
A High-Speed Ray Tracing Engine Built on a Field-Programmable System

Joshua Fender
University of Toronto

fender@eecg.utoronto.ca

Jonathan Rose
University of Toronto

jayar@eecg.utoronto.ca

Abstract

 Ray tracing is a method of rendering high-quality
images and video by calculating what happens to virtual
light rays in a 3-dimensional scene. It is capable of
creating far more realism than traditional Z-buffering
methods. This paper describes the design of a hardware
ray tracing system implemented on a multi-FPGA Xilinx
Virtex-E prototyping system. The result is a hardware ray
tracer that is capable of out-performing a 2.4GHz
Pentium 4, running a well-known high performance
software ray tracing algorithm, by up to a factor of thirty.
When these results are projected forward into a next
generation FPGA system, consisting of a single large
Virtex 2 Pro FPGA, it is found that the system should be
able to out perform the same Pentium 4 by up to two
orders of magnitude, and the fastest known hardware
implementation, the AR350, by up to a factor of three.

1. Introduction

 This paper describes a hardware ray tracing engine that
was implemented using a field-programmable rapid
prototyping system. Ray tracing [1] is a method of
rendering high-quality images by calculating what
happens to the light rays in a 3-dimensional scene. It is
capable of creating far more realism than traditional Z-
buffering methods [2].
 To date, raster graphics has dominated ray tracing
approaches because ray tracing requires a much larger
amount of computation. It is relevant to note, however,
that the algorithmic complexity of ray tracing is
logarithmic in the scene size, while raster is typically
linear. Ray tracing currently requires more computation
because the constants in front of the logarithm are large;
ultimately its logarithmic complexity will win out, for
large scenes, and so it is an avenue worth pursuing for this
reason alone.
 Several different hardware approaches have been tried
in the past to accelerate ray tracing to a point where they
are competitive with raster graphics. These include several
general purpose renderers [3],[4],[5] as well as a number
of application specific renderers, such as [6] and [7]. The
approaches implemented the hardware as custom ASICs

to achieve maximum performance, but this caused high
development costs high and successive versions to be far
apart. A more flexible and evolvable approach is to target
programmable hardware and iteratively improve the
designs, which we do in the present work.
 We present a FPGA ray tracing architecture that is
capable of exceeding the performance levels currently
available from custom ray tracing hardware. This goal is
achieved in two steps. The first step involves designing a
simple prototype ray tracer and using this system to
discover the various issues that affect a hardware ray
tracer's performance. The second phase then involves
using these known issues to design an enhanced ray
tracing system and evaluate its projected performance.
 This paper is divided into seven sections: Section 2
presents the basics of ray tracing, Section 3 describes the
multi-FPGA rapid prototyping system used, Section 4
describes the prototype system, Section 5 describes
performance results of this system, Section 6 examines the
various trade offs involved in the design of the enhanced
system, and Section 7 presents the performance of the
enhanced system.

2. Ray Tracing Basics

 Conventional rasterized rendering is an object-centric
algorithm. That is, each object is processed in turn and
rendered into the frame buffer. A ray tracing algorithm
uses a pixel-centric view of renderering by attempting to
determine which object should be visible for a given pixel.
 Figure 1 illustrates how this pixel-based algorithm
works. For each pixel of the projection plane P, a ray R is
generated from the eye point through the pixel. This ray
is then intersected with the 3D scene to determine which
object is visible to the viewer through that pixel. Once the
visible object is found, various models are used to
determine the pixel's final colour. This process is then
repeated for every pixel in the scene and the image is
rendered.
 The core algorithm in ray tracing is the one that
determines which object in the 3D scene is struck by a
given ray. For the purposes of this paper, scenes will be
constrained to only those that consist of triangle objects.
This allows for the use of the very simple intersection
algorithm that is described in the following section.

2.1. Ray-Triangle Intersection

 There are a number of different algorithms that can
calculate the intersection point between a ray and a
triangle. Of these they are three major variants: those that
use the plane equation [8], those that use 6D Plücker
space [9], and those that use barycentric coordinates [10].
After evaluating the various algorithms it was found that
the barycentric coordinate method was the most
computationally efficient when implemented in hardware.
 The algorithm is as follows:
 Given a parameterized ray (t)R

�
 with direction D

�
 and

origin O
�

,

and a triangle with vertices 0V
�

, 1V
�

, and 2V
�

, barycentric

coordinates can be used to determine if the two intersect.
Barycentric coordinates provided a new coordinate space,
(u, v), which includes the set of all points that lay in the
plane of a given triangle. Equation (2) shows the
relationship between R3 and barycentric space.

 It can be shown that a given point in barycentric space
is contained within the triangle if, and only if, the
conditions on (u, v), shown below, are met.

By equating equations (1) and (2), as shown in equation
(4), we can determine if there is an intersection between a
given ray and a given triangle. If the conditions shown in
equation (3) are met, then the ray and triangle intersect.

This equation can be further simplified through the use of

Cramer's rule:

 It is this equation, in combination with the simple test
for intersection of equation (3), which will be
implemented in hardware.

2.2. A Hierarchical Data Structure for Reducing
Algorithmic Complexity

 The algorithm described in the previous section
intersects a ray with only a single triangle. To render a
scene it is necessary to intersect a ray with the entire scene
of triangles, of which there are typically many tens of
thousands. The brute force approach is to test every
object in the scene and find the nearest intersection. This
method results in a very simple algorithm with linear time
complexity.
 It is possible to reduce this complexity by
hierarchically subdividing the set of objects based on their
position in space. This allows the culling of a large
number of objects with a small number of simple tests.
Figure 2 shows an example of one possible hierarchy. The
large dashed boxes represent the first level of the
hierarchy. Through a simple test between the ray and the
two boxes, it is easy to see that only the boxes contained
within box B needs to be tested as box A is missed
entirely. This process can then recursively applied to find
that only box C in the second level of hierarchy needs to
be tested. In this example three quarters of the scene is
eliminated with only 4 simple tests. It is through this
hierarchy that logarithmic complexity can be achieved.
 The actual hierarchical structure implemented in the
prototype system is a three level bounding hierarchy
where the bounding objects can be defined with 6

Plane P

Ray R

Figure 1. A single ray from eye through screen to
triangle in scene

 3,),()(RDOtRwhereDtOtR ∈+=
������

 (1)

Box A

Box B

Box C

Box D

Figure 2. A sample bounding box hierarchy

 210)1(),(VvVuVvuvuT
����

++−−= (2)

 1,0,0 ≤+≥≥ vuvu (3)

 []
0

022

011

21

VOT

VVE

VVE

whereT

v

u

t

EED
���

���

���

����

−=
−=
−=

=
�
�
�

�

�

�
�
�

�

�

− (4)

1

2
2

1

1

ETQ

EDP
where

DQ

TP

EQ

EP
v

u

t

���

���

��

��

��

��
×=
×=

�
�
�

�

�

�
�
�

�

�

⋅
⋅

⋅

⋅
=

�
�
�

�

�

�
�
�

�

�

 (5)

arbitrary quadrilaterals. This structure was selected as it
can be implemented by wrapping the existing ray triangle
intersection hardware with control logic. Other hierarchy
options, such as BSP trees [11], or octrees [12], would
require additional dedicated datapath logic.

3. The Transmogrifier-3 Prototyping System

 The hardware ray tracer described in this paper was
developed using the Transmogrifier-3a [13] rapid
prototyping system. The Transmogrifier-3a system
consists of two separate components, the hardware system
and a software tool flow.
 The hardware system contains four Xilinx Virtex
2000E FPGAs, each attached to two megabytes of
external SRAM. These FPGAs are connected to a host
computer through a custom PCI interface that allows for
both device programming and interaction with the circuit
being tested. The FPGAs are also connected to each other
to allow inter-chip communication.
 The software tool flow used to implement our system
consists of Synplicity's Synplify Pro synthesizer and
Xilinx's standard place and route tool. The automated
pipelining and register balancing functions of Synplify Pro
were used to increase performance without time-
consuming hand optimizations.
 The Transmogrifier-3 system has been used to
successfully implement both Stereo Vision [14] and
Genome processing applications [15].

4. Prototype Ray Tracing System

 Figure 3 illustrates the top-level of the ray tracing
processor. The system is composed of two separate
components, each implemented on different FPGAs in the
Transmogrifier-3a. FPGA 0 contains the ray triangle
intersection unit, which implements Möller's barycentric
algorithm as described in Section 2.1, and FPGA 1
contains the control logic for implementing the bounding
box hierarchy algorithm discussed in Section 2.2.
 The following sections describe the data representation
used to describe a 3D scene, the functionality of the ray
triangle intersection unit, and the functionality of the
bounding hierarchy controller.

4.1. Data Representation

 Software ray tracers typically use floating-point
calculations, but in hardware floating point arithmetic is
tremendously expensive in area. Instead, we use a fixed-
point number representation that maintains sufficient
intermediate precision in all calculations.
 The selection of the fixed-point data widths was guided
by various hardware constraints. The memory on the

Transmogrifier-3a runs at a maximum clock speed of
50MHz,and so the ray tracing processor is synchronized
to this speed. Our experience with the Xilinx Virtex E
suggests that only arithmetic operations that have results
of 64bits or less can complete in one clock cycle.
 By using this constraint and working backwards
through Möller's algorithm it can be found that a working
3D space of 28bits can be used, provided that a limit is
applied to the maximum triangle size. A triangle can be
defined by a 28bit origin and 16bits describing the
position of the other two vertices relative to the 28bit
origin. This allows for the triangle to be placed anywhere
in 3D space but to have a limited maximum size. In real
scenes this restriction could cause problems as often a
scene contains objects that are of vastly different scales,
such as a piece of popcorn in the middle of a stadium.
 To address the problem of objects that are of vastly
different scales two additional bits can be added to
optionally scale the relative offsets. Effectively these two
bits allow the edge’s granularity to be scaled by 1, 16,
256, or 4096, which result in the maximum edge being
able to span the entire 28 bit space. Conveniently, this
pseudo-floating point representation can be implemented
using only a shift to the right of the resulting (u,v)
coordinates of Möller's algorithm.

4.2. Hardware Ray-Triangle Intersection Unit

 The function of the ray triangle intersection unit is to
receive a list of both triangle identifiers (which are
memory pointers to the triangle vertices) and rays, and
then to return the identifier of the first triangle that is
intersected by each ray. This unit is capable of reading
one triangle every three cycles and intersecting it with
three different rays.
 The ray-triangle intersection unit is composed of three
major components: the memory controller, the ray-triangle
intersection datapath, and the nearest comparison unit.

External SRAM

Ray Triangle
Intersection

Datapath

Nearest
Comparison

Mem Controller Controller 1

List Handler

Controller 2

List Handler

Bounding
Node Sorter

FPGA 0 FPGA 1

Figure 3. Architecture of ray tracing processor

The memory controller reads the requested triangle data
from memory, the datapath intersects the triangle with a
given ray, and the nearest comparison unit compares the
different intersection results to determine which is closest.

4.2.1. Ray-Triangle Intersection Datapath

The ray-triangle intersection datapath is responsible for
receiving a list of triangles from the memory controller,
and intersecting each with three different rays. The results
of these intersections are then passed on to the nearest
comparison unit for later tabulation. The ratio of
comparing 3 rays per triangle was necessary to match the
memory speed to the computation speed: the memory
controller requires three clock cycles to read a triangle,
where as the datapath can perform an intersection test
every cycle. By intersecting three rays with every triangle
we hide this memory access time.
 The datapath utilizes the maximum amount of
algorithmic parallelism and is completely unwrapped to
maximize throughput. For example, the cross product
units (describe in Section 2.1, equation 5) each contain 6
multipliers and 3 adders running in parallel. In total, the
pipeline requires 7 cycles to determine if a ray strikes a
triangle and another 31 cycles to perform the division
necessary to find the actual intersection point. The
division units do not necessarily need to be contained in
the pipeline as they are only required once an intersected
triangle is found. In a system with multiple pipelines
these units could be shared to save area.
 The initial 7 pipeline stages use approximately 20,000
4 input look-up tables, or LUTs, to implement, and the
divisions an additional 8,000 LUTs. In addition to this
over 11,000 flip-flops are also required. The entire
pipeline runs at 50Mhz on the Xilinx Virtex 2000E.

4.2.2. Nearest Comparison Unit

 The ultimate goal of the ray triangle intersection unit is
to return the nearest triangle that is intersected by a given
ray, is the location of the intersection point, and is the
distance from the eye to the intersection point. The nearest
comparison unit tabulates the individual results from the
datapath and determines the intersected triangle that is
closest to the “eye” , as this is the one that will be “seen” .
Figure 4 illustrates this circuit.
 The unit contains registers with the triangle ID and
distance of the nearest intersection point currently found.
Each new intersection point is compared against this
registered version and if the new intersection point is
found to be closer it is stored and used for future
comparisons.
 The nearest comparison unit requires 35 LUTs and 88
flip-flops.

4.3. Bounding Hierarchy Unit

 The ray triangle intersection unit provides the
fundamental function of a ray tracer but lacks the
intelligence to implement the more complicated bounding
box hierarchy acceleration method. This advanced
functionality is implemented on a second Virtex 2000E
FPGA using the three types of different units shown in
Figure 4.
 The controller unit is responsible for coordinating the
different units that comprise the ray tracing processor. It
queries the list handler units to determine which node of
the hierarchy should be traversed next and sends the
proper triangles to the intersection unit to accomplish this.
The results of the node traversals are then accumulated by
the bounding node sorter and passed to the list handler.
The list handler can then use this new data to inform the
controller units which node to traverse next, and the
process continues. Each of these three units is described in
the following three sections.

4.3.1. Controller Unit

 The controller unit is a complex state machine that is
responsible for interfacing with the host computer, and for
coordinating all the different units in the ray tracing
processor. The unit accepts external request to intersect
groups of three rays against the scene currently stored in
memory, and returns the nearest triangle that each ray
intersects.
 Figure 5 is a simplified state model of the controller's
function. The first step is to process the root node of the
tree and store the result within the list handler unit. Once
the node has been processed, the list handler provides an
output indicating which node should be traversed next.
The next step is to iteratively query the list handler and
traverse the nodes suggested. Upon reaching a leaf node,

Tri ID Distance

New Tri ID New Distance

Nearest Tri ID Nearest Dis tance

Figure 4. Nearest comparison unit

the controller accesses a table to determine which object
triangles should be tested. If the ray strikes an object
within the leaf node then the process is complete.
Otherwise the controller traverses back up the tree by
querying the list handler once more. When the list
handler is exhausted, the traversal is complete and the rays
are found to not strike any objects.
 The control logic requires 360 4 input lookup tables
and 367 flip-flops to implement.

4.3.2. List Handler Unit

 The list handler unit contains the logic and state
storage necessary to perform a nearest to furthest tree
traversal. It takes the results of each node traversal as
input and outputs which node in the tree should be
traversed next. The list handler implements this
functionality through the use of three queues.
 Each of the three queues represents a different level in
the tree. The first queue will contain a sorted list of the
intersected children of the root node. The second queue is
a list of intersected children from nodes in the first queue,
and third queue a list of intersected children from the
second queue.
 Figure 6 shows a typical traversal operation. First the
root node is traversed and the result stored in the first
queue, (a). Next the nearest intersected node's children
are tested, in this case node 2, and the results written to
the second queue, (b). The process is repeated using the
nearest intersected node stored in queue two and the result
written to queue three, (c). At this point the traversal has
reached a leaf node, A. The leaf node A is tested but
found not to intersect the ray, (d). Since the leaf node
queue, queue three, is empty the next node is queue two is
traversed, in this case node 8. Its intersected children are
then written to the third queue and the process can
continue until an intersected object is found or all three

queues become empty.
 It is clear from this algorithm that the list handler
cannot choose which node to traverse, until the results
from the previous traversal have been calculated. Since
the ray triangle pipeline is so deep the time necessary to
flush the results is very large. To compensate for this
problem two list handlers and two control units are
instantiated so that they can both share the pipeline.
These two sets of control logic process independent sets
of rays but share the same pipeline. When one unit is
waiting for its results to flush it passes its ownership token
to the other control unit so that it can use the data path.
This sharing method can completely eliminate pipeline
bubbles and make the most efficient use of the datapath.

4.3.3. Bound Object Depth Sorter

 To perform a proper nearest to furthest tree traversal it
is necessary to have access to a sorted list of intersected
child nodes. The process of sorting the traversal results is
the job of the bound object depth sorter. This unit takes
as input the individual intersect test results for each child
node and accumulates them in a sorted list. This list is
then transferred to the list handler for later traversal.
 The actual implementation of the sorting algorithm is
very simple. Each time a new intersect point is found, it is
inserted to the sorted list at its correct point.
Simultaneously, the displaced nodes are shifted down.
This algorithm allows for a one-cycle insertion sort with
minimal implementation complexity.
 The bounding object depth-sorting unit takes 1159 4
input lookup tables and 617 flip-flops.

Idle

Traverse
Root

Query List
Handler

Traverse
Leaf

Indirect
Lookup

Traverse
Node

LeafNode

!Hit

Hit

Internal
Node

Miss

Figure 5. Simplified controller state machine

2 1 3 - - - - -

- - - - - - - -

- - - - - - - -

2 1 3 - - - - -

- - - - - - - -

- - - - - -9 8

2 1 3 - - - - -

- - - - - - -

- - - - - -9 8

A

2 1 3 - - - - -

- - - - - - -

- - - - - -9 8

A

2 1 3 - - - - -

- - - - - - -

- - - - - -9 8

H

(a) (b) (c)

(d) (e)

Figure 6. Tree traversal example

5. Prototype Results

 In order to evaluate the performance of the ray tracing
processor it was necessary to create a simple test jig that
could interface with the ray tracer. A simple circuit was
created on one of the four FPGAs chips to generate the
necessary eye rays and store the results for later retrieval
and analysis. This chip also contained a cycle accurate
counter to accurately measure performance.
 For comparison, the same scenes were rendered on
2GHz Pentium 4 computer using POVray 3.1 [16] with no
textures, and the lowest quality setting. This is a freely
available ray tracer that is generally accepted to be the
best, non-commercial, ray tracer available.

5.1. Test Scenes

 To test the performance of the ray tracing processor a
number of different test scenes were used. Figure 7 shows
one frame of a landscape animation. This test scene
contained over 50,000 triangles in a well-structured
bounding hierarchy.
 Figure 8 is another high triangle count test image, with
30,848 triangles. The difference between this test set and
the landscape is that the random placement of raindrops
results in a bounding hierarchy that that does not tightly fit
the scene.
 Figure 9 is a low triangle count image, with 2048
triangles, and a tight bounding hierarchy. This test set
was designed to test performance on simpler scenes.
 Also included in the results, but not shown in the
figures below, are a 3D model of the prototyping
development system, and an additional fractal landscape.

5.2. Test Results

 Table 1 summarizes the performance results of the
prototype system compared against the POVray 3.1 ray
tracer [16]. The two landscape test sets show that the
prototype is easily able to out perform software by a factor
of 20. This is expected as the prototype system can access
memory much faster then a typical desktop computer.
 The rainstorm test set yields a different result. The
scattered raindrops, combined with their small size, results
in a bounding hierarchy that is a very loose fit. This
means that the probability of a ray that strikes the
bounding volume actually striking a raindrop is very slim.
This leads to a large number of leaf nodes being tested
only to discover that the ray passes straight through. The
software ray tracer does not suffer from this problem, as it
can be more adaptive to these degenerative cases. Instead
of a fixed hierarchical structure the software approach can
use a flat hierarchy of very tight bounding boxes and
perform quite well.
 The remaining two test sets, the shaded sphere and the
TM3 model, are both low polygon count models with
relatively tight bounding structures. In these cases the
hardware prototype outperforms the software by a more
modest margin of a factor of 2. This results from the

Figure 7. Landscape test image

Figure 8. Rainstorm test image

Figure 9. Shaded sphere test image

Table 1. Prototype ray tracer performance

 Triangles P4 2GHz
Render Time

Prototype
Render Time

Performance
Increase

Landscape A 51200 6.93s 0.29s 23x
Landscape B 51200 7.03s 0.40s 17.5x
Rain Storm 30848 0.29s 0.81s 0.35x
Shaded Sphere 2048 0.48s 0.17s 2.8x
TM3 Model 1304 0.20s 0.13s 1.5x

hardware overhead required for each ray no longer being
masked by scene complexity as it is with the larger test
sets.
 For typical large 3D scenes, the hardware ray tracer
can achieve significant speedup.

6. Projected Enhanced System Performance

 The results presented in the previous section are
promising. They show that the simple prototype system
that is heavily memory bandwidth-limited can out-perform
a state of the art CPU-based system. This section will
present a new architecture, based on the prototype system,
which is capable of significantly faster performance.
 The performance of an FPGA-based ray tracer
implemented on a custom development board is
dependent on a number of design choices. These choices
include: clock speed, FPGA architecture, and memory
architecture.

6.1. Clock Speed and FPGA Architecture

 The simplest method to increase the performance of a
system is to increase the clock rate. In the case of the
prototype system the maximum clock rate was limited by
memory speed. In the enhanced system this is not an issue
as more advanced memory can avoid this problem, as
discussed below.
 It is also possible to increase speed by adjusting the
pipeline depth through the use of automatic pipeline
balancing tools. Several trial compilations suggest that a
speed of 60MHz could be achieved using this method

when targeting a Virtex E series FPGA.
 To produce even further speed gains it is necessary to
switch to a newer FPGA generation with devices with
improved architectures and more advanced IC processes.
The Virtex II and Virtex II Pro FPGAs [17] include
dedicated high-speed multipliers that can be exploited by
the ray tracing processor. A single cross product from the
datapath can be synthesized to run at over 133Mhz, so it is
possible that through fine-tuning the entire datapath could
be designed to run at this speed. A safe speed estimate for
the datapath would be 100MHz as a synthesis run we
performed on the existing datapath to a Virtex II Pro
target was able to reach this rate.
 An extra bonus of using these dedicated multipliers is a
decrease in the number of LUTs required. Instead of
utilizing 20,000 LUTs, as in the Virtex E FPGA, the
Virtex II allows for an implementation using only 3000
LUTs and 54 dedicated multipliers. This decrease in
device utilization will allow for several datapaths to be
placed within the same chip. The number of which is
ultimately limited by the availability of dedicated
multipliers. Using a mid-sized Virtex II Pro chip it is
possible to place 4-6 datapaths with ample LUTs
remaining for controlling logic.

6.2. Memory Architecture

 To utilize a large number of parallel data paths it is
necessary to have a memory system that is capable of
providing data fast enough to keep the datapaths busy.
Since each of the datapaths can consume 184 bits each
cycle, equivalent to 2.3GB/s, six independent data paths
would require a total of 14GB/s. To avoid this problem a
solution similar to that used in the prototype can be
implemented. The prototype compared three rays against
each triangle to mask the three cycle read time. The same
will be done in the enhanced architecture with one minor
difference. Instead of processing three rays sequentially
through one datapath, three datapaths will each process
their own rays. This will reduce the total required
memory bandwidth to only 4.6GB/s.
 The easiest way to achieve the required bandwidth is
through two independent memory banks. Each bank
would be 96 bits wide and run at 100MHz and employ the
double data rate (DDR) approach. This would result in

100MHz DDR SDRAM (x2)

96 Data Bits (x2)

Control Logic (x3) Control Logic (x3)

Datapaths (x3) Datapaths (x3)

Figure 10. Enhanced System Diagram

Table 2. Projected enhanced system performance

 Triangles P4 2GHz
Render Time

Prototype
Render Time

Performance
Increase

Landscape A 51200 6.93s 24ms 288x
Landscape B 51200 7.03s 33ms 213x
Rain Storm 30848 0.29s 68ms 4x
Shaded Sphere 2048 0.48s 14ms 34x
TM3 Model 1304 0.20s 11ms 18x

each set of three datapaths having access to one new
triangle every cycle.
 Figure 10 shows the complete enhanced system,
including two independent sets of three datapath units
each fed with a 2.3GB/s memory stream. The bounding
hierarchy functionality is implemented through the use of
duplicated sets of control logic, and the entire system
should run at 100MHz when implemented on a Xilinx
XC2VP70.

7. Projected Performance

 The enhanced system presented in the previous section
implements the exact algorithms that the prototype system
does but with twice the clock speed and six parallel
datapaths. This results in an increase of performance by a
factor of twelve. Table 2 shows the projected
performance of the enhanced system on the sample set of
test images.
 For a large, and well bounded, scene the enhanced
system out performs software by over two orders of
magnitude. For smaller scenes the performance increase
is lower at only one order of magnitude, and for the
degenerate case of a poorly bounded scene the
performance is only marginally better.
 The enhanced architecture also performs well when
compared against the current state-of-the-art in hardware
ray tracing the AR350 [3]. The Advanced Rendering
Technologies product information page for their PURE
PCI 3D rendering card states that 8 AR350 processors
have a peak ray triangle intersection rate of 1.1 billion per
second. This leads to an individual processor rate of
137.5 million intersection tests per second. Our enhanced
architecture is capable of 600 million intersection tests per
second from a single FPGA, an increase of over four
hundred percent.

8. Conclusions

We have implemented a prototype ray tracing system that
outperformed a 2GHz Pentium 4 computer by an order of
magnitude due to its effective use of memory bandwidth.
We project that a larger scale version implemented with
newer FPGAs and modern memory could achieve a
performance increase of over two orders of magnitudes
against software, and a potential increase of four times
against an existing hardware implementation.

9. Acknowledgements

The authors would like to thank Xilinx Inc., and
MICRONET for research funding, Synplicity for the
donation of software tools and David Galloway and
Marcus van Ierssel for software and hardware support.

10. References

[1] A. Glassner, An Introduction to Ray Tracing, Academic
Press, London, 1989.

[2] E. Catmull, A subdivision algorithm for computer display of
curved surfaces, PhD Thesis, Univ. of Utah, 1974.

[3] D. Hall, The AR350: Today's Ray Trace Rendering
Processor, In Proc. of the Eurographics/SIGGRAPH Workshop
on Graphics Hardware - Hot 3D Session 1, 2001.

[4] J. Purcell, SHARP Ray Tracing Architecture, SIGGRAPH
Course on Real-Time Ray Tracing, 2001.

[5] J. Schmittler, I. Wald, P. Slusallek, “SaarCOR – A Hardware
Architecture for Ray Tracing” , Proc. of the Conference on
Graphics Hardware 2002, 2002, pp. 27-36.

[6] G. Knittel, W. Straber, “VIZARD - Visualization
Accelerator for Realtime Display” , Proc. of the ACM
SIGGRAPH/EUROGRAPHICS Workshop on Graphics
Hardware, ACM Press, 1997, pp. 139-146.

[7] H. Pester, J. Hardenbergh, J. Knittel, H. Lauer, and L. Seiler,
“The Volumepro Real-Time Ray-Casting System”, Proc. of the
26th Annual Conference on Computer Graphics and Interactive
Techniques, ACM Press, 1999, pp 251-260.

[8] D. Badouel, “An Efficient Ray-Polygon Intersection” ,
Graphics Gems, Academic Press, 1990, pp. 390-393.

[9] J. Stolfi, Oriented Projective Geometry, Academic Press,
Boston, 1991.

[10] T. Möller, and B. Trumbore, “Fast, Minimum Storage Ray-
Triangle Intersection” , The Journal of Graphics Tools, A. K.
Peters, 1997, pp 21-28.

[11] B. Naylor, J. Amanatides, W. Thibault, “Merging BSP
Trees Yield Polyhedral Modeling Results” , Proc. of the
SIGGRAPH ‘90 Conference, 1990, pp 115-124.

[12] H. Samet, Spatial Data Structures: Quadtree, Octrees, and
Other Hierarchical Methods, Addison Wesley, Reading, 1989.

[13] The Transmogrifier-3a Rapid Prototyping System,
http://www.eecg.utoronto.ca/~tm3.

[14] A. Darabiha, J. Rose and W. J. MacLean, "Video-Rate
Stereo Depth Measurement on Programmable Hardware", Proc.
of the IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, 2003.

[15] A. Alex, J. Rose, and C. Hogue, Hardware Accelerated
Protein Identification, Master Thesis, Univ. of Toronto, 2003.

[16] Persistence of Vision Ray Tracer, http://www.povray.org

[17] Virtex-II Pro Platform FPGA Handbook, Xilinx Inc, 2002.

