
 1

A Novel and Efficient Routing Ar chitecture
for Multi-FPGA Systems

Abstract

Multi-FPGA systems (MFSs) are used as custom computing machines, logic emulators and
rapid prototyping vehicles. A key aspect of these systems is their programmable routing architec-
ture which is the manner in which wires, FPGAs and Field-Programmable Interconnect Devices
(FPIDs) are connected. Several routing architectures for MFSs have been proposed [Arno92]
[Butt92] [Hauc94] [Apti96] [Vuil96] [Babb97] and previous research has shown that the partial
crossbar is one of the best existing architectures [Kim96] [Khal97]. In this paper we propose a
new routing architecture, called theHybrid Complete-Graph andPartial-Crossbar (HCGP) which
has superior speed and cost compared to a partial crossbar. The new architecture uses both hard-
wired and programmable connections between the FPGAs. We compare the performance and cost
of the HCGP and partial crossbar architectures experimentally, by mapping a set of 15 large
benchmark circuits into each architecture. A customized set of partitioning and inter-chip routing
tools were developed, with particular attention paid to architecture-appropriate inter-chip routing
algorithms. We show that the cost of the partial crossbar (as measured by the number of pins on
all FPGAs and FPIDs required to fit a design), is on average 20% more than the new HCGP archi-
tecture and as much as 25% more. Furthermore, the critical path delay for designs implemented
on the partial crossbar were on average 20% more than the HCGP architecture and up to 43%
more. Using our experimental approach, we also explore a key architecture parameter associated
with the HCGP architecture: the proportion of hard-wired connections versus programmable con-
nections, to determine its best value.

1 Introduction
Field-Programmable Gate Arrays (FPGAs) are widely used for implementing digital circuits

because they offer moderately high levels of integration and rapid turnaround time [Brow92].
Multi-FPGA systems (MFSs), which are collections of FPGAs and memory joined by program-
mable connections as illustrated in Figure 1, are used when the logic capacity of a single FPGA is
insufficient, and when a quickly re-programmed system is desired. The typical uses are for logic
emulation [Apti96] [Quic96] [Babb97], rapid prototyping [Van92] [Gall94] [Alte94] [Lewi97]
and reconfigurable custom computing machines [Arno92] [Cass93] [Dray95] [Lewi97] [Vuil96]
[Lewi97].

The routing architecture of an MFS is the way in which the FPGAs, fixed wires, and program-

Mohammed A. S. Khalid
Quickturn Design Systems, Inc.

55 West Trimble Road
San Jose, CA 95131-1013
mkhalid@quickturn.com

Jonathan Rose
Dept. of Electrical and Computer Engineering

University of Toronto, Toronto
Ontario, CANADA M5S 3G4

jayar@eecg.toronto.edu

 2

mable interconnect chips are connected. The routing architecture has a strong effect on the speed,
cost and routability of the system. Many architectures have been proposed and built [FCCM]
[Butt92] [Van92] [Apti96] [Babb97] [Lewi97] and some research work has been done to empiri-
cally evaluate and compare different architectures [Kim96] [Khal97]. These studies have shown
that the partial crossbar is one of the best existing MFS architectures. In this paper we present a
new routing architecture for MFSs that uses both hardwired and programmable connections to
reduce cost and increase speed.We evaluate and compare the HCGP architecture and the partial
crossbar architecture using an empirical approach. In particular we compare architectures on the
basis of pin cost and speed.

Thespeed comparisons are based on post inter-chip routing critical path delay of real bench-
mark circuits, which, to our knowledge, is the first time such detailed timing information has been
used in the study of board-level MFS architectures.

We focus on single-board MFS routing architectures that use no more than about 25 FPGAs.
This is for two reasons: First, the complete graph topology used in the HCGP architecture does
not scale well for a large number of FPGAs. It becomes infeasible to connect each FPGA to every
other FPGA because such a scheme would likely result in severe routability problems. In such
cases, hierarchical architectures would be more effective. We believe that the HCGP architecture
could form the basis of a hierarchical architecture, with the root architecture being an HCGP, and
groups of HCGPs connecting in a next-level HCGP and so on. Second, we did not have huge cir-
cuits and the CAD tools required for mapping such circuits to hierarchical architectures.

Previous work has been done evaluating mesh [Hauc94] and other architectures [Chan93]. In
[Hauc94], several constructs (1-hop interconnections, Superpins, and Permutations) were pro-
posed to improve the basic 4-way mesh. However, synthetic netlists (not real circuits) were used
to evaluate different mesh topologies. In [Chan93] architectural trade-offs in the design of folded
Clos network (partial crossbar) were investigated and an optimal algorithm for routing two-termi-
nal nets was presented. Although this work provides some theoretical insight into these architec-
tures, empirical studies that evaluate the implementation of real circuits on different architectures
provide a more clear picture of the ‘goodness’ of each architecture relative to the others [Kim96]
[Khal97]. Our own previous research has shown that partial crossbar is vastly superior to the best
mesh architecture [Khal97].In [Kim96], several MCNC circuits were mapped to seven different
architectures, including the partial crossbar architecture. Each circuit was mapped to a fixed size

FPGA FPGA FPGA

FPGA FPGA

FPGA FPGA FPGA

Programmable
Interconnection
Network

Hardwired
connections

Figure 1 - A Generic Multi-FPGA System

 3

MFS (containing 30 FPGAs). The size of the FPGA was varied depending upon the circuit size.
Each architecture was evaluated on the basis of total number of CLBs needed across all circuits
(where fewer CLBs used implies better architecture), the type of FPGA chips used (smallest
FPGAs implies better architecture), and maximum number of hops needed across all inter-FPGA
nets (as a metric for speed). Ahop is defined as a chip-to-chip connection, i.e. a wire segment that
connects two different chips on a board. It was shown that one of the proposed architectures,
FPGAs connected together as a tri-partite graph, gave the best results (slightly better than partial
crossbar). In this work, relatively few large circuits were used that would have really ‘stressed’
the architectures, as only three reasonably large circuits (>2000 CLBs) were employed. Also, for
the speed estimate only the worst casenet delay in terms of the number of hops was considered;
which is not as representative of the true delay as post-routingcritical pathdelay.

An early version of the present work appeared in [Khal98]. The present work includes key
enhancements, particularly timing-driven inter-chip routing for HCGP and an exploration of the
effects of a key parameter Pp (to be defined later) on the speed of the HCGP architecture. This
paper is organized as follows: In Section 2 we describe the experimental evaluation procedure and
the evaluation metrics used, and give details on the suite of large benchmark circuits used in this
experimental work. In Section 3 we cover the architectural issues and assumptions that arise when
mapping real circuits to the HCGP and partial crossbar architectures. We also briefly describe
architecture-specific inter-chip routing algorithms for these architectures. Experimental results
and their analysis is presented in Section 4, and we conclude in Section 5.

2 Experimental Overview
To evaluate the two routing architectures considered in this paper, we used the experimental

procedure illustrated in Figure 2. Each benchmark circuit was partitioned, placed and routed into
each architecture. Section 2.1 describes the general toolset used in this flow. The cost and delay
metrics that we use to evaluate architectures are described in Section 2.2. A description of the 15
benchmark circuits used is given in Section 2.3.

Circuit
netlist

Circuit
partitioning

Inter-FPGA
routing

Fit?

No

Evaluation metrics:

Yes
- Pin cost
- Critical path delay

pins per FPGA
Reduce

MFS

FPGA used

architecture

specified

Figure 2 - Experimental Evaluation Procedure for Multi-FPGA Systems

 4

2.1 General CAD Flow

As illustrated in Figure 2, we start with a (technology mapped) netlist of 4-LUTs and flip flops
of the circuit.The circuit is partitioned into a minimum number of sub-circuits using a multi-way
partitioning tool which accepts as constraints the specific FPGA logic capacity and pin count. For
all the experiments presented in this paper we used a Xilinx 4013E-1 FPGA, which consists of
1152 4-LUTs, 1152 flip flops, and 192 usable I/O pins [Xili97]. Multi-way partitioning is accom-
plished using a recursive bi-partitioning procedure. The partitioning tool used is called ‘part’ and
was originally developed for the Transmogrifier-1 rapid prototyping system [Gall94]. It is based
on the Fiduccia and Mattheyses partitioning algorithm [Fidu82] with an extension for timing-
driven pre-clustering [Shih92]. The output of the partitioning step is a netlist of connections
between the FPGAs that contain the circuit.

Given the chip-level interconnection netlist, the next step is to route each inter-FPGA net
using the most suitable routing path. The routing path chosen should be the shortest path (use the
minimum number of hops) and it should cause the least possible congestion for subsequent nets to
be routed. Depending on the architecture, the routing resources available in an MFS could be
wires that are direct connections between FPGAs, or wires that connect FPGAs and FPIDs.

If the routing attempt fails, the partitioning step is repeated after reducing the number of I/O
pins per FPGA specified to the partitioner. This usually increases the number of FPGAs needed,
and helps routability by decreasing the pin demand from each FPGA, and providing more “route-
through” pins in the FPGAs which facilitate routing.

Note that in an actual MFS, the inter-FPGA routing step is followed by pin assignment, place-
ment and routing within individual FPGAs. We need not perform these tasks because we are only
interested in knowing the MFS size needed to fit the circuit. Our previous research has shown that
we can afford to assign pins randomly for each FPGA without jeopardizing routability and speed
[Khal95]. During recursive bi-partitioning, we restrict the logic utilization of each FPGA to be at
most 70% to avoid placement and routability problems within individual FPGAs. Thus we ensure
that if an inter-FPGA routing attempt succeeds, it is almost guaranteed that the subsequent pin
assignment, placement, and routing steps will be successful for each FPGA in the MFS.

Notice that the above-mentioned claims about I/O pin-constrained placement and routing are
not applicable to the older Xilinx FPGAs (XC3000) and the older Xilinx tool set (the APR tool
set, [Xili92]). However, in our research we assume that the Xilinx XC4013 FPGA and the XACT
tool set [Xili94] is used, which give excellent results under I/O pin-constrained placement and
routing, as shown in [Khal95]. Therefore, our assumption that pin locking on a Xilinx XC4013
FPGA will not have an unduly adverse impact on its routability and speed is valid.

Another important point is that the 70% cap on FPGA logic utilization (that we imposed),
could be increased further (whenever possible for specific FPGAs) if we perform placement and
routing for individual FPGAs. We did not perform individual FPGA placement and routing
because it would have involved a huge amount of experimental effort and time, and probably
would not change our architectural conclusions in any significant way. Also, in most cases, very
high FPGA logic utilization (say > 85%) after partitioning is rare because of FPGA pin limita-
tions. In fact, the average post-partitioning logic utilization is less than 50%. The 70% cap on
logic utilization is based on a conservative estimate. From our previous research study [Khal95]
and from anecdotal evidence provided by other FPGA users, we found that in almost all circuits,
restricting logic utilization to 70% or less leads to routing completion in the Xilinx XC4000 series
of FPGAs.

 5

We have developed a specific router for each of the architectures compared. (We had
attempted to create a generic router but found that it had major problems with different aspects of
each architecture [Khal99].)

2.2 Evaluation Metrics

To compare the two routing architectures we implement benchmark circuits on each and con-
trast the pin cost and post-routing critical path delay, as described below.

2.2.1 Pin Cost

The cost of an MFS is likely a direct function of the number of FPGAs and FPIDs: If the rout-
ing architecture is inefficient, it will require more FPGAs and FPIDs to implement the same
amount of logic as a more efficient MFS. While it is difficult to calculate the price of specific
FPIDs and FPGAs, we assume that the total cost is proportional to the total number of pins on all
of these devices. Since the exact number of FPGAs and FPIDs varies for each circuit implementa-
tion (in our procedure above, we allow the MFS to grow until routing is successful), we calculate,
for each architecture, the total number of pins required to implement each circuit. We refer to this
as thepin cost metric for the architecture.

2.2.2 Post Routing Critical Path Delay

The speed of an MFS, for a given circuit, is determined by the critical path delay obtained
after a circuit has been placed and routed at the inter-chip level. We call this thepost-routing crit-
ical path delay. We have developed an MFS static timing analysis tool (MTA) for calculating the
post routing critical path delay for a given circuit and MFS architecture.

The operation and modeling used in the MTA are described briefly as follows: It first calcu-
lates the critical path delay of the un-partitioned design using a widely used method called the
block oriented technique [Joup87]. It then reads the inter-FPGA netlist and the routing path for
each inter-FPGA net, as provided by the inter-chip router, and the MFS architecture description.
From this information the circuit is annotated with the inter-chip delays, from which the post-
routing critical path delay can be calculated.

In the delay annotation step, the delay values given in Table1 (obtained from data sheets
[Xili97] and [ICub97] and some design experience) are used.

Item Delay (ns)

Intra-FPGA CLB-to-CLB routing delay 2.5

FPGA input pad delay 1.4

FPGA output pad delay 3.2

CLB delay (without using H-LUT) 1.3

CLB delay (via H-LUT) 2.2

FPID crossing delay (including pad delays) 10

PCB trace delay 3

FPGA route through delay 10

Table 1: Delays Used in Timing Analyzer Model

 6

Note that since we do not perform individual FPGA place and route, we approximate the
CLB-to-CLB delay as a constant. The value of 2.5 ns for CLB-to-CLB routing delay is roughly
half the delay on a long line for XC4013E-1 FPGA. This is a pessimistic estimate. Although using
a single delay value is somewhat inaccurate, it still gives us a good estimate of the post-routing
critical path delay of an MFS because it is dominated by off-chip delay values.

2.3 Benchmark Circuits

A total of fifteen large benchmark circuits were used in our experimental work. An extensive
effort was expended to collect this suite of large benchmark circuits. The details of each bench-
mark circuit are shown in Table2 which provides the circuit name, size (in 4-LUTs, D flip flops,
and I/O count), rough description of the functionality, the source of the circuit and the manner in

Circuit Size Function
Source, Synthesis tool used (if

applicable)

s35932 4374 LUTs,
1728 FFs, 357 I/Os

Sequential circuit MCNC

s38417 6097 LUTs,
1463 FFs, 134 I/Os

Sequential circuit MCNC

s38584 4396 LUTs
1451 FFs, 292 I/Os

Sequential circuit MCNC

mips64 2900 LUTs
440 FFs, 260 I/Os

Scaled down version of
MIPS R4000

PREP, Verilog model synthesized
using Exemplar

spla 3423 LUTs
0 FFs, 62 I/Os

Combinational Circuit MCNC

cspla 2039 LUTs
0 FFs, 62 I/Os

Clone of spla UofT, Generated using
GEN[Hutt96]

mac64 2560 LUTs
64 FFs, 133 I/Os

64-bit
multiply-accumulate ckt.

UofT, Verilog model synthesized
using Synopsys

sort8 1540 LUTs
200 FFs, 20 I/Os

8-bit HW sort engine UofT, Verilog model synthesized
using Synopsys

fir16 5366 LUTs
1040 FFs, 60 I/Os

16-bit, 8-stage
 FIR filter

UofT, Verilog model synthesized
using Synopsys

gra 2494 LUTs
1156 FFs, 144 I/Os

Graphics acceleration
circuit

UofT, circuit generated using
tmcc[Gall95]

fpsdes 3484 LUTs
1008 FFs, 69 I/Os

Fastest pseudo DES cir-
cuit

UofT, Verilog model synthesized
using Synopsys

spsdes 2452 LUTs
982 FFs, 69 I/Os

Smallest pseudo DES
circuit

UofT, Verilog model synthesized
using Synopsys

ochip64 3617 LUTs
5810 FFs, 84 I/Os

Output chip for ATM
switching chip set

UofT, VHDL model synthesized
using Exemplar

ralu32 2553 LUTs
584 FFs, 98 I/Os

32-bit register file, ALU,
and control logic

PREP, VHDL model synthesized
using Synopsys

iir16 3149 LUTs
522 FFs, 52 I/Os

16-bit IIR filter UofT, VHDL model synthesized
using Synopsys

Table 2: Benchmark Circuits

 7

which it was synthesized. Four circuits were obtained from MCNC [Yang91], two from FPGA
synthesis benchmarks [Prep96], and the remaining nine were developed at the University of Tor-
onto (UofT). The circuits from MCNC were available in the XNF [Xili97] gate-level netlist for-
mat required by our front end tools. All the circuits from [Prep96] and UofT were originally
available as VHDL or Verilog HDL models and were synthesized into XNF netlists using Exem-
plar [Exem94] and Synopsys Behavioral Compiler [Knap96] and/or Design Compiler [Syno97]
synthesis tools. We show these details of the benchmark circuits because we feel that the MCNC
circuits that have been used so far in MFS architecture studies are insufficient in terms of size and
variety to ‘stress’ different architectures and the mapping tools used. Specifically, we found that
they are easier to partition and map compared to the other real circuits that we use in this work.

3 Routing Architecture Description and Routing Algorithms
In this Section we describe the partial crossbar and HCGP architectures. For each architecture,

we briefly describe an architecture-specific inter-chip router.

3.1 Architectural Description and Routing for the Partial Crossbar

The partial crossbar architecture [Butt91] [Butt92] [Varg93] is used in logic emulators pro-
duced by Quickturn Design Systems [Quic96]. A partial crossbar using four FPGAs and three
FPIDs is shown in Figure 3. The pins in each FPGA are divided into N subsets, where N is the
number of FPIDs in the architecture. All the pins belonging to the same subset number in different
FPGAs are connected to a single FPID. Note that any circuit I/Os will have to go through FPIDs
to reach FPGA pins. For this purpose, a certain number of pins per FPID (50) are reserved for cir-
cuit I/Os. Notice that we could have reserved the number of pins per FPID required for I/O signals
based on circuit requirements. For this scheme, the number of reserved pins per FPID (for I/O sig-
nals) would be variable across different circuits. We did not use this scheme because it will not
make any significant difference in architectural comparison results. Also, our present scheme is
easier to implement. As for the number of pins per FPID (50) reserved for circuit I/O signals, we
used this number to meet the maximum I/O requirement among the circuits in our benchmark
suite.

The number of pins per subset (Pt) is a key architectural parameter that determines the number
of FPIDs needed and the pin count of each FPID. The extremes of the partial crossbar architecture
can be illustrated by considering a system with four FPGAs, and assuming 192 usable I/O pins
per FPGA: a Pt value of 192 will require a single 768-pin FPID that acts as a full crossbar. A Pt
value of 1 will require 192 4-pin FPIDs. Both of these cases are impractical.

A good value of Pt should require low cost, low pin count FPIDs. For the above example, a Pt
value of 12 will require 16 48-pin FPIDs. When we consider FPID pins required for circuit I/Os
we will need to use 64 or 96-pin FPIDs that are commercially available [ICub97]. When choosing
a value of Pt, we must ensure that number of usable I/Os per FPGA is evenly divisible by Pt or at
least the remainder should be a very small number so that we can use such pins for routing high
fanout inter-FPGA nets. In this work we set Pt = 17 which leaves five pins per FPGA to be used as
global lines in the partial crossbar architecture. These global lines are used for routing global nets
like reset, clock and other very high fanout nets in the circuit. Our previous research [Khal97] has
shown that, for real circuits, the routability and speed of the partial crossbar is not affected by the
value of Pt used. But this is contingent upon using an intelligent inter-chip router that understands
the architecture and routes each inter-FPGA net using only two hops to minimize the routing
delay. However, a practical constraint is that we should avoid using Pt values that require expen-
sive or even unavailable high pin count FPIDs.

 8

3.1.1 Routing Algorithm for the Partial Crossbar

For any MFS architecture in general and for the partial crossbar in particular, it is important to
use a routing algorithm that exploits architecture-specific features in order to obtain good results.

We have developed a routing tool, PCROUTE, for the partial crossbar architecture that gives
excellent routability and speed results for all of our benchmark circuits. Irrespective of the value
of Pt, it achieves 100% routing completion and produces two-hop routing for all the nets in almost
all circuits. For only two circuits, for the specific case of Pt = 4, it produced multi-hop routing
paths for a negligible number of nets (1 out of 991 nets for the first circuit and 3 out of 645 nets
for the second). In practical terms, this means it gives almost optimal results for all of our bench-
mark circuits.

The PCROUTE algorithm works as follows: for each net (irrespective of fanout), it evaluates
potential routing paths through all available FPIDs. It uses a suitable cost function to choose an
FPID that will guarantee balanced usage of FPIDs and will preserve the most options for two-hop
routing of subsequent nets to be routed. Consider a partial crossbar that consists ofn FPGAs and
m FPIDs. Consider anN-terminal net calledM. Let F denote the set of FPGAs belonging toM,
i.e. {f1, f2,...., fN}.

Let Aik denote the number of available wires between FPGAi and FPIDk. The routing cost of
the netM through FPIDk, C(M, k), is given by:

An FPID that has the lowest routing cost for the netM is chosen for routing that net.
We show in [Khal99] that PCROUTE is equivalent in quality to other partial crossbar routers

that have been proposed so far [Kim96] [Mak97a] [Lin97]. PCROUTE is better than [Mak97b] in
terms of both speed and routability because that algorithm splits each multi-terminal into a set of
two-terminal nets and routes them independently, leading to multiple hops and even possible
routing failures.

3.2 Architectural Description and Routing for HCGP

The HCGP architecture for four FPGAs and three FPIDs is illustrated in Figure 4. The I/O

FPGA 1

A

FPGA 4FPGA 3FPGA 2

FPID FPIDFPID
B pinsA pins

AAA

C pins

B C B C B C B C

Figure 3 - The Partial Crossbar Architecture

C M k,()
Pt

Ai k

i f 1=

f N

∑=

 9

pins in each FPGA are divided into two groups: hardwired connections and programmable con-
nections. The pins in the first group connect to other FPGAs and the pins in the second group con-
nect to FPIDs. The FPGAs are directly connected to each other using a complete graph topology,
i.e. each FPGA is connected to every other FPGA. The connections between FPGAs are evenly
distributed, i.e. the number of wires between every pair of FPGAs is the same. The FPGAs and
FPIDs are connected in exactly the same manner as in a partial crossbar. As in the partial crossbar,
any circuit I/Os will have to go through FPIDs to reach FPGA pins. For this purpose, a certain
number of pins per FPID (50) are reserved for circuit I/Os.

The direct connections between FPGAs can be exploited to obtain reduced cost and better
speed. For example, consider a net that connects FPGA 1 to FPGA 3 in Figure 4. If there were no
direct connections as in the partial crossbar, we would have used an FPID to connect the two
FPGAs. This will cost extra delay and two extra FPID pins. A natural question to ask is: why not
dispense with FPIDs and just use FPGAs connected as a completely connected graph as investi-
gated in [Kim96]? The answer is that routing multi-terminal nets in an FPGA-only architecture is
expensive in terms of routability because in such an architecture a multi-terminal net requires
many extra pins in the source FPGA, as illustrated in Figure 5(a). In Figure 5(a) two extra FPGA
pins are used for routing a fanout 3 multi-terminal net. Since extra pins are scarce on an FPGA
this has an adverse effect on the routability of FPGA-only architectures. On the other hand, if we
use an FPID for routing the same multi-terminal net, we do not need even a single extra FPGA
pin, other than the FPGA pins needed to access the source and sinks of the net as shown in Figure
5(b).

A key architectural parameter in the HCGP architecture is the percentage of programmable
connections, Pp. It is defined as the percentage of each FPGA’s pins that are connected to FPIDs
(the remainder are connected to other FPGAs). If Pp is too high it will lead to increased pin cost, if
it is too low it will adversely affect routability. If Pp is 0% the HCGP architecture degrades to a
completely connected graph of FPGAs with no FPIDs used. If Pp is 100% the HCGP architecture
degrades to a standard partial crossbar. A key issue we address later is the best value of Pp for
obtaining minimum cost and good routability.

3.2.1 Routing Algorithm for HCGP

The inter-chip routing algorithm for HCGP is similar to the partial crossbar routing algorithm

FPGA 1

A

FPGA 4FPGA 3FPGA 2

FPID FPIDFPID

B pinsA pins

AAA

C pins

B C B C B C B C

Figure 4 - The HCGP Architecture

 10

in the sense that the same algorithm is used when routing nets through FPIDs. However, the dif-
ference here is that the router should also exploit the direct connections between FPGAs to mini-
mize the number of FPGA and FPID pins used for routing and to minimize the net delay for
critical inter-FPGA nets. A critical net is defined as an inter-FPGA net whose slack (when ana-
lyzed after partitioning, but before inter-FPGA routing) is less than the delay incurred for con-
necting two FPGAs via an FPID.

We have developed a timing-driven inter-chip routing tool, called HROUTE_TD, that under-
stands the HCGP architecture and gives excellent routability and speed results for all the
benchmark circuits.

The main objectives of HROUTE_TD are to try to route all critical nets using direct connections
and to route all other (non-critical) nets using no more than two hops for each source-sink path.
Our experience has shown that net ordering, based on slack first and then fanout, is crucial for
obtaining good routability and speed. Wherever possible, HROUTE_TD uses direct connections
to minimize source-sink net delay when routing critical nets. The HROUTE_TD algorithm works
as follows: We first try to route all critical two-terminal nets using the direct connections between
FPGAs to minimize usage of pins and net delay. Next, we try to route allmulti-terminal nets
through FPIDs using a routing algorithm similar to that used in PCROUTE, described above in
Section 3.1.1. Finally, the remaining (non-critical) two terminal nets are routed using FPGAs or
FPIDs. Any nets that remain unrouted are processed by a maze router. A detailed description of
HROUTE_TD is given in [Khal99].

4 Experimental Results
In this Section we determine the effect of varying the value of Pp on the routability and speed

of the HCGP architecture and compare the partial crossbar and HCGP architectures.

4.1 HCGP Architecture: Analysis of Pp

Recall the definition of Pp, given in Section 3.2, which is the percentage of pins per FPGA
used for programmable connections. Pp is important because it affects the cost and routability of
the HCGP architecture. Here we explore the effect of Pp on the routability and speed of the HCGP
architecture. We mapped the fifteen benchmark circuits to the HCGP architecture using five dif-

FPGA 1

FPGA 4 FPGA 3

FPGA 2
src sink1

sink2sink3

FPGA 1

FPGA 2FPGA 3FPGA 4

src

sink1sink2sink3

FPID

(a)

(b)

Figure 5 - Multi-terminal Net Routing (a) Without an FPID (b) With an FPID

 11

ferent values of Pp (20, 30, 40, 50, 60). The results are shown in Figure 6. The Y-axis represents
the percentage of inter-FPGA nets routed and the X-axis represents the Pp values. The first clear
conclusion is Pp = 60% gives 100% routability for all the benchmark circuits. Notice that about
two thirds of the circuits routed at Pp <= 40%, and for the remaining one third, more than 90% of
the nets routed. This implies that there is a potential for obtaining 100% routabilty for all circuits
at Pp = 40% if we use a routability driven partitioner like the one used in [Kim96]. This will lead
to further reduced pin cost for HCGP compared to the partial crossbar.

We conjecture that the Pp value required for routing completion of a given circuit on HCGP
depends upon how well the circuit structure ‘matches’ the topology of the architecture.

We also investigated the effects of Pp on post-routing critical path delay. Table3 shows the ten
circuits that routed for Pp < 60%. The first column shows the circuit name. In subsequent col-
umns, the critical path delay of each circuit for different values of Pp (20, 30, 40, 50, 60) is shown.
A surprising conclusion is that (overall) the lower Pp values have no significant effect on the criti-
cal path delay. Compared to the delay value at Pp = 60%, for lower Pp values the delay remained
the same or decreased slightly (only 4% less on average and 12% less in the best case). For cir-
cuits where delay was reduced, one or two programmable connections on the critical paths were
replaced by faster hardwired connections. Note that as Pp is reduced, more hardwired connections
are available. For circuits where delay remained the same, ‘segments’ on the critical path are part
of very high fanout connections that have to be routed using FPIDs because of the lack of free
pins (required for routing multi-terminal nets using hardwired connections). Even though more
hardwired connections are available, they cannot be used for routing nets on the critical path.

s35932

s38417

s38584

mips64

spla

cspla

mac64

sort8

fir16

gra

fpsdes

spsdes

ochip64

ralu32

iir16

% nets routed

Pp
90.00

91.00

92.00

93.00

94.00

95.00

96.00

97.00

98.00

99.00

100.00

20.00 30.00 40.00 50.00 60.00

Figure 6 - The Effect of Pp on Routability of the HCGP Architecture

 12

4.2 Comparison of HCGP and Partial Crossbar

The 15 benchmark circuits described in Table2 were mapped to the partial crossbar and
HCGP architectures using the experimental procedure described in Section 2. The results
obtained are shown in Table4 and Table5. In Table4, the first column shows the circuit name.
The second column shows the number of FPGAs needed for implementing the circuit on each
architecture (recall that we increase the MFS size until routing is successful). The third column
shows the pin cost normalized to the number of pins used by the HCGP architecture and the
fourth column shows the normalized critical path delay obtained for each architecture. Table5 is
similar to Table4 except that it shows actual (un-normalized) pin cost and delay values.

The number of FPIDs used is not shown because it is constant for each architecture. All the
results for partial crossbar use Pt = 17. The parameter Pt determines the number of FPIDs required
and the number of FPGAs in the architecture determine the pin count of each FPID. We have
shown that the value of Pt used has no effect on the routability and speed of the partial crossbar
[Khal97]. Therefore any arbitrary value of Pt can be used. However, for practical reasons, the
value chosen should require FPIDs that have reasonable pin counts (about 400 pins or less, which
are commercially available) for the largest partial crossbar required in our experiments. A reason-
able choice in this respect is Pt = 17.

The value of Pp for the HCGP architecture was set to 60% to obtain good routability across all
circuits, as discussed in Section 4.1. Notice that the parameter Pt also applies to the programmable
connections in the HCGP. For the same reasons as in the partial crossbar (given in the previous
paragraph), we chose Pt = 14 for the HCGP architecture. Also the number of global lines used in
the HCGP architecture depends upon the MFS size (#FPGAs used) and the parameters Pp and Pt.
In our experiments (Pp = 60%, Pt = 14) the number of global lines used for the HCGP architecture
varied from 5 to 15. Recall from Section 3.1 that the number of global lines for the partial cross-
bar is 5 corresponding to Pt = 17. The different values for number of global lines used in HCGP is
due to the fact that the number depends upon both Pp and Pt instead of just Pt as in the partial
crossbar architecture.

Circuit

Post Routing Critical P ath Dela y (ns)

Pp = 20 Pp = 30 Pp = 40 Pp = 50 Pp = 60

s35932 unroutable unroutable 53 53 53

s38417 87 94 94 94 94

s38584 unroutable 96 96 98 98

sort8 unroutable unroutable unroutable 460 499

fir16 147 160 163 167 167

gra 57 57 57 57 57

fpsdes unroutable 173 176 176 176

spsdes unroutable unroutable 192 205 205

ochip64 50 50 50 50 50

iir16 143 143 143 152 152

Table 3: The Effect of Pp on Speed of the HCGP Architecture

 13

In reviewing Table4, consider the circuitmips64. The first partitioning attempt resulted in 14
FPGAs required to implement the circuit on partial crossbar. However, the circuit was not
routable on HCGP and the partitioning was repeated after reducing the number of pins per FPGA
specified to the partitioner by 5%. This resulted in 15 FPGAs required to implement the circuit.
The second partitioning attempt was routable on the HCGP architecture because more ‘free pins’
were available in each FPGA for routing purposes. The pin costfor the partial crossbar was still
more than that for HCGP because it uses many more programmable connections, and hence more
FPID pins. A partial crossbar always requires one FPID pin for every FPGA pin; the HCGP archi-
tecture requires a lower ratio, (0.6: 1) as shown in the previous section.

Inspecting Table4, we can make several observations. First, the partial crossbar needs 20%
more pins on average, and as much as 25% more pins compared to the HCGP architecture.
Clearly, the HCGP architecture is superior to the partial crossbar architecture in terms of the pin
cost metric. This is because the HCGP exploits direct connections between FPGAs to save FPID
pins that would have been needed to route certain nets in partial crossbar. However, for routability
purposes, the HCGP needs some free pins in each FPGA and may require repeated partitioning
attempts for some circuits.

Table4 also shows that the typical circuit delay is lower with the HCGP architecture: the
HCGP gives significantly less delay for twelve circuits compared to the partial crossbar and about
the same delay for the rest of the circuits. The reason is that the HCGP utilizes fast and direct con-

Circuit

Number of FPGAs Normalized pin cost
Normalized post-routing

critical path delay

Partial
crossbar

HCGP
Partial

crossbar
HCGP

Partial
crossbar

HCGP

s35932 8 8 1.25 1.0 1.08 1.0

s38417 9 9 1.25 1.0 1.00 1.0

s38584 9 9 1.25 1.0 1.42 1.0

mips64 14 15 1.16 1.0 1.11 1.0

spla 18 18 1.25 1.0 1.16 1.0

cspla 18 18 1.25 1.0 1.18 1.0

mac64 6 6 1.25 1.0 1.34 1.0

sort8 12 14 1.07 1.0 1.07 1.0

fir16 10 10 1.25 1.0 1.43 1.0

gra 4 4 1.25 1.0 1.23 1.0

fpsdes 9 9 1.25 1.0 1.29 1.0

spsdes 8 8 1.25 1.0 1.21 1.0

ochip64 8 8 1.25 1.0 1.26 1.0

ralu32 9 14 0.80 1.0 1.21 1.0

iir16 6 6 1.25 1.0 1.05 1.0

Average 10 10 1.20 1.0 1.20 1.0

Table 4: Comparison of HCGP and Partial Crossbar Architectures

 14

nections between FPGAs, whenever possible. From the delay values in Table1, we can show that
the interconnection delay is much smaller (12.6 ns) if we use direct connections between FPGAs
compared to the delay value (25.6 ns) when connecting two FPGAs through an FPID. Another
interesting observation is that even for the circuits where the HCGP needs more FPGAs compared
to the partial crossbar, it still gives comparable or better delay value. This clearly demonstrates
that the HCGP architecture is inherently faster due to the nature of its topology. It gives significant
speed up, especially when we use timing driven inter-FPGA routing.

Table5 shows the actual pin cost and delay values obtained for the partial crossbar and HCGP
architectures. It is interesting that the estimated clock speeds for the partial crossbar architecture
range from 20 MHz for theochip64 circuit to 1.6 MHz themac64 circuit. This range is represen-
tative of the clock rates expected in MFSs [Quic96].

5 Conclusions and Future Work
In this paper we have presented the Hybrid Complete-Graph and Partial-Crossbar (HCGP), a

new routing architecture for multi-FPGA systems. Using an experimental approach, we evaluated
and compared this architecture to the partial crossbar architecture and showed that it is superior in
terms of pin cost and speed. To our knowledge, this is the first architectural study of board-level

Circuit

Number of FPGAs
Pin cost

 Post-routing critical path
delay (in ns)

Partial
crossbar

HCGP
Partial

crossbar
HCGP

Partial
crossbar

HCGP

s35932 8 8 3032 2432 57 53

s38417 9 9 3411 2736 94 94

s38584 9 9 3411 2736 139 98

mips64 14 15 5306 4560 462 418

spla 18 18 6822 5472 196 169

cspla 18 18 6822 5472 193 164

mac64 6 6 2274 1824 623 465

sort8 12 14 4548 4256 533 499

fir16 10 10 3790 3040 238 167

gra 4 4 1516 1216 70 57

fpsdes 9 9 3411 2736 227 176

spsdes 8 8 3032 2432 249 205

ochip64 8 8 3032 2432 63 50

ralu32 9 14 3411 4256 317 263

iir16 6 6 2274 1824 160 152

Avg.: 10 Avg.: 10 Total:
56092

Total:
47424

Avg.: 241 Avg.: 202

Table 5: Actual Pin Cost and Delay Values for the Two Architectures

 15

MFSs that considers post-routing critical path delay when evaluating the speed performance of
different architectures.

We explored a key parameter (Pp) associated with the HCGP architecture and experimentally
determined its best value (60%) for obtaining good routability for a variety of circuits.

We believe that the HCGP architecture would give even better results if we use better mapping
(CAD) tools for partitioning. A routabilty driven partitioner, similar to the one used in [Kim96],
may result in further reduced pin cost by making circuits routable for even lower values of Pp (say
40%).

The HCGP architecture is suitable for single board MFSs using a maximum of about 25
FPGAs. As FPGA logic and pin capacities continue to rise, it makes sense to use single board sys-
tems using a few high capacity FPGAs to avoid the problems associated with using high pin count
connectors for multi-board systems [Lewi97]. For applications where hundreds of FPGAs are
needed, such as logic emulation, we could use ‘clusters’ of HCGPs interconnected using a hierar-
chical partial crossbar scheme [Butt92]. The hardwired connections, within each cluster and
between different clusters, would still help in reducing the overall pin cost. Determining the Pp
value suitable for such hierarchical architectures is an open research problem. We will need
extremely large benchmark circuits and appropriate CAD tools to explore hierarchical architec-
tures.
Acknowledgments

The authors would like to thank Dave Galloway for his help with the partitioning tool and
Jason Anderson for his help in synthesizing the benchmark circuits. This research was supported
by the Information Technology Research Center (ITRC) of Ontario and MICRONET.

References

[Alte94] Altera Corporation,Reconfigurable Interconnect Peripheral Processor (RIPP10) Users Manual, Ver-
sion 1.0, 1994.

[Apti96] Aptix Corporation,Product brief: The System Explorer MP4, 1996. Available on Aptix Web site: http://
www.aptix.com.

[Arno92] J. M. Arnold, D. A. Buell, and E. G. Davis, “Splash 2,” Proceedings of 4th Annual ACM Symposium on
Parallel Algorithms and Architectures, pp. 316-322, 1992.

[Babb97] J. Babb et al, “Logic Emulation with Virtual Wires,” IEEE Trans. on CAD, vol. 16, no. 6, pp. 609-626,
June 1997.

[Brow92] S. Brown, R. Francis, J. Rose, and Z. Vranesic,Field Programmable Gate Arrays, Kluwer Academic
Publishers, 1992.

[Butt91] M. Butts and J. Batcheller, “Method of Using Electronically Reconfigurable Logic Circuits,” U.S.
Patent 5, 036, 473, July 30, 1991.

[Butt92] M. Butts, J. Batcheller, and J. Varghese, “An Efficient Logic Emulation System,” Proceedings of IEEE
International Conference on Computer Design, pp. 138-141, 1992.

[Cass93] S. Casselman, “Virtual Computing and The Virtual Computer,” Proceedings of IEEE Workshop on
FPGAs for Custom Computing Machines, pp. 43-48, 1993.

[Chan93] P. K. Chan, M. D. F. Schlag, “Architectural Trade-offs in Field-Programmable-Device-Based Comput-
ing Systems,” Proceedings of IEEE Workshop on FPGAs for Custom Computing Machines, pp. 152-
161, 1993.

[Dray95] T. H. Drayer, W. E. King, J. G. Tront, and R. W. Conners, “MORRPH: A Modular and Reprogrammable
Real-time Processing Hardware,” Proceedings of IEEE Symposium on FPGAs for Custom Computing
Machines, pp. 11-19, 1995.

 16

[Exem94] Exemplar Logic,VHDL Synthesis Reference Manual, 1994.

[Fidu82] C. M. Fiduccia, and R. M. Mattheyses, “A Linear-Time Heuristic for Improved Network Partitions”,
Proc. of 19th ACM/IEEE Design Automation Conference, pp. 241-247, 1982.

[FCCM] Proceedings of IEEE Workshops/Symposia on FPGAs for Custom Computing Machines, 1992 to 1998.

[Gall94] D. Galloway, D. Karchmer, P. Chow, D. Lewis, and J. Rose, “The Transmogrifier: The University of
Toronto Field-Programmable System”,CSRI Technical Report (CSRI-306), CSRI, University of Tor-
onto, 1994.

[Gall95] D. Galloway, “The Transmogrifier C Hardware Description Language and Compiler for FPGAs,” Pro-
ceedings of IEEE Symposium on FPGAs for Custom Computing Machines, pp. 136-144, 1995.

[Hauc94] S. Hauck, G. Boriello, C. Ebeling, “Mesh Routing Topologies for Multi-FPGA Systems”,Proceedings
of International Conference on Computer Design (ICCD’94), pp. 170-177, 1994.

[Hutt96] M. Hutton, J.P. Grossman, J. Rose and D. Corneil, “Characterization and Parameterized Random Gen-
eration of Digital Circuits,” Proc.of the Design Automation Conference, pp. 94-99, 1996.

[ICub97] I-Cube, Inc.,The IQX Family Data Sheet, May 1997. Available at: www.icube.com.

[Joup87] Norman P. Jouppi, “Timing Analysis and Performance Improvement of MOS VLSI Designs,” IEEE
Trans. on CAD, vol. CAD-6, no. 4, pp. 650-665, July 1987.

[Khal95] M. A. S. Khalid and J. Rose, “The Effect of Fixed I/O Pin Positioning on The Routability and Speed of
FPGAs,” Proceedings of The Third Canadian Workshop on Field-Programmable Devices (FPD’95), pp.
92-104, 1995.

[Khal97] M. A. S. Khalid and J. Rose, “Experimental Evaluation of Mesh and Partial Crossbar Routing Architec-
tures for Multi-FPGA Systems,” Proceedings of the Sixth IFIP International Workshop on Logic and
Architecture Synthesis (IWLAS’97), pp. 119-127, 1997.

[Khal99] M. A. S. Khalid, Routing Architecture and Layout Synthesis for Multi-FPGA Systems,Ph.D. Thesis,
University of Toronto, 1999.

[Khal98] M. A. S. Khalid and J. Rose, “A Hybrid Complete-Graph Partial-Crossbar Routing Architecture for
Multi-FPGA Systems,” Proc. of 1998 Sixth ACM International Symposium on Field-Programmable
Gate Arrays (FPGA’98), pp. 45-54, February 1998.

[Kim96] C. Kim, H. Shin, “A Performance-Driven Logic Emulation System: FPGA Network Design and Perfor-
mance-Driven Partitioning,” IEEE Trans. on CAD, vol. 15, no. 5, pp. 560-568, May 1996.

[Knap96] D. W. Knapp,Behavioral Synthesis: Digital System Design Using the Synopsys Behavioral Compiler,
Prentice Hall PTR, 1996.

[Lewi97] D. M. Lewis, D. R. Galloway, M. Van Ierssel, J. Rose, and P. Chow, “The Transmogrifier-2: A 1 Million
Gate Rapid Prototyping System,” Proceedings of FPGA’97, pp. 53-61, 1997.

[Lin97] S. Lin, Y. Lin, and T. Hwang, “Net Assignment for the FPGA-Based Logic Emulation System in the
Folded-Clos Network Structure,” IEEE Trans. on CAD, vol. 16, no. 3, pp. 316-320, March 1997.

[Mak97a] Wai-Kei Mak, D. F. Wong, “On Optimal Board-Level Routing for FPGA-based Logic Emulation,”
IEEE Trans. on CAD, vol. 16, no. 3, pp. 282-289, March 1997.

[Mak97b] Wai-Kei Mak, D. F. Wong, “Board-Level Multi-Terminal Net Routing for FPGA-based Logic Emula-
tion,” ACM Trans. on Design Automation of Electronic Systems, vol. 2, no. 2, pp. 151-167, April 1997.

[Prep96] Programmable Electronics Performance Corporation, HDL models for different circuits (synthesis
benchmarks) are available on their Web site: http//www.prep.org.

[Quic96] Quickturn Design Systems, Inc.,System Realizer Data Sheet, 1996. Available on Quickturn Web
site:http://www.quickturn.com.

[Shih92] M. Shih, E. S. Kuh, “Performance-Driven System Partitioning on Multi-Chip Modules,” Proc. of the
Design Automation Conference, pp. 53-56, 1992.

[Syno97] Synopsys, Inc.,Design Compiler(Version 3.4a), Behavioral Compiler (Version 3.4a), and Library Com-

 17

piler (Version 3.4a), Reference Manuals. Documents available on-line.

[Van92] D. E. Van Den Bout, et al, “Anyboard: An FPGA-Based Reconfigurable System,” IEEE Design and Test
of Computers, pp. 21-30, June 1992.

[Varg93] J. Vargese, M. Butts, and Jon Batcheller, “An Efficient Logic Emulation System”,IEEE Trans. on VLSI
Systems, vol. 1, no. 2, pp. 171-174, June 1993.

[Vuil96] J. E. Vuillemin, P. Bertin, D. Roncin, M. Shand, H. Touati, and P. Boucard, “Programmable Active
Memories: Reconfigurable Systems Come of Age,” IEEE Transactions on VLSI, Vol 4, No. 1, pp. 56-
69, March 1996.

[Xili92] The Programmable Gate Array Data Book, Xilinx, Inc., San Jose, California, 1992.

[Xili94] Xilinx, Inc., XACT Development System User Guide, February 1994.

[Xili97] Xilinx, Inc., Product Specification: XC4000E and XC4000X Series FPGAs, Version 1.2, June 16, 1997.
Available on Xilinx Web site: www.xilinx.com.

[Yang91] S. Yang,Logic Synthesis and Optimization Benchmarks User Guide, Version 3.0, Microelectronics Cen-
ter of North Carolina, January 1991.

