
Abstract

 This paper describes the implementation of a stereo depth mea-
surement algorithm in hardware on Field-Programmable Gate
Arrays (FPGAs). This system generates 8-bit sub-pixel disparities
on 256 by 360 pixel images at video rate (30 frames/sec). The algo-
rithm implemented is a multi-resolution, multi-orientation phase-
based technique called Local Weighted Phase-Correlation [12].
Hardware implementation speeds up the performance more than
300 times that of the same algorithm running in software. In this
paper, we describe the programmable hardware platform, the base
stereo vision algorithm and the design of the hardware. We include
various trade-offs required to make the hardware small enough to
fit on our system and fast enough to work at video rate. We also
show sample outputs from the functioning hardware. Although this
paper is specifically focused on phase-based stereo vision FPGA
realizations, most of the design issues are common to other DSP
and Vision applications.

1 Introduction

 High-level computer vision tasks, such as robot navigation
and collision avoidance, require 3-D depth information about
the surrounding environment at video rate. Current general
purpose microprocessors are too slow to perform stereo
vision at video rate. For example, it takes several seconds to
execute a medium-sized stereo vision algorithm for a single
pair of images on a 1 GHz general-purpose microprocessor.
To overcome this limitation, designers in the last decade
have built custom-designed hardware systems to accelerate
the performance of the vision systems. Hardware implemen-
tation allows one to exploit the parallelism that usually exists
in image processing and vision algorithms, and to build sys-
tems to perform specific calculations very quickly compared
to software. By processing several parts of the data in paral-
lel, we can speed up the overall functioning and achieve
video-rate performance. Custom-designed hardware, how-
ever, has two major disadvantages: 1) The design cycle is
slow: The time required for fabrication and test of a typical
Application Specific Integrated Circuit (ASIC) is in the order

of a few months; 2) The fabrication process of the chip and
also circuit board is expensive, on the order of hundreds of
thousands of dollars.
 Over the past decade a third option between software and
custom hardware has become viable: using re-programmable
chips called Field-Programmable Gate Arrays (FPGAs).
These devices consist of programmable logic gates and rout-
ing that can be re-configured to implement essentially any
hardware function [4]. This method combines the advantage
of custom-designed hardware with the advantages of soft-
ware implementation, which are reprogrammability and
rapid design cycle. The reprogrammability feature also
allows the designers to use the same hardware system for
other vision or non-vision tasks, which again can amortize
the cost of the system.
 This paper describes the development of a highly complex
phase-based stereo vision algorithm on a reconfigurable plat-
form. This section explains the generic architecture of an
FPGA, and then introduces the programmable hardware sys-
tem we used. Section 2 describes the theoretical basis of the
phase-based stereo vision algorithm implemented in this
work. Section 3 illustrates the implementation process of the
algorithm on hardware. Finally, section 4 presents the overall
performance of the hardware system and compares it with a
software implementation.

1.1 Field-Programmable Gate Arrays

 An FPGA is a chip that allows its user to control and
reprogram the functionality of its logic circuits. All FPGAs
consist of three major components [4]: 1) Logic blocks; 2) I/
O blocks; and 3) programmable routing as shown in Figure
1. To implement a circuit on an FPGA, each Logic Block
(LB) is programmed to perform a small part of the logic
required by the circuit and each I/O block is programmed to
act as an input or output, as required by the circuit. The pro-
grammable routing is also configured to make all the neces-
sary connections between logic blocks and from logic blocks
to I/O blocks.
 The processing power of an FPGA is directly proportional

Video-Rate Stereo Depth Measurement on
Programmable Hardware

Ahmad Darabiha
University of Toronto

Department of Electrical and
Computer Engineering

ahmadd@eecg.utoronto.ca

Jonathan Rose
University of Toronto

Department of Electrical and
Computer Engineering
jayar@eecg.utoronto.ca

W. James MacLean
University of Toronto

Department of Electrical and
Computer Engineering

maclean@eecg.utoronto.ca

to the processing capabilities of its LBs and the total number
of LBs available in the array. Currently most of the commer-
cial FPGAs use LBs that contain one or more Look-up
Tables (LUTs) (typically a 4-input LUT). A 4-input LUT can
implement any binary function of 4 logic inputs. Figure 2
shows the architecture of a simple LB containing one 4-input
LUT and one flip-flop for storage. Modern FPGAs also con-
tain blocks of on-chip memory as well. For example, the
FPGAs used in this work contain 160 blocks of 4kbits of
RAM and 38,000 LUT-flip flop pairs. Current commercial
FPGAs contain 93,000 LUTs and flip flops in a single
FPGA. This amount of logic circuitry along with other fea-
tures of the modern FPGAs, such as on-chip memory and
dedicated multipliers, makes programmable hardware a via-
ble and efficient solution for accelerating complex image
processing applications. For designs that are too large to fit
on a single FPGA, a group of FPGAs connected with a pro-
grammable interconnection network can be used.

1.2 Our Programmable System:
Transmogrifier-3A

 The Transmogrifier-3A (TM-3A) [15][25] is a reconfig-
urable board built at the University of Toronto containing
four Xilinx Virtex2000E FPGAs [28]. Each FPGA is con-
nected to the other three chips via a 98 bit bus. Each chip is
also connected to a 256K x 64 bit synchronous SRAM mem-
ory, an I/O connector and a bus which allows communication
with a housekeeping FPGA. The housekeeping chip commu-

nicates with the host computer for download and control
functions. Video encoder/decoder chips are also integrated to
the TM-3A board, which give the ability to receive video
stream and also send output results directly to display. Cir-
cuits built on the TM-3A can operate at frequencies of up to
100 MHz.

1.3 Related Work

 A variety of reconfigurable stereo machines have been
introduced in recent years. The PARTS reconfigurable com-
puter [29] consists of a 4 x 4 array of mesh connected
FPGAs with a maximum total number of about 35,000 4-
input LUTs. A stereo system was developed on PARTS
based on the census transform, which mainly consists of bit-
wise comparisons and additions [30]. In [8], a 4 x 4 matrix of
small FPGAs is used to perform the cross-correlation of two
256 x 256 images in 140 ms. In [17], a combination of
FPGA and Digital Signal Processors (DSPs) is used to per-
form edge-based stereo vision. They use FPGAs to perform
low level tasks like edge detection and DSPs for high level
image processing tasks.

2 Local Weighted Phase-Correlation Stereo
Matching Algorithm

 The heart of any stereo vision system is stereo matching,
the goal of which is to establish correspondence between two
points arising from the same element in the scene. Stereo
matching is usually complicated by several factors such as
lack of texture, occlusion, discontinuity and noise. Research-
ers have proposed techniques to solve and improve the per-
formance of stereo matching that can be categorized into
three major groups: 1) Intensity-Based; 2) Feature-Based;
and 3) Phase-Based. Intensity-Based techniques assume that
image intensity corresponding to a 3-D point remains the
same in binocular images. These techniques usually lead to
window-based and coarse-to-fine strategies which are often
thought to be unsatisfactory. Feature-Based techniques use
sparse primitives such as edges [2] or straight line segments
[1]. The major limitation of all feature-based techniques is
that they cannot generate dense disparity maps. and hence
they often need to be used in conjunction with other tech-
niques. In phase-based techniques the disparity is defined as
the shift necessary to align the phase value of band-pass fil-
tered versions of two images. In [10] it is shown that phase-
based methods are robust when there are smooth lighting
variations between stereo images. It also shows that phase is
predominantly linear, and hence reliable approximations to
disparity can be extracted from phase displacement.
 The stereo system developed in this research is based on a
phase-based stereo matching technique called “Local
Weighted Phase-Correlation” [12]. This algorithm combines
the robustness of phase-difference methods with the simple
control strategy of phase-correlation methods. The local

I/O pad

Programmable
routing

Logic Block

Figure 1: Architecture of a generic FPGA

4−input

LUT

Input

Clock

Flip−flop

D Out

Figure 2: Simplified architecture of a logic block with
one 4-LUT

weighted phase-correlation algorithm has four major steps:
1. Create a Gaussian pyramid with total number of

scales for both left and right images. Then decompose
each scale of the pyramid using oriented quadrature-pair
filters [14]. Assuming that is the filter impulse

response of the orientation, then we can write the

complex-valued output of the convolution of with

each scale of left and right images, and , as:

in the polar representation, where is the

amplitude and is the phase of the
complex response.

2. Compute voting function as:

where is a smoothing, small, localized window

and is the pre-shift of the right filter output.

3. Combine the voting functions over all orien-

tations, , and scales, , where is the

total number of orientations and is the total number of
scales:

4. For each position , find the value corresponding to

the peak in the real part of as a good estimate for
the true disparity.

 Two major features make this algorithm a good candidate
for hardware implementation: First, it is primarily composed
of linear operations which are easier to implement. Second,
there is no iteration or any explicit coarse-to-fine control
strategy. This property makes the real-time flow of data pos-
sible through the hardware system. In the next sections, we
will describe the hardware of the system and then modifica-
tions applied to the original local weighted phase-correlation
method.

3 Design of a Stereo Vision System

 When implementing a complex algorithm on reprogram-
mable hardware, the most important issue is that there is a
fixed amount of hardware available as described in section
1.2. These hardware resources include logic capacity, on-
FPGA and off-FPGA available memory, memory access
bandwidth and chip-to-chip communication bandwidth.

Achieving the best overall performance requires efficient
usage of all hardware resources.
 In this work, for parallel and efficient hardware imple-
mentation of the stereo depth measurement, some modifica-
tions are introduced to the original local weighted phase-
correlation algorithm. Three major modifications are: 1)
Employing fixed-point data representation vs. floating-point
representation; 2) Changing the location of low pass local-
ized filter; and 3) Using L1-norm instead of L2-norm in cal-
culating phase correlation. In this section, we first describe
the major building blocks of the system and the distribution
of the tasks over four FPGAs available on the TM-3A board.
Then we will discuss the advantages and effects of modifica-
tions on the overall system performance.
 The architecture of the stereo vision system is illustrated
in Figure 3. It consists of four major units: Video Interface
unit, Scale-Orientation Decomposition unit, Phase-Correla-
tion unit and Interpolation/Peak Detection unit. Each of
these units is implemented on one separate Xilinx V2000E
FPGA available on Transmogrifier-3A.
 The Video Interface Unit receives the video signal from
cameras in composite NTSC format with an image size of
512 x 720 pixels. Since there is only one video input channel
available at a time on the TM-3A board, we switch between
camera signals after each frame such that we receive 15
frame/sec from each camera. However, the stereo vision sys-

S

K j x()

j
th

K j x()

I l x() Ir x()

, (1)Ol x() ρl x()e
iϕ l x()

= Or x() ρr x()e
iϕr x()

=

ρ x() O x()=

φ x() O x()[]arg=

C j s,() x τ,()

(2)C j s,() x τ,()
W x() Ol x()conj Or x τ+()()[]⊗

W x() Ol x() 2⊗ W x() Or x() 2⊗
--=

W x()
τ

C j s,() x τ,()

1 j F≤ ≤ 1 s S≤ ≤ F

S

(3)S x τ,() C j s,() x τ,()
j s,
∑=

x τ
S x τ,()

V
id

eo
In

te
rfa

ce

Video I/O

Video I/Oleft right

S
ca

le
−O

rie
nt

at
io

n
D

ec
om

po
si

tio
n

P
ha

se
C

or
re

la
tio

n
In

te
rp

ol
at

io
n/

Display

C
am

er
a

H
ea

d

P
ea

k
D

et
ec

tio
n

Peak Detection & Depth calculation

Quadrature
Interpolation

Correlation
Scale 1

Gauss. Pyramid

G2/H2 Filter
+

Gauss. Pyramid

G2/H2 Filter
+

CorrelationCorrelation
Scale 2 Scale 4

Interpolation
Quadrature

V
id

eo
In

te
rfa

ce

Figure 3: High Level System Architecture

tem itself is capable of processing 30 frame/s if there were a
way to simultaneously receive two video-rate image streams
from video interface. After frame buffering, the video inter-
face unit sends two non-interlaced gray scale image streams
to the Scale/Orientation decomposition unit.
 In the Scale-Orientation Decomposition Unit, at first a
3-level Gaussian pyramid is built for both left and right
images. Each of the pyramid scales is then decomposed into

 and orientations using G2/H2 steerable filters. G2/
H2 filters use a set of seven separable 7x7 FIR filters as base
filters. By choosing proper coefficients for the linear combi-
nation of base filters, one can synthesize filters of arbitrary
orientation. The important advantage of using G2/H2 filters
for hardware implementation is that they are X-Y separable
and therefore require less hardware resources than non-sepa-
rable filters of the same size. At the end of this unit, filter
outputs are reduced to a 16-bit representation before being
sent to the phase-correlation unit. The issues related to the
effects of fixed-point representation will be discussed in sec-
tion 3.1
 The Phase-Correlation Unit is the heart of the vision
system. For each pixel in the left image, it computes the real
part of the voting function as mentioned in Eq.(2)

for all , , where s is the scale
number, S is total number of scales, j is an orientation index,
F is the total number of orientations, is a pre-shift in the
right image and D is the maximum allowed disparity.
 In this system, we decompose the input images to three
scales and two orientations (S=3, F=2). The maximum value
for disparity (D) for the finest scale (s=1) is set to 20 pixels.

Hence, for the next coarser scales, D is set to 10 and 5
respectively.
 Figure 4 shows the architecture of the phase correlation
block. There are two major differences between the original
method of computing phase correlation and the version
implemented here in hardware. We will discuss these differ-
ences and their effects in the next section. The voting func-
tions are reduced to 8-bit representation before

being sent to interpolation unit.
 TheInterpolation/Peak-Detection Unit interpolates two
coarser scale voting functions, and ,

in both x and domain such that they can be combined with

the finest scale voting function . It performs

quadrature interpolation in the domain and constant inter-
polation in thex domain. The interpolated voting functions
are then added together to produce the overall voting func-
tion .
 The final step in this unit is peak detection. For each pixel
x in the image, it detects the value of for which is
maximum. By performing sub-pixel interpolation of the dis-
parities, this unit produces disparity values with 8-bit resolu-
tion from 20-pixel disparity range. The final disparity results
are sent back to thevideo interface unit to be written in the
video output buffer and displayed on a monitor. Table 1 lists
the hardware resources used in each unit in terms of number
of Look Up Tables (LUTs), flip-flops and the number of on-
chip fast memory banks. In the design of the hardware, we
have assumed that the two cameras have identical focal
length and are vertically aligned such that no rectification
[26] is required. Also, there is no post-processing stage such
as left-to-right/right-to-left validation or smoothing/gap fill-
ing implemented in hardware.

3.1 Fixed-Point Representation

 Floating-point mathematical operations require extensive
resources to implement in hardware. Since we know the
required scale and precision in each stage of the stereo algo-
rithm, we can implement it in a far more efficient fixed-point
representation. However, there is always a trade-off between
the accuracy of fixed-point representation and the hardware
efficiency: minimum quantization error requires using wide
fixed-point representations, but wider signals require larger

45° 45– °

C j s,() x τ,()

1 s S≤ ≤ 1 j F≤ ≤ 0 τ D≤ ≤

2

|R|

2

|L|

W

W

W

z

y

x

D : Max Disparity

T
o

In
te

rp
ol

at
io

n
U

ni
t

Z Z Z Z

x
y . zL.R

−1 −1−1−1

C(0)

C(1)

C(2)

C(D)

L=(Re(L),Im(L))

R=(Re(R),Im(R))

R=[Re(R),Im(R)]

L=[Re(L),Im(L)]

Voting

func.

Voting

Voting

Voting

func.

func.

func.
Gaussian Window

2 2

((L.R)*W)

(|L| * W).(|R| * W)

Figure 4: Original correlation block architecture

τ

Table 1: Hardware resources for each unit

Unit Name # 4-input
LUTs

of
flip-flops

On-chip
Memory

(bits)

Video Interface 169 71 -

Scale/Orient. Decomp. 23,151 18,020 614,400

Phase-correlation 16,709 30,961 -

Interpolation 26,615 33,974 172,032

C j s,() x τ,()

C j 2,() x τ,() C j 3,() x τ,()

τ
C j 1,() x τ,()

τ

S x τ,()

τ S x τ,()

mathematical operators (dividers, multipliers, adders, etc.).
In addition, more hardware resources are needed for data
path circuits. As an example, Figure 5(a) shows the relation
between the required number of LUTs to create parallel (one
clock cycle) multipliers or dividers versus the input width of
the multiplier or divider. The number of LUTs increases with
the square of the input width.
 So, we need to make good decisions for the precision of
the variables and operations in each stage of the algorithm.
This analysis requires both knowledge of the target hardware
and the algorithm itself. Few tools have been developed to
solve this problem. For example, [6] is a framework for auto-
matically determining fixed-point precision of floating-point
calculations. In our work, before moving to hardware, we
have conducted emulations in order to find the most efficient
precisions for each stage of the system. To find the optimum
precision, we have simulated our hardware system for a
range of precisions and calculated the quantization error.
 Figure 5(b) shows the Mean Square Error between using
full-precision and a fixed-point multiplier in the correlation
unit for a range of precisions (assuming that all other stages
are in full precision). In this case. for example, based on Fig-
ure 5(a) and Figure 5(b), an 8-bit multiplier was chosen for

the phase-correlation unit. Since the proper resolution is not
fixed across all stages of the system, we performed the anal-
ysis similar to the above for each of the units and we have
chosen 16 and 8 bit widths for Orientation Decomposition
Unit and Interpolation Unit respectively.

3.2 Location of the Gaussian Window

 The implementation of the correlation block based on the
architecture of Figure 4 requires hardware resources beyond
the capacity of a Virtex 2000E FPGA. To shrink the size of
the circuit, we have modified the correlation block as shown
in Figure 6. In this revised architecture we have placed the
Gaussian window,w, at the end of voting function blocks.
This change allows us to extract the common portions of the
computations out of voting function units as much as possi-
ble. Extracting the two normalization blocks in Figure 6
leaves a simple inner product calculation and a single Gauss-
ian window inside each voting function block. Each normal-
ization block receives a complex-valued input and divides it
by its magnitude such that the output has the same phase but
with unity magnitude. Changing the location of Gaussian
window along with sharing the normalization block reduces
the total number of multipliers, dividers and square roots in
the correlation unit by more than 65%.
 The drawback of this architecture is that Gaussian win-
dow moved to the end of voting function block is not an
exact analytical equivalent of the original method. But one
can show that for FIR filters close to an impulse function,
this is a reasonable approximation [7]. Since in our stereo
vision system a 3-tap Gaussian LP filter is used as window,
w, this trade off seems to be reasonable.

3.3 Normalization

 For further reduction in the size of the phase-correlation

2 4 6 8 10 12 14
0

1

2

3

4

5

6

7

Input width of Multipliers in correlation block (# of bits)

M
ea

n
Sq

ua
re

 E
rr

or

tree−image

books
i
mage

lamp
i
mage

Figure 5(b): Error in final disparity resulted from
fixed-point multipliers

Figure 5(a): Divider and multiplier hardware cost

4 6 8 10 12 14 16 18 20
0

100

200

300

400

500

600

700

Width of inputs

of

 L
U

Ts

Divider

Multiplier

D : Max Disparity

Z Z Z

W
Prod.

LPF ^(L . R) * W

−1 −1 −1

T
o

In
te

rp
ol

at
io

n
U

ni
t

(From G2/H2
Filters) C(0)

C(1)

C(D)

Inner

L=[Re(L), Im(L)]^^ ^

R=[Re(R), Im(R)]^ ^ ^

L=[Re(L),Im(L)]

R=[Re(R),Im(R)] R
|| R ||

R=
^

L
|| L ||

L=
^

func.

Voting

Voting

func.

func.

Voting

Norm.

Norm.

^

Figure 6: Revised correlation architecture with
normalization blocks

unit, we have modified the architecture of normalization
block. The major portion of this block is for computing the
magnitude of complex-valued inputs. The magnitude of a
complex numberA is defined as the L2-norm of the 2D vec-
tor, A, with and as its elements:

 The hardware implementation of is expensive

because it requires two multipliers, one square root and one
adder. Instead, we replace with L1-norm of vector A,

, defined as:

where |x| is absolute value ofx. Figure 7 shows the effect of
replacing with on the normalized output. In L2

method, all the normalized vectors are located on the unit
circle in the Real-Imaginary plane but in L1, they are pro-
jected on a square as shown in Figure 7. This is because the
sum of absolute real and imaginary parts of normalized vec-
tors are always unity and therefore they all become projected
to straight lines which form a square instead of a unit circle.
This technique provides enough accuracy for our application
and can also be used in similar applications. To improve the
accuracy and still avoid implementation of , there is one

possible solution: since and in Figure 7

are always limited between -1 and 1, one can use a memory
block as a look up table with appropriate size to replace cur-
rent vectors with those closer to unit circle. The impor-

tant point is that these look up tables can be built using on-
chip memory which is available in most of the current FPGA
devices without the need to use logic elements of the device.

3.4 Optics

 The camera head of the stereo system consists of two dig-
ital cameras with CCD size of 7.55mm x 6.45mm and using
12mm lenses. There is a separation of 70mm between the

two cameras. In the design process of the stereo vision sys-
tem, the size of the required hardware is directly propor-
tional to maximum disparity between two images. We have
set the maximum possible disparity to 20 pixels. This maxi-
mum disparity becomes translated to a minimum allowed
distance of about 2m from the objects to the camera head.
Other parameters such as separation between the cameras,
CCD size and resolution can reduce the minimum distance,
but they are usually restricted by optical and physical con-
straints. For example, to reduce the minimum distance, wider
lenses can be used but lenses with focal length of less than 8
mm introduce fisheye distortion in which straight lines in the
scene are no longer straight in the image. It should be noted
that the dynamic range of the depth measurements can be
expanded by image pre-warping. This pre-warping can be
done either statically for all the frames or dynamically with
varying pre-shift values depending on the current distance.

4 Performance

 The FPGA stereo system developed in this research per-
forms multi-resolution, multi-orientation depth extraction
based on local weighted phase-correlation. It can produce a
dense disparity map of size 256 x 360 pixels with 8-bit sub-
pixel accuracy disparity results at the rate of 30 frames/sec.
In the metric of Points x Disparity measures per second
(PDS), this system achieves a performance of 60 million
PDS, which is among the highest rates reported [29]. While
the PDS metric reflects the density and the speed of the sys-
tem, it does not reflect its complexity and accuracy of the
implemented algorithm. The important feature of this system

Re A() Im A()

L2-norm: (4)A 2 Re A()2
Im A()2

+=

A 2

A 2

A 1

L1-norm: (5)A 1 Re A() Im A()+=

A 2 A 1

A 2

Re Au1() Im Au1()

Au1

u1
A

u2
A

Re

Im

1

1

Re

1

1

Im

A= =

2
Re(A) + Im(A)

22

A
|| A ||

A
u2

A= =A A
|| A ||u1

1 | Re(A) | + | Im(A) |

L2-Norm L1-Norm

A A

Figure 7: Effect of using L1-norm instead of L2-norm

(a) (b)

Figure 8:(a) TM-3A board, (b) Camera head

Figure 9: Overall system performance on ran-
dom stereograms: (a) true depth map (b) depth
from original software (c) depth from hardware

(a) (b) (c)

in comparison with other hardware stereo machines is its
high performance complex phase-based algorithm. To real-
ize a phase-based algorithm in video rate, the system per-
forms the equivalent of more than 10 billion 16 x 16 bit
multiplications per second and the four Virtex devices com-
municate in a data rate of up to 200 Mbytes/sec. Figure 9
shows the depth map from a pair of random stereograms
extracted by the original phase based algorithm and also by
the hardware system. Figure 10 shows a sample image from
the camera head and the depth map generated by the hard-
ware. The depth maps in these figures are the output of the
Peak-Detection unit without any post-processing such as
left-to-right/right-to-left validation or smoothing/gap filling.
We believe that rectification and left-to-right/right-to-left
validation can be integrated with the current system by
approximately half of the size of one Xilinx Virtex2000E
FPGA. As an other solution, the rectification can be avoided
as pre-rectified images can be directly generated using spe-
cial optical setups [15]. Also one efficient technique to inte-
grate the left-right, right-left validation feature to the current
system is to alternate between left and right images after
each subsequent frame. Since left-right and right-left match-
ing is performed in different time slices, they can share the
same blocks and hence there is no need for extra hardware.
Even if we want to perform both matchings at the same time
slice we can still share the filtering blocks and just need to
re-do the correlation and peak detection separately.
 In Table 2, the depth measurements obtained by our sys-
tem are compared with the actual depths. As in most of the

other stereo matching algorithms, the phase-based stereo
matching algorithm is sensitive to depth discontinuity and
lack of texture. In the regions with enough texture, most of
the depth measurement errors are less than 5%, but in the
regions with fine texture that is not sensed by the cameras or
at the depth discontinuities, the depth values are less reliable
(for example, point 3 in Figure 10(a)).
 To compare with other stereo systems, a number of fast
algorithms that do not use reconfigurable hardware also exist
in the literature. Some of these take advantage of special
hardware, specifically SIMD (single instruction, multiple
data) instructions in Intel MMX processors [17][22]. A num-
ber of intensity-based cross-correlation techniques are
reported [17][22][23][24][27]. Approaches to speed up algo-
rithms include the use of image pyramids [24][21] or simpli-
fied algorithms [3].
 The two fastest algorithms both use MMX processors.
Hirschmuller et al. [17] achieve 4.7 frames/second on 320 x
240 images using intensity correlation in 7 x 7 windows with
Gaussian pre-filtering. Their method includes both rectifica-
tion and left-right consistency checking (without these the
frame rate is estimated at 5.7 frames/second). Their hard-
ware is a 450MHz Pentium running Linux. Muhlmann [22],
using an 800MHz MMX processor, achieves less than 5
frames/second on 348 x 288 colour images, again using
intensity correlation. A trinocular disparity system is imple-
mented by Mulligan et al. [23] on a 4-processor system uti-
lizing Intel IPL libraries. This system takes 456 ms to
compute disparity for three 320 x 240 images up to a maxi-
mum disparity of 64 pixels. Sun [24] computes disparity (up
to 10 pixels) in 450ms on a 500MHz Pentium processor
based on fast intensity correlation in an image pyramid.
 Birchfield & Tomasi [3] use a simplified algorithm that
minimizes a 1-D cost function based on pixel intensity dif-
ferences. They report speeds of 4 seconds/frame on a 333
MHz Pentium for 640 x 480 images. Given a faster processor
their algorithm would doubtlessly perform better than one
frame/second. It has the advantage of explicitly accounting
for occlusion as well as propagating disparity information
between scan lines.
 In summary it should be seen that our system compares
favorably with the systems described. While some of the sys-
tems are starting to achieve frame rates upwards of 5 frames/
second, none of them are doing the amount of computation
that our system is. For example, while others are using corre-
lation methods, none are computing complex filter responses
at multiple scales and orientations, and then recovering and
correlating the phase responses. While others are using
image pyramid approaches, they use the pyramid to simplify
computation at subsequent scales, as opposed to combining
the information across scales. Finally, while we have
attempted to compare running speeds of other algorithms
based on the same size of image that our system currently
processes, it must be mentioned that we are able to handle

5

2 3

1

4

Figure 10: (a) Input from right camera (b) Output dis-
parity map

(a) (b)

Table 2: Depth measurements for five points of figure
10(a)

Point # 1 2 3 4 5

Ground truth
depth (cm)

300 315 320 354 396

Depth from
stereo system

(cm)
309 320 276 355 402

larger images at 30 frames/second if the algorithm is moved
to larger FPGAs. Our speed is thus dependent on the pro-
cessing capacity of the FPGA, and not its clock speed.

5 Conclusion

This paper has shown the feasibility of implementing
challenging vision applications on FPGAs to achieve real-
time performance. After describing programmable hardware
and also the theory of the Local Weighted Phase-Correlation
algorithm, it illustrates the design techniques and the trade-
offs for fast and efficient hardware implementation.
Although this paper is specifically focused on phase-based
stereo vision FPGA realizations, most of the design issues
are common among other DSP and video applications. In
fact, most of the components of this system can be re-used in
other vision algorithms. Prefiltering and building image pyr-
amids are basic operations used by many algorithms doing
tasks such as stereo, motion analysis and object recognition
& localization. In particular, our implementation of steerable
filters has great potential for re-use. Examples of algorithms
based on these filters include optic flow computation [11][9],
object tracking [19] and recovery of rotation and illumina-
tion invariant features [5], which can be used for feature
tracking or perhaps object recognition. The implementation
of the correlation units can be adapted for use in other sys-
tems that require correlation, such as template matching.

6 Acknowledgment

The authors would like to thank Micronet and NSERC Can-
ada for their financial support.

7 References
[1] N. Ayache and B. Faverjon, Efficient registration of stereo
images by matching graph descriptions of edge segments,IJCV,
1(2):107:131, 1987.

[2] H.H. Baker and T.O. Binford, Depth from edges and intensity
based stereo,Proc. 7th Intern. Joint Conf. Artif. Intell., Vancouver,
pp. 631-636, August 1981.

[3] S. Birchfield and C. Tomasi, Depth discontinuities by pixel-to-
pixel stereo.IJCV, 35(3):269-293, 1999.

[4] S. Brown, R. Francis, J. Rose, Z. Vranesic,Field-Programma-
ble Gate Arrays, Kluwer Academic Publishers, May 1992.

[5] G. Carneiro and A. D. Jepson, Local phase-based features.In
Proceedings of the 2002 European Conference on Computer Vision,
v. 1, pp. 282-296, Copenhagen, Denmark, 2002.

[6] M.L. Chang and S. Hauck, Precis: A design-time precision
analysis tool,IEEE FCCM, April 2002.

[7] A. Darabiha, Video-Rate Stereo Vision on Reconfigurable
Hardware,Master’s thesis, University of Toronto, 2003.

[8] O. Faugeras, et al., Real time correlation based stereo: algo-
rithm, implementations and applications, Research Report 2013,
INRIA Sophia-Antipolis, 1993.

[9] D.J. Fleet, M. J. Black, and A. D. Jepson, Motion feature detec-
tion using steerable flow fields,CVPR, pp. 274-281, June 1998.

[10] D.J. Fleet, A.D. Jepson and M. Jepson, Phase-based disparity
measurement,CVGIP: Image Understanding, 53(2):198-210, 1991.

[11] D.J. Fleet and A. D. Jepson. Computation of component image
velocity from local phase information.IJCV, 5(1):77-104, 1990.

[12] D.J. Fleet, Disparity from local weighted phase-correlation,
Int. Conf. on Systems, Man, and Cybernetics, pp. 48-54 v.1, 1994.

[13] D.J. Fleet and A.D. Jepson, Stability of phase information,
IEEE Trans. PAMI, 15(12):1253-1268, 1993.

[14] W.T. Freeman and E.H. Adelson, The design and use of steer-
able filters,PAMI, Trans. on, Volume: 13, Issue: 9, Page(s): 891 -
906, Sept. 1991.

[15] J. Gluckman and S.K. Nayar, Rectified catadioptric stereo sen-
sors.IEEE Transactions on PAMI, 24(2):224-236, February 2002.

[16] M. Van Ierssel, D. Galloway, P. Chow, J. Rose, The Transmo-
grifier-3a: Hardware and Software for a 3 Million Gate Rapid Pro-
totyping System,Micronet Annual Workshop, 2001.

[17] H. Hirschmuller, et al., Real-time correlation-based stereo
vision with reduced border errors.IJCV, 47(1/2/3):229-246, 2002.

[18] K.M. Hou, et al., A reconfigurable and flexible parallel 3D
vision system for a mobile robot, Proc. Computer Architectures for
Machine Perception, pp. 215 - 221, Dec 1993.

[19] A.D. Jepson, et al., Robust on-line appearance models for
visual tracking,CVPR, vol. 1, pp. 415-422, Kauai, Dec 2001.

[20] F. Jutand, et al, ENSTA Single chip VLSI architecture for a
real time stereo vision processor,ICASSP-88., pp.1965-1968, vol.
4, 1988.

[21] G. Van Meerbergen, M. Vergauwen, M. Pollefeys, and L. Van
Gool. A hierarchical symmetric stereo algorithm using dynamic
programming,IJCV, 47(1/2/3):275-285, 2002.

[22] K. Muhlmann, D. Maier, Jurgen Hesser, and R. M. Anner, Cal-
culating dense disparity maps from color stereo images, an efficient
implementation.IJCV, 47(1/2/3):79-88, 2002.

[23] J. Mulligan, et al, Trinocular stereo: A real-time algorithm and
its evaluation,IJCV, 47(1/2/3):51-61, 2002.

[24] C. Sun. Fast stereo matching using rectangular subregioning
and 3d maximum-surface techniques,IJCV, 47(1/2/3):99-117,
2002.

[25] TM-3 documentation,http://www.eecg.utoronto.ca/~tm3/

[26] E. Trucco, A. Verri,Introductory Techniques for 3-D Computer
Vision, Prentice Hall, 1998.

[27] O. Veksler. Stereo correspondence with compact windows via
minimum ratio cycle,IEEE Trans. on PAMI, 24(12):1654-1660,
Dec 2002.

[28] Xilinx data sheets,http://direct.xilinx.com/bvdocs/publica-
tions/ds022-1.pdf

[29] J. Woodfill and Von Herzen, Real-time stereo vision on the
PARTS reconfigurable computer,The 5th Symposium on FCCM
Proceedings, Pages:201-210, 1997.

[30] R. Zabih and J. Woodfill, Non-parametric Local Transforms
for Computing Visual Correspondence,Proceedings of 3rd Euro-
pean Conf. on Computer Vision, pp. 150-158, May 1994.

