
Abstract

Multi-FPGA systems (MFSs) are used as custom comput-
ing machines, logic emulators and rapid prototyping vehicles.
A key aspect of these systems is their programmable routing
architecture, the manner in which wires, FPGAs and Field-
Programmable Interconnect Devices (FPIDs) are connected.

In this paper we present an experimental study for evalu-
ating and comparing two commonly used routing
architectures for multi-FPGA systems: 8-way mesh and par-
tial crossbar. A set of 15 large benchmark circuits are mapped
into these architectures, using a customized set of partition-
ing, placement and inter-chip routing tools. Particular
attention was paid to the development of appropriate inter-
chip routing algorithms for each architecture. The architec-
tures are compared on the basis of cost (the total number of
pins required in the system) and speed (determined by post
inter-chip routing critical path delay). The results show that
the 8-way mesh architecture has high cost, poor routability
and speed while the partial crossbar architecture gives rela-
tively low cost, good routability and speed.

Using our experimental approach, we also explore a key
architecture parameter associated with the partial crossbar
architecture, and its impact on the routability and speed of the
architecture. We briefly describe an inter-chip router for the
partial crossbar architecture, called PCROUTE, that gives
excellent routability and speed results for real benchmark
circuits.

1 Introduction

Field-Programmable Gate Arrays (FPGAs) are widely
used for implementing digital circuits because they offer
moderately high levels of integration and rapid turnaround
time [Brow92]. Multi-FPGA systems (MFSs), which are col-
lections of FPGAs and memory joined by programmable
connections as illustrated in Figure 1, are used when the logic
capacity of a single FPGA is insufficient, and when a quickly
re-programmed system is desired. The typical uses are for
logic emulation [Quic96] [Apti96], rapid prototyping
[Van92] [Gall94] [Alte94] [Lewi97] and reconfigurable cus-
tom computing machines [Lewi97] [Vuil96] [Arno92]
[Cass93] [Dray95].

The routing architecture of an MFS is the way in which the
FPGAs, fixed wires, and field programmable interconnect
devices (FPIDs) are connected. The routing architecture has a
strong effect on the speed, cost and routability of the system.
Many architectures have been proposed and built [FCCM]
[Butt92] [Van92] [Apti96] [Lewi97] and some research work
has been done to empirically evaluate and compare different
architectures [Khal97] [Kim96].

In this paper we evaluate and compare two popular archi-

tectures, the 8-way mesh and the partial crossbar, using an
empirical approach. The architectures are compared on the
basis of cost (the total number of pins required in the system)
and speed. The speed comparisons are based on post inter-
chip routing critical path delay of real benchmark circuits,
which, to our knowledge, is the first time such detailed timing
information has been used in the study of board-level MFS
architectures.

We explore the effect of a key parameter of the partial
crossbar architecture, the number of pins per subset (referred
to as Pt in the sequel), on routability, cost, and speed.We
briefly describe an inter-chip router for the partial crossbar
architecture, called PCROUTE, that gives excellent routabil-
ity and speed results for real benchmark circuits. PCROUTE
is equivalent or better in quality compared to other partial
crossbar routers that have been proposed so far [Mak97a]
[Mak97b] [Lin97] [Slim94].

Previous work has been done evaluating mesh [Hauc94]
and other architectures [Chan93]. Although this work pro-
vides some theoretical insight into these architectures,
empirical studies that evaluate the implementation of real cir-
cuits on different architectures provide a more clear picture of
the ‘goodness’ of each architecture relative to the others
[Khal97] [Kim96].

This paper is organized as follows: In Section 2 we
describe the experimental evaluation procedure and the
evaluation metrics used, and give details on the suite of large
benchmark circuits used in this experimental work. In Section
3 we cover the architectural issues and assumptions that arise
when mapping real circuits to the 8-way mesh and partial
crossbar architectures. We also briefly describe architecture-
specific inter-chip routing algorithms employed.
Experimental results and their analysis is presented in Section
4, and we conclude in Section 5.
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2 Experimental Overview

To evaluate the two routing architectures considered in
this paper, we used the experimental procedure illustrated in
Figure 2. Each benchmark circuit was partitioned, placed and
routed into each architecture. Section 2.1 describes the gen-
eral toolset used in this flow. The cost and delay metrics that
we use to evaluate architectures are described in Section 2.2.
A description of the 15 benchmark circuits is given in Section
2.3.

2.1 General CAD Flow

As illustrated in Figure 2, we start with a (technology
mapped) netlist of 4-LUTs and flip flops of the circuit. The
circuit is partitioned into a minimum number of sub-circuits
using a multi-way partitioning tool which accepts as con-
straints the specific FPGA logic capacity and pin count. For
all the experiments presented in this paper we used a Xilinx
4013 FPGA, which consists of 1152 4-LUTs, 1152 flip flops,
and 192 usable I/O pins [Xili97]. We also assume that each
MFS architecture will be implemented on a single board.
Multi-way partitioning is accomplished using a recursive bi-
partitioning procedure. The partitioning tool is called ‘part’
and was originally developed for the Transmogrifier-1 rapid
prototyping system [Gall94]. It is based on the Fiduccia Mat-
theyses partitioning algorithm [Fidu82] with an extension for
timing-driven pre-clustering [Shih92]. While it is more
accurate to do architecture-driven partitioning for the mesh
architecture, we believe that recursive bi-partitioning fol-
lowed by FPGA placement will help in providing enough
‘locality’ in the post-placement netlist for the mesh
architecture.

The next step is system-level placement of each sub-cir-
cuit onto a specific FPGA. Given the number of sub-circuit
and the netlist of interconnections, each sub-circuit is
assigned to a specific FPGA in the MFS. The objective is to
place highly connected sub-circuits into adjacent FPGAs (if
the architecture has some notion of adjacency) so that the
routing resources needed for inter-FPGA connections are
minimized.

Given the sub-circuit interconnection netlist and their
placement on FPGAs in the MFS, the next step is to route each
inter-FPGA net using the most suitable routing path. In the
context of MFSs this means that the routing path chosen
should be the shortest path (use the minimum number ofhops)
and it should cause the least possible congestion for subse-
quent nets to be routed. Ahop is defined as a wire that
connects two chips on a board. If the routing attempt is suc-
cessful, it means that the circuit fits in the specified
architecture.

If the routing attempt fails, the partitioning step is repeated
after reducing the number of I/O pins per FPGA specified to
the partitioner. This usually increases the number of FPGAs
needed, and helps routability by decreasing the demand from
each FPGA, and providing more “route-through” pins in the
FPGAs which facilitate routing. For example, consider a
benchmark circuit consisting of 4374 LUTs, 1728 flip flops,
and 357 I/Os, mapped to a 8-way mesh. The first mapping
attempt partitioned the circuit into 8 sub-circuits (i.e. separate

FPGAs). We then placed them on a 2 X 4 mesh of FPGAs fol-
lowed by inter-FPGA routing. Only 60% of the inter-FPGA
nets were routed. The mapping procedure was repeated by
reducing the number of pins per FPGA specified to the parti-
tioner, until 100% of the inter-FPGA nets were routed. The
circuit was routable on a 3 X 4 array and the number of FPGA
I/O pins specified for the partitioner was 100 (out of 192).

For some circuits the routing attempt may fail even after
increasing the array size. For such cases, we abandon the fit-
ting attempt when the logic utilization becomes very low after
partitioning (15% or less).

Note that in an actual MFS, the inter-FPGA routing step is
followed by pin assignment, placement and routing within
individual FPGAs. We need not perform these tasks because
we are just interested in knowing the MFS size needed to fit
the circuit. Our previous research has shown that we can
afford to assign pins randomly for each FPGA without jeop-
ardizing routability and speed [Khal95]. During recursive bi-
partitioning, we restrict the logic utilization of each FPGA to
be less than or equal to 70% to avoid placement and routabil-
ity problems for individual FPGAs. Thus we ensure that if
inter-FPGA routing attempt succeeds, it is almost guaranteed
that the subsequent pin assignment, placement, and routing
steps will be successful for each FPGA in the MFS.

The inter-chip routing problem is unique for each architec-
ture and this requires an architecture-specific router. We
attempted to develop a generic router (FPSROUTE) that can
be used for different architectures, but it did not give satisfac-
tory results [Khal97]. Each architecture has unique features
that can be exploited by the routing tool to give superior
results.

2.2 Evaluation metrics

To compare the two routing architectures we implement
benchmark circuits on each and contrast the pin cost and post-
routing critical path delay, as described below.

2.2.1 Pin cost

The cost of an MFS is likely a direct function of the num-
ber of FPGAs and FPIDs: If the routing architecture is
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Figure 2 - Experimental Evaluation Procedure for
Multi-FPGA Systems



inefficient, it will require more FPGAs and FPIDs to imple-
ment the same amount of logic as a more efficient MFS.
While it is difficult to calculate the price of specific FPIDs and
FPGAs, we assume that the total cost is proportional to the
total number of pins on all of these devices. Since the exact
number of FPGAs and FPIDs varies for each circuit imple-
mentation (in our procedure above, we allow the MFS to grow
until routing is successful), we calculate, for each architec-
ture, the total number of pins required to implement each
circuit. We refer to this as thepin cost metric for the
architecture.

2.2.2 Post-Routing Critical Path Delay

The speed of an MFS, for a given circuit, is determined by
the critical path delay obtained after a circuit has been placed
and routed at the inter-chip level. We call this thepost-routing
critical path delay. We have developed an MFS static timing
analysis tool (MTA) for calculating the post routing critical
path delay for a given circuit and MFS architecture.

The operation and modeling used in the MTA are
described briefly as follows: It first calculates the critical path
delay of the un-partitioned design using a widely used method
called theblock oriented technique [Joup87]. It then reads the
inter-FPGA netlist and the routing path for each inter-FPGA
net, as provided by the inter-chip router, and the MFS archi-
tecture description. From this information the circuit is
annotated with the inter-chip delays, from which the critical
path delay can be calculated.

In the delay annotation step, the delay values given in
Table 1 (obtained from data sheets [Xili97] and [Icub97] and
some design experience) are used.

Note that since we do not perform individual FPGA place
and route, we approximate the CLB-to-CLB delay as a con-
stant. The value of 2.5 ns for CLB-to-CLB routing delay is
roughly half the delay on a long line for XC4013E-1 FPGA.
This is a pessimistic estimate. Although using a single delay
value is not accurate, it still gives us a good estimate of the
post-routing critical path delay of an MFS because it is domi-

nated by off chip delay values.

2.3 Benchmark Circuits

A total of fifteen large benchmark circuits were used in our
experimental work. An extensive effort was expended to col-
lect this suite of large benchmark circuits. The details about
each benchmark circuit are shown in Table 2. The table gives
the circuit name, size (in 4-LUTs, D flip flops, and I/O count),
rough description of the functionality, the source of the circuit
and the manner in which it was synthesized. Four circuits
were obtained from MCNC [Yang91], two from PREP [Prep],
and the remaining nine were developed at the University of
Toronto (UofT). The circuits from MCNC were available in
the XNF [Xili97] gate-level netlist format required by our
front end tools. All the circuits from PREP and UofT were
originally available as VHDL or Verilog HDL models and
were synthesized into XNF netlists using Exemplar [Exem94]
and Synopsys Behavioral Compiler [Knap96] and/or Design
Compiler [Syno97] synthesis tools. We show these details of
the benchmark circuits because we feel that the MCNC cir-
cuits that have been used so far in MFS architecture studies
are insufficient in terms of size and variety to ‘stress’ different
architectures and the mapping tools used. Specifically, we
found that they are easier to partition and map compared to the
other real circuits that we use in this work. Since our bench-
mark set includes a variety of real circuits, this will make our
architectural conclusions more accurate and useful compared
to the architectural studies that use synthetic netlists [Hauc94]
or use only a small number of large circuits [Kim96]. Also,
inter-chip routing tools can be evaluated in a realistic manner
using a variety of real benchmark circuits rather than synthetic
netlists [Mak97a] [Mak97b] [Lin97].

3 Routing Architecture Description and Routing Algo-
rithms

In this Section we describe the partial crossbar and 8-way
mesh architectures. For each architecture, we briefly describe
an architecture-specific inter-chip router.

3.1 Architectural Issues Assumptions for the 8-way Mesh

The most simple mesh topology is a 4-way mesh where
each FPGA is connected to its horizontally and vertically
adjacent neighbours. A variation of this basic mesh topology

Item Delay (ns)

Intra-FPGA CLB-to-CLB routing
delay

2.5

FPGA input pad delay 1.4

FPGA output pad delay 3.2

CLB delay (without using H-LUT) 1.3

CLB delay (via H-LUT) 2.2

FPID crossing delay (including pad
delays)

10

PCB trace delay 3

FPGA Route Through Delay 10

FPGA 1

FPGA 9FPGA 8

FPGA 3

FPGA 6

FPGA 2

FPGA 5FPGA 4

FPGA 7

Figure 3 - The 8-way Mesh Architecture

Table 1 - Delays used in Timing Analyzer Model



is the 8-way mesh [Hauc94] as shown in Figure 3. Each FPGA
is connected to its horizontal, vertical, and diagonal adjacent
neighbours. We use a Torus topology in which the edges on
the peripheral FPGAs are wrapped around in horizontal and
vertical directions and are connected to FPGAs on the oppo-
site side of the array. For example, FPGA 1 in is connected to
FPGAs 3 and 7. In each FPGA, a certain number of pins are
reserved for circuit I/O signals. Note that we use only horizon-
tal and vertical wrap around and do not use wrap around in
diagonal directions.

3.1.1 Placement and Routing Tools for the 8-way Mesh

Given a circuit, the experimental procedure for mapping it
to a mesh architecture is given in Figure 2. In this section the
specific placement and routing tools for the mesh will be
briefly described. Given the circuit netlist and the FPGA logic
and pin capacities, the circuit is partitioned into a minimum
possible number of sub-circuits such that each sub-circuit fits
in a single FPGA. The sub-circuits are then placed on the
mesh array using a placement tool that is based on a force-
directed placement algorithm described in [Shah91]. The
objective here is to place closely connected sub-circuits on
adjacent FPGAs in the mesh array. A detailed description of

Circuit Size Function
Source, Synthesis tool used (if

applicable)

s35932  4374 LUTs,
1728 FFs, 357 I/Os

Sequential circuit MCNC

s38417  6097 LUTs,
1463 FFs, 134 I/Os

Sequential circuit MCNC

s38584  4396 LUTs
1451 FFs, 292 I/Os

Sequential circuit MCNC

mips64   2900 LUTs
440 FFs, 260 I/Os

Scaled down version of
MIPS R4000

PREP, Verilog model synthesized
using Exemplar

spla  3423 LUTs
0 FFs, 62 I/Os

Combinational  Circuit MCNC

cspla  2039 LUTs
0 FFs, 62 I/Os

Clone of spla UofT, Generated using
GEN[Hutt96]

mac64  2560 LUTs
64 FFs, 133 I/Os

64-bit
multiply-accumulate ckt.

UofT, Verilog model synthesized
using Synopsys

sort8  1540 LUTs
200 FFs, 20 I/Os

8-bit HW sort engine UofT, Verilog model synthesized
using Synopsys

fir16  5366 LUTs
1040 FFs, 60 I/Os

16-bit, 8-stage
 FIR filter

UofT, Verilog model synthesized
using Synopsys

gra  2494 LUTs
1156 FFs, 144 I/Os

Graphics acceleration
circuit

UofT, circuit generated using
tmcc[Gall95]

fpsdes  3484 LUTs
1008 FFs, 69 I/Os

Fastest pseudo DES cir-
cuit

UofT, Verilog model synthesized
using Synopsys

spsdes  2452 LUTs
982 FFs, 69 I/Os

Smallest pseudo DES
circuit

UofT, Verilog model synthesized
using Synopsys

ochip64  3617 LUTs
5810 FFs, 84 I/Os

Output chip for ATM
switching chip set

UofT, VHDL model synthesized
using Exemplar

ralu32  2553 LUTs
584 FFs, 98 I/Os

32-bit register file, ALU,
and control logic

PREP, VHDL model synthesized
using Synopsys

iir16  3149 LUTs
522 FFs, 52 I/Os

16-bit IIR filter UofT, VHDL model synthesized
using Synopsys

Table 2 - The Benchmark Circuits Used



the placement tool is given in [Khal97].
Given the placement of sub-circuits on the mesh and the

netlist of interconnections between sub-circuits, the next step
is inter-FPGA routing. The routing problem is complicated by
the fact that FPGAs are used for both logic and routing. Each
FPGA will have a number of I/O pins unused after all the pins
needed for sources and sinks in that FPGA are accounted for,
calledfree pins. An FPGA should have at least two free pins
if it is to permit a route to pass through it.

We have developed a mesh routing tool called MROUTE
that uses a heuristic tuned to the routing requirements of the
mesh architecture. It first routes all those nets that do not use
any free pins. It then routes all two-terminal nets using an
algorithm that enumerates all possible shortest paths between
source and target. A shortest path is chosen that attempts to
minimize the congestion for the subsequent nets to be routed.
Since the typical array is small (at most 6 X 8 in our case) and
few nets connect FPGAs that are far apart, enumeration of all
possible shortest paths is computationally feasible. For multi-
terminal nets, a modified form of the single component
growth algorithm is used [Kuh86]. The algorithm is adapted
for mesh architectures to consider free pins and wire segments
when routing multi-terminal nets. MROUTE gives consis-
tently better results compared to an architecture independent
multi-pass maze router for MFSs, FPSROUTE, that we had
developed earlier.

3.2 Architectural Description and Routing for the Partial
Crossbar

The partial crossbar architecture [Butt92] [Varg93] is used
in logic emulators produced by Quickturn Design Systems
[Quic96]. An example partial crossbar using four FPGAs and
three FPIDs is shown in Figure 4. The pins in each FPGA are
divided into N subsets, where N is the number of FPIDs in the
architecture. All the pins belonging to the same subset in dif-
ferent FPGAs are connected to a single FPID. Note that any
circuit I/Os will have to go through FPIDs to reach FPGA
pins. For this purpose, a certain number of pins per FPID are
reserved for circuit I/Os. The number of pins per subset (Pt) is
a key architectural parameter that determines the number of
FPIDs needed and the pin count of each FPID. The extremes
of the partial crossbar architecture can be illustrated by con-
sidering a system with four FPGAs, and assuming 192 usable
I/O pins per FPGA: a Pt value of 192 will require a single 768-
pin FPID that acts as a full crossbar. A Pt value of 1 will
require 192 4-pin FPIDs. Both of these cases are impractical.
A good value of Pt should require low cost, low pin count
FPIDs. For the above example, a Pt value of 12 will require 16
48-pin FPIDs. Taking into account the extra FPID pins
required for circuit I/Os we will need to use 64 or 96-pin
FPIDs that are commercially available [Icub97].

3.2.1 Routing Algorithm for the Partial Crossbar

Given a partitioned circuit, the placement problem is triv-
ial in a partial crossbar because there is no locality inherent in
the routing architecture. Therefore it does not matter which
FPGA is used for a given sub-circuit. It is still important to use
a routing algorithm that exploits architecture-specific features
in order to obtain good results. Ideally, a routing algorithm for

the partial crossbar should achieve 100% routability and
ensure that each source-sink path across all inter-chip nets
uses no more than two inter-chip hops. This will give the min-
imum possible net delay for each net and minimize the post-
routing critical path delay.

We have developed a routing tool, called PCROUTE, for
partial crossbar architecture that gives excellent results for all
the circuits. Irrespective of the value of Pt, it achieves 100%
routing completion and produces two-hop routing for all the
nets in almost all circuits. For only two circuits, for the spe-
cific case of Pt= 4, it produced multi-hop routing paths for a
negligible number of nets (1 out of 991 nets for the first circuit
and 3 out of 645 nets for the second). In practical terms, this
means it gives almost optimal results for all of our benchmark
circuits. Note that the routing problem becomes more difficult
for the partial crossbar as the value of Pt is reduced. This is
due to reduced routing flexibility due to the low pin count
FPIDs used in such cases.

The PCROUTE algorithm works as follows: for each net
(irrespective of fanout), it evaluates paths through all avail-
able FPIDs. It uses a suitable cost function to choose an FPID
that will guarantee balanced usage of FPIDs and will preserve
the most options for two-hop routing of subsequent nets to be
routed (congestion avoidance). Further details about
PCROUTE are given in [Khal97]. We also show in [Khal97]
that PCROUTE is equivalent in quality to other partial cross-
bar routers that have been proposed so far [Kim96] [Mak97a]
[Lin97] [Slim94]. PCROUTE is better than [Mak97b] for
speed because that algorithm splits each multi-terminal into a
set of two-terminal nets and routes them independently, lead-
ing to multiple hops and even possible routing failures.

4 Experimental Results

In this section we determine the effect of varying the value
of Pt on the routability and speed of the partial crossbar archi-
tecture and compare the partial crossbar and the 8-way mesh
architectures.

4.1 Partial Crossbar Architecture: Analysis of Pt

Recall the definition of Pt, the number of pins per subset,
given in Section 3.2. Pt is important because, depending on its
size either very large FPIDs are needed or very many FPIDs
are required. Here we explore the effect of Pt on the routability
and speed of the partial crossbar architecture. We mapped the

FPGA 1

A

FPGA 4FPGA 3FPGA 2

FPID FPIDFPID

B pinsA pins

AAA

C pins

B C B C B C B C

Figure 4 - The Partial Crossbar Architecture



fifteen benchmark circuits to the partial crossbar architecture
using three different values of Pt (4, 17, 47). The values 4 and
47 are extreme cases (resulting in either many small FPIDS or
few very large FPIDs) and the value of 17 is a reasonable
choice as discussed in Section 3.2.

We used two routing algorithms to do these experiments:
FPSROUTE, which employed a somewhat generic maze-
routing algorithm, and PCROUTE, which used a algorithm
that specifically addressed the nature of a partial crossbar. The
first clear conclusion is that Pt has no significant impact on
routability of partial crossbar, because all the circuits were
routable by PCROUTE for the Pt values given above. The
same was true for FPSROUTE as well except for routing fail-
ures in one circuit for the Pt = 4 case. An interesting point that
follows from this conclusion is that we do not need links
between FPIDs, as proposed in [Icub94], to improve the
routability of the partial crossbar.

The effect of Pt on the speed of partial crossbar is shown
in Table 3. The first column shows the circuit name. The sec-
ond column gives the number of FPGAs needed to implement
the circuit. The third column shows the normalized post-rout-

ing critical path delay obtained for the circuit using
PCROUTE for three values of Pt (4, 17, 47). The critical path
delay obtained by PCROUTE is set as 1. The columns 4-6
show the normalized post-routing critical path delay obtained
using FPSROUTE for three values of Pt (4, 17, 47).

Observe that the PCROUTE algorithm, which is tuned for
partial crossbars, gives the same delay value irrespective of
the value of Pt. This shows that it is able to tackle the increased
complexity of the routing task when we use very small values
of Pt without any adverse effects on routability or speed.

We include the results for FPSROUTEto warn of the dan-
ger of using an inappropriate algorithm for the partial
crossbar: here the effect of Pt on speed is quite significant, the
delay increases as the value of Pt decreases. For Pt = 4, aver-
age increase in delay using FPSROUTE is 19% across all
circuits, and up to 62% more. The partial crossbar is a very
robust architecture that allows us to use a wide range of Pt val-
ues without any penalties on routability and speed

4.2 Comparison of 8-way Mesh and Partial Crossbar

In this section we compare the 8-way mesh architecture

Circuit # FPGAs

Normalized
post-routing

critical path delay
using PCROUTE,

Pt = 4, 17, 47

Normalized post-routing critical path delay
using FPSROUTE

Pt = 47 Pt = 17 Pt = 4

s35932 8 1.0 1.0 1.42 1.42

s38417 9 1.0 1.0 1.27 1.27

s38584 9 1.0 1.0 1.17 1.17

mips64 14 1.0 1.0 1.00 1.09

spla 18 1.0 1.38 1.46 1.62

cspla 18 1.0 1.24 1.24 1.36

mac64 6 1.0 1.0 1.0 1.0

sort8 12 1.0 1.09 1.14 1.22

fir16 10 1.0 1.0 1.03 1.03

gra 4 1.0 1.0 1.0 1.0

fpsdes 9 1.0 1.0 1.0 1.24

spsdes 8 1.0 1.0 1.0 1.10

ochip64 8 1.0 1.0 1.0 1.0

ralu32 9 1.0 1.0 1.04 Routing
failure

iir16 6 1.0 1.0 1.0 1.00

Average 1.0 1.05 1.12 1.19

Table 3 - The Effect of Pt on the Delay of Partial Crossbar Architecture



with partial crossbar. Table 4 presents the results obtained
after mapping fifteen benchmark circuits to the 8-way mesh
and partial crossbar architectures. The first column shows the
circuit name, the second column shows the number of FPGAs
needed to implement the circuit, and the third column shows
percentage of nets routed, in each architecture. The fourth and
fifth columns show pin cost and post-routing critical path
delay respectively, obtained for each architecture. All results
for partial crossbar are for a Pt value of 17. This implies that
the number of FPIDs used will be 11 but the size of FPID will
depend on the number of FPGAs used. We could have used
any suitable value of Pt, since it does not affect routability and
speed. However, we choose a Pt value of 17 because it
requires an FPID of a realistic size (< 400 pins) for the largest
circuit that we mapped to the partial crossbar (18 FPGAs).

Notice that the partial crossbar is always routable for the
first feasible partition of each circuit. Only five of the fifteen
benchmark circuits were routable on the 8-way mesh even
after mapping attempts with increased array sizes.The fact
that so few circuits successfully routed indicates a basic flaw
with the mesh architectures.

The mesh architectures failed for the majority of circuits
due to a number of reasons. First, the locality available in
inter-FPGA netlists for real circuits is not great enough for the
nearest neighbor connections. Second, there are not enough
free pins available for routing the non-local nets. To make
matters worst, multiple hops needed to route many nets use up
many precious free pins. It was initially surprising to find no
success when the MFS was expanded in an attempt to obtain
100% routing completion. Clearly the larger MFS has more
free pins. However, since the array was larger, this in turn
leads to increase in average wire length and more inter-FPGA
nets, partially nullifying the advantage of increased free pins.

Clearly, the partial crossbar architecture is superior to the
8-way mesh architecture. This is not surprising, considering
that Quickturn [Quic96] initially used 8-way mesh in their
first generation logic emulator called RPM [Walt91], but
dropped it later and used partial crossbar [Butt92] for their
next generation emulators.

The delay results show that for small array sizes, the 8-
way mesh gives better speed than the partial crossbar. This is
because some or all the nets on the critical paths may utilize

Circuit

Number of FPGAs % nets routed Pin cost
 Post-routing critical path
delay (in nano seconds)

8-way
mesh

Partial
crossbar

8-way
 mesh

Partial
crossbar

8-way
mesh

Partial
crossbar

8-way
mesh

Partial
crossbar

s35932 12 (3 X 4) 8 100 100 2304 3428 50.5 57.4

s38417 12 (3 X 4) 9 100 100 2304 3807 123.6 94.6

s38584 30 (5 X 6) 9 100 100 5760 3807 216.9 139.4

mips64 > 48 (6 X 8) 14 92 100 > 9216 5646 Rout. failure 461.9

spla > 48 (6 X 8) 18 90 100 > 9216 7218 Rout. failure 196.3

cspla > 40 (5 X 8) 18 85 100 > 7680 7218 Rout. failure 192.5

mac64 > 18 (3 X 6) 6 77 100 > 3456 2760 Rout. failure 622.9

sort8 > 28 (4 X 7) 12 80 100 > 5376 4944 Rout. failure 532.8

fir16 > 25 (5 X 5) 10 96 100 > 4800 4944 Rout. failure 238

gra 4 (2 X 2) 4 100 100 768 1912 60 70

fpsdes > 18 (3 X 6) 9 88 100 > 3456 3807 Rout. failure 226.5

spsdes > 15 (3 X 5) 8 84 100 > 2880 3428 Rout. failure 248.8

ochip64 8 (2 X 4) 8 100 100 1536 3428 46.7 63.2

ralu32 > 30 (5 X 6) 9 87 100 > 5760 3807 Rout. failure 316.8

iir16 > 15 (3 X 5) 6 89 100 > 2880 2760 Rout. failure 160.2

Avg.:
91.2

Avg.:
100

Total:
> 67392

Total:
62914

Table 4 - Comparison of the 8-way Mesh and Partial Crossbar Architectures



direct connections between FPGAs that are faster than con-
nections that go via FPIDs. But the speed deteriorates as the
array sizes get bigger.

For the same number of FPGAs, the partial crossbar
always needs twice as many pins as an 8-way mesh. For four
out of 15 circuits the 8-way mesh has less pin cost compared
to the partial crossbar architecture. But the pin cost as well as
the delay over all the circuits will be more for the 8-way mesh
if we consider the number of FPGAs needed for the large
array sizes that will be required to make some circuits
routable.

5 Conclusions and Future Work

In this paper we evaluated and compared two commonly
used MFS routing architectures using an experimental
approach. To our knowledge, this is the first architecture
study of board-level MFSs that considers post-routing critical
path delay when evaluating the speed performance of differ-
ent architectures. We have shown that the partial crossbar is
superior to the 8-way mesh architecture in terms of pin cost,
speed, and routability. The reason behind inferior results for
the mesh architectures is that FPGAs are used for both logic
and routing. This causes routability problems that cannot be
solved even after increasing the size of the mesh.

The partial crossbar is a very robust architecture. The
effect of varying a key architectural parameter (Pt) on the
routability, speed, and cost is minor. It is important, however,
to use an appropriate routing algorithm for the partial crossbar
to obtain these results. We presented a routing algorithm for
the partial crossbar (PCROUTE) that gives excellent
routability and speed results for real benchmark circuits.

Mesh architectures should be avoided if the goal is to
implement a wide variety of circuits on MFSs. We note that
meshes and linear arrays have been used successfully in prac-
tice [Vuil96][Arno92], but only for implementing algorithms
that require nearest neighbor type of connections when imple-
mented. The disadvantage of partial crossbar is that it uses
extra pins for some inter-FPGA nets that can be routed using
direct connections between FPGAs. Thisalso leads to a delay
penalty. We have proposed an alternative architecture that
uses both FPIDs and direct connections between FPGAs
[Khal98] to give lower pin cost and delay compared to the par-
tial crossbar.
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