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Abstract 

 FPGA-based hardware development systems are 
extremely useful for exploring exciting applications in 
vision, graphics, and many other computationally 
intensive problems.  Our experience with previous 
systems has shown that their memory capacity, inter-
FPGA bandwidth, host-to-FPGA bandwidth, and memory 
bandwidth are all critical to the successful 
implementation of high performance systems.  This paper 
presents the design, and implementation, of a new 
FPGA-based development system that was created with 
the goal of providing as much performance in these four 
areas as feasible.  The design consists of 4 Altera Stratix 
FPGAs, providing a total of 316,160 four-input LUTS 
and 29.5Mb of on chip ram.  This is supplemented with 
8GB of external memory. The system has a measured  
17.6GB/s of total aggregate memory bandwidth, and 
154MB/s (read) and 266MB/s (write) measured host-to-
FPGA bandwidth.  This paper describes the motivating 
applications, major design issues, and performance of 
the Transmogrifier-4 field-programmable system. 

1. Introduction 
 
 An FPGA-based rapid development system is a set of 
hardware and software components that enable hardware 
engineers to design and implement high speed digital 
systems both quickly and cheaply.  Typically, the 
hardware components consist of a number of FPGAs, 
some memory, some peripherals, and a link to a host 
computer.  The software components usually consist of a 
design tool flow, such as synthesis, placement and 
routing tools, and an IP library.  Through the use of a 
properly designed hardware platform, an engineer can 
design and test many different digital systems without 
having to design a physical hardware platform for each.  
The only limitations on what is possible are those that 
arise from the hardware platform itself. 
 This paper presents a next-generation FPGA-based 

development system, called the Transmogrifier-4 (TM-
4), which removes a number of the limitations found in 
previous development systems. In particular this paper 
will focus on improving four key areas: memory depth, 
memory bandwidth, inter-FPGA bandwidth, and host–to-
hardware bandwidth.   
 This paper is organized as follows: Section 2 provides 
a brief examination of previous development platforms 
and describes which previous characteristics that are 
incorporated into the TM-4. Section 3 describes three 
application case studies that were used to determine 
where existing solutions could be improved and 
summarizes the design requirements of the TM-4. 
Section 4 presents the design of the TM-4, and Section 5 
describes the performance tests and results while Section 
6 concludes. 

2. Background 
 
 The design of the TM-4 builds upon the knowledge 
gained from previous development platforms.  In 
particular past platforms have shown the benefits of 
incorporating various numbers of FPGAs into a single 
platform, as well as providing a variety of different ways 
to interconnect multiple FPGAs. 
 Previous development systems have consisted of 
systems ranging from a single FPGA to dozens of FPGAs 
spanning multiple circuit boards.  For example, the 
previous two generations of Transmogrifiers, the TM-2 
[3] and TM-3 [1], had 32 FPGAs and 4 FPGAs 
respectively.    
 Our experience with the 32 FPGAs on the TM-2 
showed that it was very difficult for a user to effectively 
use that many FPGAs, where as 4 FPGAs were much 
easier to use.  Since modern FPGA densities provide 
large (and increasing) amounts of development logic, 
large numbers of FPGAs are no longer needed.  This fact, 
combined with past experiences, suggests that the TM-4 
should be designed with only 4 FPGAs. 
 Past development systems (in our own work and that 
of others) have connected multiple FPGAs in a number of 



different topologies, shown in Figure 1, including:  
crossbar interconnections [2], [3], [4], [5], [6], [7], [8], 
hardwired fully interconnected schemes [9], [10], 2D [7], 
[11] or 3D meshes [12], linear interconnects [13], ring 
interconnections [14], and tree structures [15]. 
 The selection of which topology is best suited for the 
TM-4 can be made by pruning out inappropriate options 
until only one is left.  Of the 6 topologies, the last three, 
D, E and F, are only suited for special cases of 
applications where as the TM-4 is intended as a general-
purpose machine.  Topology C is not applicable to the 
TM-4 as it consists of only four FPGAs.  This leaves only 
options A and B.  Since topology B provides lower 
latency then topology A, with only the cost of additional 
pins, this topology is best suited for the TM-4. 

3. Design Requirement Identification 
 
 Our previous generation of Transmogrifier, the TM-3, 
was used to implement a variety of applications 
including: ray tracing [16], protein identification [17], 
[18], and stereo vision [19], [20].  The process of 
designing these applications brought to light a number of 
shortcomings in the architecture and capabilities of the 
TM-3.  In particular it was found that the TM-3 lacked 
host computer bandwidth, memory bandwidth, inter-chip 
bandwidth and memory depth.  In addition, as Moore’s 
law ensues, it is worthwhile to architect a next-
generation system to leverage faster and larger capacity 
FPGAs.    
 The following subsections examine each of the three 
application case studies used to guide the design of the 
TM-4.  This is followed by the final design requirements 
of the TM-4. 

3.1. Case Study: Ray Tracing 

 Ray tracing is a method of rendering 2D images of a 
virtual 3D scene.  The algorithm renders a 2D projection 
of a 3D scene by approximating the way that light rays 
propagate around the scene and eventually reach the 

viewer’s eye.  The light ray propagation model involves 
“tracing” the path that light rays travel back from the 
viewpoint, through the projection point and in to the 
scene. 
 A hardware ray tracing implementation [16] on the 
TM-3 was found to be limited several ways by the 
architecture of the TM-3.  First, the available memory on 
the TM-3 was limited to only 6 megabytes.  This allowed 
only relatively small 3D scenes to be rendered on the 
TM-3.  The second limitation was memory bandwidth. 
 The TM-3’s memory subsystem was built to run at 
50Mhz.  At this clock speed the memory could not 
provide 3D data as fast as the hardware could process it, 
and this turned out to be the performance-limiting factor 
in the design of the hardware ray tracer. 
 The final limitation of the TM-3 was the amount of 
host computer bandwidth.  Both the dataset, which 
represents the 3D scene, and the resulting 2D image 
required data transfers between the TM-3 and its host 
computer.  However, the available bandwidth, less the 
2MB/s, meant that the TM-3 could process data much 
faster than it could communicate its results. 
 Experience from the ray tracing application suggested 
that the TM-4 should have more memory, more memory 
bandwidth, and more host computer bandwidth.  

3.2. Case Study: Novel Protein Identification 

 An active area of research in proteomics involves the 
identification of biological proteins contained in a 
physical sample. The current approach attempts to 
identify the molecular makeup of proteins using a device 
known as a mass spectrometer.  This device can take a 
protein, break it up into small pieces and identify the 
molecular make up of these small pieces.  It is then 
necessary to assemble these “fragments” into a completed 
protein.  One approach to assembling the fragments 
involves searching the human genome [17], [18].   
 The human genome contains a description of every 
possible protein, and as such can be used to reassemble 
the protein fragments previously obtained.  The 
algorithm to accomplish this involves searching the 
entire human genome dataset, several gigabytes of data, 
and matching the fragments to certain proteins.  
Successive fragment searches each reduce the set of 
possible protein matches until only one protein is left.  
This protein should be the same as the protein in the 
physical sample. 
 A prototype created on the TM-3 showed that the 
algorithm could be easily parallelized to consume all 
available memory bandwidth.  In addition it was found 
that a large amount of memory was also required to store 
genomic data. It requires approximately 1 gigabyte of 
data to store the 3.3 billion base pairs that make up the 
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human genome.  In addition there is evidence that it 
might be necessary to search several different genome 
datasets at the same time.  This would increase the 
amount of RAM required to between 2-4GB.   
 The experience from this application suggests that the 
TM-4 should have between 2-4GB of RAM and as much 
bandwidth as feasible. 

3.3. Case Study: Stereo Vision 

  One of the fundamental problems facing the computer 
vision field is to extract depth information from an image 
or images of a scene.  Stereo vision is one approach to 
this problem that works by mimicking the way human 
vision works: two cameras are aligned side-by-side, and 
each camera sees a slightly different version of the scene.  
These differences can be used to extract depth 
information.  By utilizing simple geometric relationships 
between corresponding objects in each image, depth can 
be calculated.  The difficult step is to identify the 
matching points between each image.  One solution to 
the matching problem is to perform a large number of 
correlations between the pixels in each image.  This 
approach works well but is very computationally 
intensive. 
 The TM-3 was used to accelerate a state-of-the-art the 
stereo vision computation [21] to the point where it could 
operate in real time [19], [20].  However, the logic area 
requirements necessary to meet real time performance 
were very high.  The implementation of the stereo vision 
algorithm needed to be spread across all four FPGAs of 
the TM-3.  It was found that the lack of communication 
bandwidth between each FPGA made partitioning the 
design difficult but in the end a functional stereo vision 
system was created. 
 The experience from this application suggests that the 
TM-4 should have as much inter-FPGA bandwidth as 
possible in order to simplify the problem of partitioning 
designs. 

3.4. Design Requirements 

 The design of the TM-4 builds on the past generations 
of FPGA-development systems by incorporating the key 
characteristics identified from previous development 
systems with the improvements identified above.  The 
following list summarizes the different design 
requirements of the TM-4. 
 

1. Logic capacity: 4 of the largest available FPGAs 
2. Interconnect Topology 

a. Fixed point-to-point 
b. As much inter-chip bandwidth as feasible 

3. Memory 

a. 4GB or more 
b. As much bandwidth as feasible 

4. External Interfaces 
a. 2 analog video in channels 
b. 2 digital video channels (IEEE-1394) 
c. VGA video out DAC 

5. Host Computer Interface 
a. As much bandwidth as possible 
b. Simple to use for designers 

6. Miscellaneous 
a. Must have a mechanism for remote access 

to the development platform. 
b. Should be reconfigurable as fast as 

possible 
c. Designed to minimize the risk of a design 

error-induced system failure 
d. Circuit board should conform to extended 

ATX form factor specification 
 
 The need to build a new development system, the TM-
4, arose from the fact that no commercial development 
systems could meet the feature set, listed above.  The 
following section will describe the design of the TM-4 
and how it was motivated from the design requirements 
above. 

4. The TM-4 Design 
 
 The following sections present the design of the TM-
4, as motivated by the previously identified design 
requirements.  A system-level block diagram will be 
introduced for the TM-4 and each block will then be 
examined in more detail.  A complete description of the 
TM-4 can be found in [22]. 

4.1. Design Overview 

 The design of the TM-4 consists of two major 
subsystems: the FPGA development subsystem, and the 
interface subsystem.  The development subsystem 
contains the portion of the TM-4 that is directly usable by 
designers in implementing their designs.  The interface 
subsystem provides support functionality, including both 
control of the TM-4 and a communication channel from 
the host computer to the development subsystem. 
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Figure 2: Top Level System Diagram 



 Figure 2 shows the division between development and 
interface subsystems.  The development subsystem is 
composed of programmable logic, external memory, and 
user peripherals that are all available for designers to use.  
The interface subsystem consists of a host computer and 
a host interface.  
 Each of these five components, the programmable 
logic, the external memory, the user peripherals, the host 
interface and the TM-4 controller will are all described in 
the following subsections. 

4.2. Programmable Logic 

 The programmable logic subsystem of the TM-4 is 
comprised of two different items: the FPGAs and the 
interconnection between them.  The first two design 
requirements, 1 and 2, specified that the TM-4 should 
contain four of the largest FPGAs available, be fully 
interconnected using point-to-point connections and 
provide as much bandwidth as possible.  At the time the 
components for the TM-4 were being selected the largest 
FPGAs available were the Altera Stratix and the Xilinx 
Virtex 2 Pro.  Each FPGA had various advantages over 
the other, such as dedicated DDR SDRAM hardware for 
the Stratix and greater pin flexibility for the Virtex 2 Pro.  
The final selection of the Stratix FPGA for the TM-4 was 
guided by the fact that Stratix FPGAs where shipping 
before Virtex 2 Pro FPGAs. 
 Each of the four Altera Stratix S80 chips selected for 
the TM-4 provide 79,040 four-input lookup tables and 
flip-flops (logic elements), 7.4Mb of on-chip SRAM, 176 
embedded 9x9 multipliers and 1203 I/O pins.  When 
combined the total usable development area of the TM-4 
is 316,160 logic elements, 29.6Mb of on-chip SRAM, 
and 704 embedded 9x9 multipliers. 
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 The point-to-point interconnect topology used to 
connect the four FPGA is shown in Figure 3. The goal of 
this topology is to provide as much inter-FPGA 
bandwidth as feasible.  The selection of the number of 
signals between each FPGA and the signaling standard 
used was based on both hardware limitations and 
physical circuit board issues. 

 For example, modern differential signaling standards 
were preferred as they provide higher bandwidth then 
single ended standards.  However, there are only a 
limited number of differential pins available on the 
Stratix FPGA.  This led to the need to incorporate single 
ended pins in addition to differential signals. 
 In total the bandwidth between any pair of FPGA 
varies between 56Gb/s and 66.5Gb/s. 

4.3. External Memory Selection 

 The design requirements specified that the TM-4 
should have at least 4GB of memory and have as much 
memory bandwidth as possible.  This raises the questions 
of what type of memory technology to use, how it should 
be connected to the development FPGAs, and exactly 
how much. 
 The selection of memory technology was driven 
primarily by practical considerations.  The amount of 
memory required, 4GB or more, meant that it was 
impractical to use SRAM, because of the number of 
components that would require.  This meant that DRAM 
was the only practical choice as it provides much greater 
memory capacity for the same number of components 
than SRAM. There were two major types of memory 
module technology available at the time the TM-4 was 
being designed: DDR SDRAM and RAMBUS.  Both 
technologies provided similar memory densities and 
bandwidths but DDR SDRAM could be more easily 
incorporated in the TM-4, due to the hardware support  
for this type of RAM in the Stratix FPGA [23]. 
 The selection of how to many modules to use, and 
how to connect them to the development FPGAs, 
required a balance between performance and cost.  The 
total amount of memory bandwidth is proportional to the 
number of independent memory modules provided.  
However, each module comes at the cost of power, space, 
and expense.  Since each Stratix FPGA has hardware 
support for up to two DDR SDRAM modules, the 
question became one of either using 1 or 2 independent 
RAM banks per FPGA.  Since memory bandwidth was 
one of the driving goals of the TM-4 it was decided to use 
two DDR SDRAM modules per FPGA, for a total of 8 
modules in total. 
  Each of these ram slots can be populated with between 
512MB and 2GB of ram running at up to 166MHz, the 
maximum specified speed for the Stratix FPGA.  The 
standard configuration will contain 8 1GB modules and 
provide a total peak bandwidth of 17.8GB/s. 

4.4. User Peripherals 

 The design requirements for the TM-4 identified video 
applications as one possible use for the TM-4, and as 

Figure 3: FPGA Interconnect Structure 



such, specified that the TM-4 should contain two NTSC 
analog video-in channels, one VGA video-out channel 
and two independent IEEE-1394 buses. 
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 Since the first two peripherals, analog video-in and 
video-out, were both present on the TM-3, the same 
proven design was brought forward to the TM-4.  The 
NTSC video-in channels were implemented using two 
Phillips SAA7111 decoder chips, and the VGA video-out 
channel was provided by an Analog Devices ADV7123 
triple 10bit video DAC. 
 The IEEE-1394 bus is a new interface, which was not 
present on the TM-3.  Its implementation is also more 
complicated due to the complicated communication 
protocols that it uses.  The TM-4 was designed to 
implement as much functionality in hardware as possible, 
while still remaining flexible.  We selected a 2 chip 
IEEE-1394 [24] solution.  These chips provide both the 
physical and link layers of the IEEE-1394 networking 
protocol.  Users of the TM-4 must implement the 
remaining layers using the development FPGA.  This 
division, between hardware components and logic within 
the development FPGA, was selected to allow the user of 
the TM-4 sufficient flexibility to control the bus how they 
see fit.  This meant allowing the user to fully control all 
networking layers above the link layer. 
 Figure 4 shows how the different peripherals are 
connected to the four FPGAs.  The top left FPGA handles 
all the analog video peripherals, include 2 video-in 
channels and one VGA out channel, the top right FPGA 
handles the two independent IEEE-1394 buses.   The two 
remaining FPGA do not have any specialized peripherals 
but do have I/O headers available for future expansion. 

4.5. Host-to-FPGA Communication Channel 

 The design of the communication link between the 
host computer and the development FPGAs was driven 
by two design requirements: the link should have as 
much bandwidth as possible, and that it be easy for 
designers to use the channel.  The latter was already 
solved in the design of the TM-3 by providing a set of IP 
blocks, and software [25] running on the host computer, 
that abstract away the complexities of communicating 
with a host computer.  The first requirement, maximizing 
bandwidth, was the focus of the TM-4’s communication 
channel design. 
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 The communication channel between the development 
FPGAs and the host computer consists of a number of 
different components, as shown in Figure 5.  For 
transfers from the host computer to the development 
FPGAs there are several steps:  Software, running on the 
host computer, initiates the transaction by requests that 
data be transferred to the development FPGAs.  This data 
is then be transmitted from the host computer to a bridge 
within the TM-4 itself.  This bridge then passes the data 
on to the development FPGAs and ultimately to the 
circuit running within it.  Transfers in the other direction 
take similar steps in reverse. 
 The communication channel consists of four major 
components: the physical hardware links between the 
host computer, the bridge chip, and the development 
FPGAs, the IP core which implements the bridge, the IP 
cores running on the development FPGAs and the 
software running on the host computer.  Each of these 
will be examined in the following sections. 

4.5.1. Physical Hardware Communication Links 

The host communication channel contains two physical 
hardware links, the link between the host computer and 
the bridge chip, and the link between the bridge chip and 
the development FPGAs.  Each of these links was 
designed to meet the design requirement of having as 
much host computer bandwidth as feasible. 
 The first link, between the host computer and the 
bridge chip, needed to use a standard interface that was 
available in commodity computers. The selected link, 
was the link that provided the greatest bandwidth, PCI.  
In particular 66Mhz 64bit PCI was selected.  This link 
provides a theoretical peak bandwidth of 528MB/s. 

Figure 4: User Peripheral Connections 
Figure 5: Host-to-FPGA Communication Channel



 The second link, between the bridge chip and the 
development FPGAs, need not have been a standard 
interface and was custom designed.  The link selected 
was a bus consisting of 32 data bits that could run at a 
data rate up to a 100Mhz.  The result was a 
communication link that could sustain transfers of nearly 
400MB/s.  The reasoning behind the bus width and speed 
were that the bus needed to be easily combinable into 
64bit PCI words, by combining two 32-bit words, and 
that the bus should still run synchronously, by keeping 
the clock below 100MHz.  The resulting 400MB/s 
bandwidth was not expected to be a bottleneck to system 
performance due to the fact that the PCI bus’s overhead 
prevents it from reaching its theoretical peak bandwidth. 

4.5.2. Host-to-Development Bridge 

 The connection between the host computer’s PCI bus 
and the development FPGAs communication bus is 
bridged in the Interface FPGA.  This FPGA contains a 
custom-designed logic core that performs the translation 
between the two buses.  The PCI interface is 
implemented using an Altera PCI IP core.  This core 
interfaces with two FIFO buffers, used for clock domain 
translation between the 66Mhz PCI bus and the 100Mhz 
development bus, and some simple development bus 
transaction logic. 

4.5.3. Parameterizable Bus Interface Logic Cores 

 The physical communication link between the FPGA 
and the interface bridge incorporates a custom design bus 
protocol.  In order to hide the complexity of interfacing 
with this bus, a set of parameterizable logic cores were 
created.  These modules encapsulate all the functionality 
required to interface with the bus while presenting a 
simple handshaking based interface to the user. Instead 
of dealing with multi-cycle bus transactions the user only 
needs to interface with a simple three-wire handshake 
interface of one of the parameterizable cores. 

4.5.4. Host Software 

 The final component of the host communication 
channel is the software that runs on the host computer.  
This software is responsible for providing a simple 
interface for communications between user software and 
user hardware in the development FPGAs.  There are two 
different pieces of software that provides this 
functionality, a device driver and a software API. 
 The device driver is a kernel-mode Linux driver that 
handles all the hardware details necessary to 
communicate with the TM-4 without requiring any user 
intervention.  The driver provides a simple software API 

that can be linked into user programs to enable a C 
program to directly communicate with the development 
FPGAs.  This API provides the ability to both read and 
write to the FPGAs as well as to catch errors and to 
monitor the state of the TM-4. 
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 Figure 6 summarizes all the communication steps 
necessary for communicating between the host computer 
and the development FPGAs. 

4.6. Self Contained Development System 

 The final design requirement for the TM-4 is that it 
should be designed with an extended ATX form factor.  
This selection allows for the TM-4 to be housed in a 
standard PC case and act as a completely self-contained 
system. 
 The complete TM-4 system consists of the hardware 
motherboard, shown in Figure 7, a plug in single board 
computer, shown in the right of Figure 7, all of the 
peripherals that go with such a computer, DVD drive, 
hard drive, and networking, a Linux operating system, 
and various software design tools.  All of these 
components are contained in a single standard PC case. 

 

5. Performance Results 

 A prototype of the TM-4 was built, as shown in Figure 

Figure 6: Development Communication Bus 

Figure 7: The TM-4 Prototype 



7, and its performance was measured.  The performance 
results of each of the primary goals of the TM-4, having 
as much memory bandwidth, inter-FPGA bandwidth and 
host-to-FPGA bandwidth as possible, are presented in the 
following three subsections.  It should be noted that the 
goal of having as much memory capacity as feasible is 
correct by design, and as such, does not require explicit 
measurement. 

5.1. Memory Performance 

 Memory performance of the TM-4 was measured by 
implementing a test circuit, on the development FPGAs 
that could both read and write from the attached DDR 
SDRAM.  The test circuit consisted of a DDR SDRAM 
controller and a simple interface circuit that was 
designed to perform large block transfers.  This access 
pattern was selected because it is representative of 
applications that work with data streams.  A hardware 
clock counter was used to determine the time taken to 
complete the block transfers and a bandwidth was 
calculated. 
 It was found that under burst access conditions the 
TM-4 could provide a sustained memory bandwidth of 
17.6GB per second total. 

5.2. Inter-FPGA Performance 

 The next goal of the TM-4 was to provide as much 
inter-FPGA bandwidth as possible. The method used to 
measure the actual inter-FPGA bandwidth of the TM-4 
was to determine the maximum data rate of a single 
LVDS channel and then to extrapolate this result to the 
entire set of channels.  The procedure used to measure 
the data rate of a channel was to have two test circuits 
running on two different FPGAs.  The first FPGA would 
transmit data while the second would receive it.  
Additionally, other LVDS channels would be driven with 
random data to simulate cross talk.  The clock rate of the 
circuits was then increased until channel failure 
occurred. 
 Unfortunately, a design error involving the selection 
of clock pins on the Stratix FPGA limited the maximum 
speed of the LVDS channels to 462Mbps instead of the 
maximum rated 840Mbps, and enabled only half the 
LVDS channels to be used.  However, under these 
conditions, the test circuit showed the TM-4 was capable 
of meeting this reduced speed of 463Mbps.  At this speed 
the total measured aggregate bandwidth between FPGAs 
is either 577 or 1155MBps, depending on which pair of 
FPGA is considered. 
 A second revision of the TM-4 is being produced to 
fix this error. 

5.3. Host-To-FPGA Performance 

 The final goal of the TM-4 was to provide as much 
host-to-FPGA bandwidth as feasible.  This channel is 
implemented using a 64bit 66Mhz PCI bus with a 
maximum bandwidth of 528MBps.  However, the 
expected actual performance of the TM-4 should be much 
lower due to various overheads. 
 The procedure used to measure the performance of the 
host-to-FPGA communication link was to use both 
software and hardware components.  The software 
component would transfer a large block of data either to, 
or from, a corresponding hardware circuit on a 
development FPGA.  These transfers were then used to 
measure the actual performance of the TM-4. 
 The measured write performance of the TM-4 was 
found to be 266MBps, and the measured read 
performance was found to be 154MBps.  These 
performance numbers corresponds to a PCI bus 
utilization of 50% and 29% respectfully. 
 Through the use of a logic analyzer it was found that 
write performance was limited by the host computer’s 
ability to provide data quickly enough to the PCI bus, as 
it was often found to be idle.  Similarly it was determined 
that reads were limited by the handshaking protocol 
utilized in the development FPGAs.  This handshaking 
overhead prevented the development FPGAs from 
transmitting sufficient data to the PCI bus. 

5.4. Performance Summary 

 The three measurement procedures, presented in this 
section, show how the TM-4 design meets the goals of 
providing significant memory bandwidth, inter-FPGA 
bandwidth, and host-to-FPGA bandwidth.  In total, the 
system has a measured memory bandwidth of 17.6 GB 
per second, an inter-FPGA LVDS communication 
channel bandwidth, between each pair of FPGAs, of up to 
1.15 GB per second, and a host-to FPGA bandwidth of 
266 MB per second for writes and 154 MB per second for 
reads. 
 

6. Current Status 

 Although the TM-4 is a new system it does have a 
variety of functional applications, including both simple 
test applications, such as video in and out, and DDR 
SDRAM tests, and more complicated applications that 
have been ported from the TM-3, such as a real time edge 
detector and a procedural texture mapper.  Figure 8 
shows the real time edge detector circuit running on the 
TM-4. 
 



 

  Currently four additional TM-4s are being built for 
use by researchers at both the University of Toronto and 
McGill University.  It is the goals of these researchers to 
implement new applications in both the areas of 
computational vision and bioinformatics, as well as other 
application domains. 

7. Conclusions 
 
 This paper presented the design of an FPGA-based 
rapid prototyping system.  The objective of this work was 
to provide a development platform with as much memory 
capacity, memory bandwidth, inter-FPGA bandwidth, 
and host-to-FPGA bandwidth as feasible.  The resulting 
tests, on a prototype system, showed that the TM-4 was 
able to deliver large amounts of bandwidth in all of the 
categories. 
 It is the hope of the authors that the creation of this 
prototyping system will enable future researchers to 
implement designs not possible with previous 
technologies. 
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