
A Synthesis Oriented Omniscient Manual Editor

Tomasz S. Czajkowski and Jonathan Rose
Edward S. Rogers Sr. Department of Electrical and Computer Engineering

University of Toronto, Toronto, Ontario, M5S 3G4, Canada
{czajkow|jayar}@eecg.toronto.edu

ABSTRACT
 The cost functions used to evaluate logic synthesis
transformations for FPGAs are far removed from the final speed
and routability determined after placement, routing and timing
analysis. This distance has given rise to the field of physical
synthesis, which attempts to improve logic synthesis by
employing cost functions that contain placement, routing and/or
timing analysis information.
 In this work we take this notion to an extreme that we call
omniscience, in which post-routing timing analysis is provided
in the context of a manual editor in which the user selects logical
and physical transformations. After each incremental circuit
modification, the user is informed of the circuit performance
after routing and timing analysis. Since the computations
involved in providing this level of information are large, we
restrict the application to relatively small circuits, no larger than
1000 logic elements.
 Using this approach on a commercial FPGA, we propose a
set of logic transformations specific to the logic and routing
architecture of the Xilinx Virtex-E device. On a set of 10 circuits
we have achieved an average performance improvement of 10%
when both logical and physical changes are used. Another value
of the editor is that it reveals new types of automatable physical-
synthesis transformations and optimization strategies that arise
from architectural properties of the target device.

Categories and Subject Descriptors
B.6.3 [Logic Design]: Design Aids – Optimization

General Terms
Algorithms

Keywords
Synthesis, Manual, Virtex-E

1. INTRODUCTION
 Typical CAD flows for FPGAs perform independent and
sequential optimizations as illustrated in Figure 1(a). The early
stages make decisions with poor visibility into the final result,
after placement and routing. For example, lookup-table based
logic synthesis algorithms [4][11] use LUT depth to measure the

Figure 1: Typical FPGA CAD Flow

(a) single pass, (b) physical synthesis with iteration

(a) (b)

delay effect of a logic transformation, which doesn’t account for
the delay effect of physical distance after placement.
 Various physical synthesis techniques have been proposed
that provide more knowledge from the physical design steps
back into the logic synthesis stages as illustrated in Figure 1(b).
The basic approach is to iterate between synthesis and
placement (including a post-placement timing analysis). The
two keys to these efforts are the amount and type of information
passed back to synthesis, and the constraints passed forward
from synthesis into placement. In [2][3][5] and [10] the post-
placement position of logic is used to form more accurate
models of net delays that are then used to evaluate logic
transformations. The output of synthesis also indicates where
newly created logic should be placed. While [5] and [10]
execute logic synthesis and placement as discrete “batch mode”
steps, [2] constantly moves back and forth between the two,
maintaining the most up-to-date view of the placement.
 The work in [1] performs physical synthesis in a different
way: the logic synthesis stage provides several mapping
solutions for a group logic from which the placement stage
selects the final choice.
 In most cases, these approaches to physical synthesis group
many logic transformations together and pass them on to a
placement phase for legalization and recalculation of delay
effects. Even in the approaches that iterate more frequently
between synthesis and placement, the true effect of a single
change is not known because it only becomes apparent after
routing and timing analysis.

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
FPGA’04, February 22–24, 2004, Monterey, California, USA
Copyright 2004 ACM 1-58113-829-6/04/0002…$5.00.

 In this work we propose a far more precise decision making
process: each single transformation will be evaluated using the
post-routed timing analysis. This approach captures the exact
effect of an incremental circuit transformation on the post-
routing circuit speed. We call this kind of cost function
omniscient, because it knows everything that is possible to be
known about the result of a transformation. This work is done in

 189

the context of a manual editor, because the computation required
to provide omniscience is large, but can be tolerated in the
human-interaction scale of time. To reduce the time spent on
computation we limit the size of the circuit to less than 1000
logic elements.

Figure 2: A Virtex-E Architecture “Slice”

 The work in [6] applied an omniscient approach to manual
clustering and placement and achieved significant speed
improvements. We extend their work to the synthesis domain,
allowing changes that simultaneously encompass the logic
functionality, the physical placement, and the routing. An
interesting outcome of this new work is the invention of
transformations that target a mixture of architectural features
across the logic, placement and routing domains. For example,
we show how adjustments in the choice of the carry structure
give benefit once the placement and routing flexibility is taken
into account.
 Our manual editor, Augur, targets a real FPGA
architecture, the Xilinx Virtex-E family [7]. The exact delay
modeling provided by Xilinx FPGA Editor enables the manual
editor to perform accurate timing analysis. The performance
improvement obtained with this approach is real.
 Augur gives the user the ability to perform logic
transformations on a fragment of the circuit. The user selects the
circuit fragment and specifies the transformation to be
performed on it. Augur applies the transformation and requires
the user to provide the placement for the newly created logic
elements. The editor then re-routes and timing analyzes the
circuit and provides the user with the resulting circuit speed.
 The remainder of this paper is organized as follows:
Section 2 describes the relevant architectural features of the
Virtex-E FPGA and the work in [6] in more detail. Section 3
describes how the user employs the editor, which we call Augur.
Section 4 details the logic transformations available in the
Augur, and Section 5 provides benchmark results. In Section 6
we look at the optimization strategies used in the manual
operation of the editor and propose automatable procedures that
could be implemented as scripts in our tool or employed as
physical synthesis algorithms.

2. BACKROUND

Some of the logic transformations available in Augur hinge
on structures specific to the Xilinx Virtex-E architecture. In this
section we review that device architecture and provide a short
overview of the prior manual editor [6] our work is based on.

2.1 The Xilinx Virtex-E Architecture
 The FPGA devices in the Xilinx Virtex-E family are island-
style FPGAs [7]. Each Configurable Logic Block (CLB) is
divided into two slices. Each slice contains two flip-flops, two 4-
input LUTs, carry logic, some extra multiplexors, and flip-flop
control logic, as shown in Figure 2. The flip-flops in each slice
must have the following common control signals: Clock, Set,
Clear and Enable. In Section 4 we describe how these signals are
manipulated to allow tighter packing of flip-flops.

The Virtex-E Routing Architecture
 The routing architecture consists of four types of wires:
single-length wires between neighboring CLBs, the Nearest-
Neighbour interconnect [8] length six wires, connecting CLBs
that are six rows/columns apart, and significantly longer wires.

 The key type of wire that is used by our optimization
strategies is the Nearest Neighbour (NN) Interconnect [8]. It is a
dedicated set of wires that connects horizontally adjacent CLBs.
This interconnect has very low delay and can significantly
improve the performance of the circuit when used properly.
There are two pairs of unidirectional wires between each pair of
CLBs.

2.2 Omniscient Manual Placer & Packer
 Our effort is based on the work in [6], which introduced an
omniscient manual editor that also targeted the Virtex-E
architecture. It enabled the user to modify the placement and
packing of circuits (that are first created in the usual automated
way) and afterwards conducted the timing analysis to inform the
user about the new circuit performance, thereby providing
omniscience to the user. The precise delays used in the timing
analysis were obtained by querying the Xilinx FPGA Editor
software. All changes to the circuit were made both within the
editor itself and the Xilinx FPGA Editor back end, so that a full
functioning circuit was always available. The timing analysis,
which was restricted to single-clock circuits, was done in a
somewhat incremental fashion to decrease the response time
seen by the user. On a set of eight benchmark circuits, [6]
achieved an average increase in operating frequency of 12.7%
compared to the best of 10 runs of the standard synthesis,
placement and routing flow.

3. USER EXPERIENCE
 We first describe how the user interacts with Augur, and
then discuss the details of the specific logic synthesis
transformations it provides.
 To begin, the user performs a fully-automated synthesis,
placement and routing flow on the circuit, as illustrated in
Figure 1(a). We use the Synplicity Synplify Pro version 7.1 tool
and Xilinx ISE version 5.1. The results are read into Augur,
which creates a display such as the one illustrated in Figure 3.
The LUTs, flip-flops and carry logic are separately displayed.
The user can set a desired operating frequency, or the critical
path delay, and cause Augur to display components and nets that
are critical or close to critical in red, as illustrated in Figure 3.

3.1 Placement and Packing Modifications
 To modify the packing or the placement, the user selects a
set of components and moves them into a new location. Changes

 290

Figure 3: Editor screenshot: LUTs are cyan muxes, flip-
flops are green rectangles, carry logic is yellow +; The

critical path is highlighted in red.

Figure 4: Schematic View with Transformation List
to the placement and packing are made within Augur’s data
structures and are transmitted through named pipes to a live
version of the Xilinx FPGA Editor, which returns the delays on
any modified connections. Augur performs the timing analysis
and presents the updated circuit speed to the user.

Figure 5: Placement of Newly Synthesized Logic

3.2 Logic Synthesis Changes
 Upon inspection of the view presented in Figure 3, the user
can select a set of logic components for synthesis
transformations. The user then selects the “Transform” button
to change the view to a schematic form as illustrated in Figure 4.
 This view presents the selected sub-circuit with the inputs
on the left and outputs on the right side of the screen. The user
can select the components in this view and perform logic
synthesis transformations on them. The user must determine the
new placement for the new circuit components produced in the
transformation. It is possible that there are more, or fewer,
components than before the circuit was transformed, which
require positions. To choose those positions, the user switches
back to the grid view, as illustrated in Figure 5. This latter view
is important to ensure that routing features, such as the Nearest-
Neighbour interconnect, are profitably leveraged.

4. LOGIC SYNTHESIS TRANSFORMS
 Now that we have provided the context for Augur, we
describe the logic synthesis transformations provided to the user.
The transformations available to the user are: remapping,

Figure 6: Slice with a carry chain

dupl
ication, merging, carry chain shortening and control signal
extraction.
 The input to every transformation is a connected graph of
logic components selected by the user. When the user selects a
specific transformation for that logic, the tool determines if the
selected logic can be successfully transformed. If it can, then the
application of a transformation results in a new set of logic
components that the user can place. In the following we describe
the set of logic synthesis transformations available in Augur.

4.1 Remapping
 The remapping operation transforms a set of logic
components into a functionally equivalent set that fits into a
single slice or a CLB. The following sub-sections describe two
mapping algorithms: carry chain mapping and multiplexer
mapping.

4.1.1 Mapping into Carry Chain
 In this subsection we focus on how the Virtex-E carry chain
logic can be utilized to implement an AND or an OR gate, and
the algorithm that makes this mapping possible in Augur.
 The carry chain logic in the Virtex-E slice connects the two
LUTs together, as shown in Figure 6. This structure can be
manipulated to implement an AND or an OR by assigning
constant values to inputs CY0F, CY0G and CIN. To convert the
carry chain into an AND/OR gate we set CY0F=CY0G=0/1 and
CIN=1/0.
 The advantage of using the carry chain structure is that a
pair of serially connected LUTs can sometimes be converted
into a parallel pair of LUTs connected through this fast AND or

 391

Figure 7: Example Circuit for AND Gate Mapping into
Carry Chain

Figure 8: Remapping: (a) AND gate extracted from LUT
A, (b) Implementation of AND in Carry

(a) (b)

OR gate. Since the carry multiplexor is very fast, the
transformation can lead to an overall reduction in delay if the
original pair of LUTs is on the critical path.
 Consider the example pair of LUTs (A and B) illustrated in
Figure 7, which shows the logic function of each LUT as a
schematic inside each LUT box. The highlighted AND gate at
the right of LUT A can be implemented in the Carry Chain of
Figure 6 because one of its inputs comes directly from LUT B.
Figure 8(a) illustrates the isolation of this AND gate and Figure
8(b) shows the final implementation.
 To determine if a pair of serially connected LUTs can be
mapped into a slice, we need to find an AND gate (or OR gate)
as shown in Figure 8(a). To do this we perform a Shannon
expansion of LUT A’s function with respect to LUT B. Let A
be the function of LUT A, and B be the signal generated by LUT
B. The inputs to A are x1, x2, x3 and B. From Shannon’s
theorem [9] we have:
 A = A(x1,x2,x3,0) B’ + A(x1,x2,x3,1) B
If the function A(x1,x2,x3,1) evaluates to a constant 0, then the
function A reduces to:
 A = A(x1,x2,x3,0) AND B’,
which gives us the AND gate we were looking for to map into
the carry chain of the slice. An OR gate can be detected by
following a similar procedure.
 The algorithm in Figure 9 determines if a pair of serially
connected LUTs can be transformed in this manner. Its input is
a user-selected pair of serially connected LUTs, and the output
is either the mapping of those LUTs into a slice, or a declaration
that the mapping is not possible.
 In addition, it is possible to map a pair of serially connected
LUTs in which the LUT B has fanout greater than 1. As shown
in Figure 6, the carry chain structure allows the bottom LUT to
produce an output signal through pin X. To properly generate

Figure 9: Algorithm Mapping AND & OR into the Carry
Chain

Input: A pair of series-connected LUTs A and B,
 with LUT B driving LUT A.
Output: On success, a mapped Slice

Let A be the function of LUT A, and B be the
 function of LUT B.
f0 = Shannon expansion of A with respect to B=0
f1 = Shannon expansion of A with respect to B=1

if either f0 or f1 is a constant (i.e. is 0 or 1)

then it is possible to map A and B into a slice:
let h be the co-factor (f0 or f1) that is not a

 constant
implement h in the top LUT of the slice,

 inverting if necessary as per Section 2.1
implement B in the bottom LUT
 create a LUT that inverts the output of
 LUT B if B uses output pin X
return function implemented in a Slice

else
return fail.

this secondary output it may be necessary to add a single LUT
that inverts the output of pin X, since the function of LUT B
may need to be inverted to implement an AND gate (or an OR
gate) in the carry chain.

4.1.2 Mapping into Joint-LUTs and Joint-Slices
 The Virtex-E slice contains fast multiplexers that combine
two or more LUTs to create higher fanin functions. The inputs to
the multiplexer are the outputs of both LUTs in the slice, as
shown in Figure 10. This structure, which we will call the Joint-
LUT structure, allows some 9-input functions to be implemented
in a single slice.
 To implement a 9-input logic function in the Joint-LUT
structure we have to decompose the function such that one of its
inputs will drive the selector input of the multiplexer, while the
remaining inputs will be assigned to the LUTs in the slice.
Shannon’s decomposition theorem [9] allows us to do this. The
basic idea of the procedure is to perform Shannon’s expansion
with respect to every variable of the function [15]. A valid
mapping of the 9-input function into the Joint-LUT structure is
found when both cofactors of the function in the Shannon’s
expansion are functions with at most 4 inputs.
 The advantage of using the Joint-LUT structure is that it
exploits parallelism, which can reduce the delay of signals
passing through it. For example, when a pair of serially
connected LUTs is mapped into this structure, the function of
both LUTs in the slice is evaluated in parallel. Thus, the delay
through the Joint-LUT structure is the delay of one LUT and
that of the dedicated multiplexer.
 It is possible to implement even more complex functions by
merging two Joint-LUT structures with a multiplexer available
in the Virtex-E CLB, as illustrated in Figure 11. We call this the
Joint-Slice structure, and it can have up to 19 total inputs. The
mapping algorithm is very similar to the Joint-LUT mapping
algorithm above, except that the algorithm looks for a successful
mapping of each cofactor into a Joint-LUT structure instead of a
LUT.

 492

Figure 10: Joint-LUT structure

Figure 11: CLB in Joint-Slice configuration

Figure 12: Mapping two functions into a Joint-LUT

 This approach is similar to the one proposed in [15]. We
have enhanced the algorithm to take advantage of extra outputs
available in the Joint-LUT and the Joint-Slice, as illustrated in
Figure 12. Observe that pin X of the slice, as shown in Figure
10, generates the primary output of the slice and that pin Y can
be set to generate the function of the upper LUT.
 Consider mapping a 9-input/2-output function into the
Joint-LUT structure. The primary output function can be easily
determined, as before. To implement a second function, it has to
be the primary output function for the top LUT, which is the
substructure of the Joint-LUT. Similarly, mapping the same
function into the Joint-Slice means that the second function has
to be either the primary output function for a Joint-LUT or a
LUT.
 We exhaustively search for a matching between the outputs
of the multi-output function and the outputs of the target
structure. The algorithm to map a set of functions into a Joint-
LUT structure is presented in Figure 13. The algorithm for Joint-

Figure 13: Algorithm for mapping into Joint-LUT

Function map_into_Joint_LUT(F)
Input: F - a set of at most 2 functions
Output: TRUE/FALSE

Let t be the primary output function
Let s be the other function
For all variables x in the support of t
 Perform Shannon’s Expansion of t with respect
 to x to obtain cofactors xt and xt
 if each cofactor fits in a single LUT then
 if (|F | = 2 and xt = s or xt = s) or
 (|F | = 1) then
 return TRUE;
end for
return FALSE;

Figure 14: Mapping not found by our algorithm

Slice mapping is similar. Instead of checking for mapping of the
cofactors into a single LUT, we check for mapping of cofactors
into the Joint-LUT.
 Note that this algorithm will be unable to map structures
like those illustrated in Figure 14, even though this is a correct
mapping. This is because in Shannon’s expansion one variable is
removed from the equation of each cofactor and it is assigned to
drive the multiplexer selector input. However, the function r in
Figure 14 depends on the variable f.

4.2 Duplication
 The second transformation available in Augur is
duplication, which creates a copy of a selected component. By
duplicating a component on the critical path, one can increase
the freedom to position and route critical connections [13]. We
have found that duplication is particularly useful feature that
enables the use of fast Nearest-Neighbour (NN) interconnect for
critical connections. For example, consider the circuit in Figure
15(a). The critical path starts at a flip-flop at location (5,5) and
goes through the LUT at location (4,6). We generally try to put
critical connects on NN interconnect to speed them up, but in the
current placement this strategy cannot be used, because the first
LUT on the critical path is not in the adjacent CLB. Moving the
flip-flop from (5,5) to (5,6) permits this connection to use the
NN interconnects, but removes the NN connections from the
LUTs at (6,5). By duplicating the flip-flop and placing the
duplicate in the CLB at location (5,6), as shown in Figure 15(b),
NN connections can be used for all outputs of the flip-flop.

 593

Figure 15: Duplication example: a) before transformation,

b) after duplicating the LUT and FF and placing them in
the CLB above

(a) (b)

4.3 Merging
 It is sometimes beneficial to reverse duplication that has
occurred in previous synthesis, which we allow in a
transformation called merging. For example, after the placement
and routing it becomes clear that the distribution of connections
between two duplicated components is causing the performance
to suffer.
 This transformation allows us to explore other mapping
solutions or to redistribute connections between duplicate
components. To redistribute connections we first merge two
identical components and then perform duplication again, but
with different connection distribution.

4.4 Carry Chain Shortening
 Carry chains have long been part of FPGA architectures
[12][14] because they provide a high-speed path for long bit
addition and arithmetic operations. Their use often reduces the
time along the critical path, or removes the arithmetic operation
from the critical path entirely. They come with some
drawbacks, however, that reduce their positive impact: most
importantly, carry structures force the logic blocks that use them
to be a fixed vertical or horizontal structure. This lack of
flexibility is the flip side of the greater speed of connectivity.
 In addition, the blind use of a carry chain may prevent other
beneficial optimizations. For example, consider the circuit in
Figure 16(a), which illustrates a 4-bit carry chain that feeds one
more 2-input LUT and then a flip-flop. Assume that the most
significant bit of the carry chain, including the LUT, implements
a 3-input function. The most significant bit calculation,
including carry, and the final 2-input LUT function can all be
implemented in a single 4-input LUT as illustrated in Figure
16(b).
 We call this operation carry-chain shortening, as it
removes the carry primitive from the top of the chain. Most
synthesis tools are not permitted to optimize carry primitives
away, and so this opportunity is typically unexplored. The
procedure to test if this optimization is possible is quite
straightforward.

4.5 Register Control Signal Extraction
 Recent versions of synthesis tools have used flip-flop
control signals to implement greater logic functionality in a
single slice. For example, attaching a logic signal to a flip-flop’s
synchronous clear input has the effect of ANDing that signal
with the flip-flop’s D input. While this kind of optimization can

Figure 16: Carry chain shortening example: (a) critical

path travels through the carry chain, (b) the path is
shortened by one carry component

(a) (b)

Table 1 – Benchmark Statistics and Baseline Maximum
Operating Frequency

Size
Benchmark

Name
LUTs &

Carry
Cells

Flip-Flops

Maximum
Operating
Frequency

(MHz)
Batcher 253 436 298.6
Miim 162 119 155.0
Vision 310 243 197.4
Banyan 177 335 359.3

Trap 186 486 381.0
Boundcontroller 472 466 131.5

Linearmap 460 72 108.0
Vidout 447 220 134.4

Raygencont 211 118 162.1
Mult 29 21 122.2

be beneficial with respect to logic depth, it can also have a
negative side-effect: a flip-flop synthesized this way cannot be
packed into a slice with another flip-flop that does not use
exactly the same clear signal (most FPGA logic blocks impose
this kind of restriction).
 This poses a restriction on the packer and may degrade the
final performance. The alternative, which we implement as a
logic synthesis transformation, is to implement the synchronous
clear function in a separate LUT. This certainly costs extra
logic, but it can potentially improve speed because it increases
the packing flexibility and therefore local connectivity and
access to NN interconnects.

5. EXPERIMENTAL RESULTS
 In this section we give the results of using Augur on ten
benchmark circuits. We begin by describing the set of circuits
and how we used commercial tools to create an extremely high
quality (and therefore fair) baseline synthesis, placement and
routing for comparison. Since the method for producing the
baseline is different from that of [6], we first compare our
packing and placement only modifications to that of [6]. We
then show the further gains that are possible with our new
synthesis transformations.

5.1 Benchmark Circuits
 Table 1 provides a summary of the size of each of the ten
benchmark circuits. These circuits come from designs made at
the University of Toronto and IP cores available through the

 694

Table 2 – Results using packing and placement only

Benchmark
Name

Baseline
Frequency

(MHz)

Freq. after
Packing +
Placement

%
Imp

Batcher 298.6 314.0 5.1
Miim 155.0 155.2 0.1

Vision 197.4 197.8 0.2
Banyan 359.2 367.8 2.4

Trap 381.0 398.6 4.6
Boundcontrol 131.5 137.9 4.8

Linearmap 108.0 109.3 1.3
Vidout 134.4 140.0 4.1

Raygencont 162.1 173.2 6.8
Mult 122.2 122.3 0.1

Average 3.0

Table 3: Results with New Synthesis Transformations

Benchmark
Name

Frequency After
Pack/Place &

Synthesis
(MHz)

%
Improved

%
From
Synth
Only

Batcher 374.8 25.5 19.4
Miim 155.6 0.4 0.2
Vision 210.2 6.5 6.3
Banyan 367.8 2.4 0.0

Trap 418.4 9.8 5.0
Boundcontroller 149.5 13.7 8.5

Linearmap 125.7 16.4 14.9
Vidout 155.6 15.8 11.2

Raygencont 173.2 6.8 0.0
Mult 124.3 1.7 1.6

Average 9.9 6.7

internet. A more detailed description of each circuit can be
obtained from [16].

Figure 17: Procedure used to generate baseline circuits
results and circuits

1. Set target frequency to initial setting Finit and synthesize
2. Synthesize using Synplify 7.1 Pro
3. Place and route using Place and Route tool (par)

provided with Xilinx ISE 5.1 Service Pack 3 tools. Set
effort to maximum and number of P&R attempts (with
different seeds) to 100.

4. Record best result
5. Repeat 2-4 for target frequency -10%, -5% +5% and

+10% with respect to Finit.
6. If a better solution was obtained for frequency other

than Finit then repeat 2-5 using that frequency as Finit.

5.2 Baseline Circuit Generation
 To achieve the best possible baseline circuits we created a
very rigorous procedure using the best-in-class tools. Figure 17
summarizes the procedure, the key of which is that each circuit
is placed and routed using 100 different seeds each for at least
five different target frequency settings. Although this is not
practical for large circuits, the limit we imposed on the circuit
size enabled us to do this in reasonable amount of time. As a
result our baseline circuits have baseline performance that on
average is 2.4% better than using the method in [6].

5.3 Placement and Packing Only Changes
 In order to separate out the additional advantage of the
synthesis transformations described in Section 4, we first
improve the baseline circuits using only packing and placement
modifications, in the manner of [6]. Table 2 provides a summary
of these results. We obtained an average of 3.0% performance
improvement across the 10 circuits. This is significantly less
than the 12.7% achieved in [6], which we believe is due to the
following reasons:
1. We are using newer placement and routing tools (Xilinx

ISE 5.1 service pack 3 vs. 3.3 SP7).
2. We are using newer, better Synthesis tools (Synplicity

Synplify 7.1 Pro vs. Synplify 6.2 Pro).

3. Our new method of generating 100 seeds and choosing the
best, obtains better baselines.

4. We have 10 circuits in the suite versus 8 in [6], where only
4 are common to both suites.

5. The results in both cases are obtained with humans in the
loop, and human-based operations are not very
reproducible.

We note that the Synplify 7.1 Pro version utilized the
multiplexers in slices more often than version 6.2, essentially
making use of the Joint-LUT structure. While this can reduce
delay it also places some restrictions on placement perhaps
contributing to diminished improvements using just placement
and packing.

5.4 Results with Synthesis Transforms
 We now provide results for the use of Augur employing
manual packing, placement and synthesis transformations. Table
3 summarizes the results, giving the new maximum operating
frequency and then separating out the additional gains from
synthesis only. The latter was determined by calculating the
percent difference between the frequency in column 3, Table 2,
and column 2, Table 3. Below we summarize the key steps
involved in improving each circuit:
1. Batcher - the majority of the flip-flops in this design were

synthesized to use distinct control signals. These control
signals were used to minimize the combinational logic part
of the circuit. However, the resulting packing allowed only
one register to occupy a slice, which spread the circuit over
a much larger area than necessary. The application of Flip-
Flop control signal extraction allowed previously
incompatible flip-flops to share a slice, resulting in an
overall 25.5% improvement over the baseline logic circuit
speed.

2. Miim - duplication was used to improve performance of
some of the paths in the circuit. However, the complexity
of the design, as well as the congestion in the critical
region, allowed for only minor (0.6%) improvements.

3. Vision - this logic circuit suffered from improper synthesis
of logic that controlled Flip-Flop enable signals. Analysis
of these signals showed that each of the enable signals was
functionally identical, while the logic function for these
signals was a 7-input AND gate. The logic synthesis tools
implemented this logic function as a pair of serially
connected LUTs and duplicated the forward LUT to reduce
fanout. Logic merging was first used to create a single logic
function to implement the enable signal. Then both LUTs
were duplicated to reduce the fanout and distribute the
connection properly. Further improvement was obtained by

 795

implementing these two LUTs in a carry chain, using the
Carry Chain Remapping transformation.

4. Banyan - each path in this circuit contains at most one
LUT. This was made possible through the use of flip-flop
control signals to reduce the logic depth of the logic circuit.
We were only able to improve the performance of the
circuit by modifying the placement and packing.

5. Trap - in this circuit a few registers employed flip-flop
control signals to decrease logic depth. However, it was
critical to circuit performance that these flip-flops had the
freedom to share a slice with other flip-flops. We used
control signal extraction to achieve placement flexibility
for these flip-flops. Once these flip-flops had the flexibility
to share a slice with other flip-flops, we were able to
modify the placement and packing of the circuit effectively.
In combination with logic duplication the logic circuit
speed was increased by 9.8%.

6. Boundcontroller - this design contained a number of Joint-
LUT structures. A closer examination revealed that
remapping certain pairs of them into Joint-Slice structures
with multiple outputs was possible. After these pairs of
Joint-LUTs were remapped into Joint-Slice structures the
placement of the logic components was rearranged to
promote usage of NN interconnect.

7. Linearmap - the design contains mostly carry chain logic.
The problem was that a few registers were driving multiple
carry chains and could not use NN interconnect for all
connections. Duplicating some of those registers and re-
synthesizing non-carry chain logic into Joint-LUT and
Joint-Slice structures improved the logic circuit speed by
16.4%.

8. Vidout - this circuit contained a carry chain that was
unnecessarily long. The output of the top carry cell was not
driving the local register, which made it a candidate for the
carry chain shortening transformation - the functionality
implemented by the top segment of the carry chain and the
LUT driven by the carry chain could be implemented in a
single LUT. This modification allowed for further logic
optimization resulting in the improvement in the logic
circuit speed by 15.8% compared to the baseline logic
circuit speed.

9. Raygencont - the critical path of this logic circuit traverses
LUTs that could be re-synthesized into wide AND gate
carry chain structures. However, that causes the near
critical paths to become critical with longer delay. Without
logic synthesis transformations we were able to modify the
placement and packing of the circuit to improve the speed
by 6.8%.

10. Mult - the original placement and synthesis was good,
however performing logic duplication and remapping
improved the logic circuit speed by 1.7%.

6. OPTIMIZATION STRATEGIES
 Even though Augur is a manual editor, one of the long-
term goals of this research is to discover new optimization
strategies that could be automated. In this section we propose
several such strategies, which could form the basis of future
algorithms.

6.1 Promoting NN Interconnect
 The first strategy focuses on the Nearest-Neighbour routing
(NN) architecture of the Virtex-E. The best optimization
opportunities were those that enabled many critical connections
to use NN interconnect: we moved logic elements so that they
could take advantage of available direct connections between
logic blocks, as well as created available direct connections by
liberating those occupied by non-critical logic. The latter can be
done by logic transformations such as remapping and merging.
 Remapping can be used to liberate an NN interconnect link
by transforming the implementation of serially connected pair of
LUTs to a Joint-LUT or Joint-SLICE structure. This replaces the
NN connection between LUTs by an internal-to-the slice
connection, freeing the NN for use by others.
 Here is an outline of an algorithm that could be used as part
of a larger automated optimization strategy:
For each pair of LUTs on a critical path that could employ an
NN interconnect, but is prevented from using it by the presence
of another connection:

• Select the logic that is using the desired NN
interconnect.

• If that logic can be moved to another location without
hurting performance then do so. Otherwise, apply
remapping or merging to liberate the NN interconnect,
while maintaining the performance of the non-critical
path.

• If successful, this should allow the critical logic to
acquire the liberated NN connection.

6.2 Liberating Space for Critical Logic
 The focus of the second strategy is to free the logic
components in a slice or CLB that can be utilized by critical
logic. For this strategy we look at logic components on the
critical path and search for a suitable placement for them. The
desired placement may conflict with other, non-critical, logic.
Thus, we focus our attention on the non-critical logic in an effort
to move it out of its current location, while preserving its
performance.
 The logic transformations liberate space occupied by non-
critical logic by:

• Speeding up non-critical logic, allowing it to move
from its current location, without a performance
penalty

• Duplicating components with high fanout, allowing
them to be placed in different locations of the device,
while maintaining the circuit performance

Here is an algorithm that employs the space-liberation approach
to improving performance:
For each area containing a critical, or close-to-critical, path:

• Locate the non-critical logic
• Move the non-critical logic away only if it does not

decrease the circuit performance
• For logic that will become critical if moved, apply

remapping and duplication to speed it up, thus making
it possible for it to move away

• Move the critical logic into the liberated space

6.3 Increasing Packing flexibility of FFs
 We noticed that modern logic synthesis tools often use flip-
flop control signals to reduce the amount of logic. This can
adversely affect the flip-flop’s placement flexibility, as

 896

Figure 18 – Delay profile, showing the ten slowest bins in
the miim circuit

Bin 10: 1.715ns-3.314ns, count = 16
Bin 9: 3.314ns-4.379ns, count = 323
Bin 8: 4.379ns-5.090ns, count = 386
Bin 7: 5.090ns-5.563ns, count = 444
Bin 6: 5.563ns-5.879ns, count = 238
Bin 5: 5.879ns-6.089ns, count = 210
Bin 4: 6.089ns-6.230ns, count = 92
Bin 3: 6.230ns-6.323ns, count = 42
Bin 2: 6.323ns-6.385ns, count = 10
Bin 1: 6.385ns-6.427ns, count = 5

Figure 19 – 15 slowest paths in the Miim circuit

discussed in Section 4.5. The ability to trade logic for flip-flop
placement flexibility is the focus of this optimization strategy.
 Here is an algorithm to automate this approach:

• Move all non-critical flip-flops that have unique
control signals out of congested areas of the circuit,
provided this doesn’t hurt performance.

• For each critical flip-flop A, find another critical flip-
flop B that would benefit (i.e. make the circuit faster)
from sharing a slice with A in the congested area of
the circuit. Extract control signals for both flip-flops.

• Put both A and B in the same slice and repeat for other
critical flip-flops

• When all critical flip-flops have been processed, move
the non-critical flip-flops back into the congested
areas, extracting their control signals only if they need
to share a slice with a non-compatible flip-flop

6.4 Stopping Criterion
 A key aspect of any automated iterative algorithm is to
determine when to stop the iteration. As our primary goal in this
work is to improvement the maximum clock frequency, this
question becomes “how do we know when to stop trying to
improve the speed of the circuit?”
 In our use of the manual editor we inspected the
distribution of the delay of paths in the circuit. We divided paths
into bins based on delay. The first bin contains the slowest
paths. It contains all the paths that needed to be improved to
increase maximum circuit operating frequency by 1 MHz. The
delay range of each consecutive bin was increased by 50% with
respect to the previous bin, in a geometric fashion. We call these
bins the delay profile, an example of which is given in Figure
18. We use the delay profile to determine when to stop
improving the circuit.
 Clearly it is easier to improve the speed of a circuit that has
just a few critical paths in the slowest bin, rather than many. If
there are many, then it will take gargantuan effort to gain any
speed. We used the following criterion to stop optimization:
1. The two slowest bins contained 15 or more paths and
2. The paths in the two slowest bins were situated in
 close physical proximity to each other
The first criterion says that there is little point in continuing if
there are too many paths that must be improved in order to gain
speed. The second notices that close-to-critical paths pose a
problem if improving one of them has a strong likelihood of
increasing the delay of the other close-to-critical paths by virtue
of their close physical proximity.
 An example of the application of this strategy is shown in
Figure 19. The circuit in Figure 19, miim, has the 15 slowest

paths (highlighted in red) in close proximity to one another. No
further optimization of the circuit was performed, as none of our
strategies could further improve the circuit in reasonable amount
of time.

7. CONCLUSION
 In this paper we have introduced a synthesis oriented
manual editor, Augur, which provides a form of “omniscience”
to help guide the user in the optimization process. On a set of 10
benchmark circuits we have achieved an average performance
improvement of 9.9%, targeting a real, commercial FPGA. The
knowledge we have gained though using the editor lead us to
suggest optimization strategies that we believe can be
automated.
 In the future we plan to explore the possibility of
automating the omniscient environment and applying it in the
domain of FPGA architecture exploration.

8. ACKNOWLEDGEMENTS
 The authors are grateful to William Chow for creating the
base for this research. This research was funded by a grant from
MICRONET under project S.4.T2 and Xilinx Inc.

9. REFERENCES
[1] J. Lou, W. Chen and M. Pedram, “Concurrent Logic

Restructuring and Placement for Timing Closure,” Proc. of
the 1999 ACM/IEEE Int. Conf. on CAD, November 1999,
pp. 31-35.

[2] J. Lin, A. Jagannathan and J. Cong, “Placement-Driven
Technology Mapping for LUT-Based FPGAs,”
ACM/SIGDA Int. Symp. on FPGAs, February 2003,
Monterey, California, USA, pp. 121-126.

[3] D. P. Singh and S. D. Brown, “Incremental Placement for
Layout-Driven Optimizations on FPGAs,” Proc. of the
2002 ACM/IEEE Int. Conf. on CAD, November 2002, pp.
752-759.

[4] J. Cong and Y. Ding, “FlowMap: an optimal technology
mapping algorithm for delay optimization in lookup-table
based FPGA designs,” IEEE Trans. on CAD of Integrated
Circuits and Systems, vol. 13, issue 1, 1994, pp. 1-12.

[5] T. Kutzschebauch and L. Stok, “Layout Driven
Decomposition with Congestion Consideration,” Proc. of

 997

the 2002 Design, Automation and Test in Europe
Conference and Exhibition, pp. 672-676.

[6] W. Chow and J. Rose, “EVE: A CAD Tool for Manual
Placement and Pipelining Assistance of FPGA Circuits,”
Proc. of ACM/SIGDA Int. Symp. on FPGAs, February
2002, Monterey, California, USA, pp. 85-94.

[7] Xilinx Inc., “Virtex-E Production Product Specification”,
Online:

 http://direct.xilinx.com/bvdocs/publications/
 ds022.pdf, accessed on July 7, 2003.
[8] A. Roopchansingh and J. Rose, “Nearest Neighbour

Interconnect in Deep Submicron FPGAs”, Proc. of IEEE
CICC, May 2002, pp. 59-62.

[9] S. Devadas, A. Ghosh and K. Keutzer, “ Logic Synthesis,”
McGraw-Hill Inc., 1994, ISBN 0-07-016500-9

[10] A. Lu, H. Eisenmann, G. Stenz, and F. M. Johannes,
“Combining Technology Mapping with Post-Placement
Resynthesis for Performance Optimization,” Proc. of Int.
Conf. on Computer Design: VLSI in Computers and
Processors, October 1998, pp. 616-621.

[11] R.J Francis, J. Rose, Z. Vranesic, “Technology Mapping
Lookup Table-Based FPGAs for Performance” Proc. 1991

IEEE Int’l Conf. on CAD (ICCAD), Nov. 1991, pp. 568-
571.

[12] Xilinx XC4000 device data sheet, Online:
http://direct.xilinx.com/bvdocs/publications/

 4000.pdf. Accessed September 22, 2003.
[13] K. Schabas and S. D. Brown, “Logic Synthesis and

mapping: Using logic duplication to improve performance
in FPGAs,” Proc. of ACM/SIGDA Int. Symp. on FPGAs,
February 2003, Monterey, California, USA, pp. 136-142.

[14] S. Hauck, M. M. Hosler, and T. W. Fry, “High-
performance carry chains for FPGAs,” Proc. of the 1998
ACM/SIGDA 6th Int. Symp. on FPGAs, February 1998,
Monterey, California, USA, pp. 223-233.

[15] J. Cong and Y. Hwang, “Boolean Matching for LUT-Based
Logic Blocks With Applications to Architecture Evaluation
and Technology Mapping,” IEEE Trans. on CAD of
Integrated Circuits and Systems, Vol. 20, No. 9, September
2001, pp. 1077-1090.

[16] T. Czajkowski, “A Synthesis Oriented Omniscient Manual
Editor for FPGA Circuit Design,” Master of Applied
Science thesis, University of Toronto, 2004.

 1098

	Main Page
	FPGA04
	Front Matter
	Table of Contents
	Author Index

