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Abstract 
Field Programmable Gate Arrays are new devices that 
combine the versatility of a Gate Array with the user- 
programmability of a PAL. This paper describes an al- 
gorithm for technology mapping of combinational logic 
into Field Programmable Gate Arrays that use lookup 
table memories to realize combinational functions. It 
is difficult to map into lookup tables using previous 
techniques because a single lookup table can perform 
a large number of logic functions, and prior approaches 
require each function to  be instantiated separately in a 
library. The new algorithm, implemented in a program 
called Chortle uses the fact that a K-input lookup table 
can implement any boolean function of K-inputs, and 
so does not require a library-based approach. Chortle 
takes advantage of this complete functionality to eval- 
uate all possible decompositions of the input boolean 
network nodes. It can determine the optimal (in area) 
mapping for fanout-free trees of combinational logic. In 
comparisons with the MIS I1 technology mapper, on 
MCNC-89 Logic Synthesis benchmarks Chortle achieves 
superior results in significantly less time. 

1 Introduction 
The Field Programmable Gate Array (FPGA) is a new 
approach to  ASIC design that can dramatically re- 
duce manufacturing turn around time and cost [Hsie88, 
ElGa89, Wong89, Ples89, Marr89, Bakego]. An FPGA 
consists of a regular array of programmable logic blocks 
that can be interconnected by a programmable routing 
network. The programmable nature of these devices re- 
quires new CAD algorithms to make effective use of the 
logic and routing resources. 

This paper addresses the problem of technology map- 
ping for FPGAs where the logic block implements com- 
binational logic using lookup tables. A K-input lookup 
table is a digital memory containine 2K bits of informa- 
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tion that produces a single output boolean logic func- 
tion of K or fewer input variables. 

The motivation to study technology mapping for 
lookup table-based FPGAs is two-fold: First, the orig- 
inal FPGA [Hsie88] uses lookup tables and recent 
work [Rose891 suggests that lookup tables are an area- 
efficient choice for logic blocks. Secondly, conven- 
tional technology mapping algorithms [Keut87, Detj87, 
Lisa881 are unsuitable for mapping lookup tables be- 
cause a separate library element is required to represent 
each of the logic functions that can be implemented by a 
K-input lookup table. A library containing the required 
22K elements is beyond the capability of previous tech- 
niques even for K=4. 

We present a new algorithm, implemented in the 
Chortle program that avoids the library size problem 
by using the ability of a K-input lookup table to im- 
plement any sub-graph with K-inputs. Chortle divides 
the input boolean network into a forest of trees, and 
can efficiently determine the optimal mapping of each 
tree. A major feature of Chortle is that it considers all 
possible decompositions of every node in the network. 

The Chortle program is compared to the MIS 11 tech- 
nology mapper [Detj87] on several of the MCNC-89 
logic synthesis benchmarks, for lookup tables with 2,3,4 
and 5 inputs. For the smallest lookup table (K=2) the 
results are almost identical. For the larger lookup ta- 
bles (K=4,5) the Chortle produces mappings with 4% 
to 28% fewer lookup tables than MIS 11, typically in 
significantly less time. 

The dynamic programming traversal of the tree used 
in the Chortle algorithm is similar to that presented in 
DAGON [Keut87] and MIS [Detj87]. A related work 
dealing with blocks that can implement more than one 
boolean function is the mapping for standard cell gen- 
erators described in [Berk88]. Technology mapping of 
K-input lookup tables is different from the latter be- 
cause a lookup table can perform any function of K 
inputs rather than a restricted class of functions such 
as And-Or-Inverts. 

This paper is organized as follows. In Section 2 we 
define our technology mapping problem. In Section 3 
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the new algorithm is described. Section 4 compares 
Chortle to the MIS I1 technology mapper [Detj87] and 
describes how the library used by MIS is created. 

2 Problem Definition 
We assume that logic synthesis is divided into two steps: 
logic optimization and technology mapping. The input 
and output of the logic optimization step is a boolean 
network which represents a multi-input multi-output 
boolean function. 

We use a directed acyclic graph (DAG) representation 
of a boolean network similar to that given in [Keut87]. 
Figure 1 illustrates such a representation of a boolean 
network. The boolean inputs of a network are repre- 
sented by the input nodes of the graph, nodes a,  b ,  c, d 
and e in Figure 1. We define an input node of a graph 
to be a node with no fanin nodes. A node nj  is a fanin 
node of n if there is a directed edge from the node n j  
to the node n. 

Figure 1: A Boolean Network 

The boolean function represented by a non-input 
node is either the boolean operation AND or OR ap- 
plied over the fanin boolean variables. Edges and nodes 
of the graph are labelled to indicate the polarity (in- 
verted or non-inverted) of signals and to specify which 
nodes represent the output nodes of the boolean net- 
work. 

Technology mapping for lookup table-based FPGAs 
takes an optimized network and produces a circuit of K- 
input lookup tables that implements the network. For 
all lookup tables in the circuit K is the same integer. 
The Chortle program minimizes a cost function consist- 
ing of the number of lookup tables, which is a measure 
of area. 

A circuit of K-input lookup tables is represented by 
a cover of sub-DAGS on a DAG representing a boolean 
network satisfying the following conditions: 

Each sub-DAG in the cover must have only a single 
output node and K or fewer input nodes. 

a Every edge in the network DAG must appear in 
one and only one sub-DAG in the cover. 

The cover is a valid implementation of a network if for 
every output node in the network there is a correspond- 

ing output node of a sub-DAG in the cover that has the 
same boolean function. 

We assume that the boolean network to be mapped 
has already gone through logic optimization. To retain 
the optimized network structure we impose the addi- 
tional restriction that for every node in the network 
there must be at least one node in the set of sub-DAGS 
that has the same boolean function. Note that this re- 
striction does not prohibit the duplication and decom- 
position of nodes. 

Figure 2 illustrates a circuit of 3-input lookup tables 
that implements the boolean network specified in Figure 
1. To simplify subsequent figures we will omit the edge 
and node labelling. 

z Y 

Figure 2: A 3-input Mapping 

3 The Chortle Algorithm 
The purpose of the algorithm is to find the minimum 
cost circuit of K-input lookup tables that implements 
an arbitrary boolean network represented by a graph 
G. The algorithm begins by converting the graph G 
into a forest of maximal fanout-free trees. Each of these 
trees is then mapped to find the minimum cost circuit 
that implements the tree. A circuit implementing the 
entire graph G is formed by combining the circuits that 
implement each tree in the forest. 

Figure 3b illustrates how a forest of trees is created 
from the graph in Figure 3a. If a node n in the graph 
has out-degree greater than one then any edge, for ex- 
ample (n, a) in Figure 3a, originating from the node n 
is replaced by an edge, (rial a), originating from a new 
additional node. The new node node, nor is defined to 
have the same boolean function as the node n. 

The following section shows how we find the optimal 
solution to the tree mapping problem. 

3.1 Mapping a Tree 
The heart of the tree mapping algorithm is a dynamic 
programming traversal of the tree which is outlined as 
pseudo code in Figure 4. 

Starting with a given tree and a value for K the al- 
gorithm produces a minimum cost circuit of K-input 
lookup tables that implements the tree. The following 
are definitions of terms used in the pseudo code. 
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Procedure MapTree(T, K )  { 

For each node n in the tree T 
proceeding from the leaf nodes to the root node 
by postorder traversal { 

For utilization U = 2 to K 

CurrentBestCost = 00 

CurrentBestHap = 0 

For all utilization divisions, U of U { 
/* using dynamic programming */ 

Construct a mapping M 
from the minimum cost mappings of 
the f anin nodes computed previously. 

/* M is the minimum cost mapping of 
/* where the root lookup table of M 
/* has utilization division U 

Calculate cost(M) 
Figure 3: Creating a Forest of Trees 

Definition 1 A mapping of node n ,  in a tree T ,  is a 
circuit of K-input lookup tables that implements the 
sub-tree of T that is rooted at n and extends to  the leaf 
nodes of T .  

Definition 2 The root lookup table of a mapping of 
the node n has as its single output the boolean function 
of the node n .  

Definition 3 The utilization of a lookup table is the 
number of inputs, U, out of the K inputs that are ac- 
tually used in a circuit. 

The utilization division of a lookup table is defined in 
section 3.1.1. 

In general, dynamic programming computes and 
records the solution to all sub-problems proceeding from 
the smallest to the largest sub-problem. Recording the 
solution to each sub-problem eliminates the need to re- 
calculate it as part of the solution of any larger sub- 
problem. The sub-problem solved by Chortle is the 
computation of the minimum cost mapping of a node 
n ,  in a tree, where the root lookup table of the map- 
ping has a given utilization U .  The solution to this 
subproblem is denoted as minMap(n, U ) .  

In the following section we show that for any node n 
with fanin nodes n l  . . . n I  if we have previously calcu- 
lated minMap(ni, Vi), for all Ui from 2 to K ,  for every 
node ni then we can calculate minMap(n,U) for any 
value of U from 2 to K .  

The entire tree is traversed in postorder starting from 
the leaf nodes and proceeding to the root node calcu- 
lating minMap(n,U),  for all U from 2 to K ,  at every 

if cost(M) < CurrentBestCost { 
CurrentBestCost = cost(M) 
CurrentBestHap = M 
1 

} /* next Utilization Division. U*/ 

minMap(n, U )  = CurrentBeetHap 
] /* next Utilization, U */ 

} /* nest Node. n */ 

Best Happing of the tree T is minMap(nrWt,K) 
1 

Figure 4: Pseudo Code 

n */ 
*/ 
*/ 

node n in the tree. At the input (leaf) nodes of the tree 
we define the cost of minMap(n,,,f, U )  to be 0. It can 
be shown for any node n that: 

cost(minMap(n, U ) )  2 cost(minMap(n, K)) ,VU 5 K 

Therefore by calculating minMap(nroo~, I()  for the root 
node of the tree we have found the circuit with the 
fewest K-input lookup tables that implements the entire 
tree. 

3.1.1 Calculating minMap(n,  U )  

For simplicity of description assume that the root 
lookup table of a mapping of a node n includes all the 
fanin edges of n .  This implies that the fanin of n is 
less than or equal to K and that the node n is not de- 
composed. Section 3. l .3 considers the decomposition 
problem. 

Paper 37.3 
61 5 

Authorized licensed use limited to: The University of Toronto. Downloaded on July 20,2021 at 01:01:16 UTC from IEEE Xplore.  Restrictions apply. 



:vi -.*- / 1- 

Figure 5: Utilization Divisions 

If the node n has fanin nodes n1 . . . nj then the root 
lookup table of a mapping of n includes all the fanin 
edges of n and some sub-tree S; rooted at each fanin 
node n;. 

We introduce the term utilization division to denote 
the distribution of the inputs to the root lookup table 
among these sub-trees. If U; is the number of leaf nodes 
h the sub-tree S; then the set U = { U I  . . . u j }  specifies 
the utilization division of the root lookup table because 
these leaf nodes correspond to the inputs to the root 
lookup table. Figure 5a illustrates a mapping using 4- 
input lookup tables where the root lookup table has 
utilization division U = { 1 ,3} .  

There may be many different mappings of a node that 
have the same utilization division of the root lookup 
table. Figure 5b illustrates a second mapping where 
the root lookup table has the same utilization division 
U = { 1 , 3 } .  

There are many possible utilization divisions of the 
root lookup table of a mapping of a node. To find 
minMap(n, U) for a given node n and utilization U we 
exhaustively search all possible utilization divisions U 
where C u i  = U .  For each U we construct the mini- 
mum cost mapping of n where the utilization division 
of the root lookup table is specified by U. One of these 
mappings will be minMap(n, U ) .  The following section 
describes how we construct these mappings. 

3.1.2 Constructing A Mapping 

The key to the dynamic programming approach is the 
construction of the minimum cost mapping of a node 
n where the root lookup table has a given utiliza- 
tion division U = {u1 . . .ut} .  The desired mapping 
is constructed by combining a constructed root lookup 
table with the mappings minMap(ni, ui) which have 
been previously computed for all fanin nodes n;. For 
those fanin nodes, ni, where U ;  = 1 the mapping 

minMap(n;, I<) must be used instead of minMap(n;, 1). 
The constructed root lookup table includes all the 

fanin edges of n as well as a sub-tree Si rooted at each 
fanin node n;. For a fanin node ni where U; # 1 the 
sub-tree S; is the root sub-DAG of minMap(n;,u;). If 
U ;  = 1 then the sub-tree Si is simply the node n;. 

The root lookup table of the mapping minMap(n;, U;) 

is eliminated from the constructed mapping if ui # 1 be- 
cause it is contained within the constructed root lookup 
table. 

Figure 6 illustrates the construction of the mini- 
mum cost mapping of a node n with utilization division 
U = { 1 ,3}  using 4-input lookup tables. The mappings 
selected for the fanin nodes a and b ,  minMap(a,4) and 
minMap(b, 3 ) ,  are shown in figure 6a. Figure 6b shows 
the constructed root lookup table which contains the 
root lookup table of minMap(b, 3).  The final mapping 
where the root lookup table of minMap(b,3) has been 
eliminated is shown in Figure 6c. 

It is possible to prove that no other mapping of the 
node n where the root lookup table of the mapping has 
the utilization division specified by U can have fewer 
lookup tables than the mapping constructed by the 
above procedure [Fran 911. 

3.1.3 Decomposition 

So far we have assumed that there are no decomposi- 
tions of nodes in our mapping of a tree. However, if 
the fanin of a node is greater than K then the node 
must be decomposed. By considering all possible de- 
compositions of every node in the tree we may also be 
able to reduce the number of lookup tables required to 
implement the tree. 

When a node n is decomposed intermediate nodes 
are introduced. Each intermediate node implements the 
boolean operation of n over some subset of the fanin 
nodes of n. The edges from this subset of fanin nodes 
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Figure 6: Construction of a Mapping 

to the node n are replaced by a single edge from the 
intermediate node to  the node n.  Figure 7b illustrates 
a mapping of the network in Figure 7a where a node 
has been decomposed. 

A two-level decomposition of a node can be rep- 
resented by a set of groups 'D = { d l  . . . d g } .  Each 
group di specifies either a single fanin node or a sub- 

Figure 7: Decomposition of a Node 

set of fanin nodes covered by an intermediate node nd, . 
The minimum cost mapping of this decomposition is 
found by exhaustively searching all utilization divisions 
U = {ul  . . . u g }  and for each U constructing a mini- 
mum cost mapping of the decomposition where the root 
lookup table has utilization division U. Since an inter- 
mediate node provides a single input to the root lookup 
table we add the requirement that U; = 1 if the group 
d; specifies an intermediate node. 

To proceed with the above search we require 
mhhfCIp(nd,, K )  for every possible intermediate node 
nd,. We find minMup(nd,, K )  by using an exhaustive 
search of utilization division of nd,. 

It is also possible to have multi-level decompositions 
where an intermediate node nd, is itself decomposed. 
In this case we need to know mznMap(nd,,K) for all 
intermediate nodes nd, that cover a subset of the fanin 
nodes of nd, . 

If we consider all possible intermediate nodes nd, in 
a sequence such that the number of fanin nodes covered 
by nd, increases from 2 to f then we can ensure that all 
minMup(nd,, K )  required to find any minMup(nd,, I<) 
have been previously calculated. 

3.1.4 Node Splitting 

As the fanin of a node increases the number of possi- 
ble decompositions grows exponentially. However, the 
speed of our utilization division search and mapping 
construction makes it practical for us to consider all 
possible decompositions of a node as long as the fanin 
of the node is bounded by ten. For a node with fanin 
greater than ten the number of decompositions to be 
searched becomes impractically large. To reduce the 
execution time of Chortle we initially decompose such 
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large fanin node into two nodes with roughly equal fanin 
and then decompose each node separately. 

This greatly reduces the number decompositions that 
need to be searched, but we can no longer guarantee 
finding the optimal decomposition. However, experi- 
mental results show that the mapping of a split node 
uses no more lookup tables than the mapping of the 
non-split nodes and are found in much less time. We 
believe the number of lookup tables is the same because 
for large fanin nodes there are many different minimum 
cost decompositions. As long as the chosen split does 
not preclude all of these decompositions Chortle will 
find one of the minimum cost decompositions. 

4 Results 
In this section the mapping quality and execution time 
of Chortle are compared with those of the MIS I1 tech- 
nology mapping program [Detj87]. MIS I1 requires a li- 
brary that represents every possible logic function that 
can be mapped. As discussed previously, a 4-input 
lookup table requires an impractically large library. The 
next section describes how we select a subset of all the 
possible functions to be represented in the library, for K 
greater than 3. The subsequent section gives the com- 
parison. 

4.1 Creating the MIS Library 
The MIS library needs to contain only a single instance 
of all boolean functions that are permutations of each 
other. This reduces the number of elements required 
in the library to represent a K-input lookup table. For 
K=2 there are only 10 unique functions out of a possible 
16, and for K=3 there are 78 unique functions out of 
a possible 256. We are therefore able to use complete 
libraries for K= 2 and 3. For K=4, there are a total of 
9014 unique functions (out of a possible 65536), which 
is too large to represent in a MIS library. 

The K=4 library was chosen by inspection of the li- 
brary elements used by the K=3 results, and from a 
knowledge of the output of MIS. The logic optimiza- 
tion step in MIS finds a factored form for the network 
that minimizes the literal count. Such a network con- 
tains only level-0 kernels in the leaf nodes [Berg88]. The 
K=4 library thus includes the set of all level-0 kernels 
with four or fewer literals and their duals. This choice is 
supported by the observation that the MIS mapper used 
mostly level-0 kernels when mapping from the complete 
K=3 library. In addition, all level-n (n > 0) kernels that 
cannot be synthesized by level-0 kernels were included. 
A library constructed in this way includes all common 
circuit elements such as ANDs, AOIs and XORs. 

We also greatly increase the effective coverage of the 
library because in the comparison below, we do not 
count the inverters used by MIS as logic blocks. This is 

because a simple post-processor could easily merge all 
inverters into the lookup tables. In doing this we give 
MIS credit for ability that it is not due - in several cases 
for K=3 (with the complete library), MIS was unable 
to select the correct version of a library cell with com- 
plemented inputs and had to use unnecessary inverters. 
The K=5 library is generated in a similar manner. 

4.2 Experimental Results 
To compare Chortle to MIS I1 we mapped several cir- 
cuits from the MCNC-89 logic synthesis benchmarks for 
values of K from 2 to 5 .  The input networks for both 
mappers were optimized by the standard MIS I1 script. 
The results of these experiments are summarized in t a  
bles 1 to 4. Each table gives the benchmark name, the 
number of lookup tables mapped by the two programs, 
the % difference and the execution times on a SUN 3/60. 

For K=2 the number of lookup tables in the Chor- 
tle and MIS mappings are nearly identical. This is ex- 
pected because MIS is using a complete library and for 
K=2 all nodes will have to be completely decomposed 
into binary trees. Therefore the choice of decomposi- 
tion does not matter. The four cases in which MIS 
achieves fewer lookup tables occur because the input 
network contains reconvergent fanout, such as XOR, 
which Chortle cannot find. 

For K=3 the Chortle results average 6% better than 
the MIS results. Once again MIS is using a complete 
library so we would expect identical results. However 
with K=3 there is now the opportunity for the choice of 
decompositions to  make a difference. Also the greedy 
algorithm used by MIS [Detj87] to  deal with nodes 
with fanout greater than one tends to duplicate logic 
a t  fanout nodes. We have found that it is difficult to 
realize any savings by this greedy approach. 

For K=4 the Chortle results average 9% better than 
the MIS results. In this case MIS is using an incomplete 
library and it is expected that its results would be worse. 

For K=5 the Chortle results average 14% better than 
the MIS results. The lower coverage of the incomplete 
library for K=5 results in this increased difference. 

The execution speed of Chortle ranges from a factor 
of 1 to 10 times faster than MIS 11. 

5 Conclusions 
This paper describes an algorithm that effectively and 
efficiently performs technology mapping of boolean net- 
work into circuits of K-input lookup tables. 

The encapsulation of mappings of nodes provided by 
the concepts of utilization and utilization division allows 
Chortle to reduce the search space thereby speeding the 
search for a minimum cost mapping. This fast search 
makes it practical for us to find the best decomposi- 
tions of nodes as long as the fanin of the node is less 
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than or equal to ten. The algorithm will find the op- 
timal solution when the input network is a tree. An 
experimental comparison to  an adaptation of the MIS 
11 mapper shows that significant gains are possible with 
this approach. 

In the future we would like to address the problems 
of nodes with large fanin, reconvergent fanout within 
the network and optimizations that may result from the 
duplication of logic at fanout nodes. We would also like 
to extend our algorithm to handle commercial FPGA 
architectures. 

Circuit # tables # tables % t (sec.) 

9symml 74 63 17.5 45.1 
alu2 157 131 19.8 72.0 
alu4 291 238 22.3 119.1 
apex6 251 234 7.3 122.5 

count 47 47 0.0 32.5 
1147 1075 6.7 390.8 des 

frgl 41 34 20.6 31.4 

k2 357 335 6.6 146.2 
pair 574 504 13.9 178.8 

MIS MIS Chortle 

apex7 86 73 17.8 46.9 

frg2 325 278 16.9 134.4 

rot 255 230 10.9 104.9 

apex6 
apex7 

pair 

t (sec.) 
Chortle 

10.2 
13.4 
93.2 
14.4 
3.7 
1.3 

353.3 
1.6 
8.9 

127.6 
88.7 

7.5 

Circuit 

Ssymml 
alu2 
alu4 
apex6 
apex7 
count 
des 
frgl 
frgl 
k2 
pair 
rot 

Circuit 

9symml 
alu2 
alu4 
apex6 
apex7 
count 
des 
frgl 
frg2 
k2 
pair 
rot 

# tables 
MIS 

199 
382 
691 
665 
200 
111 

3049 
111 
737 
81 1 

1439 
576 

199 0.0 
382 0.0 
691 0.0 
665 0.0 
200 0.0 
113 -1.8 

3049 0.0 
111 0.0 
740 -0.4 
811 0.0 

1441 -0.1 I 578 -0.3 

t (sec.) 
MIS 

19.3 
35.6 
62.2 
66.8 
21.4 
12.8 

299.2 
11.4 
74.1 
78.0 

134.6 
56.0 

6.2 
23.9 
22.7 

Table 1: Results, K=2 

# tables I # tables I % I t (sec.) 1 t (sec.) I 
MIS I Chortle I I MIS I Chortle 1 

118 I 112 I 5.4 I 192.9 I 5.5 I 
231 I 218 I 6.0 I 239.6 I 11.2 I 
422 
415 
129 
80 

1866 
64 

481 
496 
91 7 
368 

405 
390 
126 
65 

1805 
60 

452 
480 
851 
357 

4.2 
6.4 
2.4 

23.1 
3.4 
6.7 
6.4 
3.3 
7.8 
3.1 - 

319.1 
323.3 
192.4 
167.9 

1016.2 
167.4 
339.0 
368.5 
524.4 
289.3 

Table 2: Results, K=3 

79.7 
8.9 
2.6 
1.1 

176.0 
1.2 
7.0 

59.5 
45.8 

6.1 - 

177 
314 
2 73 
98 
63 

1283 
47 

346 
400 
669 
279 

28.6 

9.3 
1225 298.6 266.3 

14.3 
80.7 
82.1 94.5 

137.4 67.9 
58.3 6.8 

Table 4: Results, K=5 
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