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ABSTRACT 
 The cost functions used to evaluate logic synthesis 
transformations for FPGAs are far removed from the final speed 
and routability determined after placement, routing and timing 
analysis. This distance has given rise to the field of physical 
synthesis, which attempts to improve logic synthesis by 
employing cost functions that contain placement, routing and/or 
timing analysis information. 
 In this work we take this notion to an extreme that we call 
omniscience, in which post-routing timing analysis is provided 
in the context of a manual editor in which the user selects logical 
and physical transformations. After each incremental circuit 
modification, the user is informed of the circuit performance 
after routing and timing analysis. Since the computations 
involved in providing this level of information are large, we 
restrict the application to relatively small circuits, no larger than 
1000 logic elements. 
 Using this approach on a commercial FPGA, we propose a 
set of logic transformations specific to the logic and routing 
architecture of the Xilinx Virtex-E device. On a set of 10 circuits 
we have achieved an average performance improvement of 10% 
when both logical and physical changes are used.  Another value 
of the editor is that it reveals new types of automatable physical-
synthesis transformations and optimization strategies that arise 
from architectural properties of the target device. 
 
Categories and Subject Descriptors 
B.6.3 [Logic Design]: Design Aids – Optimization 
 
General Terms 
Algorithms 
 
Keywords 
Synthesis, Manual, Virtex-E 
 
1. INTRODUCTION 
 Typical CAD flows for FPGAs perform independent and 
sequential optimizations as illustrated in Figure 1(a). The early 
stages make decisions with poor visibility into the final result, 
after placement and routing. For example, lookup-table based 
logic synthesis algorithms [4][11] use LUT depth to measure the 

 
Figure 1: Typical FPGA CAD Flow 

(a) single pass, (b) physical synthesis with iteration 

(a) (b) 

delay effect of a logic transformation, which doesn’t account for 
the delay effect of physical distance after placement. 
 Various physical synthesis techniques have been proposed 
that provide more knowledge from the physical design steps 
back into the logic synthesis stages as illustrated in Figure 1(b).  
The basic approach is to iterate between synthesis and 
placement (including a post-placement timing analysis).  The 
two keys to these efforts are the amount and type of information 
passed back to synthesis, and the constraints passed forward 
from synthesis into placement. In [2][3][5] and [10] the post-
placement position of logic is used to form more accurate 
models of net delays that are then used to evaluate logic 
transformations. The output of synthesis also indicates where 
newly created logic should be placed. While [5] and [10] 
execute logic synthesis and placement as discrete “batch mode” 
steps, [2] constantly moves back and forth between the two, 
maintaining the most up-to-date view of the placement. 
 The work in [1] performs physical synthesis in a different 
way: the logic synthesis stage provides several mapping 
solutions for a group logic from which the placement stage 
selects the final choice. 
 In most cases, these approaches to physical synthesis group 
many logic transformations together and pass them on to a 
placement phase for legalization and recalculation of delay 
effects. Even in the approaches that iterate more frequently 
between synthesis and placement, the true effect of a single 
change is not known because it only becomes apparent after 
routing and timing analysis.  
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 In this work we propose a far more precise decision making 
process: each single transformation will be evaluated using the 
post-routed timing analysis. This approach captures the exact 
effect of an incremental circuit transformation on the post-
routing circuit speed. We call this kind of cost function 
omniscient, because it knows everything that is possible to be 
known about the result of a transformation. This work is done in 
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the context of a manual editor, because the computation required 
to provide omniscience is large, but can be tolerated in the 
human-interaction scale of time. To reduce the time spent on 
computation we limit the size of the circuit to less than 1000 
logic elements. 

 
Figure 2: A Virtex-E Architecture “Slice” 

 The work in [6] applied an omniscient approach to manual 
clustering and placement and achieved significant speed 
improvements.  We extend their work to the synthesis domain, 
allowing changes that simultaneously encompass the logic 
functionality, the physical placement, and the routing.  An 
interesting outcome of this new work is the invention of 
transformations that target a mixture of architectural features 
across the logic, placement and routing domains.  For example, 
we show how adjustments in the choice of the carry structure 
give benefit once the placement and routing flexibility is taken 
into account. 
 Our manual editor, Augur, targets a real FPGA 
architecture, the Xilinx Virtex-E family [7]. The exact delay 
modeling provided by Xilinx FPGA Editor enables the manual 
editor to perform accurate timing analysis. The performance 
improvement obtained with this approach is real. 
 Augur gives the user the ability to perform logic 
transformations on a fragment of the circuit. The user selects the 
circuit fragment and specifies the transformation to be 
performed on it. Augur applies the transformation and requires 
the user to provide the placement for the newly created logic 
elements. The editor then re-routes and timing analyzes the 
circuit and provides the user with the resulting circuit speed. 
 The remainder of this paper is organized as follows: 
Section 2 describes the relevant architectural features of the 
Virtex-E FPGA and the work in [6] in more detail. Section 3 
describes how the user employs the editor, which we call Augur. 
Section 4 details the logic transformations available in the 
Augur, and Section 5 provides benchmark results. In Section 6 
we look at the optimization strategies used in the manual 
operation of the editor and propose automatable procedures that 
could be implemented as scripts in our tool or employed as 
physical synthesis algorithms. 
 
2. BACKROUND 

Some of the logic transformations available in Augur hinge 
on structures specific to the Xilinx Virtex-E architecture. In this 
section we review that device architecture and provide a short 
overview of the prior manual editor [6] our work is based on. 
 
2.1 The Xilinx Virtex-E Architecture 
 The FPGA devices in the Xilinx Virtex-E family are island-
style FPGAs [7]. Each Configurable Logic Block (CLB) is 
divided into two slices. Each slice contains two flip-flops, two 4-
input LUTs, carry logic, some extra multiplexors, and flip-flop 
control logic, as shown in Figure 2. The flip-flops in each slice 
must have the following common control signals: Clock, Set, 
Clear and Enable. In Section 4 we describe how these signals are 
manipulated to allow tighter packing of flip-flops. 
  
The Virtex-E Routing Architecture 
 The routing architecture consists of four types of wires: 
single-length wires between neighboring CLBs, the Nearest-
Neighbour interconnect [8] length six wires, connecting CLBs 
that are six rows/columns apart, and significantly longer wires. 

 The key type of wire that is used by our optimization 
strategies is the Nearest Neighbour (NN) Interconnect [8]. It is a 
dedicated set of wires that connects horizontally adjacent CLBs. 
This interconnect has very low delay and can significantly 
improve the performance of the circuit when used properly. 
There are two pairs of unidirectional wires between each pair of 
CLBs. 
 
2.2 Omniscient Manual Placer & Packer  
 Our effort is based on the work in [6], which introduced an 
omniscient manual editor that also targeted the Virtex-E 
architecture. It enabled the user to modify the placement and 
packing of circuits (that are first created in the usual automated 
way) and afterwards conducted the timing analysis to inform the 
user about the new circuit performance, thereby providing 
omniscience to the user. The precise delays used in the timing 
analysis were obtained by querying the Xilinx FPGA Editor 
software. All changes to the circuit were made both within the 
editor itself and the Xilinx FPGA Editor back end, so that a full 
functioning circuit was always available. The timing analysis, 
which was restricted to single-clock circuits, was done in a 
somewhat incremental fashion to decrease the response time 
seen by the user.  On a set of eight benchmark circuits, [6] 
achieved an average increase in operating frequency of 12.7% 
compared to the best of 10 runs of the standard synthesis, 
placement and routing flow. 
 
3. USER EXPERIENCE 
 We first describe how the user interacts with Augur, and 
then discuss the details of the specific logic synthesis 
transformations it provides.  
 To begin, the user performs a fully-automated synthesis, 
placement and routing flow on the circuit, as illustrated in 
Figure 1(a). We use the Synplicity Synplify Pro version 7.1 tool 
and Xilinx ISE version 5.1. The results are read into Augur, 
which creates a display such as the one illustrated in Figure 3. 
The LUTs, flip-flops and carry logic are separately displayed. 
The user can set a desired operating frequency, or the critical 
path delay, and cause Augur to display components and nets that 
are critical or close to critical in red, as illustrated in Figure 3. 
 
3.1 Placement and Packing Modifications 
 To modify the packing or the placement, the user selects a 
set of components and moves them into a new location. Changes 
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Figure 3: Editor screenshot: LUTs are cyan muxes, flip-
flops are green rectangles,  carry logic is yellow +; The 

critical path is highlighted in red. 

Figure 4: Schematic View with Transformation List 
to the placement and packing are made within Augur’s data 
structures and are transmitted through named pipes to a live 
version of the Xilinx FPGA Editor, which returns the delays on 
any modified connections. Augur performs the timing analysis 
and presents the updated circuit speed to the user. 

Figure 5: Placement of Newly Synthesized Logic 

 
3.2 Logic Synthesis Changes 
 Upon inspection of the view presented in Figure 3, the user 
can select a set of logic components for synthesis 
transformations.  The user then selects the “Transform” button 
to change the view to a schematic form as illustrated in Figure 4. 
 This view presents the selected sub-circuit with the inputs 
on the left and outputs on the right side of the screen. The user 
can select the components in this view and perform logic 
synthesis transformations on them. The user must determine the 
new placement for the new circuit components produced in the 
transformation. It is possible that there are more, or fewer, 
components than before the circuit was transformed, which 
require positions. To choose those positions, the user switches 
back to the grid view, as illustrated in Figure 5. This latter view 
is important to ensure that routing features, such as the Nearest-
Neighbour interconnect, are profitably leveraged.  
 
4. LOGIC SYNTHESIS TRANSFORMS 
 Now that we have provided the context for Augur, we 
describe the logic synthesis transformations provided to the user. 
The transformations available to the user are: remapping, 

 
Figure 6: Slice with a carry chain 

dupl
ication, merging, carry chain shortening and control signal 
extraction.  
 The input to every transformation is a connected graph of 
logic components selected by the user. When the user selects a 
specific transformation for that logic, the tool determines if the 
selected logic can be successfully transformed. If it can, then the 
application of a transformation results in a new set of logic 
components that the user can place. In the following we describe 
the set of logic synthesis transformations available in Augur.  
 
4.1 Remapping 
 The remapping operation transforms a set of logic 
components into a functionally equivalent set that fits into a 
single slice or a CLB. The following sub-sections describe two 
mapping algorithms: carry chain mapping and multiplexer 
mapping. 
 
4.1.1 Mapping into Carry Chain 
 In this subsection we focus on how the Virtex-E carry chain 
logic can be utilized to implement an AND or an OR gate, and 
the algorithm that makes this mapping possible in Augur. 
 The carry chain logic in the Virtex-E slice connects the two 
LUTs together, as shown in Figure 6. This structure can be 
manipulated to implement an AND or an OR by assigning 
constant values to inputs CY0F, CY0G and CIN. To convert the 
carry chain into an AND/OR gate we set CY0F=CY0G=0/1 and 
CIN=1/0. 
 The advantage of using the carry chain structure is that a 
pair of serially connected LUTs can sometimes be converted 
into a parallel pair of LUTs connected through this fast AND or 
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Figure 7: Example Circuit for  AND Gate Mapping into 
Carry Chain 

 

Figure 8: Remapping: (a) AND gate extracted from LUT 
A, (b) Implementation of AND in Carry 

(a) (b) 

OR gate.  Since the carry multiplexor is very fast, the 
transformation can lead to an overall reduction in delay if the 
original pair of LUTs is on the critical path. 
 Consider the example pair of LUTs (A and B) illustrated in 
Figure 7, which shows the logic function of each LUT as a 
schematic inside each LUT box.  The highlighted AND gate at 
the right of LUT A can be implemented in the Carry Chain of 
Figure 6 because one of its inputs comes directly from LUT B. 
Figure 8(a) illustrates the isolation of this AND gate and Figure 
8(b) shows the final implementation. 
 To determine if a pair of serially connected LUTs can be 
mapped into a slice, we need to find an AND gate (or OR gate) 
as shown in Figure 8(a). To do this we perform a Shannon 
expansion of LUT A’s function with respect to LUT B.  Let A 
be the function of LUT A, and B be the signal generated by LUT 
B.  The inputs to A are x1, x2, x3 and B.  From Shannon’s 
theorem [9] we have: 
 A  =  A(x1,x2,x3,0) B’ + A(x1,x2,x3,1) B 
If the function A(x1,x2,x3,1) evaluates to a constant 0, then the 
function A reduces to: 
 A  =  A(x1,x2,x3,0)  AND B’, 
which gives us the AND gate we were looking for to map into 
the carry chain of the slice. An OR gate can be detected by 
following a similar procedure.  
 The algorithm in Figure 9 determines if a pair of serially 
connected LUTs can be transformed in this manner.  Its input is 
a user-selected pair of serially connected LUTs, and the output 
is either the mapping of those LUTs into a slice, or a declaration 
that the mapping is not possible. 
 In addition, it is possible to map a pair of serially connected 
LUTs in which the LUT B has fanout greater than 1. As shown 
in Figure 6, the carry chain structure allows the bottom LUT to 
produce an output signal through pin X. To properly generate 

Figure 9:  Algorithm Mapping AND & OR into the Carry 
Chain 

Input: A pair of series-connected LUTs A and B, 
 with LUT B driving LUT A. 
Output: On success, a mapped Slice 
 
Let A be the function of LUT A, and B be the 
 function of LUT B. 
f0 = Shannon expansion of A with respect to B=0 
f1 = Shannon expansion of A with respect to B=1 
 
if either f0 or f1 is a constant (i.e. is 0 or 1) 

then it is possible to map A and B into a slice: 
let h be the co-factor (f0 or f1) that is not  a 

 constant 
implement h in the  top LUT of the slice, 

 inverting if necessary as per Section 2.1 
implement B in the bottom LUT 
 create a LUT that inverts the output of 
 LUT B if B uses output pin X 
return function implemented in a Slice 

else 
return fail.

this secondary output it may be necessary to add a single LUT 
that inverts the output of pin X, since the function of LUT B 
may need to be inverted to implement an AND gate (or an OR 
gate) in the carry chain. 
   
4.1.2 Mapping into Joint-LUTs and Joint-Slices 
 The Virtex-E slice contains fast multiplexers that combine 
two or more LUTs to create higher fanin functions. The inputs to 
the multiplexer are the outputs of both LUTs in the slice, as 
shown in Figure 10. This structure, which we will call the Joint-
LUT structure, allows some 9-input functions to be implemented 
in a single slice. 
 To implement a 9-input logic function in the Joint-LUT 
structure we have to decompose the function such that one of its 
inputs will drive the selector input of the multiplexer, while the 
remaining inputs will be assigned to the LUTs in the slice. 
Shannon’s decomposition theorem [9] allows us to do this. The 
basic idea of the procedure is to perform Shannon’s expansion 
with respect to every variable of the function [15]. A valid 
mapping of the 9-input function into the Joint-LUT structure is 
found when both cofactors of the function in the Shannon’s 
expansion are functions with at most 4 inputs. 
 The advantage of using the Joint-LUT structure is that it 
exploits parallelism, which can reduce the delay of signals 
passing through it. For example, when a pair of serially 
connected LUTs is mapped into this structure, the function of 
both LUTs in the slice is evaluated in parallel. Thus, the delay 
through the Joint-LUT structure is the delay of one LUT and 
that of the dedicated multiplexer.  
 It is possible to implement even more complex functions by 
merging two Joint-LUT structures with a multiplexer available 
in the Virtex-E CLB, as illustrated in Figure 11. We call this the 
Joint-Slice structure, and it can have up to 19 total inputs.  The 
mapping algorithm is very similar to the Joint-LUT mapping 
algorithm above, except that the algorithm looks for a successful 
mapping of each cofactor into a Joint-LUT structure instead of a 
LUT. 
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Figure 10: Joint-LUT structure 

Figure 11: CLB in Joint-Slice configuration 

 
Figure 12:  Mapping two functions into a Joint-LUT 

 This approach is similar to the one proposed in [15]. We 
have enhanced the algorithm to take advantage of extra outputs 
available in the Joint-LUT and the Joint-Slice, as illustrated in 
Figure 12. Observe that pin X of the slice, as shown in Figure 
10, generates the primary output of the slice and that pin Y can 
be set to generate the function of the upper LUT. 
 Consider mapping a 9-input/2-output function into the 
Joint-LUT structure. The primary output function can be easily 
determined, as before. To implement a second function, it has to 
be the primary output function for the top LUT, which is the 
substructure of the Joint-LUT. Similarly, mapping the same 
function into the Joint-Slice means that the second function has 
to be either the primary output function for a Joint-LUT or a 
LUT.  
 We exhaustively search for a matching between the outputs 
of the multi-output function and the outputs of the target 
structure. The algorithm to map a set of functions into a Joint-
LUT structure is presented in Figure 13. The algorithm for Joint-

Figure 13: Algorithm for mapping into Joint-LUT  

Function map_into_Joint_LUT(F) 
Input: F - a set of at most 2 functions  
Output: TRUE/FALSE 
 
Let t be the primary output function 
Let s be the other function 
For all variables x in the support of t 
 Perform Shannon’s Expansion of t with respect 
  to x to obtain cofactors xt and   xt  
 if each cofactor fits in a single LUT then 
  if  (|F | = 2 and xt = s or   xt = s ) or 
   (|F | = 1) then 
    return TRUE; 
end for 
return FALSE; 

 
Figure 14: Mapping not found by our algorithm 

Slice mapping is similar. Instead of checking for mapping of the 
cofactors into a single LUT, we check for mapping of cofactors 
into the Joint-LUT. 
 Note that this algorithm will be unable to map structures 
like those illustrated in Figure 14, even though this is a correct 
mapping. This is because in Shannon’s expansion one variable is 
removed from the equation of each cofactor and it is assigned to 
drive the multiplexer selector input. However, the function r in 
Figure 14 depends on the variable f. 
 
4.2   Duplication 
 The second transformation available in Augur is 
duplication, which creates a copy of a selected component. By 
duplicating a component on the critical path, one can increase 
the freedom to position and route critical connections [13]. We 
have found that duplication is particularly useful feature that 
enables the use of fast Nearest-Neighbour (NN) interconnect for 
critical connections. For example, consider the circuit in Figure 
15(a). The critical path starts at a flip-flop at location (5,5) and 
goes through the LUT at location (4,6). We generally try to put 
critical connects on NN interconnect to speed them up, but in the 
current placement this strategy cannot be used, because the first 
LUT on the critical path is not in the adjacent CLB. Moving the 
flip-flop from (5,5) to (5,6) permits this connection to use the 
NN interconnects, but removes the NN connections from the 
LUTs at (6,5). By duplicating the flip-flop and placing the 
duplicate in the CLB at location (5,6), as shown in Figure 15(b), 
NN connections can be used for all outputs of the flip-flop. 
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Figure 15: Duplication example: a) before transformation, 

b) after duplicating the LUT and FF and placing them in 
the CLB above 

(a) (b) 

 
4.3 Merging 
 It is sometimes beneficial to reverse duplication that has 
occurred in previous synthesis, which we allow in a 
transformation called merging. For example, after the placement 
and routing it becomes clear that the distribution of connections 
between two duplicated components is causing the performance 
to suffer. 
 This transformation allows us to explore other mapping 
solutions or to redistribute connections between duplicate 
components. To redistribute connections we first merge two 
identical components and then perform duplication again, but 
with different connection distribution. 
 
4.4 Carry Chain Shortening 
 Carry chains have long been part of FPGA architectures 
[12][14] because they provide a high-speed path for long bit 
addition and arithmetic operations.  Their use often reduces the 
time along the critical path, or removes the arithmetic operation 
from the critical path entirely.  They come with some 
drawbacks, however, that reduce their positive impact:  most 
importantly, carry structures force the logic blocks that use them 
to be a fixed vertical or horizontal structure. This lack of 
flexibility is the flip side of the greater speed of connectivity. 
 In addition, the blind use of a carry chain may prevent other 
beneficial optimizations. For example, consider the circuit in 
Figure 16(a), which illustrates a 4-bit carry chain that feeds one 
more 2-input LUT and then a flip-flop. Assume that the most 
significant bit of the carry chain, including the LUT, implements 
a 3-input function. The most significant bit calculation, 
including carry, and the final 2-input LUT function can all be 
implemented in a single 4-input LUT as illustrated in Figure 
16(b).  
 We call this operation carry-chain shortening, as it 
removes the carry primitive from the top of the chain.  Most 
synthesis tools are not permitted to optimize carry primitives 
away, and so this opportunity is typically unexplored. The 
procedure to test if this optimization is possible is quite 
straightforward. 
 
4.5 Register Control Signal Extraction 
 Recent versions of synthesis tools have used flip-flop 
control signals to implement greater logic functionality in a 
single slice. For example, attaching a logic signal to a flip-flop’s 
synchronous clear input has the effect of ANDing that signal 
with the flip-flop’s D input. While this kind of optimization can 

 
Figure 16: Carry chain shortening example: (a) critical 

path travels through the carry chain, (b) the path is 
shortened by one carry component 

(a) (b) 

Table 1 – Benchmark Statistics and Baseline Maximum 
Operating Frequency 

Size 
Benchmark 

Name 
# LUTs & 

Carry 
Cells 

# 
Flip-Flops

Maximum 
Operating 
Frequency 

(MHz) 
Batcher 253 436 298.6 
Miim 162 119 155.0 
Vision 310 243 197.4 
Banyan 177 335 359.3 

Trap 186 486 381.0 
Boundcontroller 472 466 131.5 

Linearmap 460 72 108.0 
Vidout 447 220 134.4 

Raygencont 211 118 162.1 
Mult 29 21 122.2 

be beneficial with respect to logic depth, it can also have a 
negative side-effect: a flip-flop synthesized this way cannot be 
packed into a slice with another flip-flop that does not use 
exactly the same clear signal (most FPGA logic blocks impose 
this kind of restriction). 
 This poses a restriction on the packer and may degrade the 
final performance. The alternative, which we implement as a 
logic synthesis transformation, is to implement the synchronous 
clear function in a separate LUT.  This certainly costs extra 
logic, but it can potentially improve speed because it increases 
the packing flexibility and therefore local connectivity and 
access to NN interconnects. 
 
5. EXPERIMENTAL RESULTS 
 In this section we give the results of using Augur on ten 
benchmark circuits. We begin by describing the set of circuits 
and how we used commercial tools to create an extremely high 
quality (and therefore fair) baseline synthesis, placement and 
routing for comparison.  Since the method for producing the 
baseline is different from that of   [6], we first compare our 
packing and placement only modifications to that of [6].  We 
then show the further gains that are possible with our new 
synthesis transformations.  
 
5.1 Benchmark Circuits 
 Table 1 provides a summary of the size of each of the ten 
benchmark circuits. These circuits come from designs made at 
the University of Toronto and IP cores available through the 
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Table 2  – Results using packing and placement only

Benchmark 
Name 

Baseline 
Frequency 

(MHz) 

Freq. after 
Packing + 
Placement 

% 
Imp 

Batcher 298.6 314.0 5.1 
Miim 155.0 155.2 0.1 

Vision 197.4 197.8 0.2 
Banyan 359.2 367.8 2.4 

Trap 381.0 398.6 4.6 
Boundcontrol 131.5 137.9 4.8 

Linearmap 108.0 109.3 1.3 
Vidout 134.4 140.0 4.1 

Raygencont 162.1 173.2 6.8 
Mult 122.2 122.3 0.1 

Average   3.0 

Table 3: Results with New Synthesis Transformations

Benchmark 
Name 

Frequency After 
Pack/Place & 

Synthesis 
(MHz) 

% 
Improved 

% 
From 
Synth 
Only

Batcher 374.8 25.5 19.4 
Miim 155.6 0.4 0.2 
Vision 210.2 6.5 6.3 
Banyan 367.8 2.4 0.0 

Trap 418.4 9.8 5.0 
Boundcontroller 149.5 13.7 8.5 

Linearmap 125.7 16.4 14.9 
Vidout 155.6 15.8 11.2 

Raygencont 173.2 6.8 0.0 
Mult 124.3 1.7 1.6 

Average  9.9 6.7 

internet. A more detailed description of each circuit can be 
obtained from [16].  

Figure 17: Procedure used to generate baseline circuits 
results and circuits 

1. Set target frequency to initial setting Finit and synthesize
2. Synthesize using Synplify 7.1 Pro 
3. Place and route using Place and Route tool (par) 

provided with Xilinx ISE 5.1 Service Pack 3 tools. Set 
effort to maximum and number of P&R attempts (with 
different seeds) to 100. 

4. Record best result 
5. Repeat 2-4 for target frequency -10%, -5% +5% and 

+10% with respect to Finit. 
6. If a better solution was obtained for frequency other 

than Finit then repeat 2-5 using that frequency as Finit.

 
5.2 Baseline Circuit Generation 
 To achieve the best possible baseline circuits we created a 
very rigorous procedure using the best-in-class tools. Figure 17 
summarizes the procedure, the key of which is that each circuit 
is placed and routed using 100 different seeds each for at least 
five different target frequency settings. Although this is not 
practical for large circuits, the limit we imposed on the circuit 
size enabled us to do this in reasonable amount of time. As a 
result our baseline circuits have baseline performance that on 
average is 2.4% better than using the method in [6]. 
 
5.3 Placement and Packing Only Changes 
 In order to separate out the additional advantage of the 
synthesis transformations described in Section 4, we first 
improve the baseline circuits using only packing and placement 
modifications, in the manner of [6]. Table 2 provides a summary 
of these results. We obtained an average of 3.0% performance 
improvement across the 10 circuits.  This is significantly less 
than the 12.7% achieved in [6], which we believe is due to the 
following reasons: 
1. We are using newer placement and routing tools (Xilinx 

ISE 5.1 service pack 3 vs. 3.3 SP7).  
2. We are using newer, better Synthesis tools (Synplicity 

Synplify 7.1 Pro vs. Synplify 6.2 Pro).  

3. Our new method of generating 100 seeds and choosing the 
best, obtains better baselines. 

4. We have 10 circuits in the suite versus 8 in [6], where only 
4 are common to both suites. 

5. The results in both cases are obtained with humans in the 
loop, and human-based operations are not very 
reproducible. 

We note that the Synplify 7.1 Pro version utilized the 
multiplexers in slices more often than version 6.2, essentially 
making use of the Joint-LUT structure. While this can reduce 
delay it also places some restrictions on placement perhaps 
contributing to diminished improvements using just placement 
and packing. 
 
5.4 Results with Synthesis Transforms 
 We now provide results for the use of Augur employing 
manual packing, placement and synthesis transformations. Table 
3 summarizes the results, giving the new maximum operating 
frequency and then separating out the additional gains from 
synthesis only.  The latter was determined by calculating the 
percent difference between the frequency in column 3, Table 2, 
and column 2, Table 3. Below we summarize the key steps 
involved in improving each circuit: 
1. Batcher - the majority of the flip-flops in this design were 

synthesized to use distinct control signals. These control 
signals were used to minimize the combinational logic part 
of the circuit. However, the resulting packing allowed only 
one register to occupy a slice, which spread the circuit over 
a much larger area than necessary. The application of Flip-
Flop control signal extraction allowed previously 
incompatible flip-flops to share a slice, resulting in an 
overall 25.5% improvement over the baseline logic circuit 
speed. 

2. Miim - duplication was used to improve performance of 
some of the paths in the circuit. However, the complexity 
of the design, as well as the congestion in the critical 
region, allowed for only minor (0.6%) improvements. 

3. Vision - this logic circuit suffered from improper synthesis 
of logic that controlled Flip-Flop enable signals. Analysis 
of these signals showed that each of the enable signals was 
functionally identical, while the logic function for these 
signals was a 7-input AND gate. The logic synthesis tools 
implemented this logic function as a pair of serially 
connected LUTs and duplicated the forward LUT to reduce 
fanout. Logic merging was first used to create a single logic 
function to implement the enable signal. Then both LUTs 
were duplicated to reduce the fanout and distribute the 
connection properly. Further improvement was obtained by 
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implementing these two LUTs in a carry chain, using the 
Carry Chain Remapping transformation. 

4. Banyan - each path in this circuit contains at most one 
LUT. This was made possible through the use of flip-flop 
control signals to reduce the logic depth of the logic circuit. 
We were only able to improve the performance of the 
circuit by modifying the placement and packing. 

5. Trap - in this circuit a few registers employed flip-flop 
control signals to decrease logic depth. However, it was 
critical to circuit performance that these flip-flops had the 
freedom to share a slice with other flip-flops. We used 
control signal extraction to achieve placement flexibility 
for these flip-flops. Once these flip-flops had the flexibility 
to share a slice with other flip-flops, we were able to 
modify the placement and packing of the circuit effectively. 
In combination with logic duplication the logic circuit 
speed was increased by 9.8%. 

6. Boundcontroller - this design contained a number of Joint-
LUT structures. A closer examination revealed that 
remapping certain pairs of them into Joint-Slice structures 
with multiple outputs was possible. After these pairs of 
Joint-LUTs were remapped into Joint-Slice structures the 
placement of the logic components was rearranged to 
promote usage of NN interconnect.  

7. Linearmap - the design contains mostly carry chain logic. 
The problem was that a few registers were driving multiple 
carry chains and could not use NN interconnect for all 
connections. Duplicating some of those registers and re-
synthesizing non-carry chain logic into Joint-LUT and 
Joint-Slice structures improved the logic circuit speed by 
16.4%. 

8. Vidout - this circuit contained a carry chain that was 
unnecessarily long. The output of the top carry cell was not 
driving the local register, which made it a candidate for the 
carry chain shortening transformation - the functionality 
implemented by the top segment of the carry chain and the 
LUT driven by the carry chain could be implemented in a 
single LUT. This modification allowed for further logic 
optimization resulting in the improvement in the logic 
circuit speed by 15.8% compared to the baseline logic 
circuit speed. 

9. Raygencont - the critical path of this logic circuit traverses 
LUTs that could be re-synthesized into wide AND gate 
carry chain structures. However, that causes the near 
critical paths to become critical with longer delay. Without 
logic synthesis transformations we were able to modify the 
placement and packing of the circuit to improve the speed 
by 6.8%. 

10. Mult - the original placement and synthesis was good, 
however performing logic duplication and remapping 
improved the logic circuit speed by 1.7%. 

 
6. OPTIMIZATION STRATEGIES 
 Even though Augur is a manual editor, one of the long-
term goals of this research is to discover new optimization 
strategies that could be automated.  In this section we propose 
several such strategies, which could form the basis of future 
algorithms. 
 
 
 

6.1 Promoting NN Interconnect 
 The first strategy focuses on the Nearest-Neighbour routing 
(NN) architecture of the Virtex-E. The best optimization 
opportunities were those that enabled many critical connections 
to use NN interconnect: we moved logic elements so that they 
could take advantage of available direct connections between 
logic blocks, as well as created available direct connections by 
liberating those occupied by non-critical logic. The latter can be 
done by logic transformations such as remapping and merging. 
 Remapping can be used to liberate an NN interconnect link 
by transforming the implementation of serially connected pair of 
LUTs to a Joint-LUT or Joint-SLICE structure. This replaces the 
NN connection between LUTs by an internal-to-the slice 
connection, freeing the NN for use by others. 
 Here is an outline of an algorithm that could be used as part 
of a larger automated optimization strategy: 
For each pair of LUTs on a critical path that could employ an 
NN interconnect, but is prevented from using it by the presence 
of another connection: 

• Select the logic that is using the desired NN 
interconnect. 

• If that logic can be moved to another location without 
hurting performance then do so. Otherwise, apply 
remapping or merging to liberate the NN interconnect, 
while maintaining the performance of the non-critical 
path. 

• If successful, this should allow the critical logic to 
acquire the liberated NN connection. 

 
6.2 Liberating Space for Critical Logic 
 The focus of the second strategy is to free the logic 
components in a slice or CLB that can be utilized by critical 
logic. For this strategy we look at logic components on the 
critical path and search for a suitable placement for them. The 
desired placement may conflict with other, non-critical, logic. 
Thus, we focus our attention on the non-critical logic in an effort 
to move it out of its current location, while preserving its 
performance. 
 The logic transformations liberate space occupied by non-
critical logic by: 

• Speeding up non-critical logic, allowing it to move 
from its current location, without a performance 
penalty 

• Duplicating components with high fanout, allowing 
them to be placed in different locations of the device, 
while maintaining the circuit performance 

Here is an algorithm that employs the space-liberation approach 
to improving performance: 
For each area containing a critical, or close-to-critical, path: 

• Locate the non-critical logic 
• Move the non-critical logic away only if it does not 

decrease the circuit performance 
• For logic that will become critical if moved, apply 

remapping and duplication to speed it up, thus making 
it possible for it to move away 

• Move the critical logic into the liberated space 
   
6.3 Increasing Packing flexibility of FFs  
 We noticed that modern logic synthesis tools often use flip-
flop control signals to reduce the amount of logic. This can 
adversely affect the flip-flop’s placement flexibility, as 
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Figure 18 – Delay profile, showing the ten slowest bins in 
the miim circuit 

Bin 10: 1.715ns-3.314ns, count = 16 
Bin 9: 3.314ns-4.379ns, count = 323 
Bin 8: 4.379ns-5.090ns, count = 386 
Bin 7: 5.090ns-5.563ns, count = 444 
Bin 6: 5.563ns-5.879ns, count = 238 
Bin 5: 5.879ns-6.089ns, count = 210 
Bin 4: 6.089ns-6.230ns, count = 92 
Bin 3: 6.230ns-6.323ns, count = 42 
Bin 2: 6.323ns-6.385ns, count = 10 
Bin 1: 6.385ns-6.427ns, count = 5 

Figure 19 – 15 slowest paths in the Miim circuit 

discussed in Section 4.5. The ability to trade logic for flip-flop 
placement flexibility is the focus of this optimization strategy. 
 Here is an algorithm to automate this approach: 

• Move all non-critical flip-flops that have unique 
control signals out of congested areas of the circuit, 
provided this doesn’t hurt performance. 

• For each critical flip-flop A, find another critical flip-
flop B that would benefit (i.e. make the circuit faster) 
from sharing a slice with A in the congested area of 
the circuit. Extract control signals for both flip-flops. 

• Put both A and B in the same slice and repeat for other 
critical flip-flops 

• When all critical flip-flops have been processed, move 
the non-critical flip-flops back into the congested 
areas, extracting their control signals only if they need 
to share a slice with a non-compatible flip-flop 

  
6.4 Stopping Criterion 
 A key aspect of any automated iterative algorithm is to 
determine when to stop the iteration.  As our primary goal in this 
work is to improvement the maximum clock frequency, this 
question becomes “how do we know when to stop trying to 
improve the speed of the circuit?” 
 In our use of the manual editor we inspected the 
distribution of the delay of paths in the circuit. We divided paths 
into bins based on delay. The first bin contains the slowest 
paths. It contains all the paths that needed to be improved to 
increase maximum circuit operating frequency by 1 MHz.  The 
delay range of each consecutive bin was increased by 50% with 
respect to the previous bin, in a geometric fashion. We call these 
bins the delay profile, an example of which is given in Figure 
18. We use the delay profile to determine when to stop 
improving the circuit.  
 Clearly it is easier to improve the speed of a circuit that has 
just a few critical paths in the slowest bin, rather than many. If 
there are many, then it will take gargantuan effort to gain any 
speed.  We used the following criterion to stop optimization: 
1. The two slowest bins contained 15 or more paths and 
2. The paths in the two slowest bins were situated in 
 close physical proximity to each other 
The first criterion says that there is little point in continuing if 
there are too many paths that must be improved in order to gain 
speed. The second notices that close-to-critical paths pose a 
problem if improving one of them has a strong likelihood of 
increasing the delay of the other close-to-critical paths by virtue 
of their close physical proximity. 
 An example of the application of this strategy is shown in 
Figure 19. The circuit in Figure 19, miim, has the 15 slowest 

paths (highlighted in red) in close proximity to one another. No 
further optimization of the circuit was performed, as none of our 
strategies could further improve the circuit in reasonable amount 
of time. 
 
7. CONCLUSION 
 In this paper we have introduced a synthesis oriented 
manual editor, Augur, which provides a form of “omniscience” 
to help guide the user in the optimization process. On a set of 10 
benchmark circuits we have achieved an average performance 
improvement of 9.9%, targeting a real, commercial FPGA. The 
knowledge we have gained though using the editor lead us to 
suggest optimization strategies that we believe can be 
automated. 
 In the future we plan to explore the possibility of 
automating the omniscient environment and applying it in the 
domain of FPGA architecture exploration. 
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