,a-k Hw-d)“x
PEITY 3 w0y A o TG
k=1la=1 z P(Asm—j_) d=0 (aza_k) (W_ (aza_k)) k
j
=1 13

4.3 The C Block to Logic Block Event

The eventX, is depicted by Figure 8, which shows a seA%‘f = 4 tracks, drawn as

bold lines, that are available at a C block (this corresponds to the@?éntSection 4.2)
and a set ofF . = 5 tracks that connect to the appropriate logic block pin for the connec-
tion. The eveniX, can then be viewed as a random process in which the logic block pin

can be connected to any of the seﬂcsff tracks where there are switches. Statefédif

ently, given that one or more tracks were available at the outgoing side of the last S block,
it is necessary to determine the probability that one or more of these tracks connects to the
appropriate logic block pin.dTsimplify the notation, the expressi®yn ... n §; n X;

will be substituted for bysX To calculate the probability dKz‘ SX, define the opposite
eventNONE| SX, WhereP(Xz‘ SX) = 1-P(NONE| SX). To find P(NONE| SX), assume
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a specific value OAS“ = a and define the corresponding ev@gst“ SX. A conditional
probability for NONE| SX can then be defined by

(W-Fp) Ca

WCa

P((NONE| SX) | (A SX)) = 14

Equation 14 assumes that each of fheswitches for the logic block pin associated
with eventX, is equally likely to be on any of t tracks. This may not be realistic since

a good C block would be designed to ensure that the tracks that are connectable to one pin
would overlap the tracks connectable to others. A detailed discussion of this issue can be
found in [10]. This inaccuracy in Equation 14 will have theafof producing low pre-
dictions of routability for low values d¥ ., which is discussed further in Section 5.1.

Logic Cell

SI‘I
A=4
Fc=5
W =10

Figure 8 - The EveniX,.

Consider the eventafh, AS“, A@ corresponding to the possible values Ag.

Since the occurrence MONE| SX implies exactly one oAf”, A,fh, AVS\“,, it follows
that

W
P(NONE/SX) = § P(AJT SX) CP((NONE| SX)| (A SX))
a=1

where each oP(Ain SX) is given by Bayes' rule, so that
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w Sh C
P(A W-F
P(X)SX) = 1-P(NONE SX) = 1- § W( ) A
C
a=1 DZ P(Asn)lj WTa
10

15

15

Each of P(A‘:’“), P(A@) can be calculated using Equation 12, with= n. Note
that for the case of a connection that has length one, there are no S block events, so that

Ai’“ in Equation 15 are replaced lﬁfél. Each ofP(A>1(1), P(A)F(l) can be calculated
using Equation 4.

4.4 The Probability of R~

Equation 1 can now be solved using the expressions developed in this section to calcu-
late P(R. ), for the given value of C; = n+ 1. Equation 1 is reproduced beloas Equa-

tion 16.

P(Re Ln+1)

PX;n§nSn..n§nX)
P(Xl)P(Sl‘ Xl)P(SZ‘S]L N Xl)...P(Sn‘Sh_1 n..nSnX)O

P(XZ‘Snn .. NS nX) 16

To make use of this result to calculd®¢R.), defineLC, = | . as the maximum
1
length of any connection arld  as the corresponding event. Appropriate values for
max
| max @re discussed in Section 5. Next, consider the evgnts., L, corresponding to
the possible values ofC,. Since the occurrence dR. implies exactly one of

Ly, ...,L, ,then

ma:

max

P(Re) = 5 P(L) PRe|L) 17
=0

whereP(L,) are given by the probability distribution of connection length, referred to
in Section 2 a®| , and eaciP(RC_‘ L,) is defined by Equation 16. As mentioned in Sec-

tion 2, P, is assumed to be geometric, with méarirhus,P(L,) is given by

P(L) = pqd *
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wherep = é andq = 1-p. The following section shows how Equation 17 is evaluated

to predict routability

5 Using the Stochastic Model to Predict Routability

In order to make use of Equation 17, it is necessary to choose appropriate values for
the various parameters that appear in the expressions developed in Section 4, as well as to
evaluate the functiohg, that is used to predict channel densities. This section first shows
how )\g is calculated and then gives appropriate values for each of the parameters. The

routability predictions produced by the stochastic model are then presented, and are vali-
dated by comparisons with the results of an experimental study that has been previously
published [2].

As stated in Section 3, the parameXgris defined by | = (A R) /2, whereR is the
average connection length ands the ratio of the expected number of routed connections
to the total number of logic blocks. Given this definitianmust be re-calculated after

each connection is probabilistically 'routed' by the stochastic process. Thus,-after
connections have been 'routed'¢can be calculated as

- r\1| Z PR:) 18

It is necessary to assign values to the following paramétew: | .., C1, R, P(Z,),
a,, Fg, andF_. The first three of these depend on the size of the FPGA array and the

next three are determined by the characteristics of the circuit to be routed. The routability
predictions that are generated here will be compared with the results from a previously
published experimental studso the parameters will be taken from the FPGA circuits that
were used there [2]. The corresponding values are listedhle T.. Note that some of

Circuit | N | W | | C: | R |PZ)

max
BUSC|11|11| 20 | 392 | 2.7 | .71
DMA (1512 28 | 771 | 2.8 | .75
BNRE | 20| 14| 38 | 1257| 3.0 | .75
DFSM | 21| 13| 40 | 1422| 2.85| .76

Z03 | 25| 13| 48 | 2135| 3.15| .75

Table 1 - Stochastic Model Parameters for ExperimentatGits.
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these parameters did not appear in the original paper [2], but the valadsdarl have all
been measured from the actual circuits.

213|456 |7]8]9]10
1.0{1.0|20|20|20|3.0/3.0/3.0(4.0
05/10|10(15/20|20|25|3.0(3.0

Table 2 - Approximations toa, anda.,.

The parametersi; anda, can be approximated by making some assumptions con-

cerning the topology of the S blocks. It is assumed here that the topology is similar to the
one used in [2]. This means thatRsis increased from its minimum value of 2, switches

are added to the wire segments in the order straight across, right turn, left turn, straight
across, right turn, etc. It is further assumed that the topology spreads the switches among
the tracks such that every wire segment can be switched to eikaattiiers. Given these

assumptions, appropriate values égranda., are shown in dble 2.

5.1 Routability Predictions

Recall, from Section 2, that routability is defined as

Cr
Routability = Cl 3 P(R). 19
Ts !

This equation can now be evaluated using Equation 17, the expressions developed in
Section 4, Equation 18, an@fles 1 and 2. A typical result is shown in Figure 9, which
gives a plot of the expected percentage of successfully completed connections versus con-
nection block flexibility F ., for parameters that correspond to the circuit called BNRE.

Each curve in the figure corresponds to &t value of S block flexibilityF,. The

lowest curve represents the c&se= 2 and the highest curve corresponds-to= 10.

The figure indicates that the routability is low for small valueB o&nd only approaches

100% whenF . is at least one-half &k The figure also shows that increasing the S block
flexibility improves the completion rate at a givep, but to get near 100% the value of

F. must always be high (above 7 for this circuit). These conclusions are the same as those
reached in the experimental study described in [2].

Figure 10 is a plot of the expected percentage of successfully completed connections
versus S block flexibilityF, also for the circuit BNRE. This plot represents the same data
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5.00 10.00

Figure 9 - Routability Pedictions vsF ., for Circuit BNRE.

as that shown in Figure 9 but afdrent insight is provided by plotting, along the x-
axis, instead of . Each curve in the figure corresponds to fediht value ofF_, with

the lowest curve representirkg, = 1 and the highest curve correspondingrto= W.

The curves show an increase in slopé atwalues of 4, 7, and 10. This occurs because
switches are added straight across the S blocks for these valtigsantl, as dble 1

shows, connections pass straight through the S blocks more than 70 percent of e time.
is clear from Figure 10 that F is at least one-half d\, then very low values of

approach 100% routability

While the theoretical and experimental results lead to the same general conclusions,
they are not identical. Figurd Hirectly compares the routability results produced by the
stochastic model with the experimental results from [2]. The solid curve corresponds to
the result published in [2] whereas the dashed curve is produced by the stochastic model.

Both curves correspond to circuit BNRE, wiy = 6. As Figure 1 indicates, the two
results are quite similafhe fact that the theoretical curve is lower than the experimental
one for low values of is due in part to Equation 14, which, as discussed in Section 4,

does not accurately represent how a good C block topology would perform. A summary of
comparisons between theory and experiment for all the circuits appeablen3T For

1. Note that whether each added switch corresponds to a turn or a straight-through connection depends on the values
used fora, anda,. The reason for choosing the values shownahbl 2 is that this corresponds to the way that
switches were ached in the experimental study to which the predictions from the stochastic model are being compared.
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Figure 10 - Routability Pedictions vsF, for Circuit BNRE.

each circuit, the table shows thefelience between the theoretical and experimental
routability results, for each value &f. Each entry gives the mean value (and standard

% Complete

100.00 Experimental

Theoretical
90.00

80.00
70.00

60.00

50.00

40.00— _

30.00 ‘ ‘ .
500  10.00

Fc

Figure 11 - Comparison of Redictions and Experiments, féi, = 6.

- 24 -



deviation) of the dference, over the range of values/qffrom 1 toW. The values in the

table are in percentages since those are the units of routakigylute values are used in

the table to avoid a misleading average that could be caused by combining negative and
positive diferences. Howevethis is not really necessary since, as Figaradicates, the
theoretical predictions are almost always pessimistic.aldeT3 shows, the experimental
measurements and theoretical predictions of routability are close, especially for values of
F. greater thathree.

BUSC DMA BNRE DFSM Z03
F, | Mean| S.D.| Mean| S.D.| Mean| S.D. | Mean| S.D.| Mean| S.D.
2| 77 |149)| 102 75| 73 | 63| 89 | 83| 7.2 |59
3| 97 | 56| 12581 | 87 | 6.7| 108 | 94 | 10.2 | 56
4| 29 29| 41 | 45| 15 | 31| 27 | 53| 19 | 21
5| 37 | 43| 49 | 58| 24 | 43| 3.7 | 61| 18 | 27
6| 32 | 35| 50 | 62| 26 | 47| 40 | 6.7 21 | 33
7| 48 | 43| 51 | 66| 28 | 43| 39 | 61| 18 | 28
8| 43 | 46| 51 | 65| 31 | 43| 41 | 62| 22 | 26
9| 43 | 49| 50 | 63| 32 | 44| 42 | 62| 25 | 3.0
10| 43 | 48| 52 | 67| 32 | 43| 42 | 59| 29 | 34

Table 3 - Summary of Comparisons Between Theory and Experiment.

5.1.1 Practical Use of Routability Predictions

The routability predictions produced by the stochastic model can be viewed as the
likelihood of successfully routing a circuit. In this context, routability is useful as a means
of making the binary decision of whether or not a particular circuit can be routed in an
FPGA with a given routing architecture. Making this decision requires the selection of a
minimum value of routability for which a circuit should be deemed routable.1p [1
Heller et. al. suggest that this minimum value should be at least 90 percent, but that for
large circuits it may be better to specify an absolute number of failed connections rather
than a percentage. Howeyeklellers results are based on mask-programmed chips so they
should not be blindly applied to FPGAs. Comparisons with experimental results indicate
that routability should be at least 95 percent in order for a circuit to be deemed routable in
an FPGA, but this is based on a small set of examples. More research should be carried out
to decide what minimum value of routability is applicable to a wide range of circuits.
Also, this value is likely to vary depending on the flexibility of the FRRG8uting struc-
tures.
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6 Conclusions and Future Work

This paper has described a stochastic model that can be used to stutbctiod gfe
flexibility of an FPGA's routing architecture on its routabilityhas been shown that the
model can be used to reach the same conclusions that were generated in a previous paper
using an experimental approach. In future work the model should be extended to handle
the case where some of the routing switches in the S blocks are replaced by hard-wired
connections. This would allow the modelling of routing architectures in which the tracks
may be composed of segments of various lengths and would allow the stochastic model to
be used to study such architectures.

It was illustrated in Section 5.1 that the routability predictions produced by the sto-
chastic model are pessimistic. Part of the reason for this may be that the model assumes
that all connections to be routed are influenced in a statistical way by all others so that any
connection has a non-zero chance of failure. This does not truly correspond to an actual
circuit, in which a lage percentage of the connections are trivial to route and only a small
number have a chance of failure due to interference with other connections. It would be
interesting to see how the stochastic model could be modified to account for the fact that
most of the connections in a circuit are trivial to route, while still handling the important
side efects for the dficult connections.
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