
Chortle-crf Fast Technology Mapping for
Lookup Table-Based FPGAs

Rob er t Francis) Jonathan Rose) Zvon ko Vr anesi c

Department of Electrical Engineering, University of Toronto, Canada
/

Abstract
A new technology mapping algorithm for lookup table-
based Field Programmable Gate Arrays (FPGA) is pre-
sented. The major innovation is a method for choosing
gate-level decompositions based on bin packing. This
approach is up to 28 times faster than a previous ex-
haustive approach. The algorithm also exploits recon-
vergent paths and replication of logic at fanout nodes
to reduce the number of lookup tables in the circuit.

The new algorithm is implemented in the Chortle-crf
program. In an experimental comparison Chortle-crf
requires 14 % fewer lookup tables than Chortle [FranSO]
and 10 % fewer lookup tables than mispga [MurgSOa]
to implement a set of benchmark networks.

Chortle-crf can also implement a network as a cir-
cuit of Xilinx 3000 series Configurable Logic Blocks
(CLBs). To implement the benchmark networks as cir-
cuits of CLBs Chortle-crf requires 12 % fewer CLBs
than mis-pga and 22 % fewer CLBs than XNFOPT
[XiliSS]. In these experiments Chortle-crf was an aver-
age of 68 times faster than mis-pga and 30 times faster
than XNFOPT.

1 Introduction
Field Programmable Gate Arrays (FPGAs) are a re-
cent innovation in Application Specific Integrated Cir-
cuits (ASICs) that provide both large scale integra-
tion and user-programmability [Hsie88] [Ahrego]. The
user-programmability of FPGAs can dramatically re-
duce ASIC turn-around time and manufacturing costs.

An FPGA consists of an array of programmable logic
blocks and a programmable routing network. An im-
portant class of FPGAs consists of those that use logic

'This work was supported by NSERC Operating Grants
#URF0043298 and #OGPOoOS280, a research grant from Bell-
Northern Research, and a research grant from the ITRC of On-
tario.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.

blocks containing lookup tables, such as the first com-
mercial FPGA [Cart86]. Moreover, recent studies in
FPGA architectures have suggested that lookup tables
are an are&efficient method of implementing combina-
tional functions [RoseSO]. A K-input lookup table is
a digital memory with K address lines and a one-bit
output. This memory contains 2K bits and is capable
of implementing any Boolean function of K input vari-
ables. i

This paper presents a new algorithm for lookup t a
ble technology mapping which is implemented by the
Chortle-crf program. Chortle-crf converts a combina-
tional network of ANDs, ORs, and NOTs into a circuit
of lookup tables where every lookup table has K or fewer
inputs. The goal is to minimize the total number of K-
input lookup tables in this circuit. For example, the
network in Figure l a can be implemented by the circuit
of three 5-input lookup tables shown in Figure lb . The
dotted boundaries indicate the functions implemented
by each lookup table. Note that one of the lookup ta-
bles uses only 4 of the available 5 inputs. All examples
in the remainder of this paper will assume that K is
equal to 5.

2 Background
Technology mapping produces a circuit that implements
a combinational network using a restricted set of circuit
elements. Early work in technology mapping, such as
SOCRATES [Greg861 and the work by Kahrs [Kahr86],
focused on circuits created from standard cell libraries.
An important advance in library-based technology map-
ping was the introduction of dynamic programming by
Keutzer [Keut87]. Other library-based technology map-
pers include mid1 [Detj87] and McMAP [Lisa87].

A lookup table of K-inputs can implement 22K differ-
ent Boolean functions of K variables. For values of K
greater than 3 the library required to describe a K-input
lookup table becomes impractically large and therefore
technology mapping algorithms that deal specifically
with lookup tables are required [FranSO]. Two pre-
viously reported lookup table technology mappers are
Chortle [FranSO] and mispga [MurgSOa].

The Chortle technology mapper presented in [FranSO]
uses an exhaustive search to find the optimal gate-
level decomposition of every node in a fanout-free tree.
However, the partitioning of the original network into

28th ACM/IEEE Design Automatipn Conference@

1991 ACM 0-89791-395-7/91/0006/0227 $1.50
Paper 15.1

227

Authorized licensed use limited to: The University of Toronto. Downloaded on July 19,2021 at 02:29:53 UTC from IEEE Xplore. Restrictions apply.

v
a) combinational network

b) circuit of 5-input lookup tables
Figure 1.

fanout-free trees precludes optimizations that exploit
reconvergent paths and replication of logic at fanout
nodes.

The mis-pga technology mapper produces a circuit of
lookup tables as an intermediate result [MurgSOa]. It
initially performs a non-optimal decomposition of the
combinational network and then focuses on a covering
problem to reduce the number of lookup tables in the
circuit. The covering problem does allow optimizations
that exploit reconvergent paths and replication of logic
at fanout nodes.

3 The Chortle-crf Algorithm
A major innovation in Chortle-crf is the application of
bin packing to choosing gate-level decompositions. Two
other important features are the exploitation of recon-
vergent paths and replication of logic at fanout nodes
to reduce the number of lookup tables in the circuit.

The principal technique used by Chortle-crf is dy-
namic programming. The combinational network is tra-
versed beginning at the primary inputs and proceeding
toward the primary outputs. At each node a circuit
implementing the cone extending from the node to the
primary inputs of the network is constructed. This cir-
cuit is referred to as the Best Circuit implementing the
node.

Chortle-crf has two goals when constructing the Best
Circuit. The first is to minimize the number of lookup
tables in the circuit and the second is to maximize the
number of unused inputs at the output lookup table.
These unused inputs are important because they may
allow subsequent nodes to be implemented without the

L---i---”
a) without gate decomposition

b) with gate decomposition
Figure 2.

addition of extra lookup tables.

3.1 Bin Packing Approach
to Gate Decomposition

The key to constructing the Best Circuit implementing
a node is finding the decomposition of the node that
reduces the number of lookup tables in the final circuit.
For example, five lookup tables are required to imple-
ment the tree shown in Figure 2a. In Figure 2b, the
single OR node of Figure 2a has been decomposed into
two OR nodes, which allows the tree to be implemented
with just two lookup tables.

The construction of the Best Circuit for a node de-
pends upon the Best Circuits that implement the node’s
immediate fanin nodes. The order of the network
traversal ensures that these immediate fanin circuits
have been previously constructed. The output lookup
tables of the fanin Best Circuits will be referred to as
the fanin lookup tables. Figure 3a shows an OR node
and its five fanin lookup tables.

The goal of finding the best decomposition is attained
by constructing a tree of lookup tables that implements
both the functions of the fanin lookup tables and a
decomposition of the node. This tree must contain
the minimum number of lookup tables and the output
(root) lookup table must have the maximum number of
unused inputs possible without increasing the number
of lookup tables in the tree.

The tree of lookup tables is constructed in two steps.
First, a two-level decomposition is constructed and then
this decomposition is converted into a multi-level de-
composition. Figures 3b and 3c illustrate the two-level
and multi-level decompositions constructed from the

Paper 15.1
228

Authorized licensed use limited to: The University of Toronto. Downloaded on July 19,2021 at 02:29:53 UTC from IEEE Xplore. Restrictions apply.

---r

b) two-level decomposition

c) multi-level decomposition
Figure 3.

fanin lookup tables of Figure 3a.

3.1.1 Two-Level Decomposition

The two-level decomposition consists of a single first-
level node and several second-level nodes. In Figure 3b
the 3-input OR node is the first-level node and its three
inputs are the second-level nodes. Each second-level
node implements the operation of the node being de-
composed over a subset of one, some, or all of the fanin
lookup tables. In Figure 3b there are three second-level
nodes each of which is implemented by a lookup ta-
ble. The first-level node is not yet implemented by any
lookup tables, however, it will be implemented when the
two-level decomposition is converted into a multi-level
decomposition.

The two-level decomposition is constructed using a
bin packing algorithm. In general, the goal of bin pack-
ing is to find the minimum number of bins into which
a set of boxes can be packed [Gare79]. In this case, the

F i r s t F i t Decreas ing
{
start with an empty bin list

while there are unpacked boxes
t
i f the larges t unpacked box w i l l not f i t
within any b in i n the b in list

create an empty bin and
add it t o the end of the bin list
1

pack the larges t unpacked box i n t o the
f i r s t b i n it w i l l f i t within
1

1

Figure 4: Pseudo code for First Fit Decreasing

bins are the second-level lookup tables and the boxes
are the fanin lookup tables. The capacity of each bin
is K, and the size of each box (fanin lookup table) is
its number of used inputs. In Figure 3a the boxes have
sizes 3, 2, 2, 2, and 2. In Figure 3b the final contents
of the packed bins are 5, 4, and 2. The bin packing
algorithm used is First Fit Decreasing as outlined in
Figure 4 [Gare79].

3.1.2 Mult i-Level Decomposition

The decomposition tree is completed by implementing
the first-level node with a tree of lookup tables. The
inputs to the leaf lookup tables of this first-level tree
are the outputs of the second-level lookup tables of the
two-level decomposition. Any second-level lookup ta-
ble with unused inputs can be used to implement a
portion of the first-level tree, thereby reducing the to-
tal number of lookup tables in the decomposition tree.
Figure 3c illustrates the multi-level decomposition con-
structed from the two-level decomposition of Figure 3b.

The detailed procedure for converting the two-level
decomposition into a multi-level decomposition is out-
lined in Figure 5 .

The final multi-level decomposition can be shown to
be optimal if the network is a fanout-free tree and the
value of K is less than or equal to 5 [FranSl]. For net-
works partitioned into fanout-free trees the bin packing
approach is up to 28 times faster than the previous ex-
haustive search approach [FranSO], yet it produces cir-
cuits with the same number of lookup tables. This im-
provement in speed makes it practical to consider opti-
mizations exploiting reconvergent paths and replication
of logic at fanout nodes, as discussed in the following
sections.

Paper 15.1
229

Authorized licensed use limited to: The University of Toronto. Downloaded on July 19,2021 at 02:29:53 UTC from IEEE Xplore. Restrictions apply.

MultiLevel
i
vhile there is more than one unconnected bin

if there are no free inputs among the
remaining unconnected bins

create an empty bin and
add it to the end of the bin list

{

{

1

connect the most filled unconnected bin to
the next unconnected bin with a free input
1

1

Figure 5: Pseudo code for multi-level conversion

3.2 Exploiting Reconvergent Paths
It is possible to exploit local reconvergent paths to find
a better circuit implementing a node. The following
discussion uses the terminology of the previous section,
where the fanin lookup tables are referred to as boxes
and the second-level lookup tables are referred to as
bins.

If two boxes share the same input, then there exists
a pair of reconvergent paths. If the total number of
distinct inputs to these two boxes is less than or equal to
K, then it is possible to pack the two boxes into one bin.
When these two boxes are packed into the same bin, the
volume occupied is the total number of distinct inputs,
which is less than the sum of the boxes' individual sizes.
Figure 6a shows a pair of boxes that share an input and
Figure 6b shows the pair of reconvergent paths realized
within a bin.

By merging the two boxes and realizing the pair of re-
convergent paths within a single lookup table, a smaller
portion of the bin is occupied. This may lead to a supe-
rior bin packing, which in turn may lead to a superior
Best Circuit.

However, two boxes can only be merged if they are
packed into the same bin. The two boxes can be forced
into the same bin by merging them before the bins are
packed. Forcing these two boxes into one bin may inter-
fere with the bin packing algorithm and actually result
in an inferior packing. To find the Best Circuit, both the
packing with the forced merge and the packing without
the forced merge need to be considered.

A further complication is that more than one pair
of reconvergent paths may terminate a t the node. To
find the Best Circuit, Chortle-crf begins by finding all
pairs of local reconvergent paths. For every possible
combination of these pairs, including none, a circuit is
constructed by first merging the respective boxes of the

a) fanin lookup tables with shared input
-1 1- - -1 - . .

V I 1 I

b) realized reconvergent paths
Figure 6.

chosen pairs and then proceeding with the bin pack-
ing. The circuit with the fewest lookup tables (and the
greatest number of unused inputs at the output lookup
table) is retained as the Best Circuit. This realization of
reconvergent paths is a greedy local optimization that
is considered at every node as the network is traversed.

In our experiments with the MCNC benchmark net-
works the largest number of reconvergent pairs a t any
one node has been found to be six pairs. The bin pack-
ing approach is fast enough to make the search of all
possible combinations of these pairs practical.

3.3 Replication of Logic
at Fanout Nodes

The previous version of Chortle partitions the combina-
tional network into a set of fanout-free trees [FranSO].
This forces every fanout node to be explicitly imple-
mented as the output of a lookup table, and allows these
nodes to be treated as primary inputs to the rest of the
network.

I t is possible to implement the fanout nodes implic-
itly inside lookup tables, which requires the replication
of some logic a t a fanout node. This replication may de-
crease the total number of lookup tables in the circuit
implementing the network. For example, in Figure 7a,
three lookup tables are required to implement the net-
work when the fanout node is explicitly implemented.
In Figure 7b, the AND gate implementing the fanout
node is replicated and only two lookup tables are re-
quired to implement the network.

When the dynamic programming traversal of the net-
work encounters a fanout node the Best Circuit imple-
menting the fanout node is constructed. At this point

Paper 15.1
230

Authorized licensed use limited to: The University of Toronto. Downloaded on July 19,2021 at 02:29:53 UTC from IEEE Xplore. Restrictions apply.

a) no replicated logic

Network 11

b) with replicated logic
Figure 7.

Cho

two options are considered. The fanout node can be ei-
ther explicitly implemented, or implicitly implemented.
If the fanout node is explicitly implemented it is treated
as a primary input to the rest of the network. If it is
implicitly implemented, a replica of the function of the
output lookup table is made for each fanout edge. This
replica replaces the fanout node as the source of the
edge.

Every path starting with an edge from a fanout node
will eventually reach another fanout node or a primary
output of the network. These subsequent fanout nodes
and primary outputs will be referred to as the visible
nodes.

To determine if the replication is worthwhile
Chortle-crf solves a series of subproblems. For each
visible node the Best Circuit implementing the visible
node is constructed twice; once with the replication and
once without the replication. Each subproblem is itself
solved using Chortle-crf with the assumption that any
remaining fanout nodes encountered in these subprob-
lems are explicitly implemented and can therefore be
treated like primary inputs. The bin packing approach
is fast enough to make solving these subproblems prac-
tical.

After the subproblems have been solved the total
number of lookup tables required to implement the vis-
ible nodes both with and without the replication are
known. If the total number of lookup tables is reduced
by the replication, then the replication is retained. The
replication of logic is considered at every fanout node as
it is encountered by the dynamic programming traversal
of the network.

lookups

6
19
21
27
31
55
59
64
73
80
86

120
116
120
74

189
212
195
558
952

3057

lookups

8
11
30
31
31
56
72
64
40
82

103
80

129
128
66

200
243
235
765

1016
3390

z4ml
misexl
vg2
5xpl
count
9symml
9sym
apex7
rd84
e64
C880
apex2
alu2
duke2
(2499
rot
apex6
alu4
apex4
des
total

-cr
lookups

9
20
24
31
45
59
65
71
76
95

110
123
121
136
164
207
219
219
600

1060
3454

9
20
24
34
47
63
69
72
76
95

115
123
131
138
166
219
232
238
603

1073
3547

e-crf
-cf

lookups

9
19
23
34
40
62
67
71
74
80

112
121
127
126
158
208
230
227
579

1050

3417

Table 1: Results for K = 5

4 Results
To evaluate Chortle-crf a series of experiments were
performed on networks from the MCNC logic synthe-
sis benchmark suite. Four experiments were performed
on each network:

-c using only the constructive bin packing approach
-cr using the reconvergent optimization
-cf using the replication optimization

-crf using both reconvergent and replication

The first step in the experimental procedure was
technology independent logic optimization using the
mid1 logic optimizer with the standard script [Bray86].
Chortle-crf was then used to implement the networks as
circuits of 5-input lookup tables. Note that Chortle-crf
is capable of implementing networks as circuits of K-
input lookup tables for values of K from 2 to 10.

Table 1 records the number of 5-input lookup tables
required to implement the networks in each of the four
experiments. The reconvergent optimization reduced
the total number of lookup tables required to imple-
ment the networks by 2.7 % , and the replication opti-
mization reduced the total number of lookup tables by
3.7 %. Combining both optimizations reduced the total
number of lookup tables by 14 %.

The reduction achieved when using both optimiza-
tions together often exceeds the sum of the individual
reductions. This occurs when reconvergent paths that
cross fanout nodes are found and realized within a single

Paper 15.1
231

Authorized licensed use limited to: The University of Toronto. Downloaded on July 19,2021 at 02:29:53 UTC from IEEE Xplore. Restrictions apply.

Network Chortle-crf
-c

z4ml
misexl
vg2
5xpl
count
9symml
Ssym
apex7
rd84
e64
C880
apex2
alu2
duke2
c499
rot
apex6
alu4

des

total

apex4

Table 2: CLB Results

CLBs

5
14
20
23
32
50
52
48
52
48
75
94
94
88
84

134
169
165
457
714

2418

-
-crf

CLBs

3
14
18
20
27
41
42
42
53
54
69
93
83
89
50

131
161
138
448
743

2319

- -

- -
-

7
10 -
21 25.6
23 45.5
28 -
43 -
59 -
50 117.3
32 65.1
61 -
82 -
70 -

102 -
105 357.1
50 137.5

153 844.8
191 1376.8

lookup table. A dramatic example is the network C499,
where using both optimizations reduces the number of
lookup tables by 55 %.

As an intermediate result the mis-pga technology
mapper produces a circuit of 5-input lookup tables
[MurgSOa]. The sixth column of Table 1 records the
number of 5-input lookup tables in the circuits produced
by mis-pga [MurgSOb]. In total, Chortle-crf required
10 % fewer lookup tables than mispga to implement
the benchmark networks.

6
12
20
19
32
56
52
51
38
65

101
102
91
99

121
166
198

4.1 Xilinx CLBs
The Xilinx 3000 series of FPGAs uses lookup tables to
implement combinational logic [HsieSS] . These devices
contain an array of Configurable Logic Blocks (CLBs).
Each CLB can implement one 5-input lookup table or
two 4-input lookup tables as long as the total number
of distinct inputs to the CLB is less than or equal to 5.

A circuit of CLBs can be derived from each circuit of
5-input lookup tables by using one CLB to implement
each lookup table. The number of CLBs can be reduced
by finding pairs of lookup tables that fit inside a sin-
gle CLB. Finding the maximum number of such pairs
can be restated as a Maximum Cardinality Matching
problem [MurgSOa] [Gibb85]. Table 2 records the num-
ber of CLBs in the circuits derived from the previous
Chortle-crf experiments.

Note that using only the replication optimization can
increase the number of CLBs in the derived circuit, even
when the optimization reduces the number of lookup

3
14
18
20
27
41
42
42
53
54
69
93
83
89
50

131
161
138

Network

0.8
0.7
0.6
3.2
2.0

59.1
62.9

2.9
15.4

1.9
12.6
34.9
56.3
9.1

15.9
14.0
25.3

178.1

z4ml
misexl
vg2
5xpl
count
9symml
Ssym
apex7
rd84
e64
C880
apex2
a h 2
duke2
c499
rot
apex6
alu4
su bt o t a1

apex4
des

5
14
19
20
31
42
44
45
52
48
70
90
86
87
84

129
161
144
451
695

total

7
14
21
23
32
50
56
49
53
54
94
97
98
91
96

144
169
174
463
797

- 528
- 988

1931.5
15831.1

189 I - 11 232
rn

296.5
298.2
299.7
301.1
301.9
901.2
305.1
304.6
303.2
901.5

1809.4
909.7
907.8
903.6

1847.0
1811.4
1822.6
1849.4

Table 3: CLB Results

tables. The replication of logic a t a fanout node may
increase the number of inputs used at some lookup ta-
bles thereby precluding some pairings of lookup tables
into CLBs and reducing the maximum number of pairs
that can be found. If the reduction in the number of
pairs exceeds the reduction in the number of lookup ta-
bles then the replication will result in a net increase in
the number of CLBs.

Two other logic synthesis systems capable of im-
plementing networks as circuits of CLBs are mis-pga
[MurgSOa] and the Xilinx proprietary design system
[XiliSS]. Chortle-crf can be compared to these systems
on the basis of the number of CLBs in the final cir-
cuits and execution time. Table 3 records the number
of CLBs required to implement the benchmark networks
using Chortle-crf, mispga and Xilinx software. In to-
tal, Chortle-crf required 12 % fewer CLBs than mis-pga
and 22 % fewer CLBs than XNFOPT to implement the
benchmark networks.

The table also records the execution times for
Chortle-crf on a Sun 3/60 and mispga on a VAX 8800
[MurgSOa]. In the Xilinx design system technology
mapping is performed by the two programs XNFOPT
and XNFMAP [Xili89]. Note that XNFOPT will run
indefinitely and in these experiments limits were placed
on its execution time. The seventh column of Table 3
records the total execution time of the two programs
on a Sun 3/60. It should be noted that by conservative

Paper 15.1
232

Authorized licensed use limited to: The University of Toronto. Downloaded on July 19,2021 at 02:29:53 UTC from IEEE Xplore. Restrictions apply.

estimate a VAX 8800 is twice as fast as a Sun 3/60.
Taking into account the relative speed of the Sun 3/60
and the VAX 8800, Chortle-crf is an average of 68 times
faster than mis-pga and 30 times faster than XNFOPT.

5 Conclusions
The bin packing approach to gate decomposition de-
scribed in this paper is up to 28 times faster than a pre-
vious exhaustive search approach. The improved speed
of gate decomposition makes it practical to consider 10-
cal optimizations that exploit both reconvergent paths
and replication of logic a t fanout nodes.

Using both of these optimizations, Chortle-crf re-
quired 14 % fewer 5-input lookup tables than Chortle
[FranSO] and 10 % fewer lookup tables than mis-pga
[MurgSOa] to implement a set of benchmark networks.

Chortle-crf is also capable of implementing networks
as circuits of Xilinx 3000 series CLBs. To implement the
benchmark networks as circuits of CLBs, Chortle-crf re-
quired 12 % fewer CLBs than mis-pga and 22 % fewer
CLBs than XNFOPT. On average, Chortle-crf was 68
times faster than mis-pga and 30 times faster than
XNFOPT.

6 Future Work
Currently, the optimizations exploiting reconvergent
fanout and replication of logic are evaluated locally.
There are, however, global interactions among these op-
timizations. The search for reconvergent paths should
be extended to include those paths not found by the
local search. As well, realizing a pair of reconvergent
paths within a single lookup table may depend upon
the replication of logic at multiple fanout nodes.

There are cases where the optimizations requiring
replication of logic at different fanout nodes may be mu-
tually exclusive. A computationally tractable method
of determining which set of replications at fanout nodes
will result in the minimum number of lookup tables for
the entire network is needed.

[Fran90] R. J. Francis, J. Rose, K. Chung, “Chortle: A
Technology Mapping Program for Lookup Table-
Based Field Programmable Gate Arrays,” Proc.
27th DAC, June 1990, pp. 613-619.

R. J. Francis, ”Technology Mapping for Lookup
Table-Based FPGAs,“ Ph.D. Thesis in preparation,
University of Toronto, Department of Electrical En-
gineering.

[Frangl]

[Gare79] M. R. Garey, D. S . Johnson, “Computers and
Intractability, A Guide to the Theory of NP-
Completeness,” W. H. Freeman and Co., 1979, pp.
124- 129.

[Gibb85] A. Gibbons, “Algorithmic Graph Theory,” Cam-
bridge University Press, 1985, pp. 125-133.

[Greg861 D. Gregory, et al., “Socrates: a system for au-
tomatically synthesizing and optimizing combina-
tional logic,” Proc. 23rd DAC, June 1986, pp. 79-85.

H. Hsieh, et al., “A 9000-Gate User-Programmable
Gate Array,” Proc. 1988 CICC, May 1988, pp. 15.3.1
- 15.3.7.

M. Kahn, “Matching a parts library in a silicon
compiler,” IEEE ICCAD, 1986, pp. 169-172.

K. Keutzer, “DAGON: Technology Binding and Lo-
cal Optimization by DAG Matching,” Proc. 24th
DAC, June 1987, pp. 341-347.

[Hsie88]

[Kahr86]

[Keut87]

[Lisa871 R. Lisanke, F. Brglez, G. Kedem, “McMAP: A
Fast Technology Mapping Procedure for Multi-Level
Logic Synthesis,” Proc. ICCD, Oct. 1988, pp. 252-
256.

[MurgSOa] R. Murgai, et al., “Logic Synthesis for Pro-
grammable Gate Arrays,” Proc. 27th DAC, June
1990, pp. 620-625.

[MurgSOb] R. Murgai, private correspondence.

[RoseSO] J. Rose, R. J. Francis, D. Lewis, P. Chow, “Architec-
tures of Field-Programmable Gate Arrays: The ef-
fect of Logic Block Functionality of Area Efficiency,”
IEEE Journal of Solid-state Circuits, Vol. 25, No.
5, Oct. 1990, pp. 1217-1225.

[Xili89] XACT LCA Development System, Vol. 11, Xilinx
Inc., 1989.

References
[Ahrego] M. Ahrens, et al., “An FPGA Family Optimized for

High Densities and Reduced Routing Delay,” Proc.
1990 CICC, May 1990, pp. 31.5.1-31.5.4.

(Bray861 R. Brayton, et al., “Multiple-Level Logic Optimiza-
tion System,” Proc. ICCAD, Nov. 1986, pp. 356-
359.

W. Carter et al., “A user Programmable reconfig-
urable gate array,” Proc. CICC, May 1986, pp 233-
235.

[Cart861

[Detj87] E.Detjens et. al, “Technology Mapping in MIS”,
Proc. ICCAD 87, Nov 1987, pp. 116-119.

Paper 15.1
233

Authorized licensed use limited to: The University of Toronto. Downloaded on July 19,2021 at 02:29:53 UTC from IEEE Xplore. Restrictions apply.

