
Modeling Routing Demand for Early-Stage FPGA
Architecture Development

Wei Mark Fang and Jonathan Rose
The Edward S. Rogers Sr. Department of Electrical and Computer Engineering

University of Toronto, ON, Canada
{fang,jayar}@eecg.utoronto.ca

ABSTRACT

Architecture development for FPGAs has typically been a
very empirical discipline, requiring the synthesis of bench-
mark circuits into candidate architectures. This is difficult
to do in the early stages of architecture development, how-
ever, because there is no complete architecture to synthesize
circuits into. The effort required to create prototype tools
for nascent architectures is far too great for every new logic
block or routing architecture idea, and so it would be ex-
tremely helpful to have a simple and intuitive FPGA inter-
connect model to guide the architect.

In this paper we present such an interconnect model for
island-style FPGAs, whose single output is the estimated
routing demand (often referred to as W, the number of rout-
ing tracks per channel) for an FPGA as a function of several
logic block, circuit and routing architecture parameters. The
goal of this model is to be as simple as possible, while still
accurate enough to be useful, to provide understanding and
intuition on FPGA routing. Our methodology is empirical
– we propose model forms based on empirical observations,
intuition and some derivation, and then fit models to exper-
imentally generated data.

We show the development of the model in stages, begin-
ning with a fully flexible FPGA, and gradually proceeding to
one which includes the key parameters that control the flex-
ibility of FPGA routing, and one key parameter describing
the logic block and another relating to the typical circuit.
We then show how to use these models in early-stage archi-
tecture development to provide feedback on several aspects
of logic block architecture. We also show how the model can
be used to explore the routing architecture space itself and
to provide an overall intuition for architecture development.

Categories and Subject Descriptors

B.7.1 [Integrated Circuits]: Types and Design Styles—
Gate arrays; I.6.5 [Simulation and Modeling]: Model
Development—Modeling methodologies

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FPGA’08, February 24-26, 2008, Monterey, California, USA.
Copyright 2008 ACM 978-1-59593-934-0/08/02 ...$5.00.

General Terms

Design, Experimentation, Theory

Keywords

FPGA, Architecture, Routing, Model

1. INTRODUCTION
As Field-Programmable Gate Arrays (FPGAs) evolve, the-

re is interest in developing new logic block architectures with
more specific functionality including computational blocks,
memories and even processors [17, 2, 6]. A key part in the
evaluation of new architectures, as they are proposed, is to
evaluate their impact on the demand for routing wires. This
is important because routing demand is a key factor deter-
mining the area, performance and power consumption of the
resulting FPGA.

Traditionally, routing demand is determined empirically
by synthesizing benchmark designs to proposed architec-
tures, requiring many hours of experiments. In the absence
of a tool flow and sufficient benchmark circuit designs, dur-
ing early-stage architecture development, an FPGA archi-
tect requires an interconnect prediction model to take the
place of the empirical method. Such a model should be sim-
ple to use, capture important detailed routing parameters,
and give intuition on the tradeoffs between these parame-
ters.

In this paper, we present such an FPGA interconnect pre-
diction model for island-style FPGAs. The inputs to the
model are a few easy-to-measure parameters that can be de-
rived from proposed logic blocks, basic knowledge of circuits,
and detailed routing architecture parameters.

The output of the model is the routing demand/track
count per channel required (often referred to as W in the
literature) for successful detailed routing. Our goal is to
develop this model balancing simplicity, accuracy and intu-
ition/understanding.

This paper is organized as follows. Section 2 describes the
basic terminology, defines the parameters used in the model,
and reviews related previous work. Section 3 describes the
modeling methodology and Section 4 develops the model in-
crementally, moving from a fully flexible routing architecture
to a less flexible one. Section 5 shows how to use the model
in various aspects of early-stage architecture development,
and how some intuition can be derived from the model.

139

LB

C

C

C

C

C C

C C

C C

C C

C

C

C

C

C

C

C

C

C

C

C

C

S

0 1 2 3

0 1 2 3

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

LB

LB

LB

LB

LB

LB

LB

LB

3

2

1

0

3

2

1

0

0 1 2 3

0 1 2 3

Input P in Output P in

a) s witch block detail b) connection block detail

Figure 1: Island-Style FPGA Architecture [15]

2. BACKGROUND

2.1 Architecture Terminology and Parameters
The FPGA architecture modeled in this work is the island-

style architecture illustrated in Figure 1. This style of FPGA
consists of an array of logic blocks (LB) separated by hori-
zontal and vertical routing channels which contain individual
routing tracks. For the experimental part of this work, we
will assume that logic blocks consist of clusters of N 4-input
lookup table (LUT) based basic logic elements (BLE) that
are fully connected as described in [3]. These clusters typi-
cally present I input pins and N output pins to the routing
fabric (where I is set to be 2N + 2 [3] to achieve good uti-
lization of the cluster’s logic). Although our experiments
make use of this fairly standard soft logic cluster, this work
seeks to create models that are applicable beyond this type
of logic block.

The portion of a channel adjacent to a logic block is a
channel segment. The channel width, W , is the number
of wiring tracks in each channel segment. We assume that
all channels have the same width as is commonly the case.
We define the routing demand, Wneed, of a circuit to be the
minimum channel width an FPGA must have to successfully
route that circuit.

This work will also assume that the detailed routing archi-
tecture employs the single-driver approach [15] (also known
as unidirectional [1] and direct drive [16]) as this is now the
common standard in industry. Here each routing wire can
only be driven by a single source, chosen by a multiplexer
at the beginning of the wire. A wire that spans multiple

logic blocks is called a starting wire in the logical location
containing its multiplexer.

A switch block (labelled S in Figure 1) exists at the inter-
section of the horizontal and vertical channels, and contains
routing switches to connect wires for turning corners or ex-
tending wires farther along a channel. The flexibility of the
switch block, Fs [20], is defined to be the total number of
starting wires in this switch block each incoming wire can
connect to. Routing switches are implemented as multiplex-
ers that select the driver of a wire. The switch block at the
bottom of Figure 1 uses a dashed line to indicate a routing
switch between wires.

A connection block (C) conceptually contains the connec-
tions between the logic block and the routing segment. It
is separated into the input connection block (which is a set
of multiplexers selecting from the adjacent channel segments
to connect to the logic block input pins) and the output con-
nection block (which drive into the same multiplexers as the
switch block). The flexibility of the input connection block,
Fcin, is defined to be the total number of wires that can
connect to each input pin on the logic block through rout-
ing switches. These routing switches are depicted in Figure
1b) as circles.

The flexibility of the output connection block, Fcout, is
defined to be the total number of starting wires in local chan-
nel segments that each output pin can connect via routing
switches. The connection block in Figure 1b) uses a dashed
line to indicate a routing switch between output pin and
wire.

The length of a wire, L, is the number of logic blocks
it spans without interruption by a programmable switch.
We will model an FPGA in which all wires are of the same
length, and leave the modeling of multiple lengths to future
work.

The input and output pins on a logic block can be either
logically equivalent (because each pin can be made to im-
plement the same function, such as an AND gate) or not.
Logical equivalence can also be architected into a logic block
by constructing fully populated switching interconnect layer
in front of the the input pins. We will refer to this archi-
tecture feature using the binary parameter Eqv. We will
consider the input pins and output pins to either all be log-
ically equivalent (Eqv=1) or not (Eqv=0).

These five parameters {Fs,Fcin,Fcout,L, Eqv} are the
routing flexibility parameters that will be modeled below.

2.2 Related Work
Many interconnect models have been proposed in the past.

The classical interconnect models [10, 12, 13] are analytical
models built on Rent’s Rule, which is an empirical observa-
tion that on average the size of a sub-circuit is proportional
to the log of the number of its external connections. These
models assume that routing wires have high flexibility in
that they can turn and connect at any point, and hence do
not take into account the inflexible nature of FPGA rout-
ing architectures. More modern extensions of the classical
models [9, 22] predict wire-length and channel width distri-
butions of gate arrays but still do not consider the impact
of FPGA’s inflexibility.

A number of FPGA-specific interconnect models have been
proposed in literature. Chan et al. [5] applied classical mod-
els [12] and [13] to predict required channel width for a fixed
FPGA architecture. Rahman et al. [19] used the modern

140

wire model [9] to formulate an interconnect model predict-
ing 2D and 3D channel width requirement. However, Rah-
man only models wire length L and not the flexibility of the
switching blocks.

The most related FPGA interconnect models to the work
presented in this paper are from Kannan et al. [14] and
Brown et al. [4]. In [14] Kannan models a large space of
FPGA architectures using a routing resource graph generat-
ing tool and estimates the required channel width by com-
puting wire demands from circuit placement information.
This model is similar to ours in its ability to model a large
space of FPGA architectures, but the main difference lays
in that we require little to no circuit information and no
tool flow. The FPGA interconnect model closest to the one
in this paper is Brown’s stochastic model in [4], which pre-
dicts the likelihood of successful routing given some of the
FPGA flexibility parameters in Section 2.1, although only
for L = 1 routing architectures. While similar in model
inputs, the output of Brown’s model is a probability value
given channel width (W) as an input, but our model out-
put is the required channel width for successful routing; this
makes it difficult to compare models. Furthermore, our goal
is somewhat different – to guide an architect in early-stage
evaluation of logic blocks and early interconnect planning.
For that reason, our model is built for simplicity with a will-
ingness to sacrifice accuracy.

3. MODELINGMETHODOLOGY
Our goal is to determine a model of routing demand as a

function of the logic block and routing architecture, in the
form of simple and intuitive analytic equations. While the
model is intended for use with little to no circuit informa-
tion, we develop the model by analyzing experimental data
on the relationship between routing demand and architec-
ture. We generate this data by synthesizing a set of bench-
mark circuits into a number of different architectures. We
propose candidate models based on trends observed from the
data, intuition and some derivation, and then fit (train) the
models to the experimental data. We use the most common
method, the least squares fitting method, which minimizes
the sum of the squares of the difference between model pre-
diction and actual experimental data.

The benchmark circuits used are the largest 20 MCNC
circuits [23] and in addition eight benchmark circuits ob-
tained from open sources [18]. The latter includes various
applications such as FIR filter and RS decoder design. The
benchmark circuits are listed in Table 1.

Half of the benchmark circuits will be used to train the
models, and half will be reserved to validate the quality of
the trained model. These circuits are referred to as the
“training”and“validation” sets respectively, and are listed in
Table 1. The two sets are chosen by a random separation of
the benchmark circuits with the constraint that the statisti-
cal properties of each set are similar to that of the combined
set. This is done by measuring the average and variance
of a number of circuit properties, including the BLE count
and number of nets, of both training and validation sets and
picking the random separation that yields the most similar
average and variance between the two sets.

To measure the accuracy of the models presented, the pre-
diction will be compared to measured results from the vali-
dation set of circuits synthesized into the modeled architec-
ture. The accuracy metric we adopt is the Mean Absolute

Table 1: Benchmark Circuit List and Sizes in 4-
Input BLEs

Training Set Validation Set
Circuit # BLEs Circuit # BLEs

clma 8383 des perf 12032
s38584.1 6447 s38417 6406

rs decoder 2 4502 pdc 4575
mac1 3718 diffeq paj convert 3792

elliptic 3604 spla 3690
frisc 3556 des area 2025

fir scu rtl 2201 apex2 1878
s298 1931 seq 1750

rs decoder 1 1745 alu4 1522
diffeq 1497 apex4 1262
misex3 1397 ex5p 1064
tseng 1047 apex3 869
cps 757 apex1 700

misex3c 549 parker1986 663

Percentage Error (MAPE) defined as:

MAPE =
1

C

X

all C circuits

|Predicted − Measured|

Measured

(3.0.1)
Although we use this as a more human-comprehensible accu-
racy metric, the fitting method employs the common mean-
squared error metric as the optimization goal. The next sec-
tion describes the details of the experimental methodology
used to synthesizes benchmark circuits into different rout-
ing architectures, which are used in the model development
process.

3.1 Experimental Methodology
The experimental flow used to generate the data relat-

ing routing demand to circuits and architecture is as fol-
lows: First, benchmark circuits are synthesized, using the
FlowMap and FlowPack tools [7], into registers and lookup
tables (LUT). They are then packed into logic clusters using
a non-timing driven packing algorithm (VPACK) followed
by wireability-driven placement and routing using a modi-
fied version of VPR [3]. (The single-driver routing architec-
ture has been added into VPR by [24] and [11]. This work
included extensive and careful creation of routing switch
connectivity patterns.)

Each circuit is placed in the smallest square FPGA it can
fit and routed by VPR (in routability-driven mode) into each
architecture of interest. VPR determines the routing de-
mand Wneed required to successfully route each circuit by
iteratively routing each circuit, reducing channel width of
the routing architecture until it fails to route.

The logic block architecture used consists of a cluster of
ten 4-input basic logic elements (BLE), each with a regis-
ter and a 4-input LUT. Each logic block has I = 22 input
pins, which are shared among all BLE inputs in the logic
block. Each logic block has ten output pins, one for each
BLE output.

Note that the entire flow used is non-timing driven. We
believe that the routing demand in timing-driven mode is
only marginally different than in non-timing driven mode
because in both cases we force the router to primarily fo-
cus on routability since it is searching to find the minimum

141

possible track count, and so the parts of the cost function
that derive from timing optimization will be relatively small.
Test measurements bear this out: the routing demand ratio
of timing-driven routing to routability-driven routing for a
variety of different routing architectures ranges from 0.95 to
1.13 (with absolute track count ranging from 36 to 266), and
has a mean of 1.02.

4. MODEL CONSTRUCTION
The goal of the model is to predict the number of routing

tracks needed, Wneed, for a given logic block and routing
architecture. We will create the model in stages, dealing
with three basic contributing factors: the fundamental logic
block and circuit demand (which we call the absolute min-
imum track count), the increase in routing demand due to
flexibility of the major switching stages in the routing fab-
ric, and the effect of longer wires on routing demand. Al-
though these three factors interact it is more intuitive to at
first discuss them separately, as expressed in this high-level
equation:

Wneed =

switching matrix segment
absolute + flexibility + length
minimum penalty penalty

(4.0.1)
We will develop this model incrementally, starting with

a fully flexible FPGA that provides the first term of this
equation, and then incrementally generalizing it.

4.1 Model for the Fully Flexible FPGA
We begin with a fully flexible FPGA that has maximum

connectivity between all routing resources – effectively a
crossbar in the switch block, connection blocks, and the
smallest length wires possible. Table 2 gives the routing pa-
rameter values of the fully flexible architecture. Routing in
a fully flexible FPGA is very similar to ASIC routing, where
routes can turn almost anywhere and have any length. For
this reason we can build on El Gamal’s master slice inter-
connect model [13] to form a model predicting Wneed. A key
result from El Gamal’s model is that the average number of
used wires per channel, Wavg, is given by:

Wavg =
λ·R

2
(4.1.1)

where λ is the average number of used inputs on each logic
block and R is the average point-to-point wire-length [13],
measured in logic blocks traversed. These two parameters
capture the routing demand of the logic block.

We will use these two parameters as inputs to our model,
which characterize the routing demand of the logic block and
circuits mapped and placed with that logic block. They can
be measured on a circuit-by-circuit basis: λ measured for
a soft-logic cluster FPGA using a packer and R measured
by placement estimation. (In a later section, we will discuss
how to estimate λ and R in the absence of synthesized and
placed circuits)

Table 2: Fully Flexible FPGA Routing Architecture
Fs Fcin Fcout L Eqv

3W W W 1 1

0

10

20

30

40

50

60

70

80

15 20 25 30 35 40 45 50 55

Wavg

W
a

b
s

_
m

in

Measured (training)

Measured (validation)

Linear (P redicted)

Figure 2: Prediction of Wabs min for Fully Flexible
FPGA

Equation 4.1.1 gives the average number of used wires per
channel, but we are interested in estimating the maximum

across all channels, which is clearly going to be larger than
the average. We can derive an expression for the maximum
used channel width, Wneed by observing that FPGA routing
channels have an average utilization, U – the fraction of wires
that are actually used (similar to [21]) – given by:

U =
Wavg

Wneed

(4.1.2)

Re-arranging this equation to solve for Wneed and substi-
tuting in Equation 4.1.1 for Wavg gives:

Wneed =
1

U
·
λ·R

2
(4.1.3)

We will employ the inverse of the utilization term U , which
we call the peak factor, p (p = 1

U
). Data from our experi-

ments show that a peak factor p = 1.4 predicts Wneed across
a wide range of circuits in a fully flexible FPGA with a mean
absolute percentage error (MAPE) of 6.2% for the training
circuits and 5.8% for the validation circuits. (We used a
measured value of λ and R from each circuit’s synthesis and
placement as inputs to the model) We will re-write Equation
4.1.3 and refer to the channel width requirement of a fully
flexible FPGA by a special term, called Wabs min, given as:

Wabs min = p
λ·R

2
(4.1.4)

Figure 2 gives a plot of the model in Equation 4.1.4 and
shows how close its prediction is to actual measured values
of circuits in the training and validation sets.

Wabs min is the absolute minimum channel width needed
to route a circuit; if the circuit is routed on an FPGA that
is less than fully flexible then it will require more tracks
than Wabs min. The following sections explore models for
this reduction in flexibility.

4.2 Generalizing for Switch Block
The fully flexible FPGA model was developed assuming

the switch block flexibility Fs is set at maximum value, Fs =
3W . To generalize the equation for Fs, we keep all other
routing flexibility parameters at maximum and reduce Fs.

142

We have found that the range of interest for Fs is [3,21]
– first because Fs = 3 is considered the minimum for it
gives each wire only one chance to turn in each direction,
and second because Fs = 21 is empirically equivalent to the
fully flexible Fs = 3W .

Clearly as Fs decreases, Wneed will increase, suggesting
an inverse power function relationship. Furthermore, we
postulate that the amount of increase will be in proportion
to Wabs min, since more wires lose flexibility for circuits with
larger Wabs min. This suggests the following model form:

Wneed = Wabs min +
1

β

Wabs min

Fs
(4.2.1)

where β is the parameter we will use to fit to the data.
We fit β to experimental data from synthesizing training

circuits into routing architectures that are fully flexible with
the exception of the switch block – here Fs is varied over the
range [3,21]. A value of β = 3 achieves an MAPE of 6.6%
for the training circuits and 5.9% for the validation circuits.

In this result and other accuracy results, we noticed that
our validation MAPE was better than our training MAPE,
which is surprising as one expects it to be the other way
around. This was checked many times, and it is correct
for the selected sets, which were chosen to be as similar as
possible. It appears to be due to the fact that the validation
circuits are just slightly more homogeneous.

We should note that we experimented with several other
model forms, particularly with different exponents for Fs.
Sensitivity analysis showed that an exponent of Fs in the
range of 0.8 and 1.3 are all similarly good models, so we
chose an exponent of 1 for simplicity.

4.3 Generalizing for Connection Block
Equation 4.2.1 captures the effects of reduced switch block

flexibility when the connection block flexibilities are at max-
imum, i.e. Fcin = W and Fcout = W . To generalize
the model to include Fcin and Fcout we observe that the
switch block, input connection block and output connec-
tion block form an inter-connected switching matrix pro-
grammably connecting all logic block pins and interconnect
wires in the FPGA.

The parameters Fs, Fcin and Fcout describe the amount
of switching in these three parts of the FPGA, and they
can be traded off amongst each other to maintain a fixed
level of routability. For example, one could achieve the same
routing demand, Wneed, by lowering Fcin and raising Fs an
appropriate amount.

Furthermore, when Fs and Fcin have high values the ar-
chitecture is sufficiently flexible that Wneed is close to the ab-
solute minimum Wabs min, so only small decreases in Wneed

can be had by increasing Fcout (a “saturation” effect).
Finally, we have observed that the effective maximum of

both Fcin and Fcout is Wabs min, because making either
Fc’s larger than Wabs min doesn’t improve routability.

These arguments suggest a model of the form given in
Equation 4.3.1:

Wneed =Wabs min

+
1

β

„

Wabs min

Fs

« „

Wabs min

Fcin

«αin
„

Wabs min

Fcout

«αout

(4.3.1)

Here β remains set at 3, and αin and αout are exponents

2

1

3

4

5

0

Figure 3: Routing Using Length 4 Wires

set by fitting to the training circuits’ data, at 0.5 and 0.25
respectively. Their values are rounded for simplicity. The
data were generated by synthesizing training circuits to the
appropriate range of routing architectures – Fcin, F cout ∈
[2,Wabs min], and Fs ∈ [3,21].

Equation 4.3.1 achieves an accuracy of 7.6% training MAPE
and 6.5% validation MAPE.

The model exponents capture an important intuition about
FPGA routing. The exponent αin = 0.5 is greater than αout

= 0.25 reflecting the fact that each potential connection into
a logic block is more important than each connection out –
perhaps that the need to connect in upon “arrival” at a logic
block is the last chance to complete a connection.

So far we have discussed the “absolute minimum” and
“switching matrix flexibility penalty” terms described in the
high-level equation, Equation 4.0.1. The remaining penalty
in routing demand comes from the loss of flexibility in the
interconnect wire length when using longer than unit length
wires, and is discussed next.

4.4 Generalizing for Wire Length
The model up to this point has been developed for routing

architectures containing interconnect wires that span only
one logic block. Longer wires (where the parameter L is
greater than 1) bring a different form of inflexibility, causing
higher occupancy of the channels leading to higher Wneed.
Keep in mind that we assume all wires in an architecture
will have the same length, L.

We have identified two major effects that increase routing
demand: segmentation waste, and Fcin reduction which we
discuss in turn in the next two subsections.

4.4.1 Segmentation Waste

Segmentation waste arises when a wire segment is only
used for a portion of its length, and so the remaining portion
is wasted. This occurs either at horizontal-to-vertical (or
vice-versa) turns (called turn waste), or wire-to-input pin
connections (called pin waste), as illustrated in Figure 3,
which shows connections from source block 0 to sink blocks
1 to 5 using L = 4 wires. For example, the waste associated

143

Figure 4: Pin Waste Distribution for L = 6 (circuit:
clma)

with the connection from 0 to 3 is turn waste, and the waste
associated with the connection from 0 to 1 is pin waste.

Waste doesn’t occur at output pin connections because, in
a single-driver routing architecture all output pins connect
at the beginning of a wire by definition.

We found that pin waste is approximately uniformly dis-
tributed from 0 to L−1, by extracting the pin waste amount
at each used input pin in the routed circuit. An example of
this is the distribution of pin waste in the largest training
circuit clma for L = 6, in Figure 4, where the x-axis indi-
cates pin waste amount and y-axis indicates the frequency
of occurrence. This distribution is typical of all circuits for
any L. This is not unexpected since when a length L wire
is used to connect to an input pin, the possible amounts of
waste are 0, 1, 2, ..., L − 1, and since all wires in the routing
fabric are of the same length each waste amount is equally
likely to occur.

Our experimental data further suggest that the total seg-
mentation waste is dominated by pin waste (with minor con-
tribution from turn waste), so we will model total segmen-
tation waste simply as uniformly distributed pin waste from
0 to L − 1. This model enables the derivation of a simple
analytic model of routing demand.

Using this model of segmentation waste, we can calculate
the expected value of waste for each used input pin as:

Segmentation Waste Per Pin =
1

L
(0) +

1

L
(1) + ... +

1

L
(L − 1)

=
L − 1

2
(4.4.1)

The number of used input pins per channel segment is λ

2
,

since there are two channel segments per logic block (while
there are four channel segments adjacent to a logic block,
only one channel segment in each horizontal and vertical
direction is owned by that logic block). The product of
the segmentation waste per pin times the number of pins
per channel segment gives the extra wire-length required in
each channel segment, on average, which is the amount of
routing demand increase needed:

Segmentation Waste Per Channel Segment =
λ(L − 1)

4

(4.4.2)

654321

Figure 5: Fcin Reduction Effect

4.4.2 Fcin Reduction

The second cause of routing demand increase comes from
an interaction between the Fcin parameter and the segmen-
tation waste. This effect is illustrated in Figure 5, which
shows an architecture with three length four wires passing
by six input pins. The wire-to-input-pin switches are shown
as circles and the figure shows an architecture where Fcin

is less than the maximum possible. Suppose that the top
length four segment is used to connect into logic block pin
number 5. A side effect of this routing choice is that the
associated segmentation waste led to fewer opportunities to
connect into pin number 3 and 4. This amounts to an effec-
tive reduction of Fcin due to segmentation waste. For con-
trast, Fcin would not be effectively reduced if unit length
wires were used – where there is no segmentation waste. We
intuitively expect this effect to most dramatically increase
routing demand when Fcin is low.

There is empirical evidence supporting this argument. Fig-
ure 6 is a plot of the average difference Wneed(L = 4) −
Wneed(L = 1) measured across all training benchmark cir-
cuits for a range of Fs and Fcin. This figure shows that
there are significantly more tracks required for longer-than-
unit length architectures when Fcin is small.

To account for the increased routing demand due to this
effect, we observe that it occurs as a function of segmenta-
tion waste. Therefore we include a penalty term multiplier,
that is a function of Fcin, onto the segmentation waste term
from Equation 4.4.2. Clearly this penalty term should act
inversely to Fcin – as Fcin decreases, the penalty should
become larger. We experimented with several forms of the

2

4

6

8

10

12

0

10

20

30

40

50

60

8

10

12

14

16

18

20

22

24

FsFc
in

W
n

e
e

d
∆

Figure 6: Average Increase in Wneed Going From
L = 1 to L = 4.

144

term to represent this effect and the one that provides the
best balance between accuracy and simplicity is (1+ 1

F c0.5

in

).

The “1” in the term says that even when Fcin is at maxi-
mum flexibility (where Fcin reduction effect has little im-
pact on routing demand) there is still routing demand in-
crease purely as a result of segmentation waste.

This gives rise to an augmented version of Equation 4.3.1
in Equation 4.4.3, which contains the additional terms for
segmentation waste and reduced Fcin:

Wneed =Wabs min

+
1

3

„

Wabs min

Fs

« „

Wabs min

Fcin

«0.5 „

Wabs min

Fcout

«0.25

+
λ(L − 1)

4

„

1 +
1

Fcin
0.5

«

(4.4.3)

The accuracy for Equation 4.4.3 is given for values of L ∈
{1,2,4,6,8} and Fs, Fcin and Fcout varied over their range
as before (in Section 4.3). The training MAPE is 7.9% and
validation MAPE is 6.5%. Note that this model does not
introduce any new fitting parameter. The breakdown of the
validation at longer wire lengths is in Table 3.

4.5 Impact of Logical Equivalence
The final routing flexibility parameter we consider is log-

ical equivalence Eqv. When Eqv = 1 all input pins are
logically equivalent and all output pins are logically equiva-
lent. When Eqv = 0 all pins are distinct. We assume that
the pins are evenly spread on all four sides of the logic block.
The effect of removing logical equivalence is primarily to in-
crease the distance each connection must travel (because it
may have to travel to the far side of a logic block, rather
than connecting to the nearest). A second effect will be to
reduce the effective connection block flexibility, because the
number of opportunities to connect in and out of the logic
block is dramatically reduced.

To account for the first effect, we model that the average
wire-length, R, increases. We empirically measured that the
total wire-length increases by a factor of 1.166, on average
across all training circuits (consistently), when logical equiv-
alence is removed. We model this by replacing R by RNE

in the model when Eqv = 0, where RNE is defined by:

RNE = σ·R (4.5.1)

and σ = 1.166. This parameter is not rounded up because
it is sensitive. The knowledge embedded in this model is
that, when logical equivalence is removed the average dis-
tance each point-to-point connection must travel increases
by about 17%.

To account for the second effect (an effective reduction
in Fcin), we observe that, when logical equivalence exists
for the I input pins on the logic block, each one of those
pins contributes to the effective Fcin. The loss of those I
pins should reduce the effective Fcin by perhaps a constant
amount each, and so we propose that Fcin be replaced by:

Table 3: Breakdown of Accuracy of Equation 4.4.3
L 2 4 6 8

MAPE 6.2% 4.3% 4.1% 12%

FcNEin =
Fcin

Iµ
(4.5.2)

where µ is a parameter fit with experimental data. The best
fit value of µ is 0.33 (after rounding), for a training MAPE
of 15% and a validation MAPE of 14%.

Fcout could also be reduced but its effect is so small that
it’s ignored for model simplicity. Thus the impact of logical
equivalence can be modeled using Equation 4.4.3 by increas-
ing R by a factor σ = 1.166 and replacing Fcin with FcNEin

from Equation 4.5.2.

4.6 Model Summary
The FPGA routing demand model can be summarized as

follows:

Wneed =Wabs min

+
1

β

„

Wabs min

Fs

« „

Wabs min

Fcin

«αin
„

Wabs min

Fcout

«αout

+
λ(L − 1)

4

„

1 +
1

Fc
αin

in

«

(4.6.1)

with

Wabs min = p
λR

2
(4.6.2)

Here, p = 1.4, β =3, αin = 0.5, and αout = 0.25. Finally, for
the case of no logical equivalence, R should be replaced with
RNE as given in Equation 4.5.1 and Fcin should be replaced
with FcNEin as given in Equation 4.5.2, with σ = 1.166 and
µ = 0.33.

5. MODEL QUALITY AND APPLICATION
The goal of this work is to create a model that can be used

in early-stage architecture development, when there are no
circuits or tools that the architect can employ. For that
to be possible, some of the parameters required to use the
model in Equation 4.6.1 must be estimated. We discuss how
that might be done in the first section below, and provide
some example results. In the subsequent section we give an
overview of the kind of accuracy the model provides for the
soft-logic cluster blocks for which we can generate measured
data. Finally, we show another way in which the model
can be used: to gain some intuition and understanding on
routing architecture tradeoffs.

5.1 Comparing Logic Block Architectures
An important step in architecting an FPGA is choosing

a logic block, as it can have a dramatic effect on the need
for routing in the FPGA, which tends to dominate the area
and therefore cost of the FPGA.

To determine the logic block’s routing demand Wneed us-
ing Equation 4.6.1 the architect needs to:

1. Estimate values for λ and R for each logic block under
consideration

2. Provide values for the routing architecture parameters
Fs, Fcin, Fcout, L and Eqv.

The architect will know the number of input pins on the
logic block (presumably having determined that as part of
his/her initial thinking). The value of λ is a function of the

145

λ = 0.88N + 3.2 d

R
2
 = 0.994

0

4

8

12

16

20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

C lus ter S ize (N) d

λ
 −

 A
v

e
ra

g
e

Figure 7: Average λ vs. Cluster Size (N)

number of inputs: it is the average number of used inputs
per logic block expected for the most difficult circuit that
the architect wants to succeed in routing. An upper bound
for λ would be the number of input pins, but this appears
to be unduly pessimistic. The best value to choose would
likely be related to the logical nature of the block, and it is
not possible to speak to the most general logic block case –
for example, we believe that the most appropriate λ for a
hard 20x20 multiplier as a function of its number of input
pins would be rather different than the λ for a cluster of 12
5-input lookup tables.

We do believe that the more common soft logic blocks
would have similar behavior in the relationship between the
number of usable input pins and average number of used
input pins. Figure 7 gives a plot of that measured average λ,
averaged over all our benchmark circuits, for clustered logic
block architectures ranging from size 1 to 16 consisting of 4-
input LUT-based BLEs. It can be modeled as an increasing
linear function of cluster size as given in the figure. Since the
clusters are architected to use I = 2N + 2 input pins (and
recall from [3] this value is set to permit complete use of
the internal logic of the cluster), we could re-write the fitted
equation in Figure 7 in terms of I by subsituting N = I−2

2
:

λ = 0.44I + 2.3 (5.1.1)

An architect could use this model to choose λ as a func-
tion of I , the total number of inputs to a new logic block,
particularly if the nature of the logic in the block is similar
to LUT-based clusters. (An example for which this would
be true would be PLA-based logic blocks discussed in [8].)
More roughly, equation 5.1.1 suggests that λ is roughly half
of the total number of input pins.

A second key parameter that the architect needs to deter-
mine is R, the average length of two-pin connections mea-
sured in number of logic blocks traversed. Our experience
with measurements of this parameter (and a number of other
measurements in other contexts) is that R is remarkably con-
sistent as a constant over different cluster sizes, when aver-
aged over a large number of circuits. This is a somewhat
surprising result: that over a wide range of granularity, the
average length of connections remains relatively fixed when
measured in terms of 2-dimensional array of the changing
granularity. It can be seen empirically in Figure 8, where
the measured R, averaged over all the benchmark circuits

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

R
 −

A

v
e

ra
g

e

C lus ter S ize (N) d

R = 4.43

Figure 8: Average R vs. Cluster Size (N)

for clustered logic block architectures from size 1 to 16 con-
sisting of 4-input LUT-based BLEs, are shown. The average
of all circuits R can be seen to be largely independent of
the amount of logic in each logic block: R is consistently
around 4.43 for different cluster sizes N (with the exception
of N = 1, where R is lower since there is no clustering). So,
the architect could reasonably choose to estimate R as 4.43
for any logic block, and not be far wrong. Of course, some
other facet of the architecture may influence this choice – for
example, if this was a heterogenous logic block spread out
among other blocks, the distance between the heterogenous
blocks would likely increase R.

5.1.1 Quality of Model in Early-Stage Architecture
Development

To test the quality of the model given in Equation 4.6.1 in
early-stage architecture development, we will use the above
methods of selecting λ (with Equation 5.1.1) and R (as a
constant 4.43) to compare two cluster-based logic blocks
that were not used in the training of the model: a cluster
of 16 4-input LUT-based BLEs and a cluster of 4 4-input
LUT-based BLEs. To be clear, by using these methods to
estimate λ and R we do not employ any circuits or tools, and
hence this could be done at an “early stage” in architecture
development. We realize that this tests the model on logic
blocks quite similar in nature to the ones that the model
was trained on. This has the disadvantage of not proving
the model’s utility for new and different logic blocks, but
it has the advantage that the quality of the results can be
compared to experimentally measured data.

To employ the model embodied in Equation 4.6.1, a set
of routing flexibilities must be chosen. Table 4 gives, in
each horizontal row, a set of routing architecture parame-
ters in the columns 1 to 5. It then gives, for the “proposed”
cluster-size 16 logic block the experimentally measured aver-
age routing demand Wneed for that architecture (the average
W required by benchmark circuits in Table 1), the routing
demand predicted by the model, and the percentage error.
The bottom of the error column gives the average absolute
error. Similarly the final three columns of the table give the
measured, predicted and error for a cluster of size 4. The av-
erage absolute error in the cluster size 16 predictions, across
the selected range of routing architectures is 4.5%, and 20%
for the cluster size 4. The model consistently under-predicts

146

Table 4: Routing Demand Prediction vs. Measured Across Routing Architectures
Routing Architecture

Parameters Cluster Size N = 16 Cluster Size N = 4
Fs Fcin Fcout L Eqv Measured Predicted Error Measured Predicted Error

3 12 4 4 1 90 94 5.1% 42 32 -24%
3 12 4 6 1 113 105 -7.0% 52 36 -30%
9 12 4 4 1 76 78 3.4% 34 29 -15%
9 12 4 6 1 94 89 -4.9% 41 33 -20%
3 20 4 4 1 85 88 3.9% 38 31 -20%
3 20 4 6 1 106 99 -6.8% 45 35 -24%
9 20 4 4 1 74 76 2.4% 32 28 -13%
9 20 4 6 1 93 86 -7.2% 40 32 -19%
9 12 8 4 0 119 118 -0.9% 43 35 -18%
9 20 4 4 0 116 112 -2.9% 42 34 -18%

Average Average
Absolute Error 4.5% Absolute Error 20%

Table 5: Routing Demand Prediction vs. Mea-
sured Across Cluster Sizes (under routing architec-
ture Fs = 6, Fcin = 12, Fcout = 6, L = 4, and Eqv = 1)

N Measured Predicted Error

4 35 29 -16%
5 40 33 -16%
6 44 38 -15%
7 48 42 -14%
8 53 46 -12%
9 56 50 -11%
10 60 55 -9.1%
11 63 59 -7.2%
12 67 63 -5.1%
13 68 68 -1.1%
14 72 72 0.3%
15 75 77 2.1%
16 78 81 3.7%
17 81 86 6.0%
18 83 90 9.0%
19 86 95 11%
20 88 100 13%
Average
Absolute Error 8.9%

the smaller cluster leading to a larger percentage error, we
believe, in part because the model was trained on a larger
cluster, and in part because the W’s are much smaller. In
general we believe the model is a success in its ability to
make fairly good predictions across a wide range of routing
architecture parameters.

To further validate the model, we compared routing de-
mand predictions (using the λ and R method described
above) for a single routing architecture (Fs = 6, Fcin = 12,
Fcout = 6, L = 4, and Eqv = 1) across a range of cluster
sizes N = 4 to N = 20, in Table 5. Looking at Table 5,
there is a possible systematic error: the prediction error is
not random, and it is increasing with cluster size. Further
validation of the model on other logic blocks in future works
should uncover this error and further improve the accuracy
of the model. Despite this, the average error is quite small,
only about 9%, which shows the potential of the model.

5.2 Architectural Intuition and Tradeoffs
An exciting advantage of the model developed in this work

is that it can be analytically manipulated to provide insights
into routing architecture tradeoffs. For example, the model
provides a way to maintain a fixed amount of routability
while exploring different routing parameters that might lead
to different FPGA performance, power or other metrics.

Suppose that an architect has chosen a routing architec-
ture for a logic block. However, after more development
in electrical design, the speed of the FPGA is deemed too
slow, and analysis indicates that it is because the muxes
driving the single-driver wires are too big and slow. The ar-
chitect proposes a tradeoff that reduces the input size of the
wire-driving muxes at the cost of increasing the input size
of input-pin-driving muxes. This implies trading of switches
from the switch block (reducing Fs) to the input connection
block (increasing Fcin). To make this tradeoff experimen-
tally the architect must keep all other parameters fixed, and
run new experiments that varies only Fs and Fcin. This
could require modifications to experimentation tools and a
day of experiments for each design iteration. As a first-order
intuitive analysis to speed up the early design iterations or
to speed up actual architecture exploration experiments, the
architect can use the model developed here as follows.

Suppose that in the original routing architecture the switch
and input connection block parameters are known, i.e. Fs =
Fs1 and Fcin = Fcin1. The architect seeks to reduce Fs
from Fs1 to a second known value Fs2, and the question
is what is the new, higher value of Fcin that provides the
same routing demand. This can be expressed as:

Wneed(Fs1, F cin1) = Wneed(Fs2, F cin2) (5.2.1)

Using Equation 4.6.1, and keeping all other parameters con-
stant, we arrive at the solution through a series of algebraic
manipulations:

• If L = 1

Fcin2 = Fcin1·

„

Fs1

Fs2

«2

(5.2.2)

• If L > 1

Fcin2 = Fcin1·

0

@

Wabs min
1.75

3F s1F ccout
0.25 + λ(L−1)

4

Wabs min
1.75

3F s2F ccout
0.25 + λ(L−1)

4

1

A

2

(5.2.3)

147

The L = 1 case is the easiest to discuss – it shows that
the new value of Fcin increases as the square of the ratio of
the reduction in Fs, which is a fairly expensive tradeoff! In
general, our analytic model could be used in many different
kinds of analysis of this sort.

6. CONCLUSION
We have proposed an island-style FPGA routing demand

model in the form of simple and intuitive equations, to guide
an FPGA architect in early-stage architecture development.
We have shown how this model can be used for preliminary
feedback on logic block architecture evaluations and under-
standing the nature of tradeoffs between routing flexibility
parameters, all in the absence of circuits and prototype tools.
We have also shown the model to produce fairly good accu-
racy, at least in modeling the more well-known types of soft
logic blocks.

We see a number of new lines of research that could be pur-
sued: the generation of an area model that predicts area as
a function of the routing parameters described above could
lead to further analytic insights on how to optimize rout-
ing architecture for area. Also, an attempt to model per-
formance (and perhaps power consumption) in addition to
these routing demand equations would be helpful, to the
early-stage architect. We also need to find ways to validate
and improve the model for logic blocks that don’t have the
same properties as typical soft-logic clusters. Also, while we
have provided physical interpretations for some parameters
in the model (such as p and σ), more work is needed in pro-
viding physical explanations of the remaining parameters.
Finally, we need to develop certain aspects of this model
further – to support mixtures of wire lengths, and to under-
stand the effect of partial logical equivalence – where only
some pins are logically equivalent.

7. ACKNOWLEDGEMENTS
Wei Mark Fang received financial support from NSERC

and this research project was also supported by a NSERC
Discovery Grant.

8. REFERENCES
[1] Xilinx Inc. The Programmable Logic Data Book. 1999.

[2] J. Anderson, S. Sheth, and K. Roy. A Coarse-Grained
FPGA Architecture for High-Performance FIR
Filtering. In International Symposium on Field

Programmable Gate Arrays, pages 234–244, 1998.

[3] V. Betz, J. Rose, and A. Marquardt. Architecture and

CAD for Deep-Submicron FPGAs. Kluwer Academic
Publishers, 1999.

[4] S. D. Brown, R. J. Francis, J. Rose, and Z. G.
Vranesic. Field-Programmable Gate Arrays. Kluwer
Academic Publishers, 1992.

[5] P. K. Chan, M. D. F. Schlag, and J. Y. Zien. On
Routability Prediction for Field-Programmable Gate
Arrays. In Proceedings of the 30th International

Conference on Design Automation, pages 326–330,
1993.

[6] D. Chen and J. Rabaey. A Reconfigurable
Multiprocessor IC for Rapid Prototyping of
Algorithmic Specific High Speed DSP Data Paths.
IEEE Journal of Solid State Circuits,
27(12):1895–1904, 1992.

[7] J. Cong and Y. Ding. FlowMap: An Optimal
Technology Mapping Algorithm for Delay
Optimization in Lookup-Table Based FPGA Designs.
IEEE Trans. on CAD, pages 1–12, Jan. 1994.

[8] J. Cong, H. Huang, and X. Yuan. Technology
Mapping and Architecture Evaluation for
k/m-Macrocell-based FPGAs. Transactions on Design

Automation of Electronic Systems, 10:3–23, Jan. 2005.

[9] J. A. Davis, V. K. De, and J. D. Meindl. A Stochastic
Wire-Length Distribution for Gigascale Integration:
Part I: Derivation and Validation. IEEE Trans. on

Electron Devices, 45(3):580–589, March 1998.

[10] W. E. Donath. Placement and Average
Interconnection Lengths of Computer Logic. IEEE

Trans. on Circuits and Systems, CAS-26(4):272–277,
1979.

[11] W. M. Fang. M.A.Sc Thesis: Modeling Routing

Demand for Early-Stage FPGA Architecture

Development. University of Toronto, Dec. 2007.

[12] M. Feuer. Connectivity of Random Logic. IEEE

Trans. on Computers, C-31(1):29–33, Jan 1982.

[13] A. E. Gamal. Two-Dimensional Stochastic Model for
Interconnections in Master Slice Integrated Circuits.
IEEE Trans. on Circuits and Systems,
CAS-28(2):127–138, Feb 1981.

[14] P. Kannan and D. Bhatia. Interconnect Estimation for
FPGAs. IEEE Trans. on CAD, 25(8):1523–1534, Aug
2006.

[15] G. Lemieux, E. Lee, M. Tom, and A. Yu. Directional
and Single-Driver Wires in FPGA Interconnect. In
IEEE International Conference on Field

Programmable Technology, pages 41–48, Dec. 2004.

[16] D. Lewis and et al. The Stratix Routing and Logic
Architecture. In International Symposium on Field

Programmable Gate Arrays, pages 12–20, Feb. 2003.

[17] Mathstar. reference: http://www.mathstar.com/.

[18] OpenCores. reference: http://www.opencores.org/.
2007.

[19] A. Rahman, S. Das, A. P. Chandrakasan, and R. Reif.
Wire Requirement and Three-Dimensional Integration
Technology for Field Programmable Gate Arrays.
IEEE Trans. on VLSI, 11(1):44–54, Feb. 2003.

[20] J. Rose and S. Brown. Flexibility of Interconnection
Structures for Field Programmable Gate Arrays. IEEE

Journal of Solid-State Circuits, 26(3):277–282, 1991.

[21] J. Swartz, V. Betz, and J. Rose. A Fast
Routability-Driven Router for FPGAs. In
International Symposium on Field Programmable Gate

Arrays, pages 140–149, 1998.

[22] P. Verplaetse, D. Stroobandt, and J. V. Compenhout.
A Stochastic Model for the Interconnect Topology of
Digital Circuits. IEEE Trans. on VLSI, 9(6):938–942,
2001.

[23] S. Yang. Logic Synthesis and Optimization
Benchmarks, Version 3.0. In Tech. Report,

Microelectronics Centre of North Carolina, 1991.

[24] A. Ye. Single Driver Code in VPR. Private
Communication, 2005.

148

