
Chortle: A Technology Mapping Program
for Lookup Table-Based

Field Programmable Gate Arrays

Robert J. Francis, Jonathan Rose, Kevin Chung

Department of Electrical Engineering, University of Toronto, Ontario, Canada

Abstract
Field Programmable Gate Arrays are new devices that
combine the versatility of a Gate Array with the user-
programmability of a PAL. This paper describes an al-
gorithm for technology mapping of combinational logic
into Field Programmable Gate Arrays that use lookup
table memories to realize combinational functions. It
is difficult to map into lookup tables using previous
techniques because a single lookup table can perform
a large number of logic functions, and prior approaches
require each function to be instantiated separately in a
library. The new algorithm, implemented in a program
called Chortle uses the fact that a K-input lookup table
can implement any boolean function of K-inputs, and
so does not require a library-based approach. Chortle
takes advantage of this complete functionality to eval-
uate all possible decompositions of the input boolean
network nodes. It can determine the optimal (in area)
mapping for fanout-free trees of combinational logic. In
comparisons with the MIS I1 technology mapper, on
MCNC-89 Logic Synthesis benchmarks Chortle achieves
superior results in significantly less time.

1 Introduction
The Field Programmable Gate Array (FPGA) is a new
approach to ASIC design that can dramatically re-
duce manufacturing turn around time and cost [Hsie88,
ElGa89, Wong89, Ples89, Marr89, Bakego]. An FPGA
consists of a regular array of programmable logic blocks
that can be interconnected by a programmable routing
network. The programmable nature of these devices re-
quires new CAD algorithms to make effective use of the
logic and routing resources.

This paper addresses the problem of technology map-
ping for FPGAs where the logic block implements com-
binational logic using lookup tables. A K-input lookup
table is a digital memory containine 2K bits of informa-

'This work was supported by NSERC Operating Grant
#URF0043298, a research grant from Bell-Northern Research and
a research grant from ITRC.

tion that produces a single output boolean logic func-
tion of K or fewer input variables.

The motivation to study technology mapping for
lookup table-based FPGAs is two-fold: First, the orig-
inal FPGA [Hsie88] uses lookup tables and recent
work [Rose891 suggests that lookup tables are an area-
efficient choice for logic blocks. Secondly, conven-
tional technology mapping algorithms [Keut87, Detj87,
Lisa881 are unsuitable for mapping lookup tables be-
cause a separate library element is required to represent
each of the logic functions that can be implemented by a
K-input lookup table. A library containing the required
22K elements is beyond the capability of previous tech-
niques even for K=4.

We present a new algorithm, implemented in the
Chortle program that avoids the library size problem
by using the ability of a K-input lookup table to im-
plement any sub-graph with K-inputs. Chortle divides
the input boolean network into a forest of trees, and
can efficiently determine the optimal mapping of each
tree. A major feature of Chortle is that it considers all
possible decompositions of every node in the network.

The Chortle program is compared to the MIS 11 tech-
nology mapper [Detj87] on several of the MCNC-89
logic synthesis benchmarks, for lookup tables with 2,3,4
and 5 inputs. For the smallest lookup table (K=2) the
results are almost identical. For the larger lookup ta-
bles (K=4,5) the Chortle produces mappings with 4%
to 28% fewer lookup tables than MIS 11, typically in
significantly less time.

The dynamic programming traversal of the tree used
in the Chortle algorithm is similar to that presented in
DAGON [Keut87] and MIS [Detj87]. A related work
dealing with blocks that can implement more than one
boolean function is the mapping for standard cell gen-
erators described in [Berk88]. Technology mapping of
K-input lookup tables is different from the latter be-
cause a lookup table can perform any function of K
inputs rather than a restricted class of functions such
as And-Or-Inverts.

This paper is organized as follows. In Section 2 we
define our technology mapping problem. In Section 3

27th ACMllEEE Design Automation Conference@

1990 IEEE 0738-1 OOX/90/0006/0613 $1 .OO
Paper 37.3

61 3

Authorized licensed use limited to: The University of Toronto. Downloaded on July 20,2021 at 01:01:16 UTC from IEEE Xplore. Restrictions apply.

the new algorithm is described. Section 4 compares
Chortle to the MIS I1 technology mapper [Detj87] and
describes how the library used by MIS is created.

2 Problem Definition
We assume that logic synthesis is divided into two steps:
logic optimization and technology mapping. The input
and output of the logic optimization step is a boolean
network which represents a multi-input multi-output
boolean function.

We use a directed acyclic graph (DAG) representation
of a boolean network similar to that given in [Keut87].
Figure 1 illustrates such a representation of a boolean
network. The boolean inputs of a network are repre-
sented by the input nodes of the graph, nodes a, b , c, d
and e in Figure 1. We define an input node of a graph
to be a node with no fanin nodes. A node nj is a fanin
node of n if there is a directed edge from the node n j
to the node n.

Figure 1: A Boolean Network

The boolean function represented by a non-input
node is either the boolean operation AND or OR ap-
plied over the fanin boolean variables. Edges and nodes
of the graph are labelled to indicate the polarity (in-
verted or non-inverted) of signals and to specify which
nodes represent the output nodes of the boolean net-
work.

Technology mapping for lookup table-based FPGAs
takes an optimized network and produces a circuit of K-
input lookup tables that implements the network. For
all lookup tables in the circuit K is the same integer.
The Chortle program minimizes a cost function consist-
ing of the number of lookup tables, which is a measure
of area.

A circuit of K-input lookup tables is represented by
a cover of sub-DAGS on a DAG representing a boolean
network satisfying the following conditions:

Each sub-DAG in the cover must have only a single
output node and K or fewer input nodes.

a Every edge in the network DAG must appear in
one and only one sub-DAG in the cover.

The cover is a valid implementation of a network if for
every output node in the network there is a correspond-

ing output node of a sub-DAG in the cover that has the
same boolean function.

We assume that the boolean network to be mapped
has already gone through logic optimization. To retain
the optimized network structure we impose the addi-
tional restriction that for every node in the network
there must be at least one node in the set of sub-DAGS
that has the same boolean function. Note that this re-
striction does not prohibit the duplication and decom-
position of nodes.

Figure 2 illustrates a circuit of 3-input lookup tables
that implements the boolean network specified in Figure
1. To simplify subsequent figures we will omit the edge
and node labelling.

z Y

Figure 2: A 3-input Mapping

3 The Chortle Algorithm
The purpose of the algorithm is to find the minimum
cost circuit of K-input lookup tables that implements
an arbitrary boolean network represented by a graph
G. The algorithm begins by converting the graph G
into a forest of maximal fanout-free trees. Each of these
trees is then mapped to find the minimum cost circuit
that implements the tree. A circuit implementing the
entire graph G is formed by combining the circuits that
implement each tree in the forest.

Figure 3b illustrates how a forest of trees is created
from the graph in Figure 3a. If a node n in the graph
has out-degree greater than one then any edge, for ex-
ample (n, a) in Figure 3a, originating from the node n
is replaced by an edge, (rial a), originating from a new
additional node. The new node node, nor is defined to
have the same boolean function as the node n.

The following section shows how we find the optimal
solution to the tree mapping problem.

3.1 Mapping a Tree
The heart of the tree mapping algorithm is a dynamic
programming traversal of the tree which is outlined as
pseudo code in Figure 4.

Starting with a given tree and a value for K the al-
gorithm produces a minimum cost circuit of K-input
lookup tables that implements the tree. The following
are definitions of terms used in the pseudo code.

Paper 37.3
61 4

Authorized licensed use limited to: The University of Toronto. Downloaded on July 20,2021 at 01:01:16 UTC from IEEE Xplore. Restrictions apply.

v

Procedure MapTree(T, K) {

For each node n in the tree T
proceeding from the leaf nodes to the root node
by postorder traversal {

For utilization U = 2 to K

CurrentBestCost = 00

CurrentBestHap = 0

For all utilization divisions, U of U {
/* using dynamic programming */

Construct a mapping M
from the minimum cost mappings of
the f anin nodes computed previously.

/* M is the minimum cost mapping of
/* where the root lookup table of M
/* has utilization division U

Calculate cost(M)
Figure 3: Creating a Forest of Trees

Definition 1 A mapping of node n , in a tree T , is a
circuit of K-input lookup tables that implements the
sub-tree of T that is rooted at n and extends to the leaf
nodes of T .

Definition 2 The root lookup table of a mapping of
the node n has as its single output the boolean function
of the node n .

Definition 3 The utilization of a lookup table is the
number of inputs, U, out of the K inputs that are ac-
tually used in a circuit.

The utilization division of a lookup table is defined in
section 3.1.1.

In general, dynamic programming computes and
records the solution to all sub-problems proceeding from
the smallest to the largest sub-problem. Recording the
solution to each sub-problem eliminates the need to re-
calculate it as part of the solution of any larger sub-
problem. The sub-problem solved by Chortle is the
computation of the minimum cost mapping of a node
n , in a tree, where the root lookup table of the map-
ping has a given utilization U . The solution to this
subproblem is denoted as minMap(n, U) .

In the following section we show that for any node n
with fanin nodes n l . . . n I if we have previously calcu-
lated minMap(ni, Vi), for all Ui from 2 to K , for every
node ni then we can calculate minMap(n,U) for any
value of U from 2 to K .

The entire tree is traversed in postorder starting from
the leaf nodes and proceeding to the root node calcu-
lating minMap(n,U), for all U from 2 to K , at every

if cost(M) < CurrentBestCost {
CurrentBestCost = cost(M)
CurrentBestHap = M
1

} /* next Utilization Division. U*/

minMap(n, U) = CurrentBeetHap
] /* next Utilization, U */

} /* nest Node. n */

Best Happing of the tree T is minMap(nrWt,K)
1

Figure 4: Pseudo Code

n */
*/
*/

node n in the tree. At the input (leaf) nodes of the tree
we define the cost of minMap(n,,,f, U) to be 0. It can
be shown for any node n that:

cost(minMap(n, U)) 2 cost(minMap(n, K)) ,VU 5 K

Therefore by calculating minMap(nroo~, I() for the root
node of the tree we have found the circuit with the
fewest K-input lookup tables that implements the entire
tree.

3.1.1 Calculating minMap(n, U)

For simplicity of description assume that the root
lookup table of a mapping of a node n includes all the
fanin edges of n . This implies that the fanin of n is
less than or equal to K and that the node n is not de-
composed. Section 3. l .3 considers the decomposition
problem.

Paper 37.3
61 5

Authorized licensed use limited to: The University of Toronto. Downloaded on July 20,2021 at 01:01:16 UTC from IEEE Xplore. Restrictions apply.

:vi -.*- / 1-

Figure 5: Utilization Divisions

If the node n has fanin nodes n1 . . . nj then the root
lookup table of a mapping of n includes all the fanin
edges of n and some sub-tree S; rooted at each fanin
node n;.

We introduce the term utilization division to denote
the distribution of the inputs to the root lookup table
among these sub-trees. If U; is the number of leaf nodes
h the sub-tree S; then the set U = { U I . . . u j } specifies
the utilization division of the root lookup table because
these leaf nodes correspond to the inputs to the root
lookup table. Figure 5a illustrates a mapping using 4-
input lookup tables where the root lookup table has
utilization division U = { 1 ,3} .

There may be many different mappings of a node that
have the same utilization division of the root lookup
table. Figure 5b illustrates a second mapping where
the root lookup table has the same utilization division
U = { 1 , 3 } .

There are many possible utilization divisions of the
root lookup table of a mapping of a node. To find
minMap(n, U) for a given node n and utilization U we
exhaustively search all possible utilization divisions U
where C u i = U . For each U we construct the mini-
mum cost mapping of n where the utilization division
of the root lookup table is specified by U. One of these
mappings will be minMap(n, U) . The following section
describes how we construct these mappings.

3.1.2 Constructing A Mapping

The key to the dynamic programming approach is the
construction of the minimum cost mapping of a node
n where the root lookup table has a given utiliza-
tion division U = {u1 . . .ut} . The desired mapping
is constructed by combining a constructed root lookup
table with the mappings minMap(ni, ui) which have
been previously computed for all fanin nodes n;. For
those fanin nodes, ni, where U ; = 1 the mapping

minMap(n;, I<) must be used instead of minMap(n;, 1).
The constructed root lookup table includes all the

fanin edges of n as well as a sub-tree Si rooted at each
fanin node n;. For a fanin node ni where U; # 1 the
sub-tree S; is the root sub-DAG of minMap(n;,u;). If
U ; = 1 then the sub-tree Si is simply the node n;.

The root lookup table of the mapping minMap(n;, U;)

is eliminated from the constructed mapping if ui # 1 be-
cause it is contained within the constructed root lookup
table.

Figure 6 illustrates the construction of the mini-
mum cost mapping of a node n with utilization division
U = { 1 ,3} using 4-input lookup tables. The mappings
selected for the fanin nodes a and b , minMap(a,4) and
minMap(b, 3) , are shown in figure 6a. Figure 6b shows
the constructed root lookup table which contains the
root lookup table of minMap(b, 3). The final mapping
where the root lookup table of minMap(b,3) has been
eliminated is shown in Figure 6c.

It is possible to prove that no other mapping of the
node n where the root lookup table of the mapping has
the utilization division specified by U can have fewer
lookup tables than the mapping constructed by the
above procedure [Fran 911.

3.1.3 Decomposition

So far we have assumed that there are no decomposi-
tions of nodes in our mapping of a tree. However, if
the fanin of a node is greater than K then the node
must be decomposed. By considering all possible de-
compositions of every node in the tree we may also be
able to reduce the number of lookup tables required to
implement the tree.

When a node n is decomposed intermediate nodes
are introduced. Each intermediate node implements the
boolean operation of n over some subset of the fanin
nodes of n. The edges from this subset of fanin nodes

Paper 37.3
61 6

Authorized licensed use limited to: The University of Toronto. Downloaded on July 20,2021 at 01:01:16 UTC from IEEE Xplore. Restrictions apply.

Figure 6: Construction of a Mapping

to the node n are replaced by a single edge from the
intermediate node to the node n. Figure 7b illustrates
a mapping of the network in Figure 7a where a node
has been decomposed.

A two-level decomposition of a node can be rep-
resented by a set of groups 'D = { d l . . . d g } . Each
group di specifies either a single fanin node or a sub-

Figure 7: Decomposition of a Node

set of fanin nodes covered by an intermediate node nd, .
The minimum cost mapping of this decomposition is
found by exhaustively searching all utilization divisions
U = {ul . . . u g } and for each U constructing a mini-
mum cost mapping of the decomposition where the root
lookup table has utilization division U. Since an inter-
mediate node provides a single input to the root lookup
table we add the requirement that U; = 1 if the group
d; specifies an intermediate node.

To proceed with the above search we require
mhhfCIp(nd,, K) for every possible intermediate node
nd,. We find minMup(nd,, K) by using an exhaustive
search of utilization division of nd,.

It is also possible to have multi-level decompositions
where an intermediate node nd, is itself decomposed.
In this case we need to know mznMap(nd,,K) for all
intermediate nodes nd, that cover a subset of the fanin
nodes of nd, .

If we consider all possible intermediate nodes nd, in
a sequence such that the number of fanin nodes covered
by nd, increases from 2 to f then we can ensure that all
minMup(nd,, K) required to find any minMup(nd,, I<)
have been previously calculated.

3.1.4 Node Splitting

As the fanin of a node increases the number of possi-
ble decompositions grows exponentially. However, the
speed of our utilization division search and mapping
construction makes it practical for us to consider all
possible decompositions of a node as long as the fanin
of the node is bounded by ten. For a node with fanin
greater than ten the number of decompositions to be
searched becomes impractically large. To reduce the
execution time of Chortle we initially decompose such

Paper 37.3
61 7

Authorized licensed use limited to: The University of Toronto. Downloaded on July 20,2021 at 01:01:16 UTC from IEEE Xplore. Restrictions apply.

large fanin node into two nodes with roughly equal fanin
and then decompose each node separately.

This greatly reduces the number decompositions that
need to be searched, but we can no longer guarantee
finding the optimal decomposition. However, experi-
mental results show that the mapping of a split node
uses no more lookup tables than the mapping of the
non-split nodes and are found in much less time. We
believe the number of lookup tables is the same because
for large fanin nodes there are many different minimum
cost decompositions. As long as the chosen split does
not preclude all of these decompositions Chortle will
find one of the minimum cost decompositions.

4 Results
In this section the mapping quality and execution time
of Chortle are compared with those of the MIS I1 tech-
nology mapping program [Detj87]. MIS I1 requires a li-
brary that represents every possible logic function that
can be mapped. As discussed previously, a 4-input
lookup table requires an impractically large library. The
next section describes how we select a subset of all the
possible functions to be represented in the library, for K
greater than 3. The subsequent section gives the com-
parison.

4.1 Creating the MIS Library
The MIS library needs to contain only a single instance
of all boolean functions that are permutations of each
other. This reduces the number of elements required
in the library to represent a K-input lookup table. For
K=2 there are only 10 unique functions out of a possible
16, and for K=3 there are 78 unique functions out of
a possible 256. We are therefore able to use complete
libraries for K= 2 and 3. For K=4, there are a total of
9014 unique functions (out of a possible 65536), which
is too large to represent in a MIS library.

The K=4 library was chosen by inspection of the li-
brary elements used by the K=3 results, and from a
knowledge of the output of MIS. The logic optimiza-
tion step in MIS finds a factored form for the network
that minimizes the literal count. Such a network con-
tains only level-0 kernels in the leaf nodes [Berg88]. The
K=4 library thus includes the set of all level-0 kernels
with four or fewer literals and their duals. This choice is
supported by the observation that the MIS mapper used
mostly level-0 kernels when mapping from the complete
K=3 library. In addition, all level-n (n > 0) kernels that
cannot be synthesized by level-0 kernels were included.
A library constructed in this way includes all common
circuit elements such as ANDs, AOIs and XORs.

We also greatly increase the effective coverage of the
library because in the comparison below, we do not
count the inverters used by MIS as logic blocks. This is

because a simple post-processor could easily merge all
inverters into the lookup tables. In doing this we give
MIS credit for ability that it is not due - in several cases
for K=3 (with the complete library), MIS was unable
to select the correct version of a library cell with com-
plemented inputs and had to use unnecessary inverters.
The K=5 library is generated in a similar manner.

4.2 Experimental Results
To compare Chortle to MIS I1 we mapped several cir-
cuits from the MCNC-89 logic synthesis benchmarks for
values of K from 2 to 5 . The input networks for both
mappers were optimized by the standard MIS I1 script.
The results of these experiments are summarized in t a
bles 1 to 4. Each table gives the benchmark name, the
number of lookup tables mapped by the two programs,
the % difference and the execution times on a SUN 3/60.

For K=2 the number of lookup tables in the Chor-
tle and MIS mappings are nearly identical. This is ex-
pected because MIS is using a complete library and for
K=2 all nodes will have to be completely decomposed
into binary trees. Therefore the choice of decomposi-
tion does not matter. The four cases in which MIS
achieves fewer lookup tables occur because the input
network contains reconvergent fanout, such as XOR,
which Chortle cannot find.

For K=3 the Chortle results average 6% better than
the MIS results. Once again MIS is using a complete
library so we would expect identical results. However
with K=3 there is now the opportunity for the choice of
decompositions to make a difference. Also the greedy
algorithm used by MIS [Detj87] to deal with nodes
with fanout greater than one tends to duplicate logic
a t fanout nodes. We have found that it is difficult to
realize any savings by this greedy approach.

For K=4 the Chortle results average 9% better than
the MIS results. In this case MIS is using an incomplete
library and it is expected that its results would be worse.

For K=5 the Chortle results average 14% better than
the MIS results. The lower coverage of the incomplete
library for K=5 results in this increased difference.

The execution speed of Chortle ranges from a factor
of 1 to 10 times faster than MIS 11.

5 Conclusions
This paper describes an algorithm that effectively and
efficiently performs technology mapping of boolean net-
work into circuits of K-input lookup tables.

The encapsulation of mappings of nodes provided by
the concepts of utilization and utilization division allows
Chortle to reduce the search space thereby speeding the
search for a minimum cost mapping. This fast search
makes it practical for us to find the best decomposi-
tions of nodes as long as the fanin of the node is less

Paper 37.3
61 8

Authorized licensed use limited to: The University of Toronto. Downloaded on July 20,2021 at 01:01:16 UTC from IEEE Xplore. Restrictions apply.

than or equal to ten. The algorithm will find the op-
timal solution when the input network is a tree. An
experimental comparison to an adaptation of the MIS
11 mapper shows that significant gains are possible with
this approach.

In the future we would like to address the problems
of nodes with large fanin, reconvergent fanout within
the network and optimizations that may result from the
duplication of logic at fanout nodes. We would also like
to extend our algorithm to handle commercial FPGA
architectures.

Circuit # tables # tables % t (sec.)

9symml 74 63 17.5 45.1
alu2 157 131 19.8 72.0
alu4 291 238 22.3 119.1
apex6 251 234 7.3 122.5

count 47 47 0.0 32.5
1147 1075 6.7 390.8 des

frgl 41 34 20.6 31.4

k2 357 335 6.6 146.2
pair 574 504 13.9 178.8

MIS MIS Chortle

apex7 86 73 17.8 46.9

frg2 325 278 16.9 134.4

rot 255 230 10.9 104.9

apex6
apex7

pair

t (sec.)
Chortle

10.2
13.4
93.2
14.4
3.7
1.3

353.3
1.6
8.9

127.6
88.7

7.5

Circuit

Ssymml
alu2
alu4
apex6
apex7
count
des
frgl
frgl
k2
pair
rot

Circuit

9symml
alu2
alu4
apex6
apex7
count
des
frgl
frg2
k2
pair
rot

tables
MIS

199
382
691
665
200
111

3049
111
737
81 1

1439
576

199 0.0
382 0.0
691 0.0
665 0.0
200 0.0
113 -1.8

3049 0.0
111 0.0
740 -0.4
811 0.0

1441 -0.1 I 578 -0.3

t (sec.)
MIS

19.3
35.6
62.2
66.8
21.4
12.8

299.2
11.4
74.1
78.0

134.6
56.0

6.2
23.9
22.7

Table 1: Results, K=2

tables I # tables I % I t (sec.) 1 t (sec.) I
MIS I Chortle I I MIS I Chortle 1

118 I 112 I 5.4 I 192.9 I 5.5 I
231 I 218 I 6.0 I 239.6 I 11.2 I
422
415
129
80

1866
64

481
496
91 7
368

405
390
126
65

1805
60

452
480
851
357

4.2
6.4
2.4

23.1
3.4
6.7
6.4
3.3
7.8
3.1 -

319.1
323.3
192.4
167.9

1016.2
167.4
339.0
368.5
524.4
289.3

Table 2: Results, K=3

79.7
8.9
2.6
1.1

176.0
1.2
7.0

59.5
45.8

6.1 -

177
314
2 73
98
63

1283
47

346
400
669
279

28.6

9.3
1225 298.6 266.3

14.3
80.7
82.1 94.5

137.4 67.9
58.3 6.8

Table 4: Results, K=5

References
[Bake901 S. Baker, ”AMD: Mach CMOS PLD a ’breakthrough’”,

Electronic Engineering Times, No. 581, March 12 1990
p. 8.

R.A. Bergamaschi, “Automatic Synthesis and Technol-
ogy Mapping of Combinational Logic,” Proc. ICCAD
88, Nov 1988, pp.466469.

M. Berkelaar, J. Jess,“Technology Mapping for Stan-
dard Cell Generators”, Proc. ICCAD 88, Nov 1988,

[Berg881

[Berk88]

pp. 470-473.

E.Detjens et. al, “Technology Mapping in MIS”, Proc.
ICCAD 87, Nov 1987, pp. 116119.

[ElGa89] A. El G d , et. al, “An Architecture for Electrically
Configurable Gate Arrays,” IEEE JSSC Vol. 24, NO.
2, April 1989, pp. 394-398.

R. J. Francis, “Ph.D. Thesis in preparation,” Univer-
sity of Toronto, Department of Electrical Engineering.

H. Hsieh, et. al “A 9000-Gate User-Programmable
Gate Array,“ Proc. 1988 CICC, May 1988, pp. 15.3.1 - 15.3.7.

K. Keutzer, “DAGON: Technology Binding and Local
Optimization by DAG Matching,” Proc. 24th Design
Automation Conference, June 1987, pp. 341-347.

R. Lisanke, F. Brglez, G. Kedem, “McMAP: A Fast
Technology Mapping Procedure for Multi-Level Logic
Synthesis,” Proc. ICCD, pp. 252-256, October 1988.

[Detj87]

[Frangl]

[Hsie88]

[Keut87]

[Lisa871

(Marr891 C. Marr, “Logic Array Beats Development Time
Blues,” Electronic System Design Magazine, Nov.
1989, PP. 3642.

[Ples89] Plessey Semiconductor ERA60100 preliminary data
sheet.

J.S. Rose, R.J. Francis, P. Chow, and D. Lewis, “The
Effect of Logic Block Complexity on Area of Pro-
grammable Gate Arrays,” Proc. 1989 CICC, May 1989,
pp. 5.3.1-5.3.5.

[Rose891

[Wong89] S.C. Wong, et. al, “A 5000-Gate CMOS EPLD with
Multiple Logic and Interconnect Arrays,” Proc. 1989
CICC, May 1989, pp. 5.8.1 - 5.8.4.

Table 3: Results, K=4

Paper 37.3
61 9

Authorized licensed use limited to: The University of Toronto. Downloaded on July 20,2021 at 01:01:16 UTC from IEEE Xplore. Restrictions apply.

