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 Abstract

Field-Programmable Gate Arrays (FPGAs) have recently emerged as an attractive
means of implementing logic circuits as a customized VLSI chip. FPGAs have gained
rapid commercial acceptance because their user-programmability offers instant manufac-
turing turnaround and low costs. However, FPGAs are still relatively new and require
architectural research before the best designs can be discovered. One area of particular
importance is the design of an FPGA’s routing architecture, which houses the user-pro-
grammable switches and wires that are used to interconnect the FPGA’s logic resources.
Because the routing switches consume significant chip area and introduce propagation
delays, the design of the routing architecture greatly influences both the area utilization
and speed-performance of an FPGA. FPGA routing architectures have already been stud-
ied using experimental techniques in [1] [2] and [3]. This paper describes a stochastic
model that facilitates exploration of a wide range of FPGA routing architectures using a
theoretical approach.

In the stochastic model an FPGA is represented as an Nx N array of logic blocks, sep-
arated by both horizontal and vertical routing channels, similar to a Xilinx [4] [5] [6]
FPGA. Each routing channel comprises a number of tracks and each track consists of a set
of short wire segments. Routing switches are available to connect the pins of the logic
blocks to the wire segments, and to connect one wire segment to another. The number of
routing switches and their distribution over the wire segments are parameters of the sto-
chastic model. A circuit to be routed is represented by additional parameters that specify
the total number of connections, and each connection’s length and trajectory.

The stochastic model gives an analytic expression for theroutability of the circuit in
the FPGA, which is defined as the percentage of the circuit’s connections that can be
accommodated by the FPGA’s routing architecture. Practically speaking, routability can
be viewed as the likelihood that a circuit can be successfully routed in a given FPGA. The
routability predictions from the model are validated by comparing them with the results of
a previously published experimental study on FPGA routability.
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1  Introduction

Field-Programmable Gate Arrays (FPGAs) have become increasingly popular over the
past few years because, with their user-programmability and high logic capacity, they
offer inexpensive customized VLSI implementations of circuits and instant manufacturing
turnaround. However, FPGAs are still relatively new and have not yet approached their
full potential, where they hold the promise of replacing much of the market now held by
Mask-Programmable Gate Arrays (MPGAs). MPGAs are both faster and more dense than
FPGAs because interconnections between logic modules in an FPGA involve (large, slow)
user-programmable switches, whereas connections in an MPGA are hardwired. Although
this density and speed-performance gap is an inherent consequence of user-programmabil-
ity, the differences between the two technologies can be narrowed through architectural
improvements in FPGAs. Specifically, these improvements should focus on FPGArouting
architectures, since this is where the user-programmable switches reside.

The stochastic model presented in this paper is parameterized to allow the study of a
wide range of FPGA routing architectures and the theory could be extended to handle
even more possibilities. Thus, the main purpose of the model is as a research vehicle for
studying the effects that various parameters of an FPGA’s routing architecture have on the
routability of circuits. Theoretical studies of this sort are attractive because they are more
easily carried out than experimental ones due to the long time required to develop new
CAD tools for experimentation. The stochastic model as described in this paper is not
intended for use as a tool for predicting whether a given circuit will be routable in a com-
mercial FPGA product. Commercial products invariably comprise unique features that are
not represented in a general model. The stochastic theory can be extended to model spe-
cific parts, but this would entail some modifications to the probability expressions that are
presented in this paper.

The characterization of FPGAs in the stochastic model is the same as that used in ear-
lier papers on FPGA architecture [1] [2] [7] and computer-aided design (CAD) algorithms
[8] [9]. As illustrated in Figure 1, the FPGA consists of a square array of logic blocks with
N blocks per side, and both horizontal and vertical routing channels. In terms of commer-
cially available devices, the structure depicted in the figure is most similar to that found in
Xilinx FPGAs [4] [5] [6], but it is more general. The FPGA in Figure 1 has two pins on
each side of a logic block (L) and three tracks per channel. The grid shown in the figure is
referenced throughout this paper as a means of describing connections to be routed. No
assumptions are necessary about the internal details of the logic blocks, except that each
block has some number of pins that are connected to the channels by routing switches. The
channels comprise two kinds of blocks, called Switch (S) and Connection (C) blocks,
described below. The S blocks hold routing switches that can connect one wire segment to
another, and the C blocks house the switches that connect the wire segments to the logic
block pins.

The general nature of the S block is illustrated in Figure 2a. Itsflexibility is set by the
parameter , which defines the number of other wire segments that a wire segment enter-
ing an S block can connect to. For the example shown in the figure, the wire segment at

Fs



- 3 -

the top left of the S block can connect to six others and so is 6 (routing switches are
shown as dashed lines in this figure). Although not shown in the figure, it is assumed that
all wire segments entering an S block have the same connectivity. It is also assumed that a
routing switch is always involved when passing straight through an S block, meaning that
the tracks consist of short wire segments that span a single logic block. The implications
of relaxing this assumption are discussed in Section 3.1.

Figure 2b illustrates a C block. The tracks pass uninterrupted through the C block and
can be connected to the logic block pins via the set of switches. The flexibility of a C
block, , is defined as the number of wire segments in the C block that each logic block
pin can connect to. For the example shown in the figure each pin can be connected to 2
vertical tracks, and so  is 2 (in the C block, a routing switch is drawn as anx). It is

assumed that all pins can connect to the same number of tracks and that the specific tracks
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that can be connected to each pin are randomly chosen. The implications of this latter
assumption are discussed in Section 4.3.

A wide range of routing architectures can be represented by changing the number of
tracks per channel and the contents of the C and S blocks. In a routing architecture that has
an abundance of switches, circuits will be easily routed. From the point of view of design-
ing a good routing architecture, however, the number of switches should be limited
because each switch consumes chip area and has significant capacitance and resistance
[10]. This leads to routing architectures in which the number of routing switches is lim-
ited, which in turn produces routing problems that are not easily solved. As an example,
the following section illustrates the effect on a routing problem when the C blocks allow
each logic block pin to connect to only a subset of the wire segments in a channel. The
example also serves as the motivation for designing the stochastic model that can account
for the side effects that the routing of one connection may have on others.

1.1  Example of a Routing Problem

Figure 3 shows three views of the same section of an FPGA routing channel, and three
connections that must be routed in that channel. Each view gives the routing options for
one of connections A, B, and C. In the figure, a routing switch is shown as anx, a wire
segment as a dotted line, and a possible route as a solid line. As indicated in the figure, it is
assumed that each logic block pin can connect to only two of the three tracks in the chan-
nel ( ). Now, assume that connection A is completed first. If the wire segment num-
bered 3 is chosen for A, then one of connections B and C cannot be routed because they
both rely on the same single remaining option, namely the wire segment numbered 1. The
correct solution is for the router to choose the wire segment numbered 2 for connection A,
in which case both B and C are also routable.

This example shows that even when there are only three connections to be routed, it is
possible for a routing decision made for one connection to unnecessarily block another.
This example shows connections within a single horizontal channel, but the problems are
compounded when connections have segments that are in both horizontal and vertical
channels. For these reasons, it is important for the stochastic model to consider the side-
effects that the routing of one connection may have on others.
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This paper is organized as follows. Section 2 provides an overview of the stochastic
model and summarizes the main results, Section 3 describes previous research that is used
to predict channel densities. Section 4 derives analytic expressions for calculating the
probability that a connection can be successfully routed. The theoretical predictions of
routability are given in Section 5 and Section  6 provides concluding remarks.

2  Overview of the Stochastic Model and Summary of Results

In the stochastic model, it is assumed that a circuit with a total of two-point con-
nections is to be routed in an FPGA with Nx N logic blocks. The length of each connec-
tion is drawn from a probability distribution, . It will later be necessary to choose a

specific distribution for . In Section 4.4, it is assumed that is geometric, with mean

length . This assumption is taken from earlier work on the stochastic modelling of two-
dimensional arrays of connected cells [11] [12], and has the following physical interpreta-
tion in an FPGA: at each C block along the path of a connection, the connection will ter-

minate (at a logic block) with probability  and will continue (to the next C block) with

probability .

The  connections are individually referred to as  and the statistical

event that each connection is successfully routed is called . The key to

the stochastic model is the calculation of the probabilities of . Routabil-

ity is defined as the percentage of the connections in a circuit that can be successfully
routed. In terms of ,this corresponds to the ratio of the expected number

of successfully routed connections to the total number of connections,. Thus, routabil-
ity is the average probability of completing a connection and can be calculated in the sto-
chastic model according to

,

where  is the probability of successfully routing.

2.1  Parameters of the Model

The main result presented in this paper is the solution of the above expression for
routability. It will be shown that routability is a function of several parameters that define
the properties of the FPGA and the circuit to be routed. These parameters are listed below,
with an indication of how each one can be obtained for a given FPGA and circuit:
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• N is the number of logic blocks per side in the  FPGA.

• W is the number of wiring tracks per channel in the FPGA.

•  is the total number of two-point connections in the circuit.

•  is the average length of a connection, measured in manhattan distance between logic

blocks. A typical value for  is 3, which can be measured by looking at real FPGA cir-
cuits. We note that previous theoretical work has been done in estimating average con-
nection length for chips that consist of two-dimensional arrays of connected cells [12].

•  is the probability that a connection will pass straight though a channel, as
opposed to turning, each time it reaches the intersection of a horizontal and vertical
channel. A typical value for  is 0.75.

•  and  define the flexibilities of the FPGA’s C and S blocks.

•  and  represent the topology of the routing switches in the FPGA’s S blocks.

These two parameters define the fanout that is available to a connection when it passes
through an S block.  represents fanout when a connection passes straight through an

S block, and  corresponds to the case where a connections turns.

Using these parameters, the expression for routability is solved by calculating the
probability that each of the  connections in the circuit can be successfully routed in the
given FPGA. For each connection, this involves finding the probability that a number of
statistical events occur, corresponding to each step that the connection needs to make
through the FPGA’s routing channels. Section 4 describes this process in detail, giving
expressions for the probabilities involved. Section 5 shows the routability results produced
by the model and compares them to the results of a previously published experimental
study on routability.

2.2  Model of Global Routing and Detailed Routing

The routing of FPGAs is modelled assuming that the classical two-stage approach of
global routing followed by detailed routing is used [13]. It is assumed that once a global
router assigns routing channels for a connection, a detailed router would restrict itself to
those channels. This corresponds to the normal case for two-stage routing where a global
router produces a set of restricted routing problems for the detailed router. While it is
probable that a detailed router would see some improvements if allowed to explore other
global routes for difficult connections, the effects of this optimization would be small, as
discussed in [9].

 In order to use a key research result by El Gamal [12] to predict the densities of the
routing channels in an FPGA, the following assumption is made concerning the way in
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which a global routing algorithm would assign the two-point connections in a circuit to the
routing channels. It is assumed that each connection is assigned a single path through the
routing channels in such a way that the number of connections per routing channel is Pois-
son distributed. In Section 3, we justify this assumption empirically and illustrate its use.

In the stochastic model, the detailed routing of an FPGA is represented as a random
process. Given the assumption that a connection is assigned a single path through the rout-
ing channels, the probability of successfully performing the detailed routing of the con-
nection is calculated. The probability expressions account for the number of tracks per
routing channel, the flexibilities of the C and S blocks, and the side-effects that the routing
of one connection has on others.

Recall that Section 1.1 showed that a key issue in the detailed routing of FPGAs is
how the routing of one connection may affect other connections. To compute the value of
each , it is necessary for the stochastic model to account for these effects. To

accomplish this, the model accounts for the impact that each successfully routed connec-
tion would have on the densities of the FPGA’s routing channels. By this mechanism, the
probability of completing each successive connection is influenced because there are more
connections in a channel to compete with. The next section shows how El Gamal's results
can be used to calculate channel densities and following this, the probability expressions
for  are derived.

3  Previous Research for Predicting Channel Densities

In [12], a stochastic model is developed to predict the wiring requirements of Master
Slice integrated circuits that have a two-dimensional array of identical cells, with horizon-
tal and vertical routing channels between the rows and columns of cells. The model
divides the channels into segments that span the length or width of one cell and it is
assumed that all interconnections start at one cell and travel a minimum distance through
the channel segments to another cell. It is further assumed that the number of connections
per cell can be drawn independently from a Poisson distribution with parameter, where

 is defined as the quotient of the total number of connections in a circuit divided by the
total number of cells in the array. The average connection length, in number of cells tra-

versed, is called . That paper also makes assumptions about the trajectories of connec-
tions, but they are not necessary for the results quoted here.

El Gamal shows that under the above assumptions, in an array that hasN x N routing
channels, the densities of the channel segments will be Poisson distributed, with the aver-

age density given by . This result provides a convenient method of predicting

channel densities and holds as long as , independent ofN.

P RCi
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P RCi
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3.1  Predicting Channel Densities in FPGAs

Although the results in [12] were developed for Master Slice circuits, they can also be
applied to the FPGAs considered here, since both types of devices are based on a two-
dimensional array of identical cells. The definitions of the routing channels differ, but
these differences can be ignored since the tracks consist of short segments that span only
one cell in both cases.

Having made these assumptions, it is convenient to predict channel densities in
FPGAs using El Gamal's result. The accuracy of the predictions can be checked by com-

paring the ideal Poisson distribution with mean  to the distribution of channel
densities in real FPGA circuits. Such comparisons were conducted for the example cir-
cuits that were used in the experimental study described in [2]. A typical result is shown in
Figure 4, which gives one curve for the ideal Poisson distribution and another curve for
the measured distribution of channel densities. As the figure shows, the actual densities
are very close to the Poisson predictions.

It is interesting to discuss a physical interpretation of the Poisson distribution in this
context. Assume that an FPGA hasW tracks in each routing channel and consider a spe-
cific point along the channel. For each of theW tracks at that point, define as the proba-
bility of the statistical event that the track would be occupied after some circuit had been
routed in the FPGA. If , there will be a probability, , that the track will be occu-

pied by some connection. If , then there will be a probability, , that each of the

two tracks will be occupied by some connection, and . Extending this to the gen-

eral case, if , then each track will be occupied with probability , and

λR( ) 2⁄

Figure 4 - Predicted versus Actual Channel Densities.

 

Ideal Poisson

Actual

Probability

Density

0.000

0.020

0.040

0.060

0.080

0.100

0.120

0.140

0.160

0.180

0.00 2.00 4.00 6.00 8.00 10.00 12.00

pi

W 1= p1

W 2= p2

p2 p1<
W n= pn



- 9 -

. Furthermore, as , . Since  is small in the limit-
ing case, the event that a track is used is a rare event and the number of these events (den-
sity) can be approximated by the Poisson distribution. This discussion follows the
standard procedure that can be found in most probability texts (such as [14]) for showing
the applicability of the Poisson process as an approximation of the number of occurrences
of some event that occurs rarely in the limiting case.

In FPGAs in which the tracks consist of wire segments that span multiple logic blocks
(without travelling through any switches, as in the FPGA described in [6]), El Gamal's
result may not be an accurate approximation of channel densities. In such cases, a different
method of calculating densities would be needed. For this reason, the probability expres-
sions that are developed in the following section are derived in a general way that does not
hinge upon any particular distribution for the channel densities. However, assuming a
Poisson distribution allows some expressions to be simplified, an example of which is
given in Section 4.1.

4  The Probability of Successfully Routing a Connection

This section derives analytic expressions for calculating the probability of successfully
performing the detailed routing of a single connection in an FPGA, accounting for the
effects of other connections that have been previously routed. As an example of a connec-
tion, consider Figure 5. The figure shows a connection,, that starts at logic block

( ) and travels through routing channels to logic block ( ). The length of  is
defined in terms of the number of logic blocks traversed (to be consistent with [12]), as

. Also, the number of S blocks that passes through is given

by . To define the probability, , of successfully routing , it is assumed

that  passes throughn S blocks, meaning that . The statistical event that

corresponds to this assumption is written .

The following statistical events are useful for calculating :

pn pn 1− … p2 p1< < < < n ∞→ pn 0→ pn
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•  - the event that the logic block pin associated with at  can connect to at

least one track at the first C block. Note that there are, by definition, tracks that can
connect to the logic block pin, but any number of those tracks may already be used by
other connections that have been previously 'routed'.

•  - the events that  can successfully reach at least one track on the outgo-

ing side of the first, second, up to the S block.

•  - the event that at least one of the tracks that are available to at the last C block

can be connected to the appropriate logic block pin at .

•  - the event that  can be successfully routed.

Since  is successfully routed only if all of the events  occur, then

and the probability of successfully routing is given by

1

Since the events  are not independent, it is necessary to determine
expressions for each of the terms in Equation 1. This is accomplished in the following sec-
tions by using combinatorial analysis that accounts for the flexibilities of the C and S
blocks ( ), the number of tracks per routing channel (W), and the densities of the
routing channels. As discussed in Section 3, channel density is approximated by the Pois-

son distribution with parameter , where  is the number of connections per logic

block and  is the average connection length. Appropriate values for and  are dis-
cussed in Section 5.

4.1  The Logic Block to C Block Event

The event  can be depicted as shown in Figure 6. The figure gives a routing channel

with W tracks and a logic block pin that can connect to of the tracks, via routing
switches (shown by anx). The figure also shows a set ofD tracks, drawn as dashed lines,
that are already occupied by previously routed connections. In the figure, ,

, and . The event  can then be viewed as a random process in which the

switches are randomly placed on of theW tracks, and the logic block pin can connect
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to any of the  tracks that are not within the set ofD used tracks. To derive an expression

for , it is convenient to define the eventNONE as the opposite of  ðð— i.e.

. The eventNONE occurs when all  tracks are within the set of

D used tracks. As a first step to evaluating , assume that  and define the
corresponding event . Assuming that the  switches can appear on any of theW

tracks, the probability ofNONE conditional on  is the ratio of the number of ways in

which all  of the switches can lie within thed occupied tracks to the number of ways in

which the  switches can appear on any of theW tracks. By combinatorial analysis, this
can be expressed as

2

where  means the combinations ofd things taken  at a time. As a check, note that

 is 0 if  and 1 if . Next, consider the events
corresponding to the possible values ofD. Since the occurrence ofNONE implies exactly
one of , then

and since  are mutually exclusive

Using the relation ,

The terms  are given by the Poisson distribution (as discussed in Section 3) with

parameter , written , so that

and, substituting Equation 2,

Finally,

Fc
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3

Note that Equation 3 involves an error because the Poisson distribution has an infinite
tail, whereas the summation has an upper limit ofW. This means that there is a non-zero
probability of channel densities aboveW, but for practical values ofW this error is very
small and can be ignored. This same statement also applies to other equations that appear
later in this paper.

Equation 3 has been developed in a way that does not depend upon the channel densi-
ties being Poisson distributed. This approach is taken because the densities in some
FPGAs, such as those having tracks with segments that span multiple logic blocks, may
have distributions that are not Poisson. The stochastic model can still be used for such
FPGAs, by replacing  with an appropriate distribution. It is interesting to note,

however, that the properties of the Poisson distribution allow expressions like Equation 3
to be simplified, as described below.

Equation 3 can be simplified by realizing that a Poisson distribution is divisible. In the
case of event , this means that rather than considering a Poisson process overW tracks,

with mean , it is sufficient to deal with a smaller Poisson process over tracks, with

mean . Then,  is given by , and Equation 3 can be expressed

as
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Similar simplifications can be made for other expressions shown later in this section, but
they are easily developed and so are not shown.

Equation 3 calculates  based on the relationship between the event and the

eventNONE. An alternative is to calculate  directly by defining  as

the events that  occurs with exactly  available tracks. Using this approach,

and since  are mutually exclusive,

Although  can be calculated using Equation 3, each of  will be required in

the next section, and so they are derived here. Consider the general case of occurring

with exactly (a) available tracks, and the corresponding event. Assuming a specific

number of occupied tracks, , the conditional probability  can be

expressed using combinatorial analysis as

In words, this is the number of ways that a set of  tracks can be within (d) used

tracks times the number of ways of choosing a set of (a) tracks from  tracks, all divided

by the number of ways that two distinguishable sets of (a) and  tracks can be within

W tracks. Since the occurrence of  implies exactly one of , following
the steps shown for Equation 3,

4

As a check, it is easily verified that  can be obtained using Equation 4 by setting

, which must be true since . Finally,
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4.2  The S Block Events

All of the events that are associated with S blocks can be treated in a uniform way.
This section first derives probability expressions for  and then shows how the result

can be applied to subsequent S blocks.

4.2.1  The First S Block Event, for

Since  will be affected by the flexibility of the S block, it is convenient to

assume a specific value of . In the following derivation, the case  is assumed.
This is the easiest case to handle because it means that each wire segment that enters an S
block can connect to exactly one wire segment on each other side. Also, the derivation
need not be concerned with whether a connection turns or passes straight through an S
block since the effect is the same in both cases. Section 4.2.2 shows how the result can be
extended to any value of .

The event  is depicted in Figure 7, which shows an S block and a routing chan-

nel that hasW tracks. The figure shows a set of  tracks, drawn as bold lines, that are
available at the incoming side of the S block and a set ofD tracks, drawn as dashed lines
on the outgoing side of the S block, that are already used by other connections. In the fig-

ure, , , and . Note that setting  to three corresponds to the

event , from Section 4.1. Figure 7 uses dotted lines to indicate S block switches and
shows that each track on the incoming side of the S block can be connected to one other
track on the outgoing side. The S block event can then be considered to be a random pro-

cess in which each of the  incoming tracks can connect to one track on the outgoing
side of the S block, as long as that outgoing track is not among theD used tracks. In other

words, given that there are  tracks that are available on the incoming side of the S
block, it is necessary to find the probability that one or more of these tracks are also avail-
able on the outgoing side.
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The event  can occur with one or more available outgoing tracks. To calculate

, define  as the events that  occurs with exactly

 available tracks on the outgoing side. Since

and  are mutually exclusive

5

Solving for each term in this summation requires several steps. Consider the general
case where  occurs with exactlyk available outgoing tracks. The corresponding

event is written . The probability of  will depend on the number of tracks available

on the incoming side, given by , and on the value ofD. Assume a specific value of

. Since  is known to have occurred, this corresponds to assuming that
occurred with exactly (a) available tracks. The appropriate statistical event for this

assumption is then written as . Also, assume that . A conditional probability

for  can then be expressed using combinatorial analysis as

6

Equation 6 expresses the ratio of the number of ways in which exactly (k) of the (a)
available incoming tracks can end up on unoccupied tracks on the outgoing side of the S
block to the number of ways in which two distinguishable groups of (k) and (a - k) tracks
can appear on any of theW tracks. To expand Equation 6, following the steps outlined in
the previous section, consider the events  corresponding to the possible

Figure 7 - The Event .S1
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values of D. Since the occurrence of  implies exactly one of

, then

 Next, consider the events  corresponding to the possible val-

ues of . The occurrence of  implies exactly one of , so

that

7

As stated above, the terms  express the probability that, given the occurrence of

event ,  occurred with exactly (a) available tracks. Each of  is defined by

Bayes' rule [14], according to

8

where  are given by Equation 4. Substituting Equations 7 and 8 into 5,

9

4.2.2  The First S Block Event, for Any Value of

Equation 9 assumes a specific value of S block flexibility, . This section shows

how Equation 9 can be generalized for other values of. In Equation 6, a one-to-one cor-

respondence was assumed between the subscript (a) in , on the left hand side of the
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equation, and the variable (a), on the right hand side. This relation holds for  but

does not necessarily apply for other values of. For example, if  a more appro-
priate variable for the right hand side of the equation is2a. In general, the subscript (a)
should be scaled by some factor, , and Equation 6 becomes

10

Clearly,  depends on the value of , but  may also depend on whether a connection

passes straight through a particular S block, or turns. Define as the event that a connec-

tion passes straight through an S block, and as the event that it turns. Also, define

and  as the values of  corresponding to  and . Since  implies one of

, then

and using Equation 9 and 10,

11

Appropriate values for  (note that ), , and  are discussed

in Section 5. Note that the (k) summation in Equation 11 has an upper limit ofW, whereas
the corresponding upper limit in Equation 9 is. This change is required since it may be

possible to connect to allW tracks in a channel for values of that are greater than three.

4.2.3  The Remaining S Block Events

Thus far, this section has dealt specifically with the event , but the derived

expressions are applicable to any of the other S block events, with two changes. First, for

the  S block event, , all summations must reach an
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upper limit ofW. Second, the probabilities  in Equation 11 are replaced

by , which are defined by Equation 12, with . Applying
these changes, Equation 7 becomes

12

and Equation 11 becomes

13

4.3  The C Block to Logic Block Event

The event  is depicted by Figure 8, which shows a set of  tracks, drawn as

bold lines, that are available at a C block (this corresponds to the event in Section 4.2)

and a set of  tracks that connect to the appropriate logic block pin for the connec-

tion. The event  can then be viewed as a random process in which the logic block pin

can be connected to any of the set of tracks where there are switches. Stated differ-
ently, given that one or more tracks were available at the outgoing side of the last S block,
it is necessary to determine the probability that one or more of these tracks connects to the
appropriate logic block pin. To simplify the notation, the expression

will be substituted for bySX. To calculate the probability of , define the opposite

event , where . To find , assume
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a specific value of  and define the corresponding event . A conditional

probability for  can then be defined by

14

Equation 14 assumes that each of the switches for the logic block pin associated

with event  is equally likely to be on any of theW tracks. This may not be realistic since
a good C block would be designed to ensure that the tracks that are connectable to one pin
would overlap the tracks connectable to others. A detailed discussion of this issue can be
found in [10]. This inaccuracy in Equation 14 will have the effect of producing low pre-
dictions of routability for low values of , which is discussed further in Section 5.1.

Consider the events  corresponding to the possible values of.

Since the occurrence of  implies exactly one of , it follows
that

where each of  is given by Bayes' rule, so that
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15

Each of  can be calculated using Equation 12, with . Note
that for the case of a connection that has length one, there are no S block events, so that

 in Equation 15 are replaced by . Each of  can be calculated

using Equation 4.

4.4  The Probability of

Equation 1 can now be solved using the expressions developed in this section to calcu-
late , for the given value of . Equation 1 is reproduced below, as Equa-

tion 16.

16

To make use of this result to calculate , define  as the maximum

length of any connection and  as the corresponding event. Appropriate values for

 are discussed in Section 5. Next, consider the events  corresponding to

the possible values of . Since the occurrence of  implies exactly one of

, then

17

where  are given by the probability distribution of connection length, referred to

in Section 2 as , and each  is defined by Equation 16. As mentioned in Sec-

tion 2,  is assumed to be geometric, with mean. Thus,  is given by
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where  and . The following section shows how Equation 17 is evaluated

to predict routability.

5  Using the Stochastic Model to Predict Routability

In order to make use of Equation 17, it is necessary to choose appropriate values for
the various parameters that appear in the expressions developed in Section 4, as well as to
evaluate the function , that is used to predict channel densities. This section first shows

how  is calculated and then gives appropriate values for each of the parameters. The

routability predictions produced by the stochastic model are then presented, and are vali-
dated by comparisons with the results of an experimental study that has been previously
published [2].

As stated in Section 3, the parameter is defined by , where  is the

average connection length and is the ratio of the expected number of routed connections
to the total number of logic blocks. Given this definition, must be re-calculated after
each connection is probabilistically 'routed' by the stochastic process. Thus, after
connections have been 'routed', can be calculated as

18

It is necessary to assign values to the following parameters:N, W, , , , ,

, , , and . The first three of these depend on the size of the FPGA array and the

next three are determined by the characteristics of the circuit to be routed. The routability
predictions that are generated here will be compared with the results from a previously
published experimental study, so the parameters will be taken from the FPGA circuits that
were used there [2]. The corresponding values are listed in Table 1. Note that some of

Circuit N W

BUSC 11 11 20 392 2.7 .71

DMA 15 12 28 771 2.8 .75

BNRE 20 14 38 1257 3.0 .75

DFSM 21 13 40 1422 2.85 .76

Z03 25 13 48 2135 3.15 .75

Table 1 - Stochastic Model Parameters for Experimental Circuits.
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these parameters did not appear in the original paper [2], but the values in Table 1 have all
been measured from the actual circuits.

The parameters  and  can be approximated by making some assumptions con-

cerning the topology of the S blocks. It is assumed here that the topology is similar to the
one used in [2]. This means that as is increased from its minimum value of 2, switches
are added to the wire segments in the order straight across, right turn, left turn, straight
across, right turn, etc. It is further assumed that the topology spreads the switches among
the tracks such that every wire segment can be switched to exactly others. Given these

assumptions, appropriate values for and  are shown in Table 2.

5.1  Routability Predictions

Recall, from Section 2, that routability is defined as

. 19

This equation can now be evaluated using Equation 17, the expressions developed in
Section 4, Equation 18, and Tables 1 and 2. A typical result is shown in Figure 9, which
gives a plot of the expected percentage of successfully completed connections versus con-
nection block flexibility, , for parameters that correspond to the circuit called BNRE.

Each curve in the figure corresponds to a different value of S block flexibility, . The

lowest curve represents the case  and the highest curve corresponds to .

The figure indicates that the routability is low for small values of and only approaches

100% when  is at least one-half ofW. The figure also shows that increasing the S block

flexibility improves the completion rate at a given, but to get near 100% the value of

 must always be high (above 7 for this circuit). These conclusions are the same as those
reached in the experimental study described in [2].

Figure 10 is a plot of the expected percentage of successfully completed connections
versus S block flexibility, , also for the circuit BNRE. This plot represents the same data

2 3 4 5 6 7 8 9 10

1.0 1.0 2.0 2.0 2.0 3.0 3.0 3.0 4.0

0.5 1.0 1.0 1.5 2.0 2.0 2.5 3.0 3.0

Table 2 - Approximations to  and .
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as that shown in Figure 9 but a different insight is provided by plotting  along the x-

axis, instead of . Each curve in the figure corresponds to a different value of , with

the lowest curve representing  and the highest curve corresponding to .

The curves show an increase in slope at values of 4, 7, and 10. This occurs because

switches are added straight across the S blocks for these values of and, as Table 1

shows, connections pass straight through the S blocks more than 70 percent of the time.1 It
is clear from Figure 10 that if  is at least one-half ofW, then very low values of
approach 100% routability.

While the theoretical and experimental results lead to the same general conclusions,
they are not identical. Figure 11 directly compares the routability results produced by the
stochastic model with the experimental results from [2]. The solid curve corresponds to
the result published in [2] whereas the dashed curve is produced by the stochastic model.
Both curves correspond to circuit BNRE, with . As Figure 11 indicates, the two
results are quite similar. The fact that the theoretical curve is lower than the experimental
one for low values of  is due in part to Equation 14, which, as discussed in Section 4,
does not accurately represent how a good C block topology would perform. A summary of
comparisons between theory and experiment for all the circuits appears in Table 3. For

1.  Note that whether each added switch corresponds to a turn or a straight-through connection depends on the values
used for  and . The reason for choosing the values shown in Table 2 is that this corresponds to the way that
switches were added in the experimental study to which the predictions from the stochastic model are being compared.
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each circuit, the table shows the difference between the theoretical and experimental
routability results, for each value of . Each entry gives the mean value (and standard
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deviation) of the difference, over the range of values of from 1 toW. The values in the
table are in percentages since those are the units of routability. Absolute values are used in
the table to avoid a misleading average that could be caused by combining negative and
positive differences. However, this is not really necessary since, as Figure 11 indicates, the
theoretical predictions are almost always pessimistic. As Table 3 shows, the experimental
measurements and theoretical predictions of routability are close, especially for values of

 greater thanthree.

5.1.1  Practical Use of Routability Predictions

The routability predictions produced by the stochastic model can be viewed as the
likelihood of successfully routing a circuit. In this context, routability is useful as a means
of making the binary decision of whether or not a particular circuit can be routed in an
FPGA with a given routing architecture. Making this decision requires the selection of a
minimum value of routability for which a circuit should be deemed routable. In [11],
Heller et. al. suggest that this minimum value should be at least 90 percent, but that for
large circuits it may be better to specify an absolute number of failed connections rather
than a percentage. However, Heller’s results are based on mask-programmed chips so they
should not be blindly applied to FPGAs. Comparisons with experimental results indicate
that routability should be at least 95 percent in order for a circuit to be deemed routable in
an FPGA, but this is based on a small set of examples. More research should be carried out
to decide what minimum value of routability is applicable to a wide range of circuits.
Also, this value is likely to vary depending on the flexibility of the FPGA’s routing struc-
tures.

BUSC DMA BNRE DFSM Z03

Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D.

2 7.7 4.9 10.2 7.5 7.3 6.3 8.9 8.3 7.2 5.9

3 9.7 5.6 12.5 8.1 8.7 6.7 10.8 9.4 10.2 5.6

4 2.9 2.9 4.1 4.5 1.5 3.1 2.7 5.3 1.9 2.1

5 3.7 4.3 4.9 5.8 2.4 4.3 3.7 6.1 1.8 2.7

6 3.2 3.5 5.0 6.2 2.6 4.7 4.0 6.7 2.1 3.3

7 4.8 4.3 5.1 6.6 2.8 4.3 3.9 6.1 1.8 2.8

8 4.3 4.6 5.1 6.5 3.1 4.3 4.1 6.2 2.2 2.6

9 4.3 4.9 5.0 6.3 3.2 4.4 4.2 6.2 2.5 3.0

10 4.3 4.8 5.2 6.7 3.2 4.3 4.2 5.9 2.9 3.4

Table 3 - Summary of Comparisons Between Theory and Experiment.
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Fs
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6  Conclusions and Future Work

This paper has described a stochastic model that can be used to study the effect of the
flexibility of an FPGA's routing architecture on its routability. It has been shown that the
model can be used to reach the same conclusions that were generated in a previous paper
using an experimental approach. In future work the model should be extended to handle
the case where some of the routing switches in the S blocks are replaced by hard-wired
connections. This would allow the modelling of routing architectures in which the tracks
may be composed of segments of various lengths and would allow the stochastic model to
be used to study such architectures.

It was illustrated in Section 5.1 that the routability predictions produced by the sto-
chastic model are pessimistic. Part of the reason for this may be that the model assumes
that all connections to be routed are influenced in a statistical way by all others so that any
connection has a non-zero chance of failure. This does not truly correspond to an actual
circuit, in which a large percentage of the connections are trivial to route and only a small
number have a chance of failure due to interference with other connections. It would be
interesting to see how the stochastic model could be modified to account for the fact that
most of the connections in a circuit are trivial to route, while still handling the important
side effects for the difficult connections.
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