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Abstract 

 Ray tracing is a method of rendering high-quality 
images and video by calculating what happens to virtual 
light rays in a 3-dimensional scene.  It is capable of 
creating far more realism than traditional Z-buffering 
methods.  This paper describes the design of a hardware 
ray tracing system implemented on a multi-FPGA Xilinx 
Virtex-E prototyping system. The result is a hardware ray 
tracer that is capable of out-performing a 2.4GHz 
Pentium 4, running a well-known high performance 
software ray tracing algorithm, by up to a factor of thirty. 
When these results are projected forward into a next 
generation FPGA system, consisting of a single large 
Virtex 2 Pro FPGA, it is found that the system should be 
able to out perform the same Pentium 4 by up to two 
orders of magnitude, and the fastest known hardware 
implementation, the AR350, by up to a factor of three. 

1. Introduction 

 This paper describes a hardware ray tracing engine that 
was implemented using a field-programmable rapid 
prototyping system.  Ray tracing [1] is a method of 
rendering high-quality images by calculating what 
happens to the light rays in a 3-dimensional scene.  It is 
capable of creating far more realism than traditional Z-
buffering methods [2]. 
 To date, raster graphics has dominated ray tracing 
approaches because ray tracing requires a much larger 
amount of computation.  It is relevant to note, however, 
that the algorithmic complexity of ray tracing is 
logarithmic in the scene size, while raster is typically 
linear.  Ray tracing currently requires more computation 
because the constants in front of the logarithm are large; 
ultimately its logarithmic complexity will win out, for 
large scenes, and so it is an avenue worth pursuing for this 
reason alone. 
 Several different hardware approaches have been tried 
in the past to accelerate ray tracing to a point where they 
are competitive with raster graphics. These include several 
general purpose renderers [3],[4],[5] as well as a number 
of application specific renderers, such as [6] and [7]. The 
approaches implemented the hardware as custom ASICs 

to achieve maximum performance, but this caused high 
development costs high and successive versions to be far 
apart.  A more flexible and evolvable approach is to target 
programmable hardware and iteratively improve the 
designs, which we do in the present work. 
 We present a FPGA ray tracing architecture that is 
capable of exceeding the performance levels currently 
available from custom ray tracing hardware.  This goal is 
achieved in two steps.  The first step involves designing a 
simple prototype ray tracer and using this system to 
discover the various issues that affect a hardware ray 
tracer's performance.  The second phase then involves 
using these known issues to design an enhanced ray 
tracing system and evaluate its projected performance. 
 This paper is divided into seven sections: Section 2 
presents the basics of ray tracing, Section 3 describes the 
multi-FPGA rapid prototyping system used, Section 4 
describes the prototype system, Section 5 describes 
performance results of this system, Section 6 examines the 
various trade offs involved in the design of the enhanced 
system, and Section 7 presents the performance of the 
enhanced system. 

2. Ray Tracing Basics 

 Conventional rasterized rendering is an object-centric 
algorithm.  That is, each object is processed in turn and 
rendered into the frame buffer.  A ray tracing algorithm 
uses a pixel-centric view of renderering by attempting to 
determine which object should be visible for a given pixel. 
 Figure 1 illustrates how this pixel-based algorithm 
works.  For each pixel of the projection plane P, a ray R is 
generated from the eye point through the pixel.  This ray 
is then intersected with the 3D scene to determine which 
object is visible to the viewer through that pixel.  Once the 
visible object is found, various models are used to 
determine the pixel's final colour.  This process is then 
repeated for every pixel in the scene and the image is 
rendered. 
 The core algorithm in ray tracing is the one that 
determines which object in the 3D scene is struck by a 
given ray.  For the purposes of this paper, scenes will be 
constrained to only those that consist of triangle objects.  
This allows for the use of the very simple intersection 
algorithm that is described in the following section. 



2.1. Ray-Triangle Intersection 

 There are a number of different algorithms that can 
calculate the intersection point between a ray and a 
triangle.  Of these they are three major variants: those that 
use the plane equation [8], those that use 6D Plücker 
space [9], and those that use barycentric coordinates [10].  
After evaluating the various algorithms it was found that 
the barycentric coordinate method was the most 
computationally efficient when implemented in hardware.
 The algorithm is as follows: 
 Given a parameterized ray (t)R
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coordinates can be used to determine if the two intersect.  
Barycentric coordinates provided a new coordinate space, 
(u, v), which includes the set of all points that lay in the 
plane of a given triangle.  Equation (2) shows the 
relationship between R3 and barycentric space. 

 It can be shown that a given point in barycentric space 
is contained within the triangle if, and only if, the 
conditions on (u, v), shown below, are met. 

By equating equations (1) and (2), as shown in equation 
(4), we can determine if there is an intersection between a 
given ray and a given triangle.  If the conditions shown in 
equation (3) are met, then the ray and triangle intersect.  

This equation can be further simplified through the use of 

Cramer's rule: 

 It is this equation, in combination with the simple test 
for intersection of equation (3), which will be 
implemented in hardware. 

2.2. A Hierarchical Data Structure for Reducing 
Algorithmic Complexity 

 The algorithm described in the previous section 
intersects a ray with only a single triangle. To render a 
scene it is necessary to intersect a ray with the entire scene 
of triangles, of which there are typically many tens of 
thousands.  The brute force approach is to test every 
object in the scene and find the nearest intersection.  This 
method results in a very simple algorithm with linear time 
complexity. 
 It is possible to reduce this complexity by 
hierarchically subdividing the set of objects based on their 
position in space.  This allows the culling of a large 
number of objects with a small number of simple tests. 
Figure 2 shows an example of one possible hierarchy. The 
large dashed boxes represent the first level of the 
hierarchy.  Through a simple test between the ray and the 
two boxes, it is easy to see that only the boxes contained 
within box B needs to be tested as box A is missed 
entirely.  This process can then recursively applied to find 
that only box C in the second level of hierarchy needs to 
be tested. In this example three quarters of the scene is 
eliminated with only 4 simple tests.  It is through this 
hierarchy that logarithmic complexity can be achieved. 
 The actual hierarchical structure implemented in the 
prototype system is a three level bounding hierarchy 
where the bounding objects can be defined with 6 
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Figure 1. A single ray from eye through screen to 
triangle in scene 
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Figure 2. A sample bounding box hierarchy 
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arbitrary quadrilaterals.  This structure was selected as it 
can be implemented by wrapping the existing ray triangle 
intersection hardware with control logic.  Other hierarchy 
options, such as BSP trees [11], or octrees [12], would 
require additional dedicated datapath logic.  

3. The Transmogrifier-3 Prototyping System 

 The hardware ray tracer described in this paper was 
developed using the Transmogrifier-3a [13] rapid 
prototyping system.  The Transmogrifier-3a system 
consists of two separate components, the hardware system 
and a software tool flow. 
 The hardware system contains four Xilinx Virtex 
2000E FPGAs, each attached to two megabytes of 
external SRAM.  These FPGAs are connected to a host 
computer through a custom PCI interface that allows for 
both device programming and interaction with the circuit 
being tested.  The FPGAs are also connected to each other 
to allow inter-chip communication. 
 The software tool flow used to implement our system 
consists of Synplicity's Synplify Pro synthesizer and 
Xilinx's standard place and route tool.  The automated 
pipelining and register balancing functions of Synplify Pro 
were used to increase performance without time-
consuming hand optimizations. 
 The Transmogrifier-3 system has been used to 
successfully implement both Stereo Vision [14] and 
Genome processing applications [15]. 

4. Prototype Ray Tracing System 

 Figure 3 illustrates the top-level of the ray tracing 
processor.  The system is composed of two separate 
components, each implemented on different FPGAs in the 
Transmogrifier-3a.  FPGA 0 contains the ray triangle 
intersection unit, which implements Möller's barycentric 
algorithm as described in Section 2.1, and FPGA 1 
contains the control logic for implementing the bounding 
box hierarchy algorithm discussed in Section 2.2. 
 The following sections describe the data representation 
used to describe a 3D scene, the functionality of the ray 
triangle intersection unit, and the functionality of the 
bounding hierarchy controller. 

4.1. Data Representation 

 Software ray tracers typically use floating-point 
calculations, but in hardware floating point arithmetic is 
tremendously expensive in area.  Instead, we use a fixed-
point number representation that maintains sufficient 
intermediate precision in all calculations.  
 The selection of the fixed-point data widths was guided 
by various hardware constraints.  The memory on the 

Transmogrifier-3a runs at a maximum clock speed of 
50MHz,and so the ray tracing processor is synchronized 
to this speed. Our experience with the Xilinx Virtex E 
suggests that only arithmetic operations that have results 
of 64bits or less can complete in one clock cycle. 
 By using this constraint and working backwards 
through Möller's algorithm it can be found that a working 
3D space of 28bits can be used, provided that a limit is 
applied to the maximum triangle size.  A triangle can be 
defined by a 28bit origin and 16bits describing the 
position of the other two vertices relative to the 28bit 
origin.  This allows for the triangle to be placed anywhere 
in 3D space but to have a limited maximum size.  In real 
scenes this restriction could cause problems as often a 
scene contains objects that are of vastly different scales, 
such as a piece of popcorn in the middle of a stadium. 
 To address the problem of objects that are of vastly 
different scales two additional bits can be added to 
optionally scale the relative offsets.  Effectively these two 
bits allow the edge’s granularity to be scaled by 1, 16, 
256, or 4096, which result in the maximum edge being 
able to span the entire 28 bit space.  Conveniently, this 
pseudo-floating point representation can be implemented 
using only a shift to the right of the resulting (u,v) 
coordinates of Möller's algorithm. 

4.2. Hardware Ray-Triangle Intersection Unit 

 The function of the ray triangle intersection unit is to 
receive a list of both triangle identifiers (which are 
memory pointers to the triangle vertices) and rays, and 
then to return the identifier of the first triangle that is 
intersected by each ray.  This unit is capable of reading 
one triangle every three cycles and intersecting it with 
three different rays. 
 The ray-triangle intersection unit is composed of three 
major components: the memory controller, the ray-triangle 
intersection datapath, and the nearest comparison unit.  

External SRAM
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Figure 3. Architecture of ray tracing processor 



The memory controller reads the requested triangle data 
from memory, the datapath intersects the triangle with a 
given ray, and the nearest comparison unit compares the 
different intersection results to determine which is closest.   

4.2.1. Ray-Triangle Intersection Datapath 

The ray-triangle intersection datapath is responsible for 
receiving a list of triangles from the memory controller, 
and intersecting each with three different rays.  The results 
of these intersections are then passed on to the nearest 
comparison unit for later tabulation.  The ratio of 
comparing 3 rays per triangle was necessary to match the 
memory speed to the computation speed:  the memory 
controller requires three clock cycles to read a triangle, 
where as the datapath can perform an intersection test 
every cycle. By intersecting three rays with every triangle 
we hide this memory access time.  
 The datapath utilizes the maximum amount of 
algorithmic parallelism and is completely unwrapped to 
maximize throughput. For example, the cross product 
units (describe in Section 2.1, equation 5) each contain 6 
multipliers and 3 adders running in parallel. In total, the 
pipeline requires 7 cycles to determine if a ray strikes a 
triangle and another 31 cycles to perform the division 
necessary to find the actual intersection point.  The 
division units do not necessarily need to be contained in 
the pipeline as they are only required once an intersected 
triangle is found.  In a system with multiple pipelines 
these units could be shared to save area. 
 The initial 7 pipeline stages use approximately 20,000 
4 input look-up tables, or LUTs, to implement, and the 
divisions an additional 8,000 LUTs.  In addition to this 
over 11,000 flip-flops are also required.  The entire 
pipeline runs at 50Mhz on the Xilinx Virtex 2000E. 

4.2.2. Nearest Comparison Unit 

 The ultimate goal of the ray triangle intersection unit is 
to return the nearest triangle that is intersected by a given 
ray, is the location of the intersection point, and is the 
distance from the eye to the intersection point. The nearest 
comparison unit tabulates the individual results from the 
datapath and determines the intersected triangle that is 
closest to the “eye” , as this is the one that will be “seen” .  
Figure 4 illustrates this circuit. 
 The unit contains registers with the triangle ID and 
distance of the nearest intersection point currently found.  
Each new intersection point is compared against this 
registered version and if the new intersection point is 
found to be closer it is stored and used for future 
comparisons. 
 The nearest comparison unit requires 35 LUTs and 88 
flip-flops. 

4.3. Bounding Hierarchy Unit 

 The ray triangle intersection unit provides the 
fundamental function of a ray tracer but lacks the 
intelligence to implement the more complicated bounding 
box hierarchy acceleration method.  This advanced 
functionality is implemented on a second Virtex 2000E 
FPGA using the three types of different units shown in 
Figure 4.   
 The controller unit is responsible for coordinating the 
different units that comprise the ray tracing processor.  It 
queries the list handler units to determine which node of 
the hierarchy should be traversed next and sends the 
proper triangles to the intersection unit to accomplish this.  
The results of the node traversals are then accumulated by 
the bounding node sorter and passed to the list handler.  
The list handler can then use this new data to inform the 
controller units which node to traverse next, and the 
process continues. Each of these three units is described in 
the following three sections. 

4.3.1. Controller Unit 

 The controller unit is a complex state machine that is 
responsible for interfacing with the host computer, and for 
coordinating all the different units in the ray tracing 
processor.  The unit accepts external request to intersect 
groups of three rays against the scene currently stored in 
memory, and returns the nearest triangle that each ray 
intersects. 
 Figure 5 is a simplified state model of the controller's 
function.  The first step is to process the root node of the 
tree and store the result within the list handler unit.  Once 
the node has been processed, the list handler provides an 
output indicating which node should be traversed next.  
The next step is to iteratively query the list handler and 
traverse the nodes suggested.  Upon reaching a leaf node, 

Tri ID Distance

New Tri ID New Distance

Nearest Tri ID Nearest  Dis tance  

Figure 4.  Nearest comparison unit 



the controller accesses a table to determine which object 
triangles should be tested.  If the ray strikes an object 
within the leaf node then the process is complete.  
Otherwise the controller traverses back up the tree by 
querying the list handler once more.  When the list 
handler is exhausted, the traversal is complete and the rays 
are found to not strike any objects. 
 The control logic requires 360 4 input lookup tables 
and 367 flip-flops to implement. 

4.3.2. List Handler Unit 

 The list handler unit contains the logic and state 
storage necessary to perform a nearest to furthest tree 
traversal.  It takes the results of each node traversal as 
input and outputs which node in the tree should be 
traversed next.  The list handler implements this 
functionality through the use of three queues. 
 Each of the three queues represents a different level in 
the tree.  The first queue will contain a sorted list of the 
intersected children of the root node.  The second queue is 
a list of intersected children from nodes in the first queue, 
and third queue a list of intersected children from the 
second queue. 
 Figure 6 shows a typical traversal operation.  First the 
root node is traversed and the result stored in the first 
queue, (a).  Next the nearest intersected node's children 
are tested, in this case node 2, and the results written to 
the second queue, (b).  The process is repeated using the 
nearest intersected node stored in queue two and the result 
written to queue three, (c).  At this point the traversal has 
reached a leaf node, A.  The leaf node A is tested but 
found not to intersect the ray, (d).  Since the leaf node 
queue, queue three, is empty the next node is queue two is 
traversed, in this case node 8.  Its intersected children are 
then written to the third queue and the process can 
continue until an intersected object is found or all three 

queues become empty. 
 It is clear from this algorithm that the list handler 
cannot choose which node to traverse, until the results 
from the previous traversal have been calculated.  Since 
the ray triangle pipeline is so deep the time necessary to 
flush the results is very large.  To compensate for this 
problem two list handlers and two control units are 
instantiated so that they can both share the pipeline.  
These two sets of control logic process independent sets 
of rays but share the same pipeline.  When one unit is 
waiting for its results to flush it passes its ownership token 
to the other control unit so that it can use the data path.  
This sharing method can completely eliminate pipeline 
bubbles and make the most efficient use of the datapath. 

4.3.3. Bound Object Depth Sorter 

 To perform a proper nearest to furthest tree traversal it 
is necessary to have access to a sorted list of intersected 
child nodes.  The process of sorting the traversal results is 
the job of the bound object depth sorter.  This unit takes 
as input the individual intersect test results for each child 
node and accumulates them in a sorted list.  This list is 
then transferred to the list handler for later traversal. 
 The actual implementation of the sorting algorithm is 
very simple. Each time a new intersect point is found, it is 
inserted to the sorted list at its correct point.  
Simultaneously, the displaced nodes are shifted down.  
This algorithm allows for a one-cycle insertion sort with 
minimal implementation complexity. 
 The bounding object depth-sorting unit takes 1159 4 
input lookup tables and 617 flip-flops. 
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Figure 5. Simplified controller state machine 
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5. Prototype Results 

 In order to evaluate the performance of the ray tracing 
processor it was necessary to create a simple test jig that 
could interface with the ray tracer.  A simple circuit was 
created on one of the four FPGAs chips to generate the 
necessary eye rays and store the results for later retrieval 
and analysis.  This chip also contained a cycle accurate 
counter to accurately measure performance. 
 For comparison, the same scenes were rendered on 
2GHz Pentium 4 computer using POVray 3.1 [16] with no 
textures, and the lowest quality setting.  This is a freely 
available ray tracer that is generally accepted to be the 
best, non-commercial, ray tracer available.   

5.1. Test Scenes 

 To test the performance of the ray tracing processor a 
number of different test scenes were used.  Figure 7 shows 
one frame of a landscape animation.  This test scene 
contained over 50,000 triangles in a well-structured 
bounding hierarchy. 
 Figure 8 is another high triangle count test image, with 
30,848 triangles.  The difference between this test set and 
the landscape is that the random placement of raindrops 
results in a bounding hierarchy that that does not tightly fit 
the scene. 
 Figure 9 is a low triangle count image, with 2048 
triangles, and a tight bounding hierarchy.  This test set 
was designed to test performance on simpler scenes. 
 Also included in the results, but not shown in the 
figures below, are a 3D model of the prototyping 
development system, and an additional fractal landscape. 

5.2. Test Results 

 Table 1 summarizes the performance results of the 
prototype system compared against the POVray 3.1 ray 
tracer [16]. The two landscape test sets show that the 
prototype is easily able to out perform software by a factor 
of 20.  This is expected as the prototype system can access 
memory much faster then a typical desktop computer.  
 The rainstorm test set yields a different result.  The 
scattered raindrops, combined with their small size, results 
in a bounding hierarchy that is a very loose fit.  This 
means that the probability of a ray that strikes the 
bounding volume actually striking a raindrop is very slim.  
This leads to a large number of leaf nodes being tested 
only to discover that the ray passes straight through.  The 
software ray tracer does not suffer from this problem, as it 
can be more adaptive to these degenerative cases.  Instead 
of a fixed hierarchical structure the software approach can 
use a flat hierarchy of very tight bounding boxes and 
perform quite well. 
 The remaining two test sets, the shaded sphere and the 
TM3 model, are both low polygon count models with 
relatively tight bounding structures.  In these cases the 
hardware prototype outperforms the software by a more 
modest margin of a factor of 2.  This results from the 

 

Figure 7. Landscape test image 

 

Figure 8. Rainstorm test image 

 

Figure 9. Shaded sphere test image 

Table 1. Prototype ray tracer performance 

 Triangles P4 2GHz 
Render Time 

Prototype 
Render Time 

Performance 
Increase 

Landscape A 51200 6.93s 0.29s 23x 
Landscape B 51200 7.03s 0.40s 17.5x 
Rain Storm 30848 0.29s 0.81s 0.35x 
Shaded Sphere 2048 0.48s 0.17s 2.8x 
TM3 Model 1304 0.20s 0.13s 1.5x 

 



hardware overhead required for each ray no longer being 
masked by scene complexity as it is with the larger test 
sets. 
 For typical large 3D scenes, the hardware ray tracer 
can achieve significant speedup.  

6. Projected Enhanced System Performance 

 The results presented in the previous section are 
promising.  They show that the simple prototype system 
that is heavily memory bandwidth-limited can out-perform 
a state of the art CPU-based system.  This section will 
present a new architecture, based on the prototype system, 
which is capable of significantly faster performance. 
 The performance of an FPGA-based ray tracer 
implemented on a custom development board is 
dependent on a number of design choices.  These choices 
include: clock speed, FPGA architecture, and memory 
architecture. 

6.1. Clock Speed and FPGA Architecture 

 The simplest method to increase the performance of a 
system is to increase the clock rate.  In the case of the 
prototype system the maximum clock rate was limited by 
memory speed.  In the enhanced system this is not an issue 
as more advanced memory can avoid this problem, as 
discussed below. 
 It is also possible to increase speed by adjusting the 
pipeline depth through the use of automatic pipeline 
balancing tools.  Several trial compilations suggest that a 
speed of 60MHz could be achieved using this method 

when targeting a Virtex E series FPGA. 
 To produce even further speed gains it is necessary to 
switch to a newer FPGA generation with devices with 
improved architectures and more advanced IC processes.  
The Virtex II and Virtex II Pro FPGAs [17] include 
dedicated high-speed multipliers that can be exploited by 
the ray tracing processor.  A single cross product from the 
datapath can be synthesized to run at over 133Mhz, so it is 
possible that through fine-tuning the entire datapath could 
be designed to run at this speed.  A safe speed estimate for 
the datapath would be 100MHz as a synthesis run we 
performed on the existing datapath to a Virtex II Pro 
target was able to reach this rate. 
 An extra bonus of using these dedicated multipliers is a 
decrease in the number of LUTs required.  Instead of 
utilizing 20,000 LUTs, as in the Virtex E FPGA, the 
Virtex II allows for an implementation using only 3000 
LUTs and 54 dedicated multipliers.  This decrease in 
device utilization will allow for several datapaths to be 
placed within the same chip.  The number of which is 
ultimately limited by the availability of dedicated 
multipliers.  Using a mid-sized Virtex II Pro chip it is 
possible to place 4-6 datapaths with ample LUTs 
remaining for controlling logic. 

6.2. Memory Architecture 

 To utilize a large number of parallel data paths it is 
necessary to have a memory system that is capable of 
providing data fast enough to keep the datapaths busy.  
Since each of the datapaths can consume 184 bits each 
cycle, equivalent to 2.3GB/s, six independent data paths 
would require a total of 14GB/s. To avoid this problem a 
solution similar to that used in the prototype can be 
implemented. The prototype compared three rays against 
each triangle to mask the three cycle read time.  The same 
will be done in the enhanced architecture with one minor 
difference.  Instead of processing three rays sequentially 
through one datapath, three datapaths will each process 
their own rays.  This will reduce the total required 
memory bandwidth to only 4.6GB/s. 
 The easiest way to achieve the required bandwidth is 
through two independent memory banks.  Each bank 
would be 96 bits wide and run at 100MHz and employ the 
double data rate (DDR) approach.  This would result in 

100MHz DDR SDRAM (x2)

96 Data Bits (x2)

Control Logic (x3) Control Logic (x3)

Datapaths (x3) Datapaths (x3)

 

Figure 10. Enhanced System Diagram 

Table 2. Projected enhanced system performance 

 Triangles P4 2GHz 
Render Time 

Prototype 
Render Time 

Performance 
Increase 

Landscape A 51200 6.93s 24ms 288x 
Landscape B 51200 7.03s 33ms 213x 
Rain Storm 30848 0.29s 68ms 4x 
Shaded Sphere 2048 0.48s 14ms 34x 
TM3 Model 1304 0.20s 11ms 18x 

 



each set of three datapaths having access to one new 
triangle every cycle. 
 Figure 10 shows the complete enhanced system, 
including two independent sets of three datapath units 
each fed with a 2.3GB/s memory stream.  The bounding 
hierarchy functionality is implemented through the use of 
duplicated sets of control logic, and the entire system 
should run at 100MHz when implemented on a Xilinx 
XC2VP70. 

7. Projected Performance 

 The enhanced system presented in the previous section 
implements the exact algorithms that the prototype system 
does but with twice the clock speed and six parallel 
datapaths.  This results in an increase of performance by a 
factor of twelve.  Table 2 shows the projected 
performance of the enhanced system on the sample set of 
test images. 
 For a large, and well bounded, scene the enhanced 
system out performs software by over two orders of 
magnitude.  For smaller scenes the performance increase 
is lower at only one order of magnitude, and for the 
degenerate case of a poorly bounded scene the 
performance is only marginally better. 
 The enhanced architecture also performs well when 
compared against the current state-of-the-art in hardware 
ray tracing the AR350 [3].  The Advanced Rendering 
Technologies product information page for their PURE 
PCI 3D rendering card states that 8 AR350 processors 
have a peak ray triangle intersection rate of 1.1 billion per 
second.  This leads to an individual processor rate of 
137.5 million intersection tests per second.  Our enhanced 
architecture is capable of 600 million intersection tests per 
second from a single FPGA, an increase of over four 
hundred percent. 

8. Conclusions 

We have implemented a prototype ray tracing system that 
outperformed a 2GHz Pentium 4 computer by an order of 
magnitude due to its effective use of memory bandwidth.  
We project that a larger scale version implemented with 
newer FPGAs and modern memory could achieve a 
performance increase of over two orders of magnitudes 
against software, and a potential increase of four times 
against an existing hardware implementation.   
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