Technology Mapping for Heterogeneous
FPGAs

Jianshe He and Jonathan Rose
Department of Electrical and Computer Engineering,
University of Toronto, Toronto, M5S 1A4, Canada

October 16, 1997

Abstract

Truly heterogenous FPGAs, those with two different kinds of logic block, don’t
exist in the commercial world in part because logic synthesis for them is difficult. The
difficulty arises because FPGAs are pre-fabricated, and so the ratio of the number of
each type of block is fixed, which requires a constraint on the mapping that is not
present for either homogenous FPGAs or ASICs.

This paper presents a general approach for technology mapping into heterogenous
lookup-table based FPGAs. It is applied both at the boolean network node level and
at a more global level across a collection of mapped sub-circuits. This latter portion
of the algorithm is optimal, and is applicable to any heterogenous FPGA, not simply
those based on lookup tables.

In comparison to a reasonably obvious alternative approach (adjusting the output
of an homogenous mapping algorithm) the new algorithm achieves, depending on the
heterogenous architecture, an average improvement of up to 48% over a large set of
benchmark circuits.

1 Introduction

As Field-Programmable Gate Arrays (FPGAs) become more accepted and integral to the
digital design process, there will be a strong drive to produce faster and higher-density
devices. One architectural dimension that needs to be explored for its speed and density
benefits is that of heterogenous FPGAs which employ more than one basic kind of logic
block. Several commercial FPGAs employ limited forms of heterogenous structures: the
Actel Act-2 [Ahre90] has separate combinational and sequential logic blocks. The Xilinx
4000 logic block [Hsie90] consists of two 4-input lookup tables (4-LUTs) hard-wired to a
single 3-LUT. While the latter device has two different sizes of LUT, it is not a purely
heterogenous device because of the hard-wired connections between the blocks. As such,

synthesis algorithms for the Xilinx 4000 do not apply to the kind of architectures discussed
in this paper.

This paper presents a technology mapping algorithm for heterogeneous FPGAs that
contain two sizes of LUT which are completely independent in the routing structure. This
tool is useful both for exploration of different variations of heterogenous architectures and
in the design process for the use of such chips.

We are motivated to investigate heterogenous structures because a selection of logic
blocks may permit more area-efficient implementations of two different kinds of logic block.
For example, consider the boolean networks illustrated in Figure 1 and Figure 2 and their
respective implementations using 4-LUTs and 3-LUTs. The two most important area mea-
sures of an FPGA architecture are the total number of pins on the logic blocks in the circuit,
and the total number of lookup table bits in all of the logic blocks. The network in Figure 1
is more area-efficient when implemented using 4-L.UTs, as it requires fewer bits and pins.
The network in Figure 2, however, is more efficient using 3-LLUTs in terms of the number of
pins and bits required. We expect that most circuits contain mixtures of different types of
networks such as those pictured in these examples, and so could benefit from an architecture
that provides two types of logic blocks.

Example Implemented Implemented
Network Using 4-LUT Using 3-LUTs

e 23

+
| ! v
y y
#Pins =5 #Pins = 8
#Bits = 16 #Bits = 16

Figure 1: Example in which 4-LUT is Superior

A barrier to the use of heterogeneous FPGAs is the difficulty of synthesizing into such
devices, as discussed in the next section. This paper presents a technology mapping algorithm
for FPGAs which have a mixture of p-input LUTs and s-input LUTs in the ratio of r, where
s<p,and r = %—;, where N, and N; are the number of p-LUTs and the number of s-LUTSs
respectively in the pre-fabricated heterogenous FPGA.

While there has been a great deal of effort applied to the homogeneous FPGA technol-
ogy mapping problem for LUTs [Murg90] [Murg9la] [Fran90] [Fran91la] [Abou90] [Filo91]
[Karp91] [Woo91] [Chen92] [Cong92] [Cong93] [Sawk92], to our knowledge there is no prior
research on the heterogeneous problem. As mentioned above, the Xilinx 4000 logic block is
not a purely heterogeneous structure.

Example Implemented Implemented

Network Using 4-LUTs Using 3-LUTs
abc def abc def

#Pins = 25 #Pins = 20
#Bits = 80 #Bits = 40

Figure 2: Example in which 3-LUT is Superior

This paper is organized as follows: the next section describes the basic notation and
defines the technology mapping problem. Section 3 describes the heterogeneous technology
mapping algorithm, while Section 4 provides experimental comparisons.

2 Notation and Problem Definition

We will consider heterogeneous FPGAs with just two sizes of lookup table. The larger lookup
table will be referred to as the p—LUT, and the smaller as an s-LUT (p > s). An important
architectural parameter of a heterogenous FPGA is the ratio of the number of the two types
of block that are present in the FPGA, r = %—p Note that this ratio is fixed for a given
FPGA, because FPGAs are pre-fabricated. We will assume that r is either an integer, when
r > 1, or the reciprocal of an integer, when r < 1. Thus if r > 1 then there are r s-LUTs
for each p-LUT, and if r < 1 there are % p-LUTs for every s-LUT.

The heterogenous technology mapping problem can be stated as follows: given a boolean
network [Bray90], GG, produce a mapped circuit M, which is a network of p-LUTs and s-
LUTs of equivalent functionality to G. We are concerned with minimizing the size of the
FPGA needed to implement the boolean network. Since r is fixed in a family of heterogenous
FPGAs, the basic unit of size of a heterogenous FPGA is r s-LLUTs and one p—LUT for
r > 1 (we will usually assume r > 1 for the sake of brevity, but similar definitions apply
when r < 1). Hence we wish to minimize the number of these units, which we will call a
supertile.

Figure 3(a) gives an example of supertile with p = 3,s = 2, and r = 2. Figure 3(b) illus-
trates an array of such supertiles. If we define the number of p—LUTSs in the mapped network
M to be N, and the number of s-LUTSs to be N;, then the number of supertiles, Ng,,, is given
by: Nowp = max(N,, [2]) (> 1)

The maximum function makes this a non-linear cost function and hence is difficult to mini-

2-LUT
U 0 U
3-LuT [] a [] 0 [] a

| 2-LuT

SuperTile,p=3,s=2,r=2

@ FPGA = Array of SuperTiles
(b)

Figure 3: Example Supertile and Heterogenous FPGA

mize. For example, if r = 1, then for every p-LUT that is used in M, an s-LUT must be
used by the mapper, or else it is wasted. This is different from standard technology mapping
into an ASIC library, in which a mapper is free to choose any number of each kind of library
element.

It is important to note that Figure 3 displays only the abstraction of a supertile, and is
not meant to speak to the actual positioning or interconnection of the lookup tables. While
this is an important issue, our purpose in this work is to explore the benefits of heterogenous
architectures at the logic level. Should it prove successful, this will motivate subsequent
work on the actual physical design of such an FPGA.

3 A Mapping Algorithm for Heterogeneous FPGAs

To solve the non-linear optimization problem, our general approach is to break it up into
a set of linear optimization problems, each of which is more tractable. The essence of the
approach is that the network is mapped several times, with different constraints each time:
In the first mapping the number of p-LLUTs (N,) in the circuit is constrained to be zero
and the number of s-LLUTs (V) is minimized. In the second mapping, N, is constrained
to be exactly one, and N; is again minimized. This process continues with the fixed value
of N, increasing by one until the value of N, achieved reaches zero. This results in several
mappings. Given the value of r, one of these mappings will result in the minimum number
of supertiles, as defined above, and can be easily determined by calculating N,,, for each
mapping.

The overall flow of the algorithm is as follows: As in [Keut87], it begins by breaking
the boolean network into a forest of fanout-free trees, and each tree is mapped separately.
Each tree is mapped several times as described above, resulting in multiple implementations
for each tree. This is followed by a multi-tree optimization step which selects the set of
mappings, one for each tree, that minimizes the number of supertiles in the entire circuit.
The latter algorithm is optimal.

3.1 Mapping a Single Tree

The principal tree mapping technique used in the algorithm is a generalized version of
dynamic programming [Corn87]. As in dynamic programming for technology mapping
[Keut87], the combinational network is traversed from the inputs of the tree and proceeds
to the root.

At each node, a list of best circuits is constructed, each of which has a different number
of p-LUTs, in the same way as described above for the entire tree. That is, each node is
implemented several times, for N, = 0, 1, 2 and so on, while the number of s-LUTs, N,
is minimized. The circuit list terminates when N; = 0. Each circuit implements the cone
extending from the node to the inputs of the tree.

If the node is a leaf, an s-LUT is used since it is smaller than a p-LUT (by definition)
and can always be changed into a p-LUT later if that is beneficial. For a non-leaf node, a set
of best circuits are constructed from the list of circuits that have already been constructed
on its fanin edges. Figure 4 gives the pseudo-code to illustrate the mapping of a single tree.

MapTree(tree,p,s)

{ Traverse tree from leaves to root, at each node:
{ if node is a leaf
BestList [node] <— s-LUT

else BestList[node] <— MapNode(node)

/* BestList will contain one circuit for each N, & Min(N,) */

}

return(BestList [root])

Figure 4: Pseudo-code of Generalized Dynamic Programming for Mapping a Tree

Figure 5 gives pseudo-code for the mapping of a single non-leaf node. The input is a list
of best circuits (one circuit for each value of N,) for each fanin edge. The output is a similar
list describing the best circuits (with the fewest s-LUTs) for each value of N,,.

Notice that many different combinations of the fanin circuits will lead to a node circuit
that has a fixed value of N,. For example, suppose there are two fanin edges, a and b, to
a node and each of the edges has a list of two circuits, {Co?*, C1"} and {Co", C1°}, where
subscript in each circuit represents its number of p-LLUTs. There are three combinations of
these fanin circuits that may lead to a node circuit with N, = 1: C1* & Cob, or Cpy? & Clb,
or Cy* & Cy. In the last case the p-LUT would be created in the mapping of the node itself;
in the two former cases the p-LLUTs are inherited from the fanins. Note that once a p-LUT
is created it cannot turn back into an s-LUT, because p > s. However, an s-LUT can later
become a p-LUT.

Since it is not known which of the fanin circuits will result in the very best value of N,
every possible combination of the input circuit lists is evaluated, and the best is selected.

While this could result in a large number of combinations, in our experience on a range
of benchmark circuits, the number is tractable. For the worst case the total number of
combinations did not exceed 414,724 and only 13 cases fall in the range 10* — 10° for 40

MCNC benchmark circuits. Over 98.7% of the nodes required fewer than 50 combinations
of input fanin circuits. This happens most likely because we operate on fanout-free trees,
which are typically small.

The outer loop in procedure MapNode is to enumerate each such combination. In each
inner loop iteration in procedure MapNode, the desired number of p-LLUTs is fixed. The
lower limit on this value is the sum of the number of p-LUT's in the immediate fanin circuits.
The loop runs until the number of s-LUTs is reduced to zero.

Inside the inner loop, the following problem is solved: given a fixed number of p-LUTs
to create, N,_create, and a fixed set of mapped fanin circuits, map the current node using
exactly N,_create p-LUTs and the minimum number of s-LUTs.

At this point the algorithm uses a bin-packing strategy similar to [Fran91]. The problem
to be solved is more difficult, however, because there are two kinds of LUTs to pack the logic
into. The following sections describe the bin-packing of the fanin circuits into two different
sizes of bins, and the final construction of the tree at the current node.

MapNode (node)

{ BestList[node]l « empty
For each combination of fanin circuits to node {
1 p_in% total # p-LUTs of immediate fanins
N,_create = Np_n
While (N, # 0) {
/* pack into N,_create p-LUTs and minimum # s-LUTs */
Packing$— BinPack(node, N, _create)

/* make packed LUTs into a tree */
Tree<— TreeForm(Packing)

if Tree best so far with value of N,, record it in BestList[nodel

N, _create = N, _create + 1

Figure 5: Pseudo-code for Mapping a Node

3.1.1 Packing Fanin Lists into Heterogeneous LUTs

Francis’ Chortle algorithm [Fran91] makes use of a bin-packing algorithm to pack the root
LUTs of the fanin circuits and the current node into an optimal tree circuit with the best
possible decomposition of the current node. This is based on the observation that only the
number of used inputs in the LUTSs is important in determining if logic will fit into a LUT.
In [Fran91] the fanin root LUTs correspond to “boxes” to be packed, and the results LUTs
are the receiving “bins”, of size K. We apply the same approach, except that the problem is
more difficult because there are now two sizes of bin, p and s.
An illustration of heterogeneous bin packing is given in Figure 7(a) and 7(b), for N,_create =

2, where p = 5 and s = 4.

The heterogeneous bin packing problem can be stated as follows: Given a number of
p-LUTs to create (N,_create), and the fanin circuits’ root LUTs, pack the fanin root LUTs
into exactly N,_create p-LUTs and a minimum number of additional s-LUTs.

We apply a variation of the first-fit decreasing algorithm: first create the number of p-
LUTs that already exist in the fanin root LUTs. Then sort the remaining fanin root LUT's
(“boxes”) into decreasing order and put it into the first p-LUTs in which it fits. If a new “bin”
is needed, create a p-LUT if N, _creale p-LUTs have not yet been created, and otherwise
create an s-LUT. Figure 6 gives the pseudo-code outline of this packing algorithm. Although
not shown in Figure 6, we also apply the re-convergent fanout optimization described in

[Fran91a].

BinPacking(node, N,_create)

{ BoxList$— fanin root LUTs sorted by decreasing size
N,_in<— number of p-LUTs in BoxList

/* pack p-LUTs into bins of size p because
they will not fit into s-LUTs, by definition */
BinList ¢ N,.in p-LUTs in BoxList
N,_created$— N,iin (N,_created is the number of p-LUTS created)

while (BoxList not empty)
{ box$— largest LUT in BoxList

find first bin in BinList such that
size(bin) + size(box) < capacity(bin)

if such a bin doesn’t exist create a new bin:
{ if (N,_created < N,_create)
{ create a bin of size p
N,_created++

}

else create a bin of size s

}

pack box into bin

}

return (BinList)

}
Figure 6: Pseudo-code for BinPacking

3.1.2 Forming a Tree

After the packing of the fanin root LUTSs is completed, these packed LLUTs are connected to
form a tree to realize the current node and its fanins. The LUTSs are sorted by decreasing
order of number of used inputs and the output of the largest is connected to any unused
inputs in the subsequent bins. The purpose of this procedure is to make the root node have
as many unused inputs as possible. This is beneficial because the unused inputs can be
utilized by subsequent nodes, as described in [Fran91a].

S W
e
[SR
— o
O~

Table 1: Example Mapping Counts for One Tree

If there are insufficient inputs to connect all the LUTs together, then new s-LUTs are
created. Figure 7(c) illustrates the tree forming procedure for the circuit of Figure 7(b).

...................................

Np_Create =2

p=5, s=4

(a) Fanin LUTs (b) Packed Fanin LUTs

(c) LUTs After Tree is Formed

Figure 7: Illustration of Bin Packing and Tree Forming

3.2 Combination of Individual Tree Solutions

After each tree T; has been mapped, the algorithm has produced a set of circuits { C/ }
where ¢ is the tree number, and j is the number of p-LLUTs in the mapped solution for that
tree. For each circuit, C/, let S;: be the number of s-LUT's in tree ¢« with j p-LUTs. Table 1
gives an example of several typical values of S} for p =5 and s = 4.

Recall that the optimization goal is to find the minimum number of supertiles given by:
Ny = max(N,, [NTW), where for Table 1, N, = j and N, = S;

For each tree N, can be easily calculated simply from N, and N, in each mapped
solution, and the best selected. For example, from Table 1, if r = 1, then the solution with
N, =4, Ny = 4 (4 supertiles) table entry is minimal and the corresponding circuit should be
selected. If r = 2, then N, = 3, N; = 6 (3 supertiles) is minimal.

While this is simple for a single tree, the problem becomes more difficult when optimizing
the number of supertiles across a number of trees. It may be that one tree is efficient using
mostly s-LUTs and a second tree is better with mostly p-LUTs. If the number of supertiles
in the trees were optimized individually, as above, this advantage may never be realized,
since the above procedure seeks to balance the s-LLUTs and p—LUTs according to ratio r on
an individual tree basis.

A naive algorithm, however, that evaluates all possible combinations of table entries
across all trees has enormous complexity. If the maximum number of table entries per tree
is m, and there are n trees, then the number of evaluations is m”™ which is intractable. In

So 51 SQ 53 54 55
T 50T 30T 2(Ch) 00T
T T(C%) 2(Ch) 0(C%)
5(Ch) 3 (CT) 2(Ch) 00T
4(C%) 4(C%) 4(C%) 4 (C)
Ty combined 5 (Co) 3(CY) 2 (Cy) 0 (C'3)
with T4 2 (C%) 2 (C*) 2 (C*) 2 (C*)
50T 3(Ch) 20 0(Cy)
0(C%) 0(C%H) 0(C%) 0(C)
M S92 9 7 5 3 2 0
(LU Ty [ys) | (ChoC%) (C1iC%) (CLC?%) (C1C?%) (CT5C%) (CT5C%)

Table 2: Example of Tree Combination

the next section we present an algorithm to solve this problem optimally with complexity

O((m x n)?).

3.2.1 Algorithm for Selection of Tree Mappings

We will first illustrate the basic algorithm on the combination of two trees, which have
the family of solutions {C;'} and {C;?}. Let the number of s-LUTs be Sy', Si', Sp', ...
Skll for the first tree, and Sp?, Si%, S22, ... Sk22 for the second tree, where k; and ks
are integers. When the two trees are taken together, we need to determine MS;'"?, the
smallest number of s-LLUTs for a fixed number of p—LUTs, k, where &k = 0,1,2,...k; + ko
and M S;'"? = Min(Sp'"%?). MS,'“? can be found by summing So' and So*. The value of
M S;'°% is given by Min(So' + 512, Si' + So?). Similarly, for higher values of k, M S;'*
can be determined by finding the minimum sum of all possible pairs of S,' and S,?, for
which k =z + y.

Table 2 gives an example of this calculation for two small trees. The rows labelled
T, and T, provide the values of {S;'} and {S;*}. The next three rows show the possible
combinations that provide the corresponding entries of S;'“%. The final row gives the best
of these combinations (that with the smallest number of s-LUTs). Note that if there is a
tie, the circuit first encountered is chosen.

This algorithm produces the optimal combination of two trees. Proof of the optimality is
omitted due to space limitations. It can extended to multiple trees by combining subsequent
trees, forming, in turn, M S'W293 M G1U2UsL4 , and M S'Y?9--U7 Using this final table,
the optimal number of supertiles can be determined for a given ratio, r, by applying the
above equation for Ny,,. The pairwise comparison of each pair of tables will pessimistically
require no more than every pair being compared, and hence has complexity O((m x n)?),
where m is the total number of possible circuits in all of the trees.

Note that the application of this part of the algorithm is not limited to either lookup
tables or trees, but can be applied to family of solutions for sets of sub-circuits of any type.

4 Experimental Results

In this section we compare the quality of the heterogenous mapping algorithm with the best
alternative approach we could find: a post-processing of the output from a homogenous LUT
mapper.

The latter method works as follows: to map an architecture with a given p, s, and r, the
homogeneous mapper is executed to map into LUTSs of size p. For each LUT produced, let
the number of inputs that are actually used be U (note that not all inputs of every LUT
will be completely used). The LUTs for which ' = p are mapped directly into p—LUTs,
resulting in N, p-LUTs. The LUTs for which U < s, are mapped directly into s-LUTs,
resulting in Ny s-LUTs. In order to achieve the ratio r between Ny and N, the LUTs for
which s < U < p are mapped either as s-LLUTs or p—LUTs depending on the number that
is needed to achieve the balance. Following this, if more p—LUTs are needed (N, < [NT])
then to achieve ratio r, the requisite number is simply converted into p—LUTs because a
p-LUT can implement the function of any s-LUT. If more s-LLUTs are needed to achieve the
balance, then existing p—LUTSs are replaced by a tree of s-LLUTs. We refer to this algorithm
as post-processshomo (PPH). Note that this post-process step only improves the quality of
the heterogenous mapping, never making it worse.

We used the public domain version of Chortle [Fran91] as the basis for comparison since
both the homogeneous mapper and the heterogeneous one use a similar mapping process.
Both the new heterogenous mapper and the PPH mapper were run on 40 MCNC logic
synthesis benchmarks circuits, and for many different values of s and p. The total number
of supertiles obtained for each case was calculated. Note that Chortle was set to exclude its
fanout optimization, as the algorithm presented here does not employ such an optimization,
and we sought to make a fair comparison of the general approach.

Table 3 gives sample results for the heterogenous architecture p = 5,5 = 2, and r = 4.
The first column of this table gives the circuit name, and the second column gives the
supertile count for the PPH algorithm. The third column gives the number of supertiles
using the algorithm described in this paper and the fourth column gives the percentage
difference between the two. For this example, the new algorithm achieves on average 31%
fewer supertiles than the PPH algorithm for this architecture. The running times are usually
a few seconds and not more than a minutes minutes on a SUN Sparcstation 2.

Figure 8 shows how the improvement of the new algorithm over PPH varies as a function
of the ratio, r. This figure plots the percentage improvement, over all 40 circuits, of the
number of supertiles versus ratio r for the 5-LUT/2-LUT combination. Observe that there
is increasing advantage as the number of smaller LUTs in the supertile increases. This
makes intuitive sense: at the extreme when the number s-LLUTs is zero, then the problem
is equivalent to the homogenous case. As the number of s-LUTs increases, the mapping
problem becomes more heterogenous, and the algorithm that is designed directly for that
case becomes significantly superior. For the ratio of 10 for this example architecture, the
average improvement is 48%.

10

Circuit #Supertiles #Supertiles Percentage

Name (PPH) (New Algorithm) | Difference
C1355 33 33 0.0
C432 42 32 -24
C880 48 37 -23
alu2 64 44 -31
alu4d 105 74 -30
apex6 124 79 -36
apex7 37 24 -35
b9 16 13 -19
c8 17 13 -24
cht 29 17 -41
cml150a 8 5 -38
cml5la 4 3 -25
cm85a 6 4 -33
cmb 8 5 -38
count 15 13 -13
example2 43 32 -26
frgl 21 13 -38
frg2 131 86 -34
il 7 5 -29
i6 61 43 -30
i7 88 57 -35
i8 175 112 -36
i9 111 66 -41
k2 138 99 -28
my-adder 22 16 =27

parity 3 3 0
pcler 10 8 -20
pml 7 5 -29
rot 90 68 -24
sct 10 8 -20
t481 3 3 0
terml 21 14 -33
ttt2 23 16 -30
unreg 19 11 -42
vda 76 56 -26
x1 50 34 -32
x2 7 6 -14
x3 133 83 -38
x4 52 35 -33
z4ml 4 3 -25
[total | 1861 | 1278 | -31 |

Table 3: Comparison of Heterogeneous Mapper and PPHo for p =5,s = 2, and r = 4.

11

Improvement % in #Supertiles
of Het over PPH

50.00
45.00
40.00
35.00
30.00
25.00
20.00
15.00
10.00

5.00

0.06

1 1 1
0 5 > 1 2 5 10
Mostly Mostly
p—-LUTs r #s—LUTs s—LUTs
Ggp—tuTs)

Figure 8: Improvement of New Algorithm over PPH as a function of r

5 Conclusions and Future Work

This paper has motivated the problem of technology mapping for heterogenous logic blocks
in FPGAs, and presented an algorithm for its solution. The main features of this algorithm
are its ability to handle heterogenous logic blocks directly through a generally applicable
paradigm, and the optimal solution to the sub-problem of combining solutions from a group
of sub-circuits. The new algorithm achieves average savings up to 48% in area over a post-
process of a homogenous mapper, depending on the particular heterogenous architecture.

This mapping tool has already been used in a study to determine the area-efficiency
advantage of heterogenous FPGAs over homogenous FPGAs. The final version of this paper
will include a reference to a published paper on this subject. (It is excluded now only for
reasons of blind review).

In the future, we will look at mapping heterogenous FPGAs for delay, and use this to
investigate advantages in the tradeoff between speed and area for heterogenous FPGAs.
Other future work includes the investigation of algorithms for FPGAs that use three or
more different types of block, and algorithms for the automatic placement of heterogenous

FPGAs.

References

[Abou90] P. Abouzeid, et al, “ Lexicographical Expression of Boolean Function for Multilevel
Synthesis of High Speed Circuits,” Proc. SASHIMI 90, Oct. 1990, pp.31-39.

12

[Ahre90] M. Ahren, et al, “An FPGA Family Optimized for High Densities and Reduced Routing
Delay,” Proc. 1990 CICC , May 1990, pp.31.5.1 - 31.5.4

[Bray90] R. Brayton, et al, “Multilevel Logic Synthesis,” Proc. IEEE, Vol.78, Feb. 1990, pp.264-
300.

[Chen92] K. Chen, “Logic Minimization of Lookup-Table Based FPGAs,” FPGA’92, 1992, pp.71-
76.

[Cong92] J. Cong, et al, “Graph Based FPGA Technology Mapping for Delay Optimization,” Proc.
FPGA’92, 1992, pp. 77-81.

[Cong93] J. Cong, Y. Ding, “On Area/Depth Trade-off in LUT-Base FPGA Technology Mapping,”
Proc. DAC’93, 1993, pp. 213-218.

[Corn87] D. Corneil, et al, “A Dynamic Programming Approach to the Dominating Set Problem
on k-Trees”, SIAM J. ALG. Disc Meth., Vol.8, No.4, Oct.1987, pp. 535-543.

[Filo91] D. Filo, et al, “Technology Mapping for a Two-Output RAM-based Field Programmable
Gate Array”,Proc. EDACY1, Feb. 1991,pp. 534-538.

[Fran90] R. Francis, et al, “Chortle: A Technology Mapping Program for Lookup Table-Based
Field-Programmable Gate Arrays,” Proc. DAC90, June 1990, pp. 613-619.

[Fran91a] R. Francis, et al, “Chortle_crf:Fast Technology Mapping for Lookup Table_Based FP-
GAs”, Proc. DAC91, June, 1991, pp. 227 - 233.

[Hsie90] H. Hsieh, et al, “Third-Generation Architecture Boosts Speed and Density of Field-
Programmable Gate Arrays,” Proc. 1990 CICC, May 1990, pp. 31.2.1-31.2.7

[Karp91] K. Karplus, “Xmap:A Technology Mapper for Table-Lookup Field- Programmable Gate
Arrays”, Proc. DAC91,June 1991,pp. 240-243.

[Keut87] K. Keutzer, “DAGON: Technology Binding and Local Optimization by DAG Match-
ing”,Proc. DACS87, June 1987, pp. 341-347.

[Murg90] R. Murgai, et al, “Logic Synthesis for Programmable Gate Arrays,” Proc. DAC90, June
1990, pp. 620-625.

[Murg91a] R. Murgai, et al, “Improved Logic Synthesis Algorithms for Table Look Up Architec-
tures,” ICCAD, 1991.

[Sawk92] P. Sawkar and D. Thomas, “Technology Mapping for Table-Look-Up based Field Pro-
grammable Gate Arrays,” Proc. FPGA’92, 1992, pp. 83-88.

13

[Wo091] N. Woo, “A Heuristic Method for FPGA Technology Mapping Based on Edge Visibility,”
Proc. DAC91,June, 1991,

14

