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Abstract—
Modern FPGAs now contain a selection of “hard” digital structures

such as memory blocks and multipliers [2], [12], [9], [1], [8] in addition
to the usual “soft” programmable logic typically consisting of Lookup Ta-
bles (LUTs) and flip-flops. These hard structures are a major benefit (in
area and speed) for those applications that need them, but are completely
wasted if an application circuit does not require them. Finding other ways
to use these structures will benefit these applications. In this paper, we
present a technique to map multiplexers to unused hard multipliers on an
FPGA. We have created an RTL synthesis tool flow that implements this
technique over a set of benchmarks. While some circuits see no reduction
in LUT count at all, others show meaningful improvements ranging from
10% to 70%. On average across the whole set of circuits the technique
achieves a 7.3% reduction on the number of LUTs used. In some cases,
however, the operating frequency of the circuit is reduced significantly.

I. INTRODUCTION

Modern Field-Programmable Gate Arrays (FPGAs) consist
of a “soft” programmable fabric and specific “hard” logic struc-
tures. Common hard structures that have been added to com-
mercial FPGAs include multipliers, memory blocks, and com-
plex input/output blocks [2], [12], [9], [1], [8]. The use of these
structures to implement a design can decrease the soft logic
LUT usage, power consumption, and critical path delay [10],
[2], [12].

One drawback of hard structures on an FPGA is that if an
application circuit does not use the structure, then the area ded-
icated to it is wasted. This area could be large as it includes not
just the logic function, but the expensive programmable routing
required to connect it [4]. This potential waste motivates us to
look for other ways to make use of these structures. In this pa-
per, we present a method to use unused multipliers on FPGAs
to implement multiplexers. This method has been implemented
in a Register Transfer Level (RTL) synthesis tool.

Previous work suggests various techniques to utilize hard
structures in an FPGA to implement functionality not normally
intended for the structures. For example, memories can imple-
ment large logic functions by acting as large LUTs [11], [5].
Memory blocks can also implement multiplication operations,
and these implementations perform particularly well when the
width of the multiplicand is small [7]. The multiplier blocks in
an FPGA can also implement a barrel shifter with significant
area and speed savings [6]. This work proposes another option:
using the multiplier block to implement multiplexers.

This paper is organized as follows. Section II describes how
multiplexers can be implemented on an FPGA multiplier and
the potential gains in different circumstances. Section III de-
scribes a greedy algorithm that decides which multiplexers to

(a) Gate-level implementation of a multiplexer


(b) Multiplexer built with an embedded multiplier
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Fig. 1. Illustration of how a 4:1 decoded multiplexer (surrounded by the dashed
box) can be mapped to a 4x4 multiplier.

map to unused multipliers. Section IV shows how this tech-
nique performs on a set of benchmarks that contain and do not
contain multipliers in the original design. Finally, we conclude
the paper and describe some future work in Section V.

II. MULTIPLEXER TO MULTIPLIER MAPPING

A. Multiplexer to Multiplier Transformation

Multiplexers can be mapped to hard multipliers by making
use of the observation that multiplying any number by 2n re-



TABLE I: NUMBER OF DSP BLOCKS AND MULTIPLIERS AVAILABLE ON

THE STRATIX FAMILY OF FPGAS

Device 

DSP 


Blocks 

Total 9 ×9 

Multipliers 


Total 18 ×18 

Multipliers 


Total 36 ×36 

Multipliers 


EP1S10 
 6
 48
 24
 6

EP1S20 
 10
 80
 40
 10

EP1S25 
 10
 80
 40
 10

EP1S30 
 12
 96
 48
 12

EP1S40 
 14
 112
 56
 14

EP1S60 
 18
 144
 72
 18

EP1S80 
 22
 176
 88
 22


TABLE II: TABLE (A) SHOWS THE COST OF IMPLEMENTING

MULTIPLEXERS ON A STRATIX FPGA. TABLE (B) SHOWS THE COST OF

USING A DSP BLOCK ON A STRATIX FPGA FOR DIFFERENT MULTIPLIER

WIDTHS.

(a)
 (b)


Multiplexer 

size


Total 

LEs 


Max Operating 

Frequency 


(MHz)

2:1
 1
 422

3:1
 2
 422

4:1
 3
 422

5:1
 3
 422

6:1
 4
 422

7:1
 5
 422

8:1
 6
 422

9:1
 7
 422

10:1
 7
 422

11:1
 7
 422

12:1
 8
 422

13:1
 9
 351

14:1
 9
 397

15:1
 10
 403

16:1
 11
 389

17:1
 11
 370

18:1
 12
 359


Multiplier 

Size


9x9 DSP 

Units


Max Operating 

Frequency 


(MHz)

2x2
 1
 307.98

3x3
 1
 307.98

4x4
 1
 307.98

5x5
 1
 307.98

6x6
 1
 307.98

7x7
 1
 307.98

8x8
 1
 307.98

9x9
 1
 307.98


10x10
 2
 248.14

11x11
 2
 248.14

12x12
 2
 248.14

13x13
 2
 248.14

14x14
 2
 248.14

15x15
 2
 248.14

16x16
 2
 248.14

17x17
 2
 248.14

18x18
 2
 248.14


sults in a left shift by n places. Using this property we can
attach the inputs of a multiplexer to one port of the multiplier,
and we can attach the decoded multiplexer select signals to the
other port of the multiplier; the multiplexer output is then one
of the output pins on the multiplier (output n for a n : 1 mul-
tiplexer). Figure 1 (a) shows an example of the mapping. In
Figure 1 (a), we show a four-to-one multiplexer with both en-
coded and decoded signals labelled as esx and dsy respectively.
Figure 1 (b) shows how our example four-to-one multiplexer
can be implemented using one four by four unsigned multiplier.
Note that the multiplier can implement the decoded multiplexer
portion of the circuit (encapsulated by the dashed box in Fig-
ure 1 (a) and (b)), which is controlled by the dsy select signals.
In general, a n : 1 decoded multiplexer can be implemented on
a n∗n multiplier. An encoded multiplexer needs additional soft
logic to implement the decoding of the select signals, and the
area savings will not be as big, but in many cases these select
signals are shared across many multiplexers and the decoding
logic can be amortized.

B. Mapping Multiplexer to Multiplier - Area

The area savings from mapping multiplexers to multipliers
depends on the costs of implementing multiplexers in the soft
fabric of an FPGA (which typically consists of LUTs) and the
hard multipliers. To determine the mapping costs, we choose a
specific FPGA architecture with hard multipliers; in this paper
Altera’s Stratix FPGA family [2] is used to test our approach.

Multipliers, as well as other multiplier functions like multi-
ply accumulate, are available for the Stratix FPGAs in the DSP
block [2]. Table I shows the number of the DSP blocks avail-
able in each member in the Stratix family where each block can
be configured to implement either eight 9x9 multipliers, four
18x18 multipliers or one 36x36 multiplier as well as other oper-
ations. The total number of multipliers for each multiplier width
is summarized in columns 3, 4 and 5 of Table I.

Table II (a) gives the area and speed of decoded multiplexers
implemented in the soft logic fabric of a Stratix FPGA. Column
two contains the number of Logic Elements (LEs) required to
implement each multiplexer (an LE is Altera’s terminology for
a LUT with some additional circuitry). Column three shows the
speed for each decoded multiplexer implemented on a Stratix
FPGA (Note that these are decoded multiplexers and do not in-
clude the area or speed penalty for implementing the decoding
logic of select signals).

The data in Table II (a) can be used to estimate the area sav-
ings for a set of multiplexers on a particular FPGA architecture
when mapping multiplexers to hard multipliers. For example,
the maximum area saving for a design that has an eight-to-one
decoded multiplexer mapped to a multiplier is 6 LEs. This sav-
ings does not include the cost of the logic for decoding the select
signals.

C. Mapping Multiplexer to Multiplier - Speed

To estimate speed of mapping a multiplexer to a multiplier,
we compare the speed of both implementations. Table II (b)
column three gives the maximum operating frequency of differ-
ent sized hard multipliers on a Stratix FPGA. Similarly, column
three of Table II (a) shows the speed of a decoded multiplexers
implemented in soft logic. Using these two pieces of informa-
tion, a nine-to-one multiplexer will operate approximately 114
MHz slower when mapped to a hard multiplier. This speed loss
may or may not change the speed of an entire design. Section IV
shows the overall impact on speed of our benchmarks.

D. Reducing Multiplexer Decoding Area Costs

The multiplexer to multiplier mapping technique potentially
saves area at a speed cost. However, as Figure 1 illustrates, a
multiplexer’s encoded select signals need to be decoded before
being attached to the multiplier, reducing the potential area ben-
efits of the technique. Two factors mitigate this effect: one, the
decoding logic may be amortized for multiplexers that share the
same select signals, and two, digital designs contain decoded
multiplexers.

The first factor reducing decoding logic is due to multiplex-
ing buses; these buses share multiplexer select signals. Figure 2
shows a case structure in Verilog and a possible logic implemen-
tation of this case structure. This Figure shows how decoding
logic can be amortized since both the select signals a[0] and b[0]
only need to be decoded once to control the outputs out[0] and
out[1].

The second factor reducing decoding logic is due to designs
containing decoded multiplexers and associated decoding logic.
If decoding logic consists of more than one signal then the mul-
tiplexer is best implemented as a decoded multiplexer. Decoded
multiplexers appear in HDL designs in control structures that



module foo (clock, a, b, out);

input a[1:0], b[3:0];

output out[1:0];

always @(posedge clock)


case(a_in)

2'b00: out<={b[0], b[1]}

2'b01: out<={b[1], b[2]}

2'b10: out<={b[2], b[3]}

2'b11: out<={b[3], b[0]}

endcase


endmodule
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Fig. 2. This is a sample logic implementation and sharing of decoder logic of
Verilog case structure.

algorithm
 greedy_mux_selection


input
 
list_decoded_muxes

input 
list_of_muxes_area_saving

input 
paths_w_multipliers

output 
list_of_muxes_mapped_or_not


sort(
list_of_muxes_area_saving 
)

for each
 
in 
list_of_muxes_to_map

    
for 
i 
in
 list_size(
list_of_decoded_muxes
)

        if
 ((width(list_of_muxes_area_saving)==width(
list_of_decoded_muxes 
[i])) &&

           (fpga_multiplier_available() == TRUE) &&

           (in_path(
paths_w_multipliers
, 
list_decoded_muxes 
[i]) == FALSE) &&

           (common_select_signals(
list_of_decoded_muxes
 [i]) is large))

                list_of_muxes_mapped_or_not 
[i] = TO_DSP

        else


    list_of_muxes_mapped_or_not 
[i] = TO_SOFT


Fig. 3. Algorithm for the selection of multiplexers to map to multipliers.

compare signals. For example, a == 0 and a == b will result
in very different logic implementations. The constant in a == 0
is encoded, which allows these structures to be mapped into en-
coded multiplexers. On the other hand, a == b is mapped to
decoding logic which feeds a decoded multiplexer. A decoded
multiplexer is mapped to soft logic or a hard multiplier, and in
both cases the decoding logic area cost is the same.

III. ALGORITHM MAPPING MULTIPLEXERS MULTIPLIERS

The fact that decoded multiplexers exist in designs and multi-
plexer decoding logic can be amortized over multiple multiplex-
ers suggests that we can map some multiplexers to multipliers
during the synthesis stage of an entire FPGA Computer Aided
Design (CAD) flow to improve area usage. To study this tech-
nique, we implement a greedy algorithm that finds multiplexers
in a design and maps decoded multiplexers to hard multipliers
when this mapping results in the greatest area saving.

To determine the greatest area saving, we compare the costs
of implementing a multiplexer in the soft logic of an FPGA
and determine what size of multiplier can implement this multi-

plexer. For example, on the Stratix architecture, multiplier map-
ping a nine-to-one multiplexer will result in a saving of seven
LEs per 9x9 multiplier. This is a greater LE saving compared to
mapping an eighteen-to-one multiplexer to an 18x18 multiplier,
which saves six LEs per 9x9 multiplier (one 18x18 multiplier
can be replaced by 2 9x9 multipliers on a Stratix FPGA).

A greedy selection algorithm picks the best multiplexers to
map; this algorithm is shown in Figure 3.

The algorithm also performs a speed optimization that is ap-
plied when a design contains multipliers. Our algorithm will
never map multiplexers to multipliers if the multiplexer is on a
combinational path containing a multiplier. Since the mapping
technique results in slower paths and paths containing multi-
pliers are in general slow, this rule reduces the chance that the
mapping technique will increase the critical path of a design.

The algorithm also amortizes decoding logic costs by group-
ing multiplexers that have greater than two common multiplexer
selection signals, or selecting “case” and “if” structures that
compare multiple signals. This rule picks multiplexers that will
incur the smallest area cost for decoding the multiplexer signals
and improves our area savings.

We have implemented this greedy algorithm in a CAD flow
that maps to Stratix FPGAs. First, our high-level RTL synthe-
sis tool, developed by us, converts Verilog designs into struc-
tural Verilog net-lists consisting of gate primitives and Library
Parametrized Modules (LPMs) targeted for Stratix FPGAs. This
net-list is passed into Altera’s Quartus CAD flow that maps the
net-list to an FPGA and generates area and timing results. Us-
ing the Quartus CAD flow is one way to map our designs to
industrial FPGAs and get real speed and area results [3].

IV. RESULTS

To study our algorithm we used our RTL synthesis tool at-
tached to the Quartus CAD flow to generate both baseline and
“multiplexer mapped to multiplier” results for a set of bench-
marks.

Table III shows the experimental results for speed and area
of our mapping technique for each benchmark averaged over 5
random seeds. Columns 2, 3 and 4 contain the number of LEs,
number of DSP units, and the maximum operating frequency re-
spectively for our baseline results of the benchmarks mapped to
Stratix FPGAs without using the multiplexer to multiplier map-
ping. Columns 5, 6, and 7, contain similar area and speed re-
sults as above except these values are for circuits mapped using
the presented technique. Finally, column 8 and 9 show the the
ratios for baseline area over optimized area and baseline speed
over optimized speed respectively. Both of these ratios are ge-
ometrically averaged over all benchmarks; we also grouped cir-
cuits with and without multipliers together and geometrically
averaged the ratios in these groups.

On average, the number of LEs is reduced by 7.3%. The
benchmarks, however, suffer from speed losses ranging from
1 to 206 MHz. If we break these benchmarks into two cat-
egories consisting of benchmarks with multipliers and bench-
marks without multipliers, then our results are different. In Ta-
ble III, we show the two separate groups by shading in grey the
benchmarks that contain multipliers.

For benchmarks without multipliers in the original design,



TABLE III: AREA/SPEED RESULTS MAPPED BENCHMARKS ON STRATIX FPGAS WITH AND WITHOUT THE MULTIPLEXER TO MULTIPLIER MAPPING.

Baseline
 With Multiplexer mapping


Benchmarks

Number of 


LEs


Number of 

9x9 DSP-


units


Speed 

(MHz)


Number of 

LEs


Number of 

9x9 DSP-


units


Speed 

(MHz)


Area 

Ratio


Speed 

Ratio


fft_258_6
 3190
 32
 146.16
 3145
 48
 148.23
 1.014
 0.99

iir1
 501
 7
 82.53
 501
 7
 83.01
 1.000
 0.99

iir2
 338
 10
 109.158
 300
 15
 108.23
 1.127
 1.01

fir_3_8_8
 84
 4
 251.928
 84
 4
 252
 1.000
 1.00

fir_24_16_16
 1591
 48
 75.042
 1591
 48
 75.02
 1.000
 1.00

fir_scu_rtl
 548
 17
 109.54
 317
 48
 97.17
 1.729
 1.13

diffeq_f_systemC
 271
 40
 41.11
 251
 48
 41.05
 1.080
 1.00

diffeq_paj_convert
 369
 40
 29.858
 324
 48
 29.77
 1.139
 1.00

sv_chip1
 17145
 96
 122.31
 17145
 96
 121.21
 1.000
 1.01

rt_raygentop
 2679
 27
 127.24
 2536
 44
 131.03
 1.056
 0.97

rt_raygentop_no_mem
 2815
 27
 136.916
 2671
 44
 132.92
 1.054
 1.03

oc45_cpu
 3101
 2
 61.63
 2905
 48
 65.21
 1.067
 0.95

reed_sol_decoder1
 1183
 13
 82.69
 1090
 48
 81.65
 1.085
 1.01

reed_sol_decoder2
 1957
 9
 53.58
 1864
 48
 53.93
 1.050
 0.99

md
 14867
 112
 34.942
 14867
 112
 35
 1.000
 1.00


              Summary for circuit with multipliers:
 1.083
 1.00

cordic_8_8
 838
 0
 256.436
 808
 48
 103
 1.037
 2.49

cordic_18_18
 4104
 0
 222.72
 4058
 48
 178
 1.011
 1.25

MAC1
 2812
 0
 98.532
 2669
 48
 70.17
 1.054
 1.40

MAC2
 9720
 0
 74.876
 9538
 48
 66.74
 1.019
 1.12

des_area
 1305
 0
 194.372
 1074
 48
 205
 1.215
 0.95

des_perf
 3838
 0
 199.44
 3638
 48
 81.49
 1.055
 2.45

sv_chip0
 12729
 0
 120.16
 12650
 48
 92.13
 1.006
 1.30

sv_chip0_no_mem
 7122
 0
 146.202
 7025
 48
 100.02
 1.014
 1.46

sv_chip3_no_mem
 134
 0
 328.94
 109
 5
 122.55
 1.229
 2.68

rt_frambuf_top
 784
 0
 127.75
 711
 10
 80.81
 1.103
 1.58

rt_frambuf_top_no_mem
 909
 0
 139.3
 901
 1
 78.96
 1.009
 1.76

rt_boundtop
 3895
 0
 83.35
 3810
 27
 63.5
 1.022
 1.31

rt_boundtop_no_mem
 4026
 0
 86.69
 3807
 27
 65.31
 1.058
 1.33


          Summary for circuit without multipliers:
 1.062
 1.54

             Summary for all circuits:
 1.073
 1.23


we use 6.2% less LEs, and the maximum operating frequency
of these benchmarks decreases by an average of 54%.

Benchmarks that do contain multipliers save 8.3% on LEs
and in general show an average speed loss of 0.5%. This result
show the value of the optimization in saving LEs without any
speed decrease.

In one multiplier case, “fir scu rtl” we do see a significant
loss in speed (-12.87 MHz), but this loss occurs because the
original multipliers in “fir scu rtl” are small. The multipliers
used to implement multiplexers in this design become the criti-
cal path of the circuit.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a simple technique to map
multiplexers to multipliers and a high-level synthesis algorithm
to select which multiplexers to perform this mapping on. Our
experimental results show that this mapping technique can save
a significant number LEs at a speed loss of 0.5% if critical paths
can be determined up front.

Future work includes finding a better way to determine which
multiplexers to map to multipliers so that we get the greatest
area savings at no speed cost. To do this, we must make the
mapping decision at a CAD stage with better timing informa-
tion, by either having a good way of estimating timing during

RTL synthesis, or by using an iterative CAD flow that obtains
accurate timing information from a fully placed and routed de-
sign of the last CAD iteration.
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