A Novel and Efficient Routing Ar chitecture
for Multi-FPGA Systems

Mohammed A. S. Khalid Jonathan Rose
Quickturn Design Systems, Inc. Dept. of Electrical and Computer Engineering
55 West Timble Road University of Toronto, ronto
San Jose, CA 95131-1013 Ontario, CANADA M5S 3G4
mkhalid@quickturn.com jayar@eecg.toronto.edu
Abstract

Multi-FPGA systems (MFSs) are used as custom computing machines, logic emulators and
rapid prototyping ehicles. A ley aspect of these systems is their programmable routing architec-
ture which is the manner in which wires, FPGAs and Field-Programmable InterconmeeisDe
(FPIDs) are connected. ®&al routing architectures for MFSsvieabeen proposed [Arno92]
[Butt92] [Hauc94] [Apti96] [Wil96] [Babb97] and prdous research has shio that the partial
crossbar is one of the bestisgting architectures [Kim96] [Khal97]. In this paper we propose a
new routing architecture, called tliybrid CompleteGraph andPartial-Crossbar (HCGP) which
has superior speed and cost compared to a partial crofebamev architecture uses both hard-
wired and programmable connections between the FPGAsoWipare the performance and cost
of the HCGP and partial crossbar architecturgseementally by mapping a set of 15 &e
benchmark circuits into each architecture. A customized set of partitioning andhipieouting
tools were deeloped, with particular attention paid to architecture-appropriatecdhtprrouting
algorithms. V& shav that the cost of the partial crossbar (as measured by the number of pins on
all FPGAs and FPIDs required to fit a design), is\x@rage 20% more than themelCGP archi-
tecture and as much as 25% more. Furthermore, the critical path delay for designs implemented
on the partial crossbar were oveeage 20% more than the HCGP architecture and up to 43%
more. Using ourx@erimental approach, we alsgpéore a ley architecture parameter associated
with the HCGP architecture: the proportion of hard-wired connectierssis programmable con-
nections, to determine its bestlve.

1 Introduction

Field-Programmable Gate Arrays (FPGASs) are widely used for implementing digital circuits
because theoffer moderately high ieels of intgration and rapid turnaround time [Br92].
Multi-FPGA systems (MFSs), which are collections of FPGAs and memory joined by program-
mable connections as illustrated in Figure 1, are used when the logic capacity of a single FPGA is
insufiicient, and when a quickly re-programmed system is desired. The typical uses are for logic
emulation [Apti96] [Quic96] [Babb97], rapid prototypingdh92] [Gall94] [Alte94] [Levi97]
and reconfigurable custom computing machines [Arno92] [Cass93] [Dray9si9Lie[Vuil96]
[Lewi97].

The routing architecture of an MFS is thaywn which the FPGAs, fed wires, and program-

FPGA FPGA FPGA

Programmable
Interconnection
Network

Hardwired
connections| FPGA

T

FPGA FPGA FPGA

FPGA

Figurel- A Generic Multi-FPGA System

mable interconnect chips are connected. The routing architecture has a secingnethe speed,

cost and routability of the system. Maarchitectures ha& been proposed andilh [FCCM]

[Butt92] [Van92] [Apti96] [Babb97] [L&i97] and some researchovk has been done to empiri-

cally evaluate and compare tifent architectures [Kim96] [Khal97]. These studiegehshavn

that the partial crossbar is one of the bagdtimg MFS architectures. In this paper we present a
new routing architecture for MFSs that uses both hardwired and programmable connections to
reduce cost and increase speaf@. evaluate and compare the HCGP architecture and the partial
crossbar architecture using an empirical approach. In particular we compare architectures on the
basis of pin cost and speed.

Thespeed comparisons are based on post inter-chip routing critical path delay of real bench-
mark circuits, which, to our knowledge, is the first time such detailed timing information has been
used in the study of board-level MFS architectures.

We focus on single-board MFS routing architectures that use no more than about 25 FPGAs.
This is for two reasons: First, the complete graph topology used in the HCGP architecture does
not scale well for a lge number of FPGAs. It becomes infeasible to connect each FPG&ryo e
other FPGA because such a schenoaila likely result in seere routability problems. In such
cases, hierarchical architecturesuld be more ééctive. We believe that the HCGP architecture
could form the basis of a hierarchical architecture, with the root architecture being anahdGP
groups of HCGPs connecting in axtievel HCGP and so on. Second, we did natehlauge cir-
cuits and the CAD tools required for mapping such circuits to hierarchical architectures.

Previous work has been donez&uating mesh [Hauc94] and other architectures [Chan93]. In
[Hauc94], seeral constructs (1-hop interconnections, Superpins, and Permutations) were pro-
posed to impree the basic 4-ay mesh. Havever, synthetic netlists (not real circuits) were used
to evaluate diferent mesh topologies. In [Chan93] architectural trade+ofthe design of folded
Clos netvork (partial crossbar) werewvestigated and an optimal algorithm for routingoktermi-
nal nets vas presented. Although thiork provides some theoretical insight into these architec-
tures, empirical studies thataduate the implementation of real circuits orfetént architectures
provide a more clear picture of the ‘goodness’ of each architecturevegiatihe others [Kim96]
[Khal97]. Our avn previous research has shio that partial crossbar isstly superior to the best
mesh architecture [Khal97n [Kim96], several MCNC circuits were mapped to seven different
architectures, including the partial crossbar architecture. Each circuit was mapped to a fixed size

MFES (containing 30 FPGAS). The size of the FPGA was varied depending upon the circuit size.
Each architecture was evaluated on the basis of total number of CLBs needed across all circuits
(where fewer CLBs used implies better architecture), the type of FPGA chips used (smallest
FPGAs implies better architecture), and maximum number of hops needed across all inter-FPGA
nets (as a metric for speed)hApis defined as a chip-to-chip connection, i.e. a wire segment that
connects two different chips on a board. It was shown that one of the proposed architectures,
FPGAs connected together as a tri-partite graph, gave the best results (slightly better than partial
crossbar). In this work, relatively few large circuits were used that would have really ‘stressed’
the architectures, as only three reasonably large circuits (>2000 CLBs) were employed. Also, for
the speed estimate only the worst casedelay in terms of the number of hops was considered;
which is not as representative of the true delay as post-rauttiogl path delay.

An early \ersion of the presentask appeared in [Khal98]. The presendrw includes ky
enhancements, particularly timingagen interchip routing for HCGP and arxgloration of the
effects of a ky parameter P(to be defined later) on the speed of the HCGP architecture. This
paper is aganized as follovs: In Section 2 we describe theperimental ealuation procedure and
the evaluation metrics used, andvgidetails on the suite of & benchmark circuits used in this
experimental vark. In Section 3 we a@r the architectural issues and assumptions that arise when
mapping real circuits to the HCGP and partial crossbar architectusealsey briefly describe
architecture-specific intezhip routing algorithms for these architectures. Experimental results
and their analysis is presented in Section 4, and we conclude in Section 5.

2 Experimental Overview

To evaluate the tw routing architectures considered in this paper used thexperimental
procedure illustrated in Figure 2. Each benchmark circag partitioned, placed and routed into
each architecture. Section 2.1 describes the general toolset used inmthihéacost and delay
metrics that we use tovauate architectures are described in Section 2.2. A description of the 15
benchmark circuits used isvgn in Section 2.3.

Circuit FPGA used
» partitioning

Reduce v '\kf'tFSt
pins per FPGA archrtecture
speciﬁed InterFPGA
routing

/l\ Evaluation metrics:
Fit? » - Critical path delay

- Pin cost
No Yes

Figure 2 - Experimental Ealuation Procedure for Multi-FPGA Systems

2.1 General CAD Flow

As illustrated in Figure 2, we start with a (technology mapped) netlist of 4-LUTs and flip flops
of the circuit.The circuit is partitioned into a minimum number of sub-circuits using a multi-way
partitioning tool which accepts as constraints the specific FPGA logic capacity and pin count. For
all the experiments presented in this paper we used a Xilinx 4013E-1 FPGA, which consists of
1152 4-LUTs, 1152 flip flops, and 192 usable I/O pins [Xili97]. Multi-way partitioning is accom-
plished using a recursive bi-partitioning procedure. The partitioning tool used is called ‘part’ and
was originally developed for the Transmogrifier-1 rapid prototyping system [Gall94]. It is based
on the Fiduccia and Mattheyses partitioning algorithm [Fidu82] with an extension for timing-
driven pre-clustering [Shih92]. The output of the partitioning step is a netlist of connections
between the FPGASs that contain the circuit.

Given the chip-level interconnection netlist, the next step is to route each inter-FPGA net
using the most suitable routing path. The routing path chosen should be the shortest path (use the
minimum number of hops) and it should cause the least possible congestion for subsequent nets to
be routed. Depending on the architecture, the routing resources available in an MFS could be
wires that are direct connections between FPGAS, or wires that connect FPGAs and FPIDs

If the routing attemptdils, the partitioning step is repeated after reducing the number of 1/O
pins per FPGA specified to the partitian€his usually increases the number of FPGAs needed,
and helps routability by decreasing the pin demand from each FPGA, aidimanore “route-
through” pins in the FPGAs whicladilitate routing.

Note that in an actual MFS, the inter-FPGA routing step is followed by pin assignment, place-
ment and routing within individual FPGAs. We need not perform these tasks because we are only
interested in knowing the MFS size needed to fit the circuit. Our previous research has shown that
we can afford to assign pins randomly for each FPGA without jeopardizing routability and speed
[Khal95]. During recursive bi-partitioning, we restrict the logic utilization of each FPGA to be at
most 70% to avoid placement and routability problems within individual FPGAs. Thus we ensure
that if an inter-FPGA routing attempt succeeds, it is almost guaranteed that the subsequent pin
assignment, placement, and routing steps will be successful for each FPGA in the MFS

Notice that the ab@-mentioned claims about I/O pin-constrained placement and routing are
not applicable to the older Xilinx FPGAs (XC3000) and the older Xilinx tool set (the APR tool
set, [Xili92]). However, in our research we assume that the Xilinx XC4013 FPGA and tiiErXA
tool set [Xili94] is used, which ge eccellent results under 1/O pin-constrained placement and
routing, as shon in [Khal95]. Therefore, our assumption that pin locking on a Xilinx XC4013
FPGA will not hae an unduly aderse impact on its routability and speedabd:

Another important point is that the 70% cap on FPGA logic utilization (that we imposed),
could be increased further (wheee possible for specific FPGAS) if we perform placement and
routing for indvidual FPGAs. W did not perform indidual FPGA placement and routing
because it wuld hare involved a huge amount okperimental dbrt and time, and probably
would not change our architectural conclusions w significant vay. Also, in most casesgwy
high FPGA logic utilization (say > 85%) after partitioning is rare because of FPGA pin limita-
tions. In fct, the gerage post-partitioning logic utilization is less than 50%. The 70% cap on
logic utilization is based on a consative estimate. From our prieus research study [Khal95]
and from anecdotalv@lence proided by other FPGA users, we found that in almost all circuits,
restricting logic utilization to 70% or less leads to routing completion in the Xilinx XC4000 series
of FPGAs.

We hae developed a specific router for each of the architectures compared. (We had
attempted to create a generic router but found that it had major problems with different aspects of
each architecture [Khal99].)

2.2 Evaluation Metrics

To compare the tavrouting architectures we implement benchmark circuits on each and con-
trast the pin cost and post-routing critical path dedaydescribed belo

2.2.1 Pin Cost

The cost of an MFS is Ity a direct function of the number of FPGAs and FPIDs: If the rout-
ing architecture is in&tient, it will require more FPGAs and FPIDs to implement the same
amount of logic as a morefieient MFS. While it is dificult to calculate the price of specific
FPIDs and FPGAs, we assume that the total cost is proportional to the total number of pins on all
of these deices. Since thexact number of FPGAs and FPIDaries for each circuit implementa-
tion (in our procedure abe, we allov the MFS to grev until routing is successful), we calculate,
for each architecture, the total number of pins required to implement each cireudféio this
as thepin costmetric for the architecture.

2.2.2 Post Routing Critical Path Delay

The speed of an MFS, for avgh circuit, is determined by the critical path delay obtained
after a circuit has been placed and routed at thechiprlevel. We call this thepost-iouting crit-
ical path delayWe hare developed an MFS static timing analysis tool (M Tor calculating the
post routing critical path delay for avgn circuit and MFS architecture.

The operation and modeling used in theAVre described briefly as folles: It first calcu-
lates the critical path delay of the un-partitioned design using a widely used method called the
block oriented telenique[Joup87]. It then reads the iniEPGA netlist and the routing path for
each intefFPGA net, as praded by the intechip routey and the MFS architecture description.
From this information the circuit is annotated with the hat@ip delays, from which the post-
routing critical path delay can be calculated.

In the delay annotation step, the delajues gien in Tablel (obtained from data sheets
[Xili97] and [ICub97] and some desigrerience) are used.

Item Delay (ns)
Intra-FPGA CLB-to-CLB routing delay 25
FPGA input pad delay 1.4
FPGA output pad delay 3.2
CLB delay (without using H-LUT) 1.3
CLB delay (via H-LUT) 2.2

FPID crossing delay (including pad delays) 10

PCB trace delay 3

FPGA route through delay 10

Table 1. Delays Used in iming Analyzer Model

Note that since we do not perform midiual FPGA place and route, we approximate the
CLB-to-CLB delay as a constant. Thalwe of 2.5 ns for CLB-to-CLB routing delay is roughly
half the delay on a long line for XC4013E-1 FPGA. This is a pessimistic estimate. Although using
a single delay alue is som&hat inaccurate, it still ges us a good estimate of the post-routing

critical path delay of an MFS because it is dominated bygtop delay alues.

Circuit Size Function Source, Wnthgﬂstool used (if
applicable)
s$35932 4374 LUTs, Sequential circuit MCNC
1728 FFs, 357 1/0s
38417 6097 LUTSs, Sequential circuit MCNC
1463 FFs, 134 1/0s
38584 4396 LUTs Sequential circuit MCNC
1451 FFs, 292 1/0s
mips64 2900 LUTs Scaled dwn version of PRER Verilog model synthesized
440 FFs, 260 1/0Os MIPS R4000 using Exemplar
spla 3423 LUTs Combinational Circuit MCNC
0 FFs, 62 1/0s
cspla 2039 LUTs Clone of spla UofT, Generated using
0 FFs, 62 1/0s GEN[Hutt96]
mac64 2560 LUTs 64-bit UofT, Verilog model synthesized
64 FFs, 133 1/0Os | multiply-accumulate ckt. using Synopsys
sort8 1540 LUTs 8-bit HW sort engine UofT, Verilog model synthesized
200 FFs, 20 I/0s using Synopsys
firlé 5366 LUTs 16-bit, 8-stage UofT, Verilog model synthesized
1040 FFs, 60 I/Os FIR filter using Synopsys
gra 2494 LUTs Graphics acceleration UofT, circuit generated using
1156 FFs, 144 1/0Os circuit tmcc[Gall95]
fpsdes 3484 LUTs Fastest pseudo DES cir{ UofT, Verilog model synthesized
1008 FFs, 69 I/Os cuit using Synopsys
spsdes 2452 LUTs Smallest pseudo DES UofT, Verilog model synthesized
982 FFs, 69 1/0Os circuit using Synopsys
ochip64 3617 LUTs Output chip for AM UofT, VHDL model synthesized
5810 FFs, 84 1/0Os switching chip set using Exemplar
ralu32 2553 LUTs 32-bit register file, ALU, PRER VHDL model synthesized
584 FFs, 98 1/0s and control logic using Synopsys
iirlé 3149 LUTs 16-bit lIR filter UofT, VHDL model synthesized
522 FFs, 52 1/0s using Synopsys

Table 2: Benchmark Circuits

2.3 Benchmark Circuits

A total of fifteen lage benchmark circuits were used in oxperimental vork. An extensve
effort was epended to collect this suite of ¢gr benchmark circuits. The details of each bench-
mark circuit are shen in Table2 which prwides the circuit name, size (in 4-LUTSs, D flip flops,
and 1/0O count), rough description of the functionalibe source of the circuit and the manner in

which it was synthesized.dtr circuits were obtained from MCNC gxg91], tvo from FPGA
synthesis benchmarks [Prep96], and the remaining nine weetoded at the Umersity of Tor-

onto (UofT). The circuits from MCNC werevalable in the XNF [Xili97] ate-level netlist for-

mat required by our front end tools. All the circuits from [Prep96] and UofT were originally
available as VHDL or ¥rilog HDL models and were synthesized into XNF netlists usiragrEx

plar [Exem94] and Synopsys Beharal Compiler [Knap96] and/or Design Compiler [Syno97]
synthesis tools. ¥/shav these details of the benchmark circuits because we feel that the MCNC
circuits that hae been used sarfin MFS architecture studies are irigiént in terms of size and
variety to ‘stress’ dierent architectures and the mapping tools used. Specifisaljound that

they are easier to partition and map compared to the other real circuits that we use ankhis w

3 Routing Architecture Description and Routing Algorithms
In this Section we describe the partial crossbar and HCGP architectureach architecture,
we briefly describe an architecture-specific hulieip router

3.1 Architectural Description and Routing for the Partial Crossbar

The partial crossbar architecture [Butt91] [Butt92afy93] is used in logic emulators pro-
duced by Quickturn Design Systems [Quic96]. A partial crossbar using four FPGAs and three
FPIDs is shan in Figure 3. The pins in each FPGA areidid into N subsets, where N is the
number of FPIDs in the architecture. All the pins belonging to the same subset numlberantdif
FPGAs are connected to a single FPID. Note thatcaouit 1/0s will have to go through FPIDs
to reach FPGA pins.df this purpose, a certain number of pins per FPID (50) are egsgnvcir-
cuit I/Os. Notice that we could aresered the number of pins per FPID required for I/O signals
based on circuit requirementsrihis scheme, the number of resathpins per FPID (for 1/0 sig-
nals) would be \ariable across diérent circuits. W did not use this scheme because it will not
malke ary significant diference in architectural comparison results. Also, our present scheme is
easier to implement. As for the number of pins per FPID (50) reddov circuit I/O signals, we
used this number to meet the maximum 1/O requirement among the circuits in our benchmark
suite.

The number of pins per subse})(B a ley architectural parameter that determines the number
of FPIDs needed and the pin count of each FPID. Xtieraes of the partial crossbar architecture
can be illustrated by considering a system with four FPGAs, and assuming 192 usable I/O pins
per FPGA: a Pvalue of 192 will require a single 768-pin FPID that acts as a full crossi#r
value of 1 will require 192 4-pin FPIDs. Both of these cases are impractical.

A good \alue of R should require b cost, lav pin count FPIDs. & the abwe example, a P
value of 12 will require 16 48-pin FPIDs. When we consider FPID pins required for circuit 1/0s
we will need to use 64 or 96-pin FPIDs that are commerciadlyadble [ICub97]. When choosing
a \alue of B, we must ensure that number of usable I/Os per FPGerdyedvisible by R or at
least the remainder should beexywsmall number so that we can use such pins for routing high
fanout intetFPGA nets. In this ark we set P= 17 which leges five pins per FPGA to be used as
global lines in the partial crossbar architecture. These global lines are used for routing global nets
likeresetclock and other gry high finout nets in the circuit. Our preus research [Khal97] has
shawn that, for real circuits, the routability and speed of the partial crossbar ideutedfby the
value of Rused. But this is contingent upon using an intelligent-cigy router that understands
the architecture and routes each HREIGA net using only tav hops to minimize the routing
delay However, a practical constraint is that we showaid using R values that requirexpen-
sive or &en unaailable high pin count FPIDs.

FPGA 1 FPGA 2 FPGA 3 FPGA 4

A B C A B C A B C A B C

Figure 3 - The Rartial Crossbar Architecture

3.1.1 Routing Algorithm for the Partial Crossbar

For ary MFS architecture in general and for the partial crossbar in partigutsamportant to
use a routing algorithm thax@oits architecture-specific features in order to obtain good results.

We have developed a routing tool, PGRJUTE, for the partial crossbar architecture thaegi
excellent routability and speed results for all of our benchmark circuits. Irrespettine alue
of P, it achieres 100% routing completion and produces-tvop routing for all the nets in almost
all circuits. For only two circuits, for the specific case of £4, it produced multi-hop routing
paths for a ngligible number of nets (1 out of 991 nets for the first circuit and 3 out of 645 nets
for the second). In practical terms, this meansviégalmost optimal results for all of our bench-
mark circuits.

The PCROUTE algorithm works as follows: for each net (irrespective of fanout), it evaluates
potential routing paths through all available FPIDs. It uses a suitable cost function to choose an
FPID that will guarantee balanced usage of FPIDs and will preserve the most options for two-hop
routing of subsequent nets to be routed. Consider a partial crossbar that consig6éts and
m FPIDs. Consider aN-terminalnet calledM. Let F denote the set of FPGASs belongingMo
i.e. {f, ..., \}-

Let Ay denote the number of available wires between FP&®d FPIDK. The routing cost of
the netM through FPIDk, C(M, K), is given by:

fn
C(M,k) = i
=2 A,
i=f,

An FPID that has the lowest routing cost for themes chosen for routing that net.

We show in [Khal99] that PCROUTE is equivalent in quality to other partial crossbar routers
that have been proposed so far [Kim96] [Mak97a] [Lin97]. PCROUTE is better than [Mak97b] in
terms of both speed and routability because that algorithm splits each multi-terminal into a set of
two-terminal nets and routes them independently, leading to multiple hops and even possible
routing failues.

3.2 Architectural Description and Routing for HCGP
The HCGP architecture for four FPGAs and three FPIDs is illustrated in Figure 4. The I/O

pins in each FPGA arewlded into two groups: hardwired connections and programmable con-
nections. The pins in the first group connect to other FPGAs and the pins in the second group con-
nect to FPIDs. The FPGAs are directly connected to each other using a complete graph, topology
i.e. each FPGA is connected teeey other FPGA. The connections between FPGAs\ael\e
distributed, i.e. the number of wires betweerry pair of FPGAs is the same. The FPGAs and
FPIDs are connected ixa&ctly the same manner as in a partial crosgtsain the partial crosshar

ary circuit 1/0s will hare to go through FPIDs to reach FPGA pingt this purpose, a certain
number of pins per FPID (50) are resahfor circuit I/Os.

The direct connections between FPGAs can be exploited to obtain reduced cost and better
speed. For example, consider a net that connects FPGA 1 to FPGA 3 in Figure 4. If there were no
direct connections as in the partial crossbar, we would have used an FPID to connect the two
FPGAs. This will cost extra delay and two extra FPID pins. A natural question to ask is: why not
dispense with FPIDs and just use FPGAs connected as a completely connected graph as investi-
gated in [Kim96]? The answer is that routing multi-terminal nets in an FPGA-only architecture is
expensive in terms of routability because in such an architecture a multi-terminal net requires
many extra pins in the source FPGA, as illustrated in Figure 5(a). In Figure 5(a) two extra FPGA
pins are used for routing a fanout 3 multi-terminal net. Since extra pins are scarce on an FPGA
this has an adverse effect on the routability of FPGA-only architectures. On the other hand, if we
use an FPID for routing the same multi-terminal net, we do not need even a single extra FPGA
pin, other than the FPGA pins needed to access the source and sinks of the net as shown in Figure
5(b).

A key architectural parameter in the HCGP architecture is the percentage of programmable
connections, B It is defined as the percentage of each FB@s that are connected to FPIDs
(the remainder are connected to other FPGAS)p ¥ Bbo high it will lead to increased pin cost, if
it is too low it will adversely afect routability If P, is 0% the HCGP architecturegtades to a
completely connected graph of FPGAs with no FPIDs usegl.if F0O0% the HCGP architecture
degrades to a standard partial crossiakey issue we address later is the beddte of B for
obtaining minimum cost and good routability

3.2.1 Routing Algorithm for HCGP

The interchip routing algorithm for HCGP is similar to the partial crossbar routing algorithm

FPGA 1 FPGA 2 FPGA 3 FPGA 4

A B C A B C A B C A B C

Figure4 - The HCGP Architecture

FPGA 4 FPGA 3
sink3 sink2
FPGA 1
src AN

FPGA 4 FPGA 3 FPGA 2
sink3 sink2 sink1

(b)
Figure 5 - Multi-terminal Net Routing (a) \Whout an FPID (b) Wh an FPID

in the sense that the same algorithm is used when routing nets through FRiBgHbe dif-
ference here is that the router should alquat the direct connections between FPGAS to mini-
mize the number of FPGA and FPID pins used for routing and to minimize the net delay for
critical interFPGA nets. A critical net is defined as an HEBXGA net whose slack (when ana-
lyzed after partitioning, Ut before intetFPGA routing) is less than the delay incurred for con-
necting tw FPGAs via an FPID.

We have developed a timing-driven inter-chip routing tool, called HROUTE_TD, that under-
stands the HCGP architecture and gives excellent routability and speed results for all the
benchmark circuits.

The main objectives of HROUTE_TD are to try to route all critical nets using direct connections
and to route all other (non-critical) nets using no more than two hops for each source-sink path.
Our experience has shown that net ordering, based on slack first and then fanout, is crucial for
obtaining good routability and speed. Wherever possible, HROUTE_TD uses direct connections
to minimize source-sink net delay when routing critical nets. The HROUTE_TD algorithm works
as follows: We first try to route all critical two-terminal nets using the direct connections between
FPGAs to minimize usage of pins and net delay. Next, we try to routsu#itterminal nets
through FPIDs using a routing algorithm similar to that used in PCROUTE, described above in
Section 3.1.1. Finally, the remaining (non-critical) two terminal nets are routed using FPGAs or
FPIDs. Any nets that remain unrouted are processed by a maze router. A detailed description of
HROUTE_TD is given in [Khal99].

4 Experimental Results
In this Section we determine thdegft of varying the alue of B on the routability and speed
of the HCGP architecture and compare the partial crossbar and HCGP architectures.

4.1 HCGP Architecture: Analysisof P,
Recall the definition of P given in Section 3.2, which is the percentage of pins per FPGA
used for programmable connectiong.i®important because itfatts the cost and routability of

the HCGP architecture. Here wepéore the eect of B, on the routability and speed of the HCGP
architecture. W mapped the fifteen benchmark circuits to the HCGP architecture usrdjffiv

10

Y nets routed

100.00—] 835932
S38417
99.00— | 53as8a
98.00— —| ' mips64 ~
L
97.00— —|ra
cspla
96.00 — —1 ‘mac64
95.00 — _|’sort8
firi6
94.00 — et
gra
93.00— fpsdes
92.00— _’spsdes ~
‘ochip64”
91.001~ TTalu3z "
90.00 — | | | | L Tirie
Pp

20.00 30.00 40.00 50.00 60.00
Figure 6 - The Efect of B, on Routability of the HCGP Architecture

ferent \alues of B (20, 30, 40, 50, 60). The results arevshon Figure 6. The ¥xis represents

the percentage of intéfPGA nets routed and the X-axis represents theales. The first clear
conclusion is B = 60% gves 100% routability for all the benchmark circuits. Notice that about
two thirds of the circuits routed at, R= 40%, and for the remaining one third, more than 90% of
the nets routed. This implies that there is a potential for obtaining 100% routabilty for all circuits
at B, = 40% if we use a routability dren partitioner lile the one used in [Kim96]. This will lead

to further reduced pin cost for HCGP compared to the partial crossbar

We conjecture that they,Ralue required for routing completion of avem circuit on HCGP
depends upon mowell the circuit structure ‘matches’ the topology of the architecture.

We also inestigated the décts of P on post-routing critical path delajable3 shavs the ten
circuits that routed for P< 60%. The first column shs the circuit name. In subsequent col-
umns, the critical path delay of each circuit fofefiént \alues of B (20, 30, 40, 50, 60) is sho.

A surprising conclusion is that\(erall) the laver B, values hae no significant ééct on the criti-

cal path delayCompared to the delaghe at B = 60%, for laver B, values the delay remained
the same or decreased slightly (only 4% lessvemnage and 12% less in the best case).ck-
cuits where delay &as reduced, one or twprogrammable connections on the critical paths were
replaced bydster hardwired connections. Note that @sfeduced, more hardwired connections
are ailable. for circuits where delay remained the samegrisents’ on the critical path are part
of very high finout connections that Veto be routed using FPIDs because of the lack of free
pins (required for routing multi-terminal nets using hardwired connectionsh Ewugh more
hardwired connections argalable, thg cannot be used for routing nets on the critical path.

11

Post Routing Critical P ath Delay (ns)
Circuit
Pp =20 Pp =30 Pp =40 Pp =50 P, =60

$35932 unroutable unroutable 53 53 53
s38417 87 94 94 94 94
$38584 unroutable 96 96 98 98
sort8 unroutable unroutable unroutable 460 499
firlé 147 160 163 167 167
gra 57 57 57 57 57
fpsdes unroutable 173 176 176 176
spsdes unroutable unroutable 192 205 205
ochip64 50 50 50 50 50
iirl6 143 143 143 152 152

Table 3: The Efect of R, on Speed of the HCGP Architecture
4.2 Comparison of HCGP and Partial Crossbar

The 15 benchmark circuits described iable2 were mapped to the partial crossbar and
HCGP architectures using thexperimental procedure described in Section 2. The results
obtained are shn in Table4 and &ble5. In Table4, the first column shes the circuit name.

The second column sivs the number of FPGAs needed for implementing the circuit on each
architecture (recall that we increase the MFS size until routing is successful). The third column
shavs the pin cost normalized to the number of pins used by the HCGP architecture and the
fourth column shas the normalized critical path delay obtained for each architectaipée5STis

similar to Table4 except that it shas actual (un-normalized) pin cost and delajues.

The number of FPIDs used is not aimobecause it is constant for each architecture. All the
results for partial crossbar usg=P17. The parametey Betermines the number of FPIDs required
and the number of FPGAs in the architecture determine the pin count of each FPHxew
shawvn that the alue of R used has no f&fct on the routability and speed of the partial crossbar
[Khal97]. Therefore ay arbitrary \alue of R can be used. Heever, for practical reasons, the
value chosen should require FPIDs thateh@asonable pin counts (about 400 pins or less, which
are commercially\ailable) for the lagest partial crossbar required in oMperiments. A reason-
able choice in this respect isP17.

The \alue of R for the HCGP architectureas set to 60% to obtain good routability across all
circuits, as discussed in Section 4.1. Notice that the parametepRpplies to the programmable
connections in the HCGIFor the same reasons as in the partial crossban(gn the preious
paragraph), we chosg ® 14 for the HCGP architecture. Also the number of global lines used in
the HCGP architecture depends upon the MFS size (#FPGAs used) and the pararaetef P
In our experiments (B=60%, R= 14) the number of global lines used for the HCGP architecture
varied from 5 to 15. Recall from Section 3.1 that the number of global lines for the partial cross-
bar is 5 corresponding tq £ 17. The diferent \alues for number of global lines used in HCGP is
due to the dct that the number depends upon bgjfad R instead of just Pas in the partial
crossbar architecture.

12

Number of FPGAs | Normalized pin cost Norcrrr}?illi:;ec:jgt(:]st(-‘;o:;ing
Circuit
wosbar | MCOP | crocher | HOOP | oy | OGP
s$35932 8 8 1.25 1.0 1.08 1.0
s38417 9 9 1.25 1.0 1.00 1.0
s38584 9 9 1.25 1.0 1.42 1.0
mips64 14 15 1.16 1.0 1.11 1.0
spla 18 18 1.25 1.0 1.16 1.0
cspla 18 18 1.25 1.0 1.18 1.0
mac64 6 6 1.25 1.0 1.34 1.0
sort8 12 14 1.07 1.0 1.07 1.0
firlé 10 10 1.25 1.0 1.43 1.0
gra 4 4 1.25 1.0 1.23 1.0
fpsdes 9 9 1.25 1.0 1.29 1.0
spsdes 8 8 1.25 1.0 1.21 1.0
ochip64 8 8 1.25 1.0 1.26 1.0
ralu32 9 14 0.80 1.0 1.21 1.0
iirlé 6 6 1.25 1.0 1.05 1.0
Average 10 10 1.20 1.0 1.20 10

Table 4: Comparison of HCGP andaRial Crossbar Architectures

In reviewing Table4, consider the circumips64 The first partitioning attempt resulted in 14
FPGAs required to implement the circuit on partial crossblawever, the circuit vas not
routable on HCGP and the partitioningswepeated after reducing the number of pins per FPGA
specified to the partitioner by 5%. This resulted in 15 FPGASs required to implement the circuit.
The second partitioning attempaw/routable on the HCGP architecture because more ‘free pins’
were &ailable in each FPGA for routing purposes. The pin faysthe partial crossbar was still
more than that for HCGP because it uses many more programmable connections, and hence more
FPID pins. A partial crossbar always requires one FPID pin for every FPGA pin; the HCGP archi-
tecture requires a lower ratio, (0.6: 1) as shown in the previous section.

Inspecting &ble4, we can mak seeral obserations. First, the partial crossbar needs 20%
more pins on werage, and as much as 25% more pins compared to the HCGP architecture.
Clearly, the HCGP architecture is superior to the partial crossbar architecture in terms of the pin
cost metric. This is because the HCG#leits direct connections between FPGAs teesaPID
pins that vould hare been needed to route certain nets in partial croddbaever, for routability
purposes, the HCGP needs some free pins in each FPGA and may require repeated partitioning
attempts for some circuits.

Table4 also shws that the typical circuit delay isver with the HCGP architecture: the
HCGP gves significantly less delay for tweleircuits compared to the partial crossbar and about
the same delay for the rest of the circuits. The reason is that the HCGP wsizasd direct con-

13

Number of FPGAs Pin cost Post-routing _critical path
delay (in ns)
Circuit
combar | MOOP | o | HCOP | SOl | weer

s$35932 8 8 3032 2432 57 53
s38417 9 9 3411 2736 94 94
s38584 9 9 3411 2736 139 98
mips64 14 15 5306 4560 462 418

spla 18 18 6822 5472 196 169
cspla 18 18 6822 5472 193 164
mac64 6 6 2274 1824 623 465
sort8 12 14 4548 4256 533 499

firlé 10 10 3790 3040 238 167

gra 4 4 1516 1216 70 57
fpsdes 9 9 3411 2736 227 176
spsdes 8 8 3032 2432 249 205
ochip64 8 8 3032 2432 63 50
ralu32 9 14 3411 4256 317 263

iirlé 6 6 2274 1824 160 152

Avg.: 10 | Avg.: 10 Total: Total: Avg.: 241 | Avg.: 202
56092 47424

Table5: Actual Pin Cost and Delayalues for the Wo Architectures

nections between FPGAs, wheaepossible. From the delaglues in ablel, we can she that

the interconnection delay is much smaller (12.6 ns) if we use direct connections between FPGAs
compared to the delayalie (25.6 ns) when connectingadwPGAs through an FPID. Another
interesting obseation is that een for the circuits where the HCGP needs more FPGAs compared
to the partial crossbait still gives comparable or better delagiwe. This clearly demonstrates

that the HCGP architecture is inherentgter due to the nature of its topololf\gives significant

speed up, especially when we use timingedriinterFPGA routing.

Table5 shavs the actual pin cost and delajwes obtained for the partial crossbar and HCGP
architectures. It is interesting that the estimated clock speeds for the partial crossbar architecture
range from 20 MHz for thechip64 circuit to 1.6 MHz thenac64circuit. This range is represen-
tative of the clock ratesxpected in MFSs [Quic96].

5 Conclusions and Future Work

In this paper we he presented the Hybrid Complete-Graph aadi&l-Crossbar (HCGP), a
new routing architecture for multi-FPGA systems. Using gpeeimental approach, weauated
and compared this architecture to the partial crossbar architecture aretighat it is superior in
terms of pin cost and speed dur knavledge, this is the first architectural study of boaxelle

14

MFSs that considers post-routing critical path delay whatuating the speed performance of
different architectures.

We explored a ley parameter (F) associated with the HCGP architecture axpeementally
determined its bes@ale (60%) for obtaining good routability for ariety of circuits.

We beliere that the HCGP architectur@uld give even better results if we use better mapping
(CAD) tools for partitioning. A routabilty dren partitionersimilar to the one used in [Kim96],
may result in further reduced pin cost by making circuits routablevéor lewer \alues of B (say
40%).

The HCGP architecture is suitable for single board MFSs using a maximum of about 25
FPGAs. As FPGA logic and pin capacities continue to rise, iesa&nse to use single board sys-
tems using a & high capacity FPGAs tovaid the problems associated with using high pin count
connectors for multi-board systems Wi67]. For applications where hundreds of FPGAs are
needed, such as logic emulation, we could use ‘clusters’ of HCGPs interconnected using a hierar-
chical partial crossbar scheme [Butt92]. The hardwired connections, within each cluster and
between dferent clusters, wuld still help in reducing theverall pin cost. Determining the,P
value suitable for such hierarchical architectures is an open research proldewill \Weed
extremely lage benchmark circuits and appropriate CAD toolsxiaage hierarchical architec-
tures.

Acknowledgments

The authors wuld like to thank Dee Gallavay for his help with the partitioning tool and
Jason Anderson for his help in synthesizing the benchmark circuits. This resaarsupported
by the Information €chnology Research Center (ITRC) of Ontario and M)GIET.

References

[Alte94] Altera CorporationReconfiguable Inteconnect Bripheml Processor (RIPP10) UserManua) Ver-
sion 1.0, 1994.

[Aptioe] Aptix CorporationProduct brief: The System ExpborMP4 1996. Available on Aptix VWb site: http://
www.aptix.com.

[Arno92] J. M. Arnold, D. A. Buell, and E. G. D&, “Splash 2, Proceedings of 4th AnnualCM Symposium on
Parallel Algorithms and Achitectures pp. 316-322, 1992.

[Babb97] J. Babb et al, “Logic Emulation withiNual Wires, IEEE Trans. on CADvol. 16, no. 6, pp. 609-626,
June 1997.

[Brow92] S. Brown, R. Francis, J. Rose, and Z. Vranebie]d Programmable Gate Aays Kluwer Academic
Publishers, 1992.

[Butt91] M. Butts and J. BatchellefMethod of Using Electronically Reconfigurable Logic Circtits,S.
Patent 5, 036, 473July 30, 1991.

[Butt92] M. Butts, J. Batchellerand J. ¥rghese, An Efficient Logic Emulation SysteinProceedings of IEEE
International Confeence on Computer Desigpp. 138-141, 1992.

[Cass93] S. Casselman, ‘fual Computing and The iual Computel Proceedings of IEEE &vkshop on
FPGAs for Custom Computing Mdnes pp. 43-48, 1993.

[Chan93] P K. Chan, M. D. FSchlag, Architectural Tade-ofs in Field-Programmable-Dé&e-Based Comput-
ing System$, Proceedings of IEEE @vkshop on FPGAs for Custom Computing kiaes pp. 152-
161, 1993.

[Dray95] T. H. DrayerW. E. King, J. G. Tont, and R. WConners, “MORRPH: A Modular and Reprogrammable
Real-time Processing Hardwe, Proceedings of IEEE Symposium on FPGAs for Custom Computing
Machines pp. 11-19, 1995.

15

[Exem94]
[Fidu82]

[FCCM]
[Gall94]
[Gall95]
[Hauc94]
[Hutt96]

[ICub97]
[Joup87]

[Khal9s]

[Khal97]

[Khal9g]

[Khal9s]

[Kim96]
[Knap96]
[Lewi97]
[Lin97]
[Mak97a]
[Mak97b]
[Prep96]
[Quic96]
[Shihg2]

[Syno97]

Exemplar Logic VHDL Synthesis Refemce Manual1994.

C. M. Fiduccia, and R. M. Mattlgses, A LinearTime Heuristic for Impreed Netvork Partitions”,
Proc. of 19th £M/IEEE Design Atomation Confance pp. 241-247, 1982.

Proceedings of IEEE @vkshops/Symposia on FPGAs for Custom Computindhias 1992 to 1998.
D. Gallowvay, D. Karchmer P Chaw, D. Lewis, and J. Rose, “Therdnsmogrifier: The Unersity of
Toronto Field-Programmable Systen€SRI Ednical Report (CSRI-306)CSRI, Unversity of Tor-
onto, 1994.

D. Gallovay, “The Transmogrifier C Hardare Description Language and Compiler for FPGRso-
ceedings of IEEE Symposium on FPGAs for Custom Computinigiidgqp. 136-144, 1995.

S. Hauck, G. Boriello, C. Ebeling, “Mesh Routingpblogies for Multi-FPGA SystemsPRroceedings
of International Confeance on Computer Design (ICCD’'94)p. 170-177, 1994.

M. Hutton, J.PGrossman, J. Rose and D. Corneil, “Characterization arafrieterized Random Gen-
eration of Digital Circuit$, Proc.of the Design #tomation Confesnce pp. 94-99, 1996.

[-Cube, Inc.,The IQX amily Data ShegetMay 1997. Aailable at: wwwicube.com.

Norman P Jouppi, “Tming Analysis and Performance Impement of MOS VLSI DesigrisJEEE
Trans. on CADvol. CAD-6, no. 4, pp. 650-665, July 1987.

M. A. S. Khalid and J. Rose, “Thefgét of Fixed 1/0O Pin Positioning on The Routability and Speed of
FPGAS, Proceedings of The ThirCanadian Wrkshop on feld-Programmable Deices (FPD’95) pp.
92-104, 1995.

M. A. S. Khalid and J. Rose, “Experimentaldiivation of Mesh anddrtial Crossbar Routing Architec-
tures for Multi-FPGA SystenisProceedings of the Sixth IFIP Internationabkishop on Lgic and
Architectue Synthesis (IWLAS'9%)p. 119-127, 1997.

M. A. S. Khalid, Routing Architecture and Layout Synthesis for Multi-FPGA SystBim§). Thesis
University of Toronto, 1999.

M. A. S. Khalid and J. RoseA“Hybrid Complete-Graph &tial-Crossbar Routing Architecture for
Multi-FPGA Systems$, Proc. of 1998 Sixth @M International Symposium onieid-Programmable
Gate Arays (FPGAO8), pp. 45-54, February 1998.

C. Kim, H. Shin, A Performance-Dxien Logic Emulation System: FPGA Natuk Design and Perfor-
mance-Dwen Rartitioning; IEEE Trans. on CADwvol. 15, no. 5, pp. 560-568, May 1996.

D. W. Knapp,Behavioal Synthesis: Digital System Design Using the Synopsys Behla@iompiler
Prentice Hall PTR, 1996.

D. M. Lewis, D. R. Gallavay, M. Van lerssel, J. Rose, and@hav, “The Transmogrifier2: A 1 Million
Gate Rapid Prototyping Systén®Proceedings of FPG87, pp. 53-61, 1997.

S. Lin, Y. Lin, and T Hwang, “Net Assignment for the FPGA-Based Logic Emulation System in the
Folded-Clos Netwrk Structuré, IEEE Trans. on CADvol. 16, no. 3, pp. 316-320, March 1997.
Wai-Kei Mak, D. F Wong, “On Optimal Board-Le=l Routing for FPGA-based Logic Emulation,
IEEE Trans. on CADvol. 16, no. 3, pp. 282-289, March 1997.

Wai-Kei Mak, D. F Wong, “Board-L&el Multi-Terminal Net Routing for FPGA-based Logic Emula-
tion,” ACM Trans. on Design #tomation of Electinic Systems/ol. 2, no. 2, pp. 151-167, April 1997.
Programmable Electmics Rerformance Corpation, HDL models for diferent circuits (synthesis
benchmarks) arevailable on their Wb site: http//wwwprep.og.

Quickturn Design Systems, IncSystem Realizer Data She&B96. Aailable on Quickturn \&b
site:http://wwwquickturn.com.

M. Shih, E. S. Kih, “Performance-Dvien System &titioning on Multi-Chip Modules,Proc. of the
Design Aitomation Confexnce pp. 53-56, 1992.

Synopsys, IncDesign Compiler(®tsion 3.4a), Behavial Compiler (\érsion 3.4a), and Likary Com-

16

[Van92]
[Vam93]
[Vuil9g]
[Xili92]
[Xili94]
[Xili97]

[Yang91]

piler (\ersion 3.4a), Refence ManualsDocuments ailable on-line.

D. E. Van Den Bout, et alAhyboard: An FPGA-Based Reconfigurable SystdEEE Design and st
of Computes, pp. 21-30, June 1992,

J. Vaigese, M. Butts, and Jon Batcheltgkn Efficient Logic Emulation SystemIEEE Trans. on VLSI
Systemsvol. 1, no. 2, pp. 171-174, June 1993.

J. E. \Willemin, P Bertin, D. Roncin, M. Shand, H.otiati, and PBoucard, “Programmable Acg
Memories: Reconfigurable Systems Come of A¢eEE Transactions on VLSMol 4, No. 1, pp. 56-
69, March 1996.

The Pogrammable Gate Aay Data BookXilinx, Inc., San Jose, California, 1992.

Xilinx, Inc., XACT Development System User Guidiebruary 1994.

Xilinx, Inc., Product Specification: XC4000E and XC4000X Series FP@#sjon 1.2, June 16, 1997.
Available on Xilinx Wb site: wwwilinx.com.

S. Yang,Logic Synthesis and Optimization Bantarks User Guidev/ersion 3.0, Microelectronics Cen-
ter of North Carolina, January 1991.

17

