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Abstract 
A new technology mapping algorithm for lookup table- 
based Field Programmable Gate Arrays (FPGA) is pre- 
sented. The major innovation is a method for choosing 
gate-level decompositions based on bin packing. This 
approach is up to 28 times faster than a previous ex- 
haustive approach. The algorithm also exploits recon- 
vergent paths and replication of logic at fanout nodes 
to reduce the number of lookup tables in the circuit. 

The new algorithm is implemented in the Chortle-crf 
program. In an experimental comparison Chortle-crf 
requires 14 % fewer lookup tables than Chortle [FranSO] 
and 10 % fewer lookup tables than mispga [MurgSOa] 
to implement a set of benchmark networks. 

Chortle-crf can also implement a network as a cir- 
cuit of Xilinx 3000 series Configurable Logic Blocks 
(CLBs). To implement the benchmark networks as cir- 
cuits of CLBs Chortle-crf requires 12 % fewer CLBs 
than mis-pga and 22 % fewer CLBs than XNFOPT 
[XiliSS]. In these experiments Chortle-crf was an aver- 
age of 68 times faster than mis-pga and 30 times faster 
than XNFOPT. 

1 Introduction 
Field Programmable Gate Arrays (FPGAs) are a re- 
cent innovation in Application Specific Integrated Cir- 
cuits (ASICs) that provide both large scale integra- 
tion and user-programmability [Hsie88] [Ahrego]. The 
user-programmability of FPGAs can dramatically re- 
duce ASIC turn-around time and manufacturing costs. 

An FPGA consists of an array of programmable logic 
blocks and a programmable routing network. An im- 
portant class of FPGAs consists of those that use logic 
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blocks containing lookup tables, such as the first com- 
mercial FPGA [Cart86]. Moreover, recent studies in 
FPGA architectures have suggested that lookup tables 
are an are&efficient method of implementing combina- 
tional functions [RoseSO]. A K-input lookup table is 
a digital memory with K address lines and a one-bit 
output. This memory contains 2K bits and is capable 
of implementing any Boolean function of K input vari- 
ables. i 

This paper presents a new algorithm for lookup t a  
ble technology mapping which is implemented by the 
Chortle-crf program. Chortle-crf converts a combina- 
tional network of ANDs, ORs, and NOTs into a circuit 
of lookup tables where every lookup table has K or fewer 
inputs. The goal is to minimize the total number of K- 
input lookup tables in this circuit. For example, the 
network in Figure l a  can be implemented by the circuit 
of three 5-input lookup tables shown in Figure lb .  The 
dotted boundaries indicate the functions implemented 
by each lookup table. Note that one of the lookup ta- 
bles uses only 4 of the available 5 inputs. All examples 
in the remainder of this paper will assume that K is 
equal to 5. 

2 Background 
Technology mapping produces a circuit that implements 
a combinational network using a restricted set of circuit 
elements. Early work in technology mapping, such as 
SOCRATES [Greg861 and the work by Kahrs [Kahr86], 
focused on circuits created from standard cell libraries. 
An important advance in library-based technology map- 
ping was the introduction of dynamic programming by 
Keutzer [Keut87]. Other library-based technology map- 
pers include mid1 [Detj87] and McMAP [Lisa87]. 

A lookup table of K-inputs can implement 22K differ- 
ent Boolean functions of K variables. For values of K 
greater than 3 the library required to describe a K-input 
lookup table becomes impractically large and therefore 
technology mapping algorithms that deal specifically 
with lookup tables are required [FranSO]. Two pre- 
viously reported lookup table technology mappers are 
Chortle [FranSO] and mispga [MurgSOa]. 

The Chortle technology mapper presented in [FranSO] 
uses an exhaustive search to find the optimal gate- 
level decomposition of every node in a fanout-free tree. 
However, the partitioning of the original network into 
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v 
a) combinational network 

b) circuit of 5-input lookup tables 
Figure 1. 

fanout-free trees precludes optimizations that exploit 
reconvergent paths and replication of logic at  fanout 
nodes. 

The mis-pga technology mapper produces a circuit of 
lookup tables as an intermediate result [MurgSOa]. It 
initially performs a non-optimal decomposition of the 
combinational network and then focuses on a covering 
problem to reduce the number of lookup tables in the 
circuit. The covering problem does allow optimizations 
that exploit reconvergent paths and replication of logic 
at fanout nodes. 

3 The Chortle-crf Algorithm 
A major innovation in Chortle-crf is the application of 
bin packing to choosing gate-level decompositions. Two 
other important features are the exploitation of recon- 
vergent paths and replication of logic at  fanout nodes 
to reduce the number of lookup tables in the circuit. 

The principal technique used by Chortle-crf is dy- 
namic programming. The combinational network is tra- 
versed beginning at  the primary inputs and proceeding 
toward the primary outputs. At each node a circuit 
implementing the cone extending from the node to the 
primary inputs of the network is constructed. This cir- 
cuit is referred to as the Best Circuit implementing the 
node. 

Chortle-crf has two goals when constructing the Best 
Circuit. The first is to minimize the number of lookup 
tables in the circuit and the second is to maximize the 
number of unused inputs at  the output lookup table. 
These unused inputs are important because they may 
allow subsequent nodes to be implemented without the 

L---i---” 
a) without gate decomposition 

b) with gate decomposition 
Figure 2. 

addition of extra lookup tables. 

3.1 Bin Packing Approach 
to Gate Decomposition 

The key to constructing the Best Circuit implementing 
a node is finding the decomposition of the node that 
reduces the number of lookup tables in the final circuit. 
For example, five lookup tables are required to imple- 
ment the tree shown in Figure 2a. In Figure 2b, the 
single OR node of Figure 2a has been decomposed into 
two OR nodes, which allows the tree to be implemented 
with just two lookup tables. 

The construction of the Best Circuit for a node de- 
pends upon the Best Circuits that implement the node’s 
immediate fanin nodes. The order of the network 
traversal ensures that these immediate fanin circuits 
have been previously constructed. The output lookup 
tables of the fanin Best Circuits will be referred to as 
the fanin lookup tables. Figure 3a shows an OR node 
and its five fanin lookup tables. 

The goal of finding the best decomposition is attained 
by constructing a tree of lookup tables that implements 
both the functions of the fanin lookup tables and a 
decomposition of the node. This tree must contain 
the minimum number of lookup tables and the output 
(root) lookup table must have the maximum number of 
unused inputs possible without increasing the number 
of lookup tables in the tree. 

The tree of lookup tables is constructed in two steps. 
First, a two-level decomposition is constructed and then 
this decomposition is converted into a multi-level de- 
composition. Figures 3b and 3c illustrate the two-level 
and multi-level decompositions constructed from the 
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b) two-level decomposition 

c) multi-level decomposition 
Figure 3. 

fanin lookup tables of Figure 3a. 

3.1.1 Two-Level Decomposition 

The two-level decomposition consists of a single first- 
level node and several second-level nodes. In Figure 3b 
the 3-input OR node is the first-level node and its three 
inputs are the second-level nodes. Each second-level 
node implements the operation of the node being de- 
composed over a subset of one, some, or all of the fanin 
lookup tables. In Figure 3b there are three second-level 
nodes each of which is implemented by a lookup ta- 
ble. The first-level node is not yet implemented by any 
lookup tables, however, it will be implemented when the 
two-level decomposition is converted into a multi-level 
decomposition. 

The two-level decomposition is constructed using a 
bin packing algorithm. In general, the goal of bin pack- 
ing is to find the minimum number of bins into which 
a set of boxes can be packed [Gare79]. In this case, the 

F i r s t  F i t  Decreas ing 
{ 
start with an empty bin list 

while there are unpacked boxes 
t 
i f  the larges t  unpacked box w i l l  not f i t  
within any b in  i n  the b in  list 

create an empty bin and 
add it t o  the end of the bin list 
1 

pack the larges t  unpacked box i n t o  the 
f i r s t  b i n  it w i l l  f i t  within 
1 

1 

Figure 4: Pseudo code for First Fit Decreasing 

bins are the second-level lookup tables and the boxes 
are the fanin lookup tables. The capacity of each bin 
is K,  and the size of each box (fanin lookup table) is 
its number of used inputs. In Figure 3a the boxes have 
sizes 3, 2, 2, 2, and 2. In Figure 3b the final contents 
of the packed bins are 5, 4, and 2. The bin packing 
algorithm used is First Fit Decreasing as outlined in 
Figure 4 [Gare79]. 

3.1.2 Mult i-Level Decomposition 

The decomposition tree is completed by implementing 
the first-level node with a tree of lookup tables. The 
inputs to  the leaf lookup tables of this first-level tree 
are the outputs of the second-level lookup tables of the 
two-level decomposition. Any second-level lookup ta- 
ble with unused inputs can be used to implement a 
portion of the first-level tree, thereby reducing the to- 
tal number of lookup tables in the decomposition tree. 
Figure 3c illustrates the multi-level decomposition con- 
structed from the two-level decomposition of Figure 3b. 

The detailed procedure for converting the two-level 
decomposition into a multi-level decomposition is out- 
lined in Figure 5 .  

The final multi-level decomposition can be shown to 
be optimal if the network is a fanout-free tree and the 
value of K is less than or equal to 5 [FranSl]. For net- 
works partitioned into fanout-free trees the bin packing 
approach is up to 28 times faster than the previous ex- 
haustive search approach [FranSO], yet it produces cir- 
cuits with the same number of lookup tables. This im- 
provement in speed makes it practical to  consider opti- 
mizations exploiting reconvergent paths and replication 
of logic at fanout nodes, as discussed in the following 
sections. 
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MultiLevel 
i 
vhile there is more than one unconnected bin 

if there are no free inputs among the 
remaining unconnected bins 

create an empty bin and 
add it to the end of the bin list 

{ 

{ 

1 

connect the most filled unconnected bin to 
the next unconnected bin with a free input 
1 

1 

Figure 5: Pseudo code for multi-level conversion 

3.2 Exploiting Reconvergent Paths 
It is possible to exploit local reconvergent paths to find 
a better circuit implementing a node. The following 
discussion uses the terminology of the previous section, 
where the fanin lookup tables are referred to as boxes 
and the second-level lookup tables are referred to as 
bins. 

If two boxes share the same input, then there exists 
a pair of reconvergent paths. If the total number of 
distinct inputs to these two boxes is less than or equal to 
K, then it is possible to pack the two boxes into one bin. 
When these two boxes are packed into the same bin, the 
volume occupied is the total number of distinct inputs, 
which is less than the sum of the boxes' individual sizes. 
Figure 6a shows a pair of boxes that share an input and 
Figure 6b shows the pair of reconvergent paths realized 
within a bin. 

By merging the two boxes and realizing the pair of re- 
convergent paths within a single lookup table, a smaller 
portion of the bin is occupied. This may lead to a supe- 
rior bin packing, which in turn may lead to a superior 
Best Circuit. 

However, two boxes can only be merged if they are 
packed into the same bin. The two boxes can be forced 
into the same bin by merging them before the bins are 
packed. Forcing these two boxes into one bin may inter- 
fere with the bin packing algorithm and actually result 
in an inferior packing. To find the Best Circuit, both the 
packing with the forced merge and the packing without 
the forced merge need to be considered. 

A further complication is that more than one pair 
of reconvergent paths may terminate a t  the node. To 
find the Best Circuit, Chortle-crf begins by finding all 
pairs of local reconvergent paths. For every possible 
combination of these pairs, including none, a circuit is 
constructed by first merging the respective boxes of the 

a) fanin lookup tables with shared input 
-1 1- - -1 - . .  

V I 1  I 

b) realized reconvergent paths 
Figure 6. 

chosen pairs and then proceeding with the bin pack- 
ing. The circuit with the fewest lookup tables (and the 
greatest number of unused inputs at the output lookup 
table) is retained as the Best Circuit. This realization of 
reconvergent paths is a greedy local optimization that 
is considered at every node as the network is traversed. 

In our experiments with the MCNC benchmark net- 
works the largest number of reconvergent pairs a t  any 
one node has been found to be six pairs. The bin pack- 
ing approach is fast enough to make the search of all 
possible combinations of these pairs practical. 

3.3 Replication of Logic 
at Fanout Nodes 

The previous version of Chortle partitions the combina- 
tional network into a set of fanout-free trees [FranSO]. 
This forces every fanout node to be explicitly imple- 
mented as the output of a lookup table, and allows these 
nodes to be treated as primary inputs to the rest of the 
network. 

I t  is possible to implement the fanout nodes implic- 
itly inside lookup tables, which requires the replication 
of some logic a t  a fanout node. This replication may de- 
crease the total number of lookup tables in the circuit 
implementing the network. For example, in Figure 7a, 
three lookup tables are required to implement the net- 
work when the fanout node is explicitly implemented. 
In Figure 7b, the AND gate implementing the fanout 
node is replicated and only two lookup tables are re- 
quired to implement the network. 

When the dynamic programming traversal of the net- 
work encounters a fanout node the Best Circuit imple- 
menting the fanout node is constructed. At this point 
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a) no replicated logic 

Network 11 

b) with replicated logic 
Figure 7. 

Cho 

two options are considered. The fanout node can be ei- 
ther explicitly implemented, or implicitly implemented. 
If the fanout node is explicitly implemented it is treated 
as a primary input to the rest of the network. If it is 
implicitly implemented, a replica of the function of the 
output lookup table is made for each fanout edge. This 
replica replaces the fanout node as the source of the 
edge. 

Every path starting with an edge from a fanout node 
will eventually reach another fanout node or a primary 
output of the network. These subsequent fanout nodes 
and primary outputs will be referred to as the visible 
nodes. 

To determine if the replication is worthwhile 
Chortle-crf solves a series of subproblems. For each 
visible node the Best Circuit implementing the visible 
node is constructed twice; once with the replication and 
once without the replication. Each subproblem is itself 
solved using Chortle-crf with the assumption that any 
remaining fanout nodes encountered in these subprob- 
lems are explicitly implemented and can therefore be 
treated like primary inputs. The bin packing approach 
is fast enough to make solving these subproblems prac- 
tical. 

After the subproblems have been solved the total 
number of lookup tables required to implement the vis- 
ible nodes both with and without the replication are 
known. If the total number of lookup tables is reduced 
by the replication, then the replication is retained. The 
replication of logic is considered at  every fanout node as 
it is encountered by the dynamic programming traversal 
of the network. 

lookups 

6 
19 
21 
27 
31 
55 
59 
64 
73 
80 
86 

120 
116 
120 
74 

189 
212 
195 
558 
952 

3057 

lookups 

8 
11 
30 
31 
31 
56 
72 
64 
40 
82 

103 
80 

129 
128 
66 

200 
243 
235 
765 

1016 
3390 

z4ml 
misexl 
vg2 
5xpl 
count 
9symml 
9sym 
apex7 
rd84 
e64 
C880 
apex2 
alu2 
duke2 
(2499 
rot 
apex6 
alu4 
apex4 
des 
total 

-cr 
lookups 

9 
20 
24 
31 
45 
59 
65 
71 
76 
95 

110 
123 
121 
136 
164 
207 
219 
219 
600 

1060 
3454 

9 
20 
24 
34 
47 
63 
69 
72 
76 
95 

115 
123 
131 
138 
166 
219 
232 
238 
603 

1073 
3547 

e-crf 
-cf 

lookups 

9 
19 
23 
34 
40 
62 
67 
71 
74 
80 

112 
121 
127 
126 
158 
208 
230 
227 
579 

1050 

3417 

Table 1: Results for K = 5 

4 Results 
To evaluate Chortle-crf a series of experiments were 
performed on networks from the MCNC logic synthe- 
sis benchmark suite. Four experiments were performed 
on each network: 

-c using only the constructive bin packing approach 
-cr using the reconvergent optimization 
-cf using the replication optimization 

-crf using both reconvergent and replication 

The first step in the experimental procedure was 
technology independent logic optimization using the 
mid1 logic optimizer with the standard script [Bray86]. 
Chortle-crf was then used to implement the networks as 
circuits of 5-input lookup tables. Note that Chortle-crf 
is capable of implementing networks as circuits of K- 
input lookup tables for values of K from 2 to 10. 

Table 1 records the number of 5-input lookup tables 
required to implement the networks in each of the four 
experiments. The reconvergent optimization reduced 
the total number of lookup tables required to imple- 
ment the networks by 2.7 % , and the replication opti- 
mization reduced the total number of lookup tables by 
3.7 %. Combining both optimizations reduced the total 
number of lookup tables by 14 %. 

The reduction achieved when using both optimiza- 
tions together often exceeds the sum of the individual 
reductions. This occurs when reconvergent paths that 
cross fanout nodes are found and realized within a single 
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Network Chortle-crf 
-c 

z4ml 
misexl 
vg2 
5xpl 
count 
9symml 
Ssym 
apex7 
rd84 
e64 
C880 
apex2 
alu2 
duke2 
c499 
rot 
apex6 
alu4 

des 

total 

apex4 

Table 2: CLB Results 

CLBs 

5 
14 
20 
23 
32 
50 
52 
48 
52 
48 
75 
94 
94 
88 
84 

134 
169 
165 
457 
714 

2418 

- 
-crf 

CLBs 

3 
14 
18 
20 
27 
41 
42 
42 
53 
54 
69 
93 
83 
89 
50 

131 
161 
138 
448 
743 

2319 

- - 

- - 
- 

7 
10 - 
21 25.6 
23 45.5 
28 - 
43 - 
59 - 
50 117.3 
32 65.1 
61 - 
82 - 
70 - 

102 - 
105 357.1 
50 137.5 

153 844.8 
191 1376.8 

lookup table. A dramatic example is the network C499, 
where using both optimizations reduces the number of 
lookup tables by 55 %. 

As an intermediate result the mis-pga technology 
mapper produces a circuit of 5-input lookup tables 
[MurgSOa]. The sixth column of Table 1 records the 
number of 5-input lookup tables in the circuits produced 
by mis-pga [MurgSOb]. In total, Chortle-crf required 
10 % fewer lookup tables than mispga to  implement 
the benchmark networks. 

6 
12 
20 
19 
32 
56 
52 
51 
38 
65 

101 
102 
91 
99 

121 
166 
198 

4.1 Xilinx CLBs 
The Xilinx 3000 series of FPGAs uses lookup tables to 
implement combinational logic [HsieSS] . These devices 
contain an array of Configurable Logic Blocks (CLBs). 
Each CLB can implement one 5-input lookup table or 
two 4-input lookup tables as long as the total number 
of distinct inputs to the CLB is less than or equal to 5. 

A circuit of CLBs can be derived from each circuit of 
5-input lookup tables by using one CLB to implement 
each lookup table. The number of CLBs can be reduced 
by finding pairs of lookup tables that fit inside a sin- 
gle CLB. Finding the maximum number of such pairs 
can be restated as a Maximum Cardinality Matching 
problem [MurgSOa] [Gibb85]. Table 2 records the num- 
ber of CLBs in the circuits derived from the previous 
Chortle-crf experiments. 

Note that using only the replication optimization can 
increase the number of CLBs in the derived circuit, even 
when the optimization reduces the number of lookup 

3 
14 
18 
20 
27 
41 
42 
42 
53 
54 
69 
93 
83 
89 
50 

131 
161 
138 

Network 

0.8 
0.7 
0.6 
3.2 
2.0 

59.1 
62.9 

2.9 
15.4 

1.9 
12.6 
34.9 
56.3 
9.1 

15.9 
14.0 
25.3 

178.1 

z4ml 
misexl 
vg2 
5xpl 
count 
9symml 
Ssym 
apex7 
rd84 
e64 
C880 
apex2 
a h 2  
duke2 
c499 
rot 
apex6 
alu4 
su bt o t a1 

apex4 
des 

5 
14 
19 
20 
31 
42 
44 
45 
52 
48 
70 
90 
86 
87 
84 

129 
161 
144 
451 
695 

total 

7 
14 
21 
23 
32 
50 
56 
49 
53 
54 
94 
97 
98 
91 
96 

144 
169 
174 
463 
797 

- 528 
- 988 

1931.5 
15831.1 

189 I - 11 232 
rn 

296.5 
298.2 
299.7 
301.1 
301.9 
901.2 
305.1 
304.6 
303.2 
901.5 

1809.4 
909.7 
907.8 
903.6 

1847.0 
1811.4 
1822.6 
1849.4 

Table 3: CLB Results 

tables. The replication of logic a t  a fanout node may 
increase the number of inputs used at some lookup ta- 
bles thereby precluding some pairings of lookup tables 
into CLBs and reducing the maximum number of pairs 
that can be found. If the reduction in the number of 
pairs exceeds the reduction in the number of lookup ta- 
bles then the replication will result in a net increase in 
the number of CLBs. 

Two other logic synthesis systems capable of im- 
plementing networks as circuits of CLBs are mis-pga 
[MurgSOa] and the Xilinx proprietary design system 
[XiliSS]. Chortle-crf can be compared to these systems 
on the basis of the number of CLBs in the final cir- 
cuits and execution time. Table 3 records the number 
of CLBs required to implement the benchmark networks 
using Chortle-crf, mispga and Xilinx software. In to- 
tal, Chortle-crf required 12 % fewer CLBs than mis-pga 
and 22 % fewer CLBs than XNFOPT to  implement the 
benchmark networks. 

The table also records the execution times for 
Chortle-crf on a Sun 3/60 and mispga on a VAX 8800 
[MurgSOa]. In the Xilinx design system technology 
mapping is performed by the two programs XNFOPT 
and XNFMAP [Xili89]. Note that XNFOPT will run 
indefinitely and in these experiments limits were placed 
on its execution time. The seventh column of Table 3 
records the total execution time of the two programs 
on a Sun 3/60. It should be noted that by conservative 
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estimate a VAX 8800 is twice as fast as a Sun 3/60. 
Taking into account the relative speed of the Sun 3/60 
and the VAX 8800, Chortle-crf is an average of 68 times 
faster than mis-pga and 30 times faster than XNFOPT. 

5 Conclusions 
The bin packing approach to gate decomposition de- 
scribed in this paper is up to 28 times faster than a pre- 
vious exhaustive search approach. The improved speed 
of gate decomposition makes it practical to consider 10- 
cal optimizations that exploit both reconvergent paths 
and replication of logic a t  fanout nodes. 

Using both of these optimizations, Chortle-crf re- 
quired 14 % fewer 5-input lookup tables than Chortle 
[FranSO] and 10 % fewer lookup tables than mis-pga 
[MurgSOa] to implement a set of benchmark networks. 

Chortle-crf is also capable of implementing networks 
as circuits of Xilinx 3000 series CLBs. To implement the 
benchmark networks as circuits of CLBs, Chortle-crf re- 
quired 12 % fewer CLBs than mis-pga and 22 % fewer 
CLBs than XNFOPT. On average, Chortle-crf was 68 
times faster than mis-pga and 30 times faster than 
XNFOPT. 

6 Future Work 
Currently, the optimizations exploiting reconvergent 
fanout and replication of logic are evaluated locally. 
There are, however, global interactions among these op- 
timizations. The search for reconvergent paths should 
be extended to include those paths not found by the 
local search. As well, realizing a pair of reconvergent 
paths within a single lookup table may depend upon 
the replication of logic at multiple fanout nodes. 

There are cases where the optimizations requiring 
replication of logic at different fanout nodes may be mu- 
tually exclusive. A computationally tractable method 
of determining which set of replications at  fanout nodes 
will result in the minimum number of lookup tables for 
the entire network is needed. 
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