
928 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 8, AUGUST 2002

Automatic Generation of Synthetic Sequential
Benchmark Circuits

Michael D. Hutton, Member, IEEE, Jonathan S. Rose, Member, IEEE, and Derek G. Corneil

Abstract—The design of programmable logic architectures and
supporting computer-aided design tools fundamentally requires
both a good understanding of the combinatorial nature of netlist
graphs and sufficient quantities of realistic examples to evaluate
or benchmark the results. In this paper, the authors investigate
these two issues. They introduce an abstract model for describing
sequential circuits and a collection of statistical parameters for
better understanding the nature of circuits. Based upon this model
they introduce and formally define the signature of a circuit netlist
and the signature equivalence of netlists. They give an algorithm
(GEN) for generating sequential benchmark netlists, significantly
expanding previous work (Hutton et al., 1998) which generated
purely combinational circuits. By comparing synthetic circuits
to existing benchmarks and random graphs they show thatGEN
circuits are significantly more realistic than random graphs.
The authors further illustrate the viabilty of the methodology
by applying GEN to a case study comparing two partitioning
algorithms.

Index Terms—Benchmark, digital circuits, placement.

I. INTRODUCTION

M OST algorithms in computer-aided design (CAD) are
heuristic and the only reasonable evaluation method is

to use benchmark circuits. The design of programmable logic
devices (PLDs) is similarly inexact and benchmarks are needed
to evaluate competing routing and logic structures and to predict
future wiring requirements. However, it is difficult to find such
test circuits, particularly large ones.

Netlists are typically modeled as graphs, which can be char-
acterized by their mathematical and topological properties. Fur-
thermore, many algorithms have different behavior and quality
for different sets of graphs and in fact some problems which are
NP-hard on general graphs are easily solvable for specific graph
subclasses. The goals of this paper are to understand the re-
strictions which are typical for the types of netlist graphs which
occur in practice, characterize these mathematically and statisti-
cally, and generate new graphs which emulate the typical netlist
in terms of their characteristics and behavior.
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In earlier work [1], [2] we used this method to characterize
and generate purely combinational netlists. Other previous
work by Darnauer and Dai [3] generated a random graph
subject to a partition tree following Rent’s Rule [4], with the
goal of studying routability. This method captures empirical
notions of partition hierarchy which we do not attempt to
address here but does not deal with the delay, fanout, and
sequential correctness which we do model. Iwama and Hino
[5] used random modifications of seed circuits to create test
instances for logic synthesis.

In this paper, we extend the previous combinational charac-
terization and generation efforts of [1] and [2] to the more dif-
ficult problem of sequential and hierarchical circuits. We use
the approach illustrated in Fig. 1 to measure the quality of syn-
thetic circuits. Given an industrial benchmark “seed” circuit, we
use our software tools circ to extract its parameterization orsig-
natureandGEN to generate aclonecircuit with the same sig-
nature. For comparison, we generate a random graph with the
same number of nodes, edges, and I/Os, but otherwise uncon-
strained. We place and route all three circuits with an academic
tool VPR [6] and with Altera Corporation’s MaxPlus2 software
[7]. By comparing physical postplacement and routing statistics
we are able to show that our method generates circuits which are
significantly more realistic than random graphs.

Though we use “cloning” as a validation method, we have
used the MCNC circuits [8] to generate typical distributions of
the input parameters toGEN. In fact, the only required parameter
to GEN is the circuit size ; all other unspecified values can be
determined from the default distributions. Users can also define
parameters in terms of other values or using common statistical
distributions using the specification language ofGEN. For ex-
ample, defines that the circuit’s
unit delay will be sampled from a normal distribution with mean

and variance 1.
The structure of this paper is as follows. In Section II, we dis-

cuss combinational and sequential circuit characterization then
formally define the signature of a circuit and signature-equiv-
alence classes of circuits. Section III gives our generation al-
gorithm. In Section IV, we perform the evaluation process just
described. Section V presents an application of our method-
ology to comparing two partitioning algorithms. We conclude
in Section VI and discuss planned future work.

The results here are an amalgamation of several preliminary
papers. The sequential generation algorithm originally appeared
in [9], the formalization of sequential signatures and the equiv-
alence classes of clone circuits in [10], and the application to
partitioning in [11].

0278-0070/02$17.00 © 2002 IEEE



HUTTON et al.: AUTOMATIC GENERATION OF SYNTHETIC SEQUENTIAL BENCHMARK CIRCUITS 929

Fig. 1. Measure circuit quality.

Since the publication of [2], [3], and [12] there has been large
and growing interest in automatic benchmark generation, both
in the realm of equivalence classes of circuits and in Rent-based
approaches. Kapuret al.[13], Ghoshet al.[14], and Harlow and
Brglez [15] addressed various methods for “mutating” seed cir-
cuit through local perturbations in order to effect a circuit with
similar overall structure but differing local connectivity. A spe-
cial session at the 1999 ISCAS conference was also dedicated
to benchmark generation [10], [11], [16], [17]. Stroobandtet al.
[18] extended the Rent-based approach significantly and applied
the results to partitioning problems. Most recently, Pistoriuset
al. [19] classified circuits according to their functional type and
generated and glued both random-logic circuits and parameter-
ized modules such as memories, controllers, and multipliers to-
gether using a Rent’s Rule hierarchy, again with high-density
partitioning as a target application. This work usedGEN as a
subroutine for generating some logical subfunctions.

II. THE SIGNATURE OF A CIRCUIT

Denote by and the number of primary inputs (PI)
and outputs (PO) in netlist , by the number of logic
nodes [four-input lookup tables (LUTs)] and the number
of flip–flops. Then , thesizeof , is .1 We
consider only single-clock synchronous netlists with no bidirec-
tional pins. For any node, is the number of edges
entering . Similarly, is the number of edges leaving

and is x . We assume
that is always bounded by some constant(typically
4), but that is bounded only by . Defining

, i , as the number of nodes in
with fanout , we have thefanout distributionof . The number
of edges in is the sum, over all in , of
(equivalently the sum of ).

The remaining parameters defined on netlistare related to
combinational delay. Because delay can sometimes have subtle
distinctions, we define these more formally.

Definition 2.1: Define theunit delayof a node : If is a PI
or DFF, then is zero. Otherwise, is 1 the

1For various implementation details we equate the number of nodesn with
the number of nets, so primary output nodes (which have no fanout) are not
counted inn. However, this choice is purely accounting.

maximum unit delay of any fanin of. Define as the
maximum, over all nodes in , of .

Definition 2.2: Define thesequential levelof a node . If is
a PI, then is zero. If is a DFF, then is 1 the
level of the D-input of . Otherwise, is the minimum
level over all fanins of . Define as 1 the maximum,
over all nodes in , of .

Definition 2.3: A netlist is combinationalif it contains no
DFF nodes andsequentialotherwise. If is combinational it
must have exactly one level, and all nodessatisfy
. Otherwise, has at least two levels and at least one node at

each level.
Under the restrictions mentioned previously (no combina-

tional cycles or bidirectional I/Os and a single global clock),
both and are well defined.

Definition 2.4: Theshape functionof a combinational netlist
is defined as an integer vector , ,

where is the number of nodes in which have delay.
Definition 2.5: Given a directed edge in a netlist
, define . If

, then is a back edge. If then
and is a forward edge. Otherwise,

is anFF edge, and we must have ,
, and is a DFF node. There are no other cases pos-

sible under the definitions of delay and level.
Definition 2.6: The edges function of a netlist is defined as

an integer vector , , where
is the number of edges in of length .

We can now outline a mechanism to decompose or partition
a netlist into two or more parts. Given and a bipartition
and of the nodes of , create two graphs and induced
by the partition. For every edge where is in
and is in , create a new primary input in for and
a new primary output in for (and similarly for edges
from to ). The netlist graphs and are now disjoint, yet
by identifying or gluing the appropriate nodes, and ,
together we can recreate.

Definition 2.7: Under the decomposition of Definition 2.6,
for an edge , denote as aghost input(GI) in and

as aghost output(GO) in . Define to be that of
and to be that of , supplementing

the previous definitions with that of the new node-types GI and
GO. Along with primary output nodes (PO), we can infer new
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Fig. 2. Abstract model of a three-level sequential circuit.

shape functions , and as
we did for the delay-based shape function on the appropriate
subset of nodes.

Definition 2.8: For netlist and each level, define the
level-netlist to be the subgraph induced by the set of nodes in

which are at level and the edges between them. The partition
of into sequential netlists is itssequential decomposition. A
set of netlists is compatibleif there exists an identification or
gluing of ghost inputs and ghost outputs such that the sequen-
tial and combinational delay of all nodes in the combined circuit
are maintained, and we define the resulting circuit thesequen-
tial compositionof its subcircuits.

Fig. 2 illustrates sequential decomposition into three levels.
It is important to point out that, though this model could appear
to apply only to certain types of circuits which have a pipelined
appearance, it does not actually preclude other views of sequen-
tial connections. Rather, we justdefinesequential levels in this
way. The process of sequential decomposition and composition
is fundamental to both the characterization and the later gener-
ation of sequential circuits.

A. Signature-Equivalence Classes of Clone Circuits

Definition 2.9: The signature of a level-netlist is
composed of , , , , , , , , ,

, , shape[ ], edges[ ], fanouts[ ],
POshape[ ], GOshape[ ], and GIshape[ ]. (A purely combina-
tional end-circuit would be the same with and set
to zero.) The signature of a sequential netlist is defined
by the collective signatures of its sequential decomposition.
For an exact specification the scalar parameters are redundant
given the vector parameters in the signature but are part of the
signature for clarity.

Given the concept of a signature of a netlist, we can now
formally define equivalence classes of netlists.

Definition 2.10: Two netlists areequivalentif they have the
same signature. Given the set of all netlists of any size, we can
then induce a mathematical equivalence class to properly parti-
tion all netlists into equivalence classes under signatures.

Definition 2.11: Given a set of circuits generated to have the
same signature as a given input circuit, we refer to the original

TABLE I
SEQUENTIAL CIRCUIT CHARACTERISTICS FORSELECTED

MCNC CIRCUITS: DESIGN NAME, NODES, IOS, DFFS,
EDGES, BACK EDGES, AND SEQUENTIAL SHAPE

circuit as theseedcircuit and the other members of the equiva-
lence class asclonecircuits.

B. Circuit Characteristics and Empirical Distributions

As part of this work, we used the MCNC circuits [8] to em-
pirially determine the distributions of parameters in the circuit
signature (and some parameters not in the signature) [12]. The
distributions of combinational shape and fanout were discussed
in [1] and both combinational and sequential parameterization
was covered in detail in [12]. This empirical description of the
physical attributes is both interesting in its own right and also
forms the basis of probability distributions used to complete a
partial signature given as input to the circuit generator.

The division of a circuit into its combinational subcircuits in-
troduces the concepts ofsequential shape, the number of nodes
in each successive sequential level. Table I shows sequential
shape, along with scalar parameters of a selection of MCNC
benchmark circuits.

We can make a number of observations with respect to the
complete dataset.

The number of I/Os, which we modeled with a Rent-like
parameterization for purely combinational circuits [1], [12] no
longer holds for sequential circuits. Rather, there is no statistical
correlation between and . For the default profile we thus
use a uniform distribution (between 2 and ) to select if
it is unspecified.

The number of sequential levels is a small value (typically 1
to 3). Recall that a circuit with one sequential level is a combi-
national circuit. Of 78 sequential MCNC circuits, 69 have two
sequential levels, 6 have three levels, and there is one circuit
each of 4, 7, and 8 sequential levels. In all cases we saw, the
majority of the combinational logic lies in the primary (zeroth)
sequential level. We typically see successive sequential levels of
logic having less than half the logic of the preceding level.

The number of flip–flops in a circuit also has low correla-
tion to the amount of logic in the circuit. This is understand-
able, given the designer’s flexibility in trading off logic and
registers (e.g., 1-hot versus encoded state machines). We use a
Gaussian distribution around a constant-deflated square root of
the number of nodes as an approximation. Note that rather than
an arbitrary function, this roughly models Rent’s Rule for the
number of flip–flops as the number of I/Os in a combinational
circuit.
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The number of back edges empirically varies between one
and two times the number of nodes at the first sequential level,
and we model it as such. The details of the empirical distribu-
tions, along with data for all circuits, is available in [12].

C. Extensions to the Sequential Model

With ghost input and output ports now defined, it is worth
pointing out that the sequential model can be recursively gener-
alized to describe arbitrary degrees of hierarchy, rather than just
the flat interface between multiple levels in a simple sequential
circuit.

For example, we can define also a purely combinational cir-
cuit as a hierarchy of combinational subcircuits simply by com-
binational specifications and a compatible GI and GO interface
(without requiring that the circuit have flip–flop or back edges).
In combination with a partitioner this would allow us to form
a partition tree model of an input circuit (i.e., matching a given
Rent parameter).

It would also be interesting to use this mechanism to describe
an interface to other forms of circuits (e.g., memory [20]) or to
deal with circuits at the block diagram level. To some degree
these extensions have already been made by [19] since the pub-
lication of [2] and [9].

The ability to generalize the use of ghost inputs in generation
and outputs would open the door to a more general hierarchical
generation process. In this paper, however, we will restrict our-
selves to simple sequential circuits.

III. T HE ALGORITHM FORSEQUENTIAL GENERATION

In [1], we gave a complete algorithm for generating purely
combinational circuits. The input to the generation algorithm
was the rough equivalent of a combinational circuit signature
(no ghost inputs or outputs). In this section, we extend this algo-
rithm to the more involved case of sequential circuits. The algo-
rithm is presented in two parts: the generation of combinational
subcircuits (with the additions of ghost inputs and outputs) and
the gluing algorithm for sequential circuits.

Since one of our primary applications is to generate good cir-
cuits for FPGA research, our netlist will consist of four LUTs
and DFFs.

As a preview to upcoming sections, Fig. 3 shows a small se-
quential circuit bbtas (left), its signature extracted byCIRCin the
GEN langugage format, and a clone circuit (right) produced by
GEN with that script. For readability, labels are used instead of
back edges.

A. Generating Combinational Subcircuits

Given the combinational signature for a level netlist, we need
to generate a graph (netlist) onnodes and edges, such
that each node is assigned one fanout value from the set rep-
resented by thefanouts, that assigned value corresponds to the
actual fanout of in the graph, combinational delay is well de-
fined for all nodes (i.e., for all fanins of , and at
least one fanin has ), fanin is bounded by

for all nodes, and all fanins to are distinct (i.e., any signal
enters a logic node at most once).

Fig. 3. The MCNC circuit bbtas, a clone produced byGEN script, and theGEN

script used to generate the clone.

Fig. 4. Combinational circuit generation problem.

The parameterization defines a set of disconnected nodes at
each combinational delay level and sets of unassigned edges
and fanouts, as shown in Fig. 4. The goal of the algorithm is
to complete the specific assignment of edges to nodes.

The progress of the algorithm after each step is illustrated in
Fig. 5.

Step 1. Compute Boundaries on Level In- and Out-De-
gree: We initially consider all nodes on the same level as
collapsed to a singlelevel node.The goal of this step is to com-
pute vectors , , , and
for bounds on the fanin (in-degree) and fanout (out-degree) of
delay level in the circuit.

Because GI and GO are special cases for fanout, we need their
locations before fanout assignment. Experiments on industrial
designs show that about 90% of the LUTs which feed a flip–flop
in real circuits have no other outputs so we want to, wherever
possible, assign fanout values of zero to nodes which will have a
single ghost output destined for an FF edge. To accomplish this
goal, we identify the delay location of the ghost outputs
which will eventually feed a flip–flop in Step 1 of the original
algorithm. This allows us to take them into account during the
degree allocation phase. The result of this calculation is to make
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Fig. 5. Example at the conclusion of steps 1–4.

a new vector , available to the degree
calculations of Step 1.

The fanout assignment is iterative: we begin with rough
bounds on the possible level fanin and fanout (i.e., each non-GI,
non-PI final node will need between 2 andfanins and at least
one fanout if it is not a PO or GO) and refine these using a
number of heuristic rules. For example, the out-degree at level

is bounded from above by the sum of the current maximum
in-degrees at succeeding levels less the sum of the minimum
in-degree at succeeding levels, and from below by the number
of nodes at level less the number of primary outputs at level.

To accommodate ghost inputs and outputs, we must take the
following points into account.

1) We assume that nodes at levelwill have a
minimum fanout of zero, rather than one (as per the above
discussion).

2) We allow (but do not require) – nodes
at level to have minimum fanin one rather than two.
Note that we must still allocate at least one nonghost fanin
for each node or it would not (by definition) be in this
subcircuit.

3) We subtract nodes from the maximum fanin
of level to leave room for the incoming back edges.

Step 2. Assign Edges Between Levels:Given the boundaries
from the previous step, we now assign (between all long levels)
all long (nonunit) edges and enough unit edges to meet the min-
imum in and out degree boundary. We first dispose determinis-
tically of the special cases of GI (no fanin) and GO (no fanout)
nodes then similarly assign the required number of “critical”
unit edges at the first and last delay level and enough unit edges
between other levels to allow combinational delay to be well de-
fined, e.g., each node at delay 5 needs at least one input at delay
exactly 4. Then we probabilistically assign all long edges based
on the available fanin and fanout at levels which are the appro-
priate length: draw one value from the distribution and assign it,

then update the distribution accordingly and repeat. Finally, we
deterministically assign enough of the remaining unit-edges to
guarantee each level’s minimum in-degree.

Step 3. Partition the Total Fanout at Each Level:Given the
total out-degree of a level, we now need to divide it into
node out-degrees taken from the fanout set. To do this, we
first calculate target (predicted) fanouts for each level, taking
into account the remaining unassigned unit edges. At each level
, and are used to determine the

number of fanout-0 nodes required. Fanout assignment for the
remaining nodes after the removal of special cases is solved as
an approximate integer-partitioning algorithm (solving the exact
problem is NP-complete).

Step 4. Split Levels Into Nodes:We need to split each
level-node into its individual nodes. This is a trivial
process, except for the need to introducelocality into the final
structure. To introduce the types of local structure which is
empirically found in human-created netlists, we impose a list
ordering on the nodes at each level and allocate the
fanin values assigned to that level probabilistically so as to
spread out the high-fanout nodes across the ordering. In the
edge-connection stage to follow, we will use the ordering to
determine the utility of connecting two nodes with an edge
using their relative orderings as a metric of locality.

This step must now formalize the assignment of GI and GO
designation to individual nodes. Previous steps have tried to
“make room” for the ghost I/Os, so here the allocation is rela-
tively straightforward: we allocate the ghost inputs
randomly and uniformly to the nodes at delay level. Looking
at the data for real circuits, we find that there is no statistical
reason to do otherwise.

We also designate nodes aslatched. These
nodes will eventually be candidates for gluing to a flip–flop. As
much as possible, these will be fanout-0 nodes and will not be
assigned additional GOs. If there are remaining fanout-0 nodes
after this step, we assign additional GOs. All remaining GOs are
kept for a new postprocessing step discussed next.

Step 5. Connect Edges Between Nodes:From the preceding
steps we have a set of edge sources and destinations assigned
to each level, and within the level we know the fanout of each
individual node. The goal here is to assign each edge source
and destination to specific nodes. The first pass connects unit
edges to guarantee that the combinational delay of every node is
well defined. Then the algorithm proceeds probabilistically. For
each sampled nodewith available fanin, we randomly choose

(the locality parameter) different possible fanout edges from
the preceding levels which could attach to it and connect the
one with the closest index to that of. This process continues
until all edges have been connected at both ends. The locality
parameter is an important tuning parameter of the generation
algorithm. By forcing cells with similar indexes to have a higher
connection probability we induce an element of structure to the
design which would not otherwise be present.

Step 6. Remaining GO Assignment:Sequential subcircuits
usually have fewer available edges than fully combinational
circuits, so we use the ghost outputs, in part, to “repair” any
extra zero-fanout nodes which may exist (usually some, but a
small proportion) on the delay level they are assigned to. The
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Fig. 6. Final result of the combinational algorithm.

remaining ghost outputs are not assigned uniformly. We want
to generate more realistic circuits which tend to have a smaller
number of high-fanout nodes to previous levels, rather than
many nodes with a single ghost output. To do this, we choose a
random subset of the nodes on each delay level requiring ghost
outputs, smaller than the number of ghost outputs available,
then assign the ghost outputs uniformly to nodes in the subset.

The overall algorithm yields a circuit as shown in Fig. 6—a
combinational circuit with the correct number of GI and GO
at the required combinational delay levels. In Section III-B, we
will show the sequential composition or “gluing” process which
operates on these subnetlists.

Note that the above algorithm assumes that an exact and com-
plete signature is available. More typically, the user will specify
only a few of the scalar parameters (either exactly or in relation
to other parameters), and the front-end toGEN will create the
remaining parameters from thedefault scriptsalso mentioned
earlier. For example, the number of I/Os to a circuit can be de-
fined as a random variable drawn from a gaussian distribution
around the square-root of the number of lookup-tables, emu-
lating Rent’s Rule with “ ” and overriding the default
distribution.

B. Gluing Subcircuits

The problem of joining subcircuits together into the final se-
quential circuit is essentially one of appropriately matching
the ghost ports between the subcircuits into back-edges and
FF-edges.

When gluing begins, we have a list of subcircuits,
to be connected, sorted by increasing sequential level.

Each subcircuit contains a listGI_list of ghost inputs, a list
FF_outlistof ghost outputs which have been labeled as targeting
a flip–flop (from in the specification), a listGI_list of
other ghost outputs intended for back edges, and a listFF_in-
list of primary inputs in subcircuits at nonzero sequential levels
which will become flip–flops. Each ghost input and output is at-
tached to a node in the subcircuit and inherits the combinational
delay of that node.

We have previously discussed the locality metric in making
combinational connections between nodes in Step 5. For se-

quential gluing, define theindexof a node as an integer pro-
portional to the node’s location in the node list for a given delay
level in any subcircuit (the ordering of the nodes
in delay level , scaled to the maximum width over all com-
binational levels). When edges are connected in Step 5 of the
base algorithm, we probabilistically favor connections between
nodes which have closer indexes, in order to introduce clus-
tering in the circuit. This form of geometric clustering is evi-
dent when viewing pictures of circuits generated by heuristic
graph-drawing packages such asDOT [21].

In order to generate realistic circuits it is important to con-
tinue this process when connecting nodes to flip–flops and back
edges, or we generate circuits with many crossing edges which
are overly difficult to place and route. Thus we continue to use
the node index for sequential gluing.

The matching is constrained by combinational delay and se-
quential levels. We cannot join a nodeat sequential levelto a
node at level , unless is a PI (i.e., intended to become a
flip–flop). We also cannot join a nodeto anynode at a level
beyond without violating the definition of sequential level
on the nodes of . Similarly, we cannot join a ghost output on
a node to a ghost input on a nodeif , without
violating the combinational delay of, and we cannot connect
two ghost outputs attached towith two ghost inputs to , or
we create a duplicate fanin to.

This problem can be solved as a standard weighted bipartite
matching problem (weights arise from locality). However, the

time [22] for weighted matching is too expensive
for the size of netlists we need, so we use a heuristic greedy
version instead. The most important aspect of the operation is
to properly order the connections so as to increase the chances
of finding a good solution. A solution which fails to connect all
possible edges will result inGEN later having to diverge from
its input specification by creating extra flip–flops or by moving
ghost inputs or outputs to different nodes.

Because registered ghost outputs are labeled separately from
the other ghost outputs, the problems of gluing back edges and
gluing FF edges are independent. However, different subcircuits
do “compete” for back edges. We give priority to earlier sequen-
tial levels by processing in the following order (justified in later
detailed discussion):

for is the number of
subcircuits

connect back-edges from , ,
to GI’s of .

connect FF-edges from registered GO
nodes in to PI’s in

end for

The greedy algorithm for gluing edges is described in
Section III-B-I.

1) Gluing Back Edges:The greedy algorithm for gluing
back edges to the ghost inputs of one circuitfrom all other
subcircuits is as follows.

First create a destination list of all ghost inputs in and a
source list of all ghost outputs in the other subcircuits which
are at later sequential levels. Sort both lists by increasingindex
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within decreasingdelay. The purpose of this order is to use up
the highest delay ghost outputs first (because they are less likely
to find a matching ghost input and then require a flip–flop or
movement later) and to match them to the highest delay ghost
inputs with which they are compatible. Given that, we want to
match indexes as well as possible.

Now proceed through the source list in order. Define the
match valueof a source node with a destination node as

if is an invalid edge (by the constraints above), and
, otherwise. We search the destination list for

the first node with lowest match value, which also lines up a
compatible index by the sorting. Note that we do not actually
have to look at the entire destination list; this can be done in

time, using a few additional pointers indexed into the
destination list. Combinational delayis essentially a constant
so the algorithm is fast.

The time required for this gluing phase is dominated by the
sorting, so we need time2 per subcircuit, of which
there is a constant number. Note that “” in this algorithmic
complexity refers to the number of back edges in, which is
typically about 5%–10% of the size of the whole circuit.3

The reason that the main algorithm processes subcircuits in
order of their sequential level is that the earlier levels typically
have both many more nodes and greater combinational delay
and also a more complex overall structure. (Later levels often
reduce to a register-file with only a couple of logic nodes.)

2) Gluing Edges to Flip–Flops:The process for gluing
nodes with ghost outputs labeled as latches to primary inputs
at the next sequential level is more straightforward. For each
adjacent pair of levels, create a source and destination list as
before, sort the lists by index (independent of delay), and line
up nodes directly (the lists are the same size, by the original
specification of the subcircuits). This is an additive factor of

time to the preceding steps, so the entire gluing
algorithm remains time. (In this case, refers to
the number of flip–flops in the circuit which is, in practice, not
the entire size of the circuit.)

Note that the order in which subcircuits are considered is
unimportant, as the connections are independent.

C. Variance and Adherance to Specification

Because the algorithm for generation consists of a number
of heuristics, we can never guarantee that we are able to com-
pletely match an input specification. In general, we find that we
can miss a specification by a couple percent: In assigning 1000
edges to a given edge distribution, it is normal to have 10 to 20
edges be forced to the incorrect length from their exact spec-
ification. Similarly, it is normal to expect a small variation in
delay-shape distribution. None of these is particularly signifi-
cant given that our goal is to generate new and different bench-
marks anyway.

2Due to the fact that the node lists are already sorted, we can reduce this to an
O(n � d) algorithm with appropriate data structures. However, given the tight
constants which exist for sorting algorithms, we believe the constant for doing
this would dominatelogn for all reasonablen, so it is not of practical interest
to do so. The same applies to most (but not all) sorts which occur inGEN.

3This does not change the abstract complexity, but the algorithm runs faster
in practice.

A more significant issue is incompatibility between ghost
input and output shape. This problem is harder to get right, so
rather than forcing incorrect connections the basic algorithm is
allowed to leave some ghost ports unconnected, and we add an
additional postprocessing step to resolve the leftover ports. In
this step, ghost inputs and outputs are moved to suitable can-
didates elsewhere in the subcircuits until matches are found. In
extreme cases (flagged by warnings fromGEN) up to 40% of
back edges can be unresolved before postprocessing, but typi-
cally only 0%–5% of ghost inputs and outputs (which comprise
less than 1% of all edges) remain after the main gluing algo-
rithm. We note that since the underlying problem is NP-com-
plete, to expect otherwise in polynomial time is unrealistic.

D. Software Tools: CIRC and GEN

The algorithms just described, and the source code for them
is available under to the public domain [31]. To date, over 50
different academic and industrial users including Altera, Xilinx,
Actel, and HP have obtained prototype versions ofCIRCandGEN

under academic license.
GEN is able to produce circuits in several different gate-level

netlist formats, including Berkeley BLIF, Actel ADL, Altera
AHDL, Xilinx XNF, and gate-level Verilog. Thus the tools are
of immediate practical value to the community.

IV. V ALIDATING THE QUALITY OF GEN CIRCUITS

As mentioned in Section I, we will test the viability of se-
quentialGEN circuits in a number of different ways.

Our first evaluation relies primarily on generating clone cir-
cuits for known benchmarks and comparing their behavior to
gen clones and to random graphs of the same size. The goals
are to determine the relative viability ofGEN circuits with re-
spect to both random graphs and to existing benchmarks. We do
this using two different tools, a high-quality academic place-
ment toolVPR and a commercial FPGA place and route tool
MAX PLUS2 from Altera Corp. It is important to point out that
the use ofGEN circuits is not restricted to clone generation; this
is simply a method of evaluation.

The second operation is to evaluate the ability of the tool to
meet a given specification and to analyze the variance between
clone circuits in the same equivalence class. For this operation,
we chose a smaller subset of the design set comprising eight
circuits. For each of these eight circuits we generate 100 clones
using different random seeds and compare the resulting clones
for their variation from the seed circuit and each other.

Before dicsussing these results we need to describe how we
generate the random graphs used for comparison.

A. Generating Random Graphs

We generate a random directed graph onnodes and
edges with primary inputs, primary outputs, with
available flip–flops (for breaking combinational cycles, as we
want only synchronous designs) and -bounded fanin. The
algorithm is as follows.

1) Determine the maximumsuch that is less than .
Create a random permutationof size , to represent
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nodes, and join nodes and with an edge,
. This creates a graph on nodes

with edges, where each node is connected to exactly
one other, i.e., a random matching.

2) Now collapse all nodes labeled into a
single node . The result is an node undirected graph
where the degree of each node is exactly(a -regular
graph4 ) and the distribution of graphs generated is guaran-
teed to be uniformly distributed over all-regular graphs
of size .

3) Direct all edges from lower numbered nodes to higher, to
get a directed graph. Randomly label fanin-0 nodes as
PI (similarly fanout-0 nodes as PO). Randomly con-
nect nonlabeled fanout-0 and fanout-0 nodes by new edges
until they are exhausted, then continue randomly connecting
random nodes to random nodes with fanin less than
until the graph contains edges. When it is necessary to
connect a node to a node of a lower number, separate the two
by a flip–flop if one remains to allocate, otherwise search for
an alternate connection that does not involve a back edge.

This process generates a graph with the specified number of
each node type and the specified number of edges. A more stan-
dard definition random graph (i.e., on nodes with each
edge existing with probability ), would not be an interesting
comparison withGEN because it is much too hard to place and
route (e.g., it contains more than edges and a clique on

nodes, almost always).
The graphs generated by the above process could be seen as

a “first pass” version ofGEN that takes fewer parameters into
account. In fact, this algorithm alone would be an improve-
ment over most naive approaches to generating random graphs
for benchmarks. Comparing real circuits to clones and these
random graphs is essentially measuring how far along the scale
from “random” to “real” the currentGENapproach has travelled.
See Fig. 10 for an explicit visual of this scale.

B. Comparing Routing Results

We generated place and route data using 22 industrial bench-
mark circuits from Altera Corporation. For each circuit we gen-
erated both a clone circuit (by extracting the entire signature
with CIRC) and a random netlist with the same number of nodes
and edges. All 66 circuits were then run through each ofVPR

and Altera’sMAX PLUS2 commercial PLD software.
The benchmarks used are between 600 and 1100 logic blocks

(four-input LUTs) and use up to 240 user I/O pins. By typical
industry metrics this is roughly between 2000 and 5000 equiv-
alent “ASIC gates.”

The academic place and route toolVPR uses the model of a
symmetric array of logic blocks, similar to a classic gate-array
or the Xilinx 3000 FPGA architecture [23].VPRallows the archi-
tecture to vary in channel width, and reports the total wirelength
and the maximum channel width required for global routing.

4There are details to deal correctly and exactly with the double and and self-
connections between nodes without sacrificing the uniform distribution, but
these are beyond the current discussion.

TABLE II
ROUTABILITY COMPARISONSBETWEEN ORIGINAL BENCHMARK CIRCUITS,

GEN CLONES, AND RANDOM GRAPHS(“ �” I DICATES A NO-FIT)

In MAX PLUS2, we target an exact commercial programmable
logic device (the Altera 10K20 [7]).

Our results are shown in Table II. The first three columns
show the wirelength of the original circuit, and the percentage
of extra wirelength required first by the clone circuit and second
by the random netlist. The second group of columns show an al-
ternative fitting quality measure, the maximum track-count re-
quired byVPRto achieve a route. InVPRthere is no such thing as
a “no-fit” because track-width are increased to the point where
the circuit finally fits. The final two columns show the per-
centage increase in routing resources used by the clone circuit
and the random circuit when implemented on the PLD. Since
raw line-count information is proprietary, we show only per-
centage change for the commercial part; this is all that is needed
to evaluate the algorithms inGEN.

For our metric of resource usage in the Altera part, we count
the total number of full-horizontal (GH), half-horizontal (HH),
and vertical (GV) lines used by the design in a 10K20, as re-
ported byMAX PLUS2. Because we are using an actual device,
it is possible that a design does not fit (successfully complete
place and route for the fixed resource counts of the part). Though
all original circuits do fit in the commercial part, one of the clone
circuits and 13 of the random graphs did not, and these are in-
dicated by a “” in the table. All of the original (nonsynthetic)
circuits do fit in the device.

The last row of the table indicates the averages for each
column. For the last two columns, the missing data isnot
included in the average, meaning that our summary statistics
are conservative.

In [2] and [12] we also give the definition of a measure quan-
tifying the degree of reconvergent fanout in a circuit between
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0 and 1. By this measure,GEN circuits differ by about 0.19 on
average, while random graphs differ by 0.28 on average.

We find that the clone circuits are harder to place and route
than are the original circuits we took the specifications from,
though a given clone is always dramatically closer to the orig-
inal than the corresponding random graph which is much harder.
On average the clone circuits used 35% more wirelength and
38% more tracks than the original circuit, whereas the random
graphs, even ignoring those which failed entirely to fit in the de-
vice, used 175% more wirelength and 134% more tracks. This is
further reflected in the implementation of the clone and random
circuits on the commercial device where (when they did fit) the
clone circuits used an average of 36% more routing resources
and the random graphs used 151% more routing resources.

Put differently, the random graphs based only on size and
edges are approximately four to five times the variation from the
original benchmark (in terms of place and route metrics) as are
the clone circuits generated using the entire specification. This
provides overwhelming evidence both that the signature cap-
tures significant physical properties of the netlist which cannot
be simulated randomly and that theGEN tool is able to generate
circuits to resemble this signature.

The fact that the circuits do not exactly match the orignal
means primarily that we have not fully captured all possible
parameters with the current definition of circuit signature (or
that to do so is not possible). We believe that a greater amount
of local clustering is required (both in characterization and in
generatioin) and continue to explore methods to provide this.

This experiment compares each of a group of clone circuits
to the seed circuit which shares its signature. In Section V, we
will analyze the behavior when we generate many clones of the
same circuit.

C. Variation Within Equivalence Classes

It is interesting as well to discuss the variation between dif-
ferent circuit clones in the same equivalence class, because it
gives us an idea of the completeness of the signature character-
ization as we have defined it.

In Section III, we measured how different a clone was from
its seed circuit. We used many circuits but only one random
data point for each circuit. Here we will generate many clones
of some specific circuits and measure the distribution of clone
circuits around the seed. In this context, we definebias to be
the difference in wirelength between the seed and the mean of
a large set of clone circuits and thevarianceto be the statistical
variance around the mean for those clone circuits.

The best case forGEN is to achieve low bias and positive but
controlled variance—i.e., the distribution of clones of a seed
circuit is centred on the seed itself, but with enough variance
that we are actually generating different circuits. A high vari-
ance would imply that we are generating close to random graphs
(i.e., the circuits are not really in the same equivalence class).
A “too low” variance would mean we have overspecified the
problem—i.e., the signature actually captures all properties of
the circuit and we basically echo the same circuit back as a
clone. Bias most likely indicates a missing issue either in the
parameterization or in the generation algorithm.

Fig. 7. Typical distribution of wirelength around the mean for 100 circuits in
an equivalence class (ALTR03).

Fig. 8. Worst case distribution of wirelength around the mean for 100 circuits
in an equivalence class (ALTR02).

For each of eight seed circuits we generated 100 clones as out-
lined in earlier sections. The typical case, as represented by 100
clone circuits generated from the seed circuit ALTR03 (Fig. 7),
is that almost all circuits are within 5% from the average wire-
length of the class. However, in line with the previously reported
bias, the average wirelength of the class differed from the seed
by 57%. Note that we are using larger circuits than in Table II,
which contributes to greater variation.

The greatest variance case for the eight circuits studied is
shown in Fig. 8. Approximately 20% of circuits were between
5% and 15% from the average.

To contrast the distribution of wirelength for circuits in the
same equivalence class with a distribution of circuits not in the
same equivalence class we generated 100 circuits usingGEN.
These circuits were forced to have 100 PI, 50 PO, and 1000
LUTs, but were otherwise unconstrained (except for the de-
fault distributions of the software as discussed in [2], [3]). Note
these are not random graphs; they areGEN circuits whose sig-
natures are drawn from default distributions rather than from a
common seed circuit. The corresponding distribution of wire-
length around the mean is shown in Fig. 9 and we see that the
distribution is dramatically more varied. This is a positive result,
providing further evidence that when the full signature is varied,
we get significantly more variation than when the signature is
held constant for a given set of circuits.

To illustrate the difference in bias and variance betweenGEN

circuits and random circuits, we took one circuit (ALTR01) and
generated 100 clone circuits and 100 random circuits (as de-
fined in the preceding section). The results are shown in Fig. 10.
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Fig. 9. Distribution of wirelength around the mean for 100GEN circuits using
default parameterization model.

Fig. 10. Bias and variance forGEN versus random circuits.

TABLE III
WIRELENGTH AND TRACK STATISTICS FOREIGHT ALTERA CIRCUITS

AND THEIR 100 CORRESPONDINGCLONES, AND FOR

100 1000-LUT RANDOM CIRCUITS

Though the set ofGENclones show definite bias (57%) from the
seed circuit, the randomly generated circuits show a pronounced
170% bias, roughly 3.5 times that ofGEN. Fig. 10 in many re-
sults is the key point of this paper, illustrating the scale between
“real” and “random” and the location ofGEN circuits on this
scale.

Table III shows the wirelength reported for the original
circuit, the average and standard deviations observed for the in-
dividual sets of 100 clones in the equivalence class of each seed
circuit, and the percentage difference of the mean from the seed
circuit. Also shown are the corresponding statistics for max-
imum track-count as reported by VPR.

Results Summary:With respect to currently generatedGEN

circuits we can make several points. The “quality” of the cir-

cuits, as measured by bias, is significantly better than random
circuits but not as close as we would like to the seed circuit. The
seed circuit almost always requires less overall wirelength than
the clones we generate. However, the variance is well in line
with both expectations and our desire—we want varied circuits
and 5% is basically the amount of variance we would want to
generate for reasonable experiments. For randomly generated
benchmarks the variance is much more significant, larger than
would be desired.

V. APPLICATIONSUSING CLONE CIRCUITS

In this section, we address an important issue in CAD bench-
marking: given that algorithm A has outperformed algorithm B
by 10% on two different test circuits, what conclusion can we
make? Is it reasonable to conclude that A is better, or is this
simply noise because both the algorithms are heuristic? We have
two fundamental problems. The first is that the two circuits may
not be representative of the typical input to the program. For this
we currently have no solution. The second problem is that we
are observing noise in the behavior of the algorithms for these
circuits because the algorithms are inherently heuristic: essen-
tially we have a result which has no statistical significance. It is
here that the use of clone circuits can play a role in our ability
to benchmark.

The following simple methodology follows naturally from
the definition of clone circuits and equivalence classes: Given
a small set of initial benchmark circuits, use the process out-
lined in Section IV to generate a large number of clone cir-
cuits equivalent to each seed circuit. Apply each of the clone
benchmarks to the problem under consideration and measure
the appropriate statistical metric(s) to distinguish the multiple
approaches. Then, in addition to the original circuits, consider
the behavior of the class as a whole to the problem solution.

For example, if our goal is to analyze the effectiveness of
two placement algorithms we could apply each to 100 clone
circuits of each seed circuit and then compare the distribution
of results between the two algorithms. If our goal is to deter-
mine whether an experimental programmable logic architec-
ture requires 80 wires per row or if 60 is sufficient we per-
form place-and-route on the two different parts and analyze the
number of fits and no-fits which result. In both cases we can
gain more finely grained information from the large number of
circuits than would be seen by looking only at the small number
of initial benchmarks.

We point out that simply generating large numbers of circuits
does not, in itself, allow us to make more accurate experiments.
In order to apply this methodology, we are relying on the fact
that the circuits being generated byGEN do have similar prop-
erties, as exhibited by their low variance, and that relative com-
parisons are thus justified.

In order to illustrate the use ofGEN clones, we will apply the
above methodology to distinguish two well-known partitioning
algorithms.

For the first algorithm we obtained an implementation of the
Fiduccia–Mattheyses partitioning algorithm [24] from Alpert’s
website [25]. This code was originally attributed to Dutt and
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Fig. 11. 95% and 65% confidence intervals for cut-size as reported by hMetis
(top) and FM (bottom), taken over equivalence classes for eight seed circuits.

TABLE IV
95% CONFIDENCE INTERVALS FOR THE DIFFERENCE

IN MEAN CUT-SIZE BETWEEN HMETIS AND FM

Deng at the University of Minnesota Electrical Engineering De-
partment and modified by Alpert for various netlist formats.

The second partitioning algorithm is the original implementa-
tion of hMetis by Karypiset al. [26], [27] from their University
of Minnesota website. Based on the literature, this algorithm is
expecteda priori to have better results than the FM algorithm.

We performed bipartitioning on 100 clones each of the eight
larger Altera benchmark circuits (800 circuits in total) and the
original circuits and recorded the cut-size reported by each tool.
We then calculated the mean and standard deviation and cal-
culated the 68% (mean1 standard deviation) and 95% con-
fidence intervals (mean standard deviation) for each of the
two algorithms on each of the eight equivalence classes.

The results of the experiment are displayed pictorially in
Fig. 11. For a given circuit, we have four lines: from top to
bottom, the 68% and 95% confidence intervals for hMetis
and then the 68% and 95% confidence intervals for FM (each
calculated over the 100 circuits in the equivalence class). We
observe (as expected) that the hMetis algorithm outperforms
basic FM significantly: for half the circuit classes the 68%
confidence intervals do not even overlap.

Given the large sample size, we can also get reasonable con-
fidence intervals for the difference in mean cut-size between
the two algorithms. Table IV shows this data. The average of
the eight 95% confidence intervals for the difference in sample
means is (11.3, 15.0), so we are 95% confident that hMetis will
outperform FM by between 11% and 15%. Though not the point
of this paper, it is clear that hMetis is a superior algorithm to the
basic FM implementation.

A. Nonclone Uses of GEN

The preceding example used clone circuits in order to smooth
variance and to improve statistical significance in the compar-
ison of two algorithms. There are many other applications where
we need to create circuits from scratch, without duplicating the
physical properties of an existing benchmark, for example, if we
need a circuit with 10 000 nets and do not have any seed circuits
to clone. In these cases we utilize the specification language
of GEN to specify several basic properties such as the number
of nodes, edges, inputs and outputs, plus combinational delay,
and the remaining portions of the incomplete signature are filled
in from theGEN default scripts (the characterization parameters
previously mentioned in Section III).

We and others [19], [28], [29] have successfully used such
circuits in many applications. Currently the quality of the cir-
cuits is good enough that such experiments are reasonable, but
we note that the variance does increase with the size of the cir-
cuit generated—as the size of the circuit increases away from
the size of the benchmarks used for generating the default pa-
rameter distributions the quality does degrade. Future work to
solve this problem involves primarily two issues: a better cap-
turing of alocality parameter or distribution which allows us to
build hierarchical circuits and a retuning of the default parame-
terization to larger benchmark circuits.

VI. CONCLUSION AND FURTHER WORK

In this paper, we have defined a new model for describing
sequential circuits as a hierarchy of combinational subcircuits.
The model includes the parameters of ghost inputs, ghost out-
puts, and their delay shapes. The model can also be used to de-
scribe more general forms of hierarchy than simply that between
sequential levels. We have given an algorithm for generating re-
alistic sequential benchmark netlists given the exact parameteri-
zation of a circuit in this model. This builds on previous research
in which we gave a similar algorithm for the simpler problem of
purely combinational circuits.

In addition, we have described a public-domain prototype
software system which implements the sequential model with a
characterization program (CIRCV3.1) and a generation program
(GENV3.1). These prototype tools have been installed at Altera,
Xilinx, Actel, HP, and over 50 other academic and industrial
sites and have were also used to contribute benchmarks to an
informal partitioning competition at the 1996 Design Automa-
tion Conference.GENhas been used for benchmarking purposes
in [28] and [29] and as a component of more recent automatic
benchmarking efforts [19].

Using CIRC and GEN, we have “cloned” a number of in-
dustrial benchmark circuits and showed thatGEN-circuits are
significantly closer (three to five times) to real circuits for
placement metrics than carefully generated random graphs. We
analyzed the variance of circuits showing that the variation
within an equivalence class was at acceptable and desirable
levels and that true variation existed between different equiva-
lence classes. UsingGEN as a tool, we applied the generation
of many circuits to a methodology to compare two partitioning
algorithms with greater statistical significance that would
otherwise be possible.
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GEN is also capable of generating circuits “from scratch”
using a set of default scripts based on analysis of benchmark
circuits, which can be user modified.

We see a number of areas for future exploration. One is to
modify the base generation algorithm to automatically impose
a partition hierarchy on the circuit as it is being built, possibly
similar to the use by Darnauer and Dai [3] of the Rent-exponent
to introduce hierarchy in their partitioning benchmarks. Though
GEN will currently output circuits of up to about 100 000 LUTs,
we believe generating high-quality large benchmarks will re-
quire some degree of imposed symmetry and hierarchy within
the netlist. A second area for future work would be to generate
“system”-level hierarchy, by including datapath and other struc-
tured logic which can be synthesized or produced with LPM
modules and random logic components fromGEN. Other prac-
tical additions would be logical values (LUT contents) for sim-
ulation, addition of secondary signals, and multiple clock do-
mains and embedded RAM.
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