
Abstract

Multi-FPGA systems (MFSs) are used as custom comput-
ing machines, logic emulators and rapid prototyping vehicles.
A key aspect of these systems is their programmable routing
architecture; the manner in which wires, FPGAs and Field-
Programmable Interconnect Devices (FPIDs) are connected.
Several routing architectures for MFSs have been proposed
[Arno92] [Butt92] [Hauc94] [Apti96] [Vuil96] and previous
research has shown that the partial crossbar is one of the best
existing architectures [Kim96] [Khal97]. In this paper we pro-
pose a new routing architecture, called theHybrid Complete-
Graph andPartial-Crossbar (HCGP) which has superior
speed and cost compared to a partial crossbar. The new archi-
tecture uses both hard-wired and programmable connections
between the FPGAs.

We compare the performance and cost of the HCGP and
partial crossbar architectures experimentally, by mapping a
set of 15 large benchmark circuits into each architecture. A
customized set of partitioning and inter-chip routing tools
were developed, with particular attention paid to architecture-
appropriate inter-chip routing algorithms. We show that the
cost of the partial crossbar (as measured by the number of pins
on all FPGAs and FPIDs required to fit a design), is on aver-
age 20% more than the new HCGP architecture and as much
as 35% more. Furthermore, the critical path delay for designs
implemented on the partial crossbar increased, and were on
average 9% more than the HCGP architecture and up to 26%
more.

Using our experimental approach, we also explore a key
architecture parameter associated with the HCGP architec-
ture: the proportion of hard-wired connections versus
programmable connections, to determine its best value.

1 Introduction

Field-Programmable Gate Arrays (FPGAs) are widely
used for implementing digital circuits because they offer
moderately high levels of integration and rapid turnaround
time [Brow92]. Multi-FPGA systems (MFSs), which are col-
lections of FPGAs and memory joined by programmable
interconnection network as illustrated in Figure 1, are used

when the logic capacity of a single FPGA is insufficient, and
when a quickly re-programmable system is desired. The typi-
cal uses are for logic emulation [Apti96] [Quic96], rapid
prototyping [Van92] [Alte94] [Gall94] [Lewi97] and recon-
figurable custom computing machines [Arno92] [Cass93]
[Dray95] [Vuil96] [Lewi97].

The routing architecture of an MFS is the way in which the
FPGAs, the fixed wires, and the programmable interconnect
chips are connected. The routing architecture has a strong
effect on the speed, cost and routability of the system. Many
architectures have been proposed and built [FCCM] [Butt92]
[Van92] [Apti96] [Lewi97] and some research work has been
done to empirically evaluate and compare different architec-
tures [Kim96] [Khal97].

These studies have shown that the partial crossbar is one
of the best existing MFS architectures. In this paper we
present HCGP, a routing architecture for MFSs that uses both
hardwired and programmable connections to reduce cost and
increase speed. We evaluate and compare the HCGP architec-
ture and the partial crossbar architecture using an empirical
approach. In particular we compare architectures on the basis
of pin cost and speed.

The speed comparisons are based on post inter-chip rout-
ing critical path delay of real benchmark circuits, which, to
our knowledge, is the first time such detailed timing informa-
tion has been used in the study of board-level MFS
architectures.

Previous work has been done evaluating mesh [Hauc94]
and other architectures [Chan93]. Although this work pro-
vides some theoretical insight into these architectures,
empirical studies that evaluate the implementation of real cir-
cuits on different architectures provide a more clear picture of
the ‘goodness’ of each architecture relative to the others
[Kim96] [Khal97]. Our own previous research has shown that
partial crossbar is vastly superior to the best mesh architecture
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[Khal97]. In [Kim96], several MCNC circuits were mapped
to seven different architectures, including the partial crossbar
architecture. Each circuit was mapped to a fixed size MFS
(containing 30 FPGAs). The size of the FPGA was varied
depending upon the circuit size. Each architecture was evalu-
ated on the basis of total number of CLBs needed across all
circuits (where fewer CLBs used implies better architecture),
the type of FPGA chips used (smallest FPGAs implies better
architecture), and maximum number of hops needed across all
inter-FPGA nets (as a metric for speed). Ahop is defined as a
chip-to-chip connection, i.e. a wire segment that connects two
different chips on a board. It was shown that one of the pro-
posed architectures, FPGAs connected together as a tri-partite
graph, gave the best results (slightly better than partial cross-
bar). In this work, relatively few large circuits were used that
would have really ‘stressed’ the architectures, as only three
reasonably large circuits (>2000 CLBs) were employed. Also,
for the speed estimate only the worst case net delay in terms
of the number of hops was considered; which is not as repre-
sentative of the true delay as post-routing critical path delay.

This paper is organized as follows: In Section 2 we
describe the experimental evaluation procedure and the eval-
uation metrics used, and give details on the suite of large
benchmark circuits used in this experimental work. In Section
3 we cover the architectural issues and assumptions that arise
when mapping real circuits to the HCGP and partial crossbar
architectures. We also briefly describe architecture-specific
inter-chip routing algorithms employed. Experimental results
and their analysis are presented in Section 4, and we conclude
in Section 5.

2 Experimental Overview

To evaluate the two routing architectures considered in
this paper, we used the experimental procedure illustrated in
Figure 2. Each benchmark circuit was partitioned and routed
into each architecture. We also assume that each MFS archi-
tecture will be implemented on a single board. Section 2.1
describes the general toolset used in this flow. The cost and
delay metrics that we use to evaluate architectures are
described in Section 2.2. A description of the 15 benchmark
circuits is given in Section 2.3.

2.1 General CAD Flow

As illustrated in Figure 2, we start with a (technology
mapped) netlist of 4-LUTs and flip flops of the circuit. The
circuit is partitioned into a minimum number of sub-circuits
using a multi-way partitioning tool which accepts as con-
straints the specific FPGA logic capacity and pin count. For
all the experiments presented in this paper we used a Xilinx
4013E-1 FPGA, which consists of 1152 4-LUTs, 1152 flip
flops, and 192 usable I/O pins [Xili97]. Multi-way partition-
ing is accomplished using a recursive bi-partitioning
procedure. The partitioning tool used is called ‘part’ and was
originally developed for the Transmogrifier-1 rapid prototyp-
ing system [Gall94]. It is based on the Fiduccia and
Mattheyses partitioning algorithm [Fidu82] with an extension
for timing-driven pre-clustering [Shih92]. The output of the
partitioning step is a netlist of connections between the
FPGAs that contain the circuit.

Given the chip-level interconnection netlist, the next step
is to route each inter-FPGA net using the most suitable rout-
ing path. The routing path chosen should be the shortest path
(use the minimum number of hops) and it should cause the
least possible congestion for subsequent nets to be routed.
Depending on the architecture, the routing resources available
in an MFS could be wires that are direct connections between
FPGAs, or wires that connect FPGAs and FPIDs.

If the routing attempt fails, the partitioning step is repeated
after reducing the number of I/O pins per FPGA specified to
the partitioner. This usually increases the number of FPGAs
needed, and helps routability by decreasing the pin demand
from each FPGA, and providing more “route-through” pins in
the FPGAs which facilitate routing.

Note that in an actual MFS, the inter-FPGA routing step is
followed by pin assignment, placement and routing within
individual FPGAs. We need not perform these tasks because
we are only interested in knowing the MFS size needed to fit
the circuit. Our previous research has shown that we can
afford to assign pins randomly for each FPGA without jeop-
ardizing routability and speed [Khal95]. During recursive bi-
partitioning, we restrict the logic utilization of each FPGA to
be at most 70% to avoid placement and routability problems
within individual FPGAs. Thus we ensure that if inter-FPGA
routing attempt succeeds, it is almost guaranteed that the sub-
sequent pin assignment, placement, and routing steps will be
successful for each FPGA in the MFS.

We developed a specific router for each of the architec-
tures compared. (We had attempted to create a generic router
but found that it had major problems with different aspects of
each architecture [Khal98].)

2.2 Evaluation metrics

To compare the two routing architectures we implement
benchmark circuits on each and contrast the pin cost and post-
routing critical path delay, as described below.
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FPGA Systems



2.2.1 Pin cost

The cost of an MFS is likely a direct function of the num-
ber of FPGAs and FPIDs: if the routing architecture is
inefficient, it will require more FPGAs and FPIDs to imple-
ment the same amount of logic as a more efficient MFS.
While it is difficult to calculate the price of specific FPIDs and
FPGAs, we assume that the total cost is proportional to the
total number of pins on all of these devices. Since the exact
number of FPGAs and FPIDs varies for each circuit imple-
mentation (in our procedure above, we allow the MFS to grow
until routing is successful), we calculate, for each architec-
ture, the total number of pins required to implement each
circuit. We refer to this as thepin cost metric for the
architecture.

2.2.2 Post-Routing Critical Path Delay

The speed of an MFS, for a given circuit, is determined by
the critical path delay obtained after a circuit has been placed
and routed at the inter-chip level. We call this thepost-routing
critical path delay. We have developed an MFS static timing
analysis tool (MTA) for calculating the post routing critical
path delay for a given circuit and MFS architecture.

The operation and modeling used in the MTA are
described briefly as follows: It first calculates the critical path
delay of the un-partitioned design using a widely used method
called theblock oriented technique [Joup87]. It then reads the
inter-FPGA netlist and the routing path for each inter-FPGA
net, as provided by the inter-chip router, and the MFS archi-
tecture description. From this information the circuit is
annotated with the inter-chip delays, from which the critical
path delay can be calculated.

In the delay annotation step, the delay values given in
Table 1 (obtained from data sheets [Xili97] and [Icub97] and
some design experience) are used.

Note that since we do not perform individual FPGA place
and route, we approximate the CLB-to-CLB delay as a con-
stant. The value of 2.5 ns for CLB-to-CLB routing delay is

roughly half the delay on a long line for XC4013E-1 FPGA.
This is a pessimistic estimate. Although using a single delay
value is somewhat inaccurate, it still gives us a good estimate
of the post-routing critical path delay of an MFS because it is
dominated by off-chip delay values.

2.3 Benchmark Circuits

A total of fifteen large benchmark circuits were used in our
experimental work. An extensive effort was expended to col-
lect this suite of large benchmark circuits. The details of each
benchmark circuit are shown in Table 2 which provides the
circuit name, size (in 4-LUTs, D flip flops, and I/O count),
rough description of the functionality, the source of the circuit
and the manner in which it was synthesized. Four circuits
were obtained from MCNC [Yang91], two from FPGA syn-
thesis benchmarks [Prep96], and the remaining nine were
developed at the University of Toronto (UofT). The circuits
from MCNC were available in the XNF [Xili97] gate-level
netlist format required by our front end tools. All the circuits
from [Prep96] and UofT were originally available as VHDL
or Verilog HDL models and were synthesized into XNF
netlists using Exemplar [Exem94] and Synopsys Behavioral
Compiler [Knap96] and/or Design Compiler [Syno97] syn-
thesis tools. We show these details of the benchmark circuits
because we feel that the MCNC circuits that have been used
so far in MFS architecture studies are insufficient in terms of
size and variety to ‘stress’ different architectures and the map-
ping tools used. Specifically, we found that they are easier to
partition and map compared to the other real circuits that we
use in this work.

3 Routing Architecture Description and Algorithms

In this Section we describe the partial crossbar and the
HCGP architectures. For each architecture, we briefly
describe an architecture-specific inter-chip router.

3.1 Architectural Description and Routing for the Partial
Crossbar

The partial crossbar architecture [Butt92] [Varg93] is used
in logic emulators produced by Quickturn Design Systems
[Quic96]. An example partial crossbar using four FPGAs and
three FPIDs is shown in Figure 3. The pins in each FPGA are

Item Delay (ns)

Intra-FPGA CLB-to-CLB routing
delay

2.5

FPGA input pad delay 1.4

FPGA output pad delay 3.2

CLB delay (without using H-LUT) 1.3

CLB delay (via H-LUT) 2.2

FPID crossing delay (including pad
delays)

10

PCB trace delay 3

FPGA Route Through Delay 10

Table 1 - Delays Used in Timing Analyzer Model

Figure 3 - The Partial Crossbar Architecture
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divided into N subsets, where N is the number of FPIDs in the
architecture. All the pins belonging to the same subset in dif-
ferent FPGAs are connected to a single FPID. Note that any
circuit I/Os will have to go through FPIDs to reach FPGA
pins. Thus, a certain number of pins per FPID are reserved for
circuit I/Os.

The number of pins per subset (Pt) is a key architectural
parameter that determines the number of FPIDs needed and
the pin count of each FPID. The extremes of the partial cross-
bar architecture can be illustrated by considering an
architecture with four FPGAs (assuming 192 usable I/O pins
per FPGA). A Pt value of 192 will require a single 768-pin
FPID that acts as a full crossbar. A Pt value of 1 will require

192 4-pin FPIDs. Both of these cases are impractical.
A good value of Pt should require low cost, low pin count

FPIDs. For the above example, a Pt value of 12 will require 16
48-pin FPIDs. Taking into account the extra FPID pins
required for circuit I/Os we will need to use 64 or 96-pin
FPIDs, which are commercially available [ICub97]. When
choosing a value of Pt, we must ensure that the number of
usable I/Os per FPGA is evenly divisible by Pt or at least the
remainder should be a very small number so that we can use
such pins for routing high fanout inter-FPGA nets. Our previ-
ous research [Khal97] has shown that, for real circuits, the
routability and speed of the partial crossbar is not affected by
the value of Pt used. This result is contingent upon using an

Circuit Size Function
Source, Synthesis tool used

(if applicable)

s35932  4374 LUTs,
1728 FFs, 357 I/Os

Sequential circuit MCNC

s38417  6097 LUTs,
1463 FFs, 134 I/Os

Sequential circuit MCNC

s38584  4396 LUTs
1451 FFs, 292 I/Os

Sequential circuit MCNC

mips64   2900 LUTs
440 FFs, 260 I/Os

Scaled down version of
MIPS R4000

[Prep96], Verilog model synthesized
using Exemplar

spla  3423 LUTs
0 FFs, 62 I/Os

Combinational  Circuit MCNC

cspla  2039 LUTs
0 FFs, 62 I/Os

Clone of spla UofT, Generated using
GEN[Hutt96]

mac64  2560 LUTs
64 FFs, 133 I/Os

64-bit
multiply-accumulate ckt.

UofT, Verilog model synthesized
using Synopsys

sort8  1540 LUTs
200 FFs, 20 I/Os

8-bit HW sort engine UofT, Verilog model synthesized
using Synopsys

fir16  5366 LUTs
1040 FFs, 60 I/Os

16-bit, 8-stage
 FIR filter

UofT, Verilog model synthesized
using Synopsys

gra  2494 LUTs
1156 FFs, 144 I/Os

Graphics acceleration
circuit

UofT, circuit generated using
tmcc[Gall95]

fpsdes  3484 LUTs
1008 FFs, 69 I/Os

Fastest pseudo DES cir-
cuit

UofT, Verilog model synthesized
using Synopsys

spsdes  2452 LUTs
982 FFs, 69 I/Os

Smallest pseudo DES
circuit

UofT, Verilog model synthesized
using Synopsys

ochip64  3617 LUTs
5810 FFs, 84 I/Os

Output chip for ATM
switching chip set

UofT, VHDL model synthesized
using Exemplar

ralu32  2553 LUTs
584 FFs, 98 I/Os

32-bit register file, ALU,
and control logic

[Prep96], VHDL model synthesized
using Synopsys

iir16  3149 LUTs
522 FFs, 52 I/Os

16-bit IIR filter UofT, VHDL model synthesized
using Synopsys

Table 2 - Benchmark Circuits



intelligent inter-chip router that understands the architecture
and routes each inter-FPGA net using only two hops to mini-
mize the routing delay.

3.1.1 Routing Algorithm for the Partial Crossbar

For any MFS architecture in general and for the partial
crossbar in particular, it is important to use a routing algo-
rithm that exploits architecture-specific features in order to
obtain good results.

We have developed a routing tool, PCROUTE, for the par-
tial crossbar architecture that gives excellent results for all the
circuits. Irrespective of the value of Pt, it achieves 100% rout-
ing completion and produces two-hop routing for all the nets
in almost all circuits. For only two circuits, for the specific
case of Pt= 4, it produced multi-hop routing paths for a negli-
gible number of nets (1 out of 991 nets for the first circuit and
3 out of 645 nets for the second). In practical terms, this means
it gives almost optimal results for all of our benchmark
circuits.

The PCROUTE algorithm works as follows: for each net
(irrespective of fanout), it evaluates paths through all avail-
able FPIDs. It uses a suitable cost function to choose an FPID
that will guarantee balanced usage of FPIDs and will preserve
the most options for two-hop routing of subsequent nets to be
routed. We show in [Khal98] that PCROUTE is equivalent in
quality to other partial crossbar routers that have been pro-
posed so far [Kim96] [Mak97a] [Lin97]. PCROUTE is better
than [Mak97b] in terms of both speed and routability because
that algorithm splits each multi-terminal into a set of two-ter-
minal nets and routes them independently, leading to multiple
hops and even possible routing failures.

3.2 Architectural Description and Routing for HCGP

The new HCGP architecture is shown in Figure 4 for four
FPGAs and three FPIDs. The I/O pins in each FPGA are
divided into two groups: hardwired connections and program-
mable connections. The pins in the first group connect to other
FPGAs and the pins in the second group connect to FPIDs.
The FPGAs are directly connected to each other using a com-
plete graph topology, i.e. each FPGA is connected to every
other FPGA. The connections between FPGAs are evenly dis-
tributed, i.e. the number of wires between every pair of

FPGAs is the same. The FPGAs and FPIDs are connected in
exactly the same manner as in a partial crossbar. As in the par-
tial crossbar, circuit I/Os have to go through FPIDs to reach
FPGA pins. Again, a certain number of pins per FPID are
reserved for circuit I/Os.

The direct connections between FPGAs can be exploited
to obtain reduced cost and better speed. For example, consider
a net that connects FPGA 1 to FPGA 3 in Figure 4. If there
were no direct connections as in the partial crossbar, we
would have used an FPID to connect the two FPGAs. This
will cost extra delay and two extra FPID pins. A natural ques-
tion to ask is: why not dispense with FPIDs and just use
FPGAs connected as a completely connected graph as inves-
tigated in [Kim96]? The answer is that routing multi-terminal
nets in an FPGA-only architecture is expensive in terms of
routability because there may not be enough extra FPGA pins
for routing multi-terminal nets, as illustrated in Figure 5. In
Figure 5(a) two extra FPGA pins are used for routing a fanout
3 multi-terminal net. If we use too many FPGA pins for rout-
ing, not enough pins remain for accessing the logic in each
FPGA. If we use an FPID for routing the same multi-terminal
net, we do not need even a single extra FPGA pin, other than
the FPGA pins needed to access the source and sinks of the net
as shown in Figure 5(b).

A key architectural parameter in the HCGP architecture is
the percentage of programmable connections, Pp. It is defined
as the percentage of each FPGA’s pins that are connected to
FPIDs (the remainder are connected to other FPGAs). If Pp is
too high it will lead to increased pin cost, if it is too low it will
adversely affect routability. If Pp is 0% the HCGP architecture
degrades to a completely connected graph of FPGAs with no
FPIDs used. If Pp is 100% the HCGP architecture degrades to
a standard partial crossbar. A key issue we address later is the
best value of Pp for obtaining minimum cost and good
routability.
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Figure 4 - The HCGP Architecture

FPGA 1

FPGA 4 FPGA 3

FPGA 2
src sink1

sink2sink3

FPGA 1

FPGA 2FPGA 3FPGA 4

src

sink1sink2sink3

FPID

(a)

(b)

Figure 5 - Multi-terminal routing (a) without an FPID (b)
with and FPID



3.2.1 Routing Algorithm for HCGP

The inter-chip routing algorithm for HCGP is similar to
the partial crossbar routing algorithm in the sense that the
same algorithm is used when routing nets through FPIDs.
However, the difference here is that the router should also
exploit the direct connections between FPGAs to minimize
the number of FPGA and FPID pins used for routing and to
minimize the number of hops for routing each inter-FPGA
net.

We have developed a routing tool, called HROUTE, that
understands the HCGP architecture and gives excellent
routability and speed results for all the benchmark circuits.

The main objective of HROUTE is to route all nets using
no more than two hops for each source-sink path. Wherever
possible, we try to use direct connections to minimize source-
sink net delay when routing both two-terminal and multi-ter-
minal nets. We first try to route all possible two-terminal nets
using the direct connections between FPGAs to minimize
usage of pins and net delay. Next, we route all multi-terminal
nets through FPIDs using a routing algorithm similar to that
used in PCROUTE, described above. Finally, the remaining
two terminal nets are routed using FPGAs or FPIDs. Any nets
that remain unrouted are processed by a maze router. Our
experience has shown that net ordering is crucial for obtaining
good routability and speed results in HROUTE. A detailed
description of HROUTE is given in [Khal98].

4 Experimental Results

In this section we determine the effect of varying the value
of Pp on the routability of the HCGP architecture and compare
the partial crossbar and HCGP architectures.

4.1 HCGP Architecture: Analysis of Pp

Recall the definition of Pp, the percentage of pins used for
programmable connections, given in Section 3.2. Pp is impor-
tant because it affects the cost, routability and speed of the
HCGP architecture. Here we explore the effect of Pp on the
routability of the HCGP architecture. We mapped the fifteen
benchmark circuits to the HCGP architecture using five dif-
ferent values of Pp (20, 30, 40, 50 and 60). The results are
shown in Figure 6. The Y-axis represents the percentage of
inter-FPGA nets routed and the X-axis represents the Pp val-
ues. The first clear conclusion is Pp = 60% gives 100%
routability for all the benchmark circuits. Notice that about
half of the circuits routed at Pp <= 40%, and for the remaining
half, more than 97% of the nets routed. This implies that there
is a potential for obtaining 100% routabilty for all circuits at
Pp = 40% if we use a routability driven partitioner like the one
used in [Kim96]. This should lead to further reduced pin cost
for HCGP compared to the partial crossbar.

We conjecture that the Pp value required for routing
completion of a given circuit on HCGP depends upon how
well the circuit structure ‘matches’ the topology of the
architecture.
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4.2 Comparison of HCGP and Partial Crossbar

The 15 benchmark circuits described in Table 2 were
mapped to the partial crossbar and HCGP architectures using
the experimental procedure described in Section 2. The results
obtained are given in Table 3 and Table 4. In Table 3, the first
column shows the circuit name. The second column shows the
number of FPGAs needed to implement the circuit on each
architecture (recall that we increase the MFS size until routing
is successful). The third column shows the normalized pin
cost (where the number of pins used by the HCGP architec-
ture is set as 1) and the fourth column shows the normalized
critical path delay obtained for each architecture. Table 4 is
similar to Table 3 except that it shows actual (un-normalized)
pin cost and delay values.

The number of FPIDs used is not shown because it is con-
stant for each architecture. All the results for partial crossbar
use Pt = 17. The parameter Pt determines the number of FPIDs
required and the number of FPGAs in the architecture deter-
mine the pin count of each FPID. We have shown that the
value of Pt used has no effect on the routability and speed of

the partial crossbar [Khal97]. Therefore any arbitrary value of
Pt can be used. However, for practical reasons, the value cho-
sen should require FPIDs that have reasonable pin counts
(about 400 pins or less, which are commercially available) for
the largest partial crossbar required in our experiments. A rea-
sonable choice in this respect is Pt = 17.

The value of Pp for the HCGP architecture was set to 60%
to obtain good routability across all circuits, as discussed in
Section 4.1. Notice that the parameter Pt also applies to the
programmable connections in the HCGP. For the same rea-
sons as in the partial crossbar (given in the previous
paragraph), we chose Pt = 14 for the HCGP architecture.

In reviewing Table 3, consider the circuit mips64. The
first partitioning attempt resulted in 14 FPGAs required to
implement the circuit on partial crossbar. However, the circuit
was not routable on HCGP and the partitioning was repeated
after reducing the number of pins per FPGA specified to the
partitioner by 10%. This resulted in 16 FPGAs required to
implement the circuit. The second partitioning attempt was
routable on the HCGP architecture because more ‘free pins’
were available in each FPGA for routing purposes. The pin

Circuit

Number of FPGAs Normalized pin cost
Normalized post-routing

critical path delay

Partial
crossbar

HCGP
Partial

crossbar
HCGP

Partial
crossbar

HCGP

s35932 8 8 1.30 1.0 1.0 1.0

s38417 9 9 1.34 1.0 1.0 1.0

s38584 9 9 1.34 1.0 1.23 1.0

mips64 14 16 1.16 1.0 0.99 1.0

spla 18 25 0.91 1.0 0.96 1.0

cspla 18 21 1.13 1.0 1.01 1.0

mac64 6 8 0.98 1.0 1.11 1.0

sort8 12 14 1.11 1.0 0.99 1.0

fir16 10 10 1.30 1.0 1.24 1.0

gra 4 4 1.35 1.0 1.20 1.0

fpsdes 9 9 1.34 1.0 1.16 1.0

spsdes 8 8 1.30 1.0 1.15 1.0

ochip64 8 8 1.30 1.0 1.26 1.0

ralu32 9 15 0.76 1.0 1.06 1.0

iir16 6 6 1.32 1.0 1.05 1.0

Average 1.20 1.0 1.09 1.0

Table 3 - Comparison of the Partial Crossbar and HCGP Architectures



cost for the partial crossbar was still more than that for HCGP
because it uses many more programmable connections, and
hence more FPID pins. A partial crossbar always requires one
FPID pin for every FPGA pin; the HCGP architecture requires
a lower ratio.

Inspecting Table 3, we can make several observations.
First, the partial crossbar needs 20% more pins on average,
and as much as 35% more pins compared to the HCGP archi-
tecture. Clearly, the HCGP architecture is superior to the
partial crossbar architecture in terms of the pin cost metric.
This is because the HCGP exploits direct connections
between FPGAs to save FPID pins that would have been
needed to route certain nets in partial crossbar. However, for
routability purposes, the HCGP needs some free pins in each
FPGA and may require repeated partitioning attempts for
some circuits.

Table 3 also shows that the typical circuit delay is lower
with the HCGP architecture: the HCGP gives significantly
less delay for six circuits compared to the partial crossbar and
about the same delay for the rest of the circuits. The reason is
that the HCGP utilizes fast and direct connections between

FPGAs, whenever possible. From the delay values in Table 1,
we can show that the interconnection delay is much smaller
(12.6 ns) if we use direct connections between FPGAs com-
pared to the delay value (25.6 ns) when connecting two
FPGAs through an FPID.Another interesting observation is
that even for the circuits where the HCGP needs more FPGAs
compared to the partial crossbar, it still gives comparable
delay value. This clearly demonstrates that the HCGP archi-
tecture is inherently faster due to the nature of its topology. It
gives significant speed up even though we have not yet
employed timing driven inter-FPGA routing.

Table 4 shows the actual pin cost and delay values
obtained for the partial crossbar and HCGP architectures. It is
interesting that the estimated clock speeds for the partial
crossbar architecture range from 17.4 MHz for thes35932 cir-
cuit to 1.61 MHz the mac64 circuit. This range is
representative of the clock rates expected in MFSs [Quic96].

5 Conclusions and Future Work

In this paper we presented the Hybrid Complete-Graph
and Partial-Crossbar (HCGP), a new routing architecture for

Circuit

Number of FPGAs
Pin cost

 Post-routing critical path
delay (in ns)

Partial
crossbar

HCGP
Partial

crossbar
HCGP

Partial
crossbar

HCGP

s35932 8 8 2992 2296 57.4 57.4

s38417 9 9 3366 2520 94.6 94.6

s38584 9 9 3366 2520 139.4 113.4

mips64 14 16 5236 4528 461.9 467.5

spla 18 25 6732 7400 196.3 203.9

cspla 18 21 6732 5964 192.5 191.2

mac64 6 8 2244 2296 622.9 563

sort8 12 14 4488 4046 532.8 538.3

fir16 10 10 3740 2870 238 192.7

gra 4 4 1496 1112 70 58.5

fpsdes 9 9 3366 2520 226.5 195.4

spsdes 8 8 2992 2296 248.8 216.2

ochip64 8 8 2992 2296 63.2 50.1

ralu32 9 15 3366 4410 316.8 298

iir16 6 6 2244 1704 160.2 152.8

Total: 55352 Total: 48778 Avg.: 241.42 Avg.: 226.2

Table 4 - Actual Pin Cost and Delay Values for the Partial Crossbar and HCGP Architectures



multi-FPGA systems. Using an experimental approach, we
evaluated and compared this architecture to the partial cross-
bar architecture and showed that it is superior in terms of pin
cost and speed. To our knowledge, this is the first architec-
tural study of board-level MFSs that considers post-routing
critical path delay when evaluating the speed performance of
different architectures.

We explored a key parameter, Pp, associated with the
HCGP architecture and determined its best value (60%) for
obtaining good routability for a variety of circuits.

We believe that the HCGP architecture would give even
better results if we use better mapping (CAD) tools for parti-
tioning and inter-FPGA routing. First, a timing driven router
that routed all or most of the nets on the critical paths using
fast and direct connections would lead to larger reductions in
the critical path delay. Second, a routabilty driven partitioner,
similar to the one used in [Kim96], would result in further
reduced pin cost by making circuits routable for even lower
values of Pp (say 40%).

The HCGP architecture is suitable for single board MFSs
using a maximum of about 20 FPGAs. As FPGA logic and pin
capacities continue to rise, it makes sense to use single board
systems using a few high capacity FPGAs to avoid the prob-
lems associated with using high pin count connectors for
multi-board systems [Lewi97]. For applications where hun-
dreds of FPGAs are needed, like logic emulation, we could
use ‘clusters’ of HCGPs interconnected using a hierarchical
partial crossbar scheme [Butt92]. The hardwired connections,
within each cluster and between different clusters, would still
help in reducing the overall pin cost. Determining the Pp value
suitable for such hierarchical architectures is an open research
problem. We will need extremely large benchmark circuits
and appropriate CAD tools to explore hierarchical
architectures.
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