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ABSTRACT 

The development of next-generation CAD tools and FPGA architectures require benchmark circuits to 

experiment with new algorithms and architectures. There has always been a shortage of good public 

benchmarks for these purposes, and even companies that have access to proprietary customer designs 

could benefit from designs that meet size and other particular specifications. In this paper, we present a 

new method of generating realistic synthetic benchmark circuits to help alleviate this shortage.  

The method significantly improves the quality of previous work by imposing a hierarchy of circuits 

through clustering and by using a simpler method of characterizing the nature of sequential circuits.  

Also, in contrast to current constructive generation methods [7-9,11-16,18,19], we employ new iterative 

techniques in the generation that provide better control over the generated circuit’s characteristics. As in 

previous work, we assess the realism of the generated circuits by comparing properties of real circuits 

and generated "clones" of the real circuit after placement and routing. On average, the real and clone 

circuits' total detailed wirelength differ by only 14%, a major improvement over previous results. In 

addition, the minimum track count is within 14% and the critical path delay is within 10%. 
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1. INTRODUCTION 

There currently exists a shortage of good quality public-domain benchmark circuits that can be used to 

test the next generation of CAD algorithms for VLSI ASICs and FPGA architectures. Most public 

domain benchmarks are either too small or not of the right size to give a realistic assessment of the 

performance of new architectures and algorithms. 

The shortage of large circuits exists because companies that possess large circuits regard them as 

proprietary. A number of efforts have been made to assemble public domain benchmarks, but those that 

do exist tend to be small or lack crucial information [1-3]. For example, the largest circuits from the 

MCNC benchmarks [1], common benchmarks used for FPGA research, are on the order of 8000 four-

input look-up tables (4-LUT)s. By contrast, the largest planned FPGAs that will be available within a year 

from Altera and Xilinx have space for up to 114,140 [4] and 111,232 [5] 4-LUTs respectively. This 

means that the circuits used to evaluate FPGA algorithms and architectures in the research community 

take up less than 10% of the largest commercial FPGA's area. Furthermore, if the research community is 

to explore FPGA designs that are five to ten years in the future then circuits that are three to twelve times 

larger are needed as chip size is forecast to grow by that amount according to the International 

Technology Roadmap for Semiconductors [6]. When faced by such a disparity between the size of the 

next generation of FPGA designs and the size of circuits used to explore these designs one has to wonder 

how realistic are conclusions reached with such circuits. 

This shortage of larger circuits is even more acute when one considers that what is really needed to fully 

test FPGA architectures or algorithms are larger circuits of the right size. In testing, a circuit that 

consumes half the logic resources of the target FPGA is often not as interesting as a circuit that consumes 

90% of an FPGA and places large demands on the architecture or the CAD tool algorithms. Furthermore, 
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unlike research into ASICs, if the benchmark circuit does not fit into the FPGA, then that benchmark 

circuit is of no use for testing purposes. 

Recently, researchers have proposed several approaches to synthetic benchmark generation in an attempt 

to alleviate these problems. Synthetic benchmarks are netlists created by an automated program and are 

constrained to have a specific set of desirable characteristics. However, for synthetic circuits to be useful, 

they must be shown to be realistic proxies for real circuits. 

Hutton et al. [7,8] demonstrated realism by comparing real benchmark circuits to “clones” generated 

synthetically from the characterization of the real circuits. Real and clone circuits could be compared on 

the basis of an important circuit characteristic or property (such as power consumption, critical path delay 

or total wirelength after placement and routing). They were successful in generating good quality clones 

(as measured by wirelength) of circuits that were purely combinational, but the approach worked less 

well for the larger sequential circuits, producing circuits that require 40% more wirelength on average.  

In this paper, we propose several new characterization parameters and synthetic generation techniques 

that significantly improve upon the wirelength results of Hutton et al. [7,8] for sequential circuits. At the 

same time, we maintain the key strength of that work—the ability to directly specify the unit delay profile 

of the synthesized circuits. Finally, we view our work as a key (but not final) step towards the goal of 

having the ability to create larger circuits than already exist.  

This paper is organized as follows: in Section 2 we review prior literature in synthetic circuit generation, 

including Hutton et al. [7], upon which this research is based. Section 3 describes a set of new 

characterization parameters that we propose to improve the generation results. Section 4 describes the 

new generation methods. In Section 5, we present measurements of the quality of the generated circuits, 

and conclude in Section 6. 
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2. BACKGROUND AND PREVIOUS WORK  

This chapter provides a review of other circuit generators that exist in the literature. This is followed by 

the background of the work of Hutton et al. [7,8] upon which this research is based. 

2.1 Other Synthetic Generation Efforts 

A number of other synthetic circuit generators have recently been proposed in the literature [9,11-19], 

which we will now review. 

Darnauer and Dai [9] generate synthetic circuits with a fixed number of inputs, outputs, LUTs, and with 

an average fanin and approximate Rent exponent [10]. The method constructs the synthetic circuit by 

recursively bi-partitioning the circuit and making connections after each partition until the clusters consist 

of single LUTs. The method is notable in its attempt to capture the hierarchical nature of a circuit. 

However, the approach lacks control over the fanout and unit delay profile of gates in the circuit. No 

validation is done on the quality of the synthetic circuits generated as the work focused on determining 

the routability of the synthetic circuits with given input parameters. 

Iwama et al. [11] create synthetic benchmark circuits using functional transformations of pre-existing real 

circuits that preserve the logical function of the circuit. While the resulting circuit is “realistic” from a 

logical standpoint, the method suffers from a lack of control over the physical properties of the netlist and 

the need for prior circuits. In [12] the method was extended to limit the fanin values of gates in the 

circuits but the lack of control over physical properties still remains. To alleviate the need for a prior 

circuit, a trivial random circuit generator was also described that generates single sum-of-product term 

circuits. No validation was done on any of the synthetic circuits as the application of their work was 

towards evaluating the ability of synthesis tools to reoptimize circuits they transform. 
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Harlow and Brglez [13] and Ghosh et al. [14,15] propose the idea that synthetic circuits should be 

generated by characterizing properties about circuits that will remain invariant under transformations or 

“mutations” of the circuits. The goal of their work is to provide synthetic circuits to help the influence 

that different starting conditions have on the testing of CAD algorithm performance. They claim that by 

expanding each circuit used in testing into an equivalence class of mutant circuits and averaging over the 

experimental results they can negate the effect of different starting conditions. The advantage of this 

approach is that the circuits are not completely random. However, the approach does not lend itself to the 

possibility of scaling the mutants to larger circuit sizes, which is a key motivation behind synthetic circuit 

generation. Furthermore, they present their results based on a small number of small-sized circuits and 

thus it is unclear how their method performs for larger circuits. 

Pistorius et al. [16] characterize digital designs as consisting of two levels of hierarchy with five different 

types of logic. At the bottom level of the hierarchy are regular combinational logic, irregular 

combinational logic, memory blocks, and combinational and sequential logic. At the top level of the 

hierarchy is the interconnection logic connecting these different sub-circuits. Generators are proposed for 

the regular combinational logic, the memory, the combinational and sequential logic, and the 

interconnection logic. Success is judged in the context of partitioning multiple FPGA systems. Here the 

utilization of the FPGAs is a key concern, and their method achieves an average filling rate for the clones 

that deviated by less than 17% from the original circuits. Success is not judged on the basis of the 

wirelength or delay properties and it is unclear as to whether under these latter criteria the circuits would 

prove realistic. No characterization or method to judge success is given at the second level of hierarchy. 

Wilton et al. [17] generate synthetic circuits with both logic and memory. Their method of generation is, 

first, to characterize large numbers of real circuits with a view to how logic and memory interconnect and 

the number, size, and shapes of the memories. Second, synthetic circuits are generated stochastically by 
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randomly selecting a memory configuration and interconnect pattern from the characterization, randomly 

selecting combinational logic from the MCNC benchmarks [1] and making connections between the 

memory and logic based on the interconnect pattern. The strength of the method is the inclusion of 

memory in the final circuits and the realistic connections between memory and logic. The weakness of the 

method is its use of only combinational MCNC benchmarks in logic portions of the generated circuits. 

Stroobandt et al. [18] developed a synthetic benchmark generation method that generates circuits using a 

bottom up clustering approach. This method produces circuits that are too regular and that have 

unrealistic delay profiles [19]. Verplaetse et al. [19] attempt to fix these problems and achieves good 

wirelength results with the real circuit and clones differing by 7% on average. It is unclear whether or not 

the delay profile problem has been sufficiently fixed since no direct comparison is made between the 

synthetic circuit delay profile and that of a real circuit. 

Hutton et al. [7,8] can generate synthetic circuits that scale with size and their generation method 

provides direct control over the unit delay profile of the synthesized circuits. Of all the synthetic 

benchmark efforts we feel that it shows the most promise and it is what we base our work upon. We now 

review their work. 

2.2 Hutton et al.’s Characterization and Generation 

The synthetic circuit generation approach of Hutton et al. [7] is to characterize key physical circuit 

properties of combinational circuits and then to generate synthetic circuits that are constrained to have 

these properties. When the properties of the original circuits are unchanged, these generated circuits are 

called clones of the original circuit. Examples of physical properties include the fanout distribution of the 

gates, the delay structure, and the number and type of connections in the circuit. In [8], Hutton et al. 

extended their method to generate sequential circuits, with flip-flops. In the sections below, we first 
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define the combinational circuit model and definitions. Second, we discuss the set of circuit 

characterizations and the method of combinational synthetic circuit generation. Third, we provide a brief 

description of the extensions made for sequential circuits. Lastly, we describe the process by which the 

circuits are judged realistic and reprise Hutton et al.’s results. 

2.2.1 Circuit Models and Definitions 

Circuits are modeled as a directed acyclic graph G = (V,E) where the nodes V represent gates in the 

circuit and edges E represent two-point connections between gates. In order to reduce the wide variation 

of gate types, both Hutton et al. [7] and this work assume that all gates are 4-input lookup tables (4-

LUTs). As a key aspect of circuits is their delay, Hutton et al. employs the unit delay model in which 

every LUT incurs a single unit of delay.  

With this delay model, the delay level of a node in the graph is defined as the maximum delay over all 

directed paths beginning at a primary input (PI) or a flip-flop (DFF) and terminating at the given node. 

The maximum combinational delay over all nodes in a circuit is defined as dmax. 

The delay structure of the circuit is characterized by a collection of measurements at the various delay 

levels. Shape is defined as the number of objects at each delay level. Accordingly, Hutton et al. [7] 

defines node shape, input shape, output shape, and PO shape as the total number of nodes, inputs, 

outputs, and primary outputs (POs) at each delay level respectively. The concept of shape is illustrated in 

Figure 1 for the MCNC circuit cm151a. The illustration of the circuit shows the nodes arrayed and 

labeled by delay level. Figure 1 also gives a histogram of the node, input, and output shapes. Primary 

inputs, which occupy the 0th delay level, are labelled PI. Looking at the 1st delay level we see it has 4 

nodes, 16 inputs from the 0th  delay level, and 4 outputs, and no primary outputs. 



 8

PI

1

PI

1

PI PIPI

1

PI

1

PI PI PI PI PI

2 2

PI

3 3

PO PO

Node Shape

0

10

20

0 1 2 3

Delay Level

N
um

be
r o

f 
N

od
es

Output Shape

0

20

40

0 1 2 3

Delay Level

N
um

be
r o

f 
O

ut
pu

ts
Input Shape

0

10

20

0 1 2 3

Delay Level

N
um

be
r o

f 
In

pu
ts

Input Shape

0

10

20

0 1 2 3

Delay Level

N
um

be
r o

f 
In

pu
ts

Input Shape

0

10

20

0 1 2 3

Delay Level

N
um

be
r o

f 
In

pu
ts

 

Figure 1 - Circuit and Shape Functions 

For a node x, fanout(x) is the combinational output degree of the node. For a circuit, Hutton et al. [7] 

describes the fanout in terms of the fanout distribution, defined as the number of nodes of each fanout, 

starting at 0. 

To characterize the connections in the combinational circuit, Hutton et al. [7] defines an edge length 

property: For an edge e=(x,y) with nodes x and y they define the length(e) = delay_level(y) - 

delay_level(x) if delay_level(y) > delay_level(x). An edge of length 1 is termed a unit edge while any 

edge with a length greater than 1 is termed a long edge. Using this definition of length they define the 

edge length distribution as the number of edges at each edge length. 

2.2.2  Combinational Generation Algorithms 

The method Hutton et al. [7] used to generate combinational circuits proceeds in a few basic steps as 

illustrated in Figure 2. The input into the generation phase is the node shape, the fanout distribution, the 

edge length distribution and several other parameters that are omitted here for simplicity (i.e. the number 
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of primary inputs, the number of primary outputs, the maximum fanin to a LUT, and the locality 

parameter “L”). In the algorithm, nodes are organized by delay level into larger groupings called level 

nodes. In Step I, the input shape's and output shape's upper and lower bounds are computed at each level 

node. In Step II, the majority of edges are assigned between the level nodes. In Step III, the fanout 

distribution is partitioned among the level nodes. In Step IV, each level node is split into individual nodes 

with a specific fanout. In Step V, edges are assigned between individual nodes. 
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Figure 2 - Combinational Generation Algorithm [7] 

It is at this point that Hutton et al. [7] attempts to achieve realistic wirelengths in the final generated 

circuit by imposing a notion of "locality" on the edge assignments. Here each node at each delay level is 

assigned a horizontal position, and edges are chosen in such a way as to minimize the horizontal distance 

between joined nodes. 

The output from the process, ideally, is a graph where the specified size, distributions and shape functions 

are met. For example, each node should have a fanout value from the fanout distribution that matches its 
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number of output edges and each node should belong to the correct delay level as dictated by the shape 

function. Furthermore, there should be no node “violations”, which are nodes that have one or more of 

the following properties: no outputs, no inputs, too many inputs, or two or more connections from the 

same source node. Hutton et al. [7] showed that it was often difficult to precisely meet the specification 

as given, and that it was difficult to prevent all node violations.  In order to deal with this, they reduced 

the length of edges and fanout values, dropped the edges during Step V that could not find valid 

connections, and assigned primary outputs to nodes with no output edges. 

It is relevant to note that this generation approach was largely constructive: at each Step, an assignment 

is made based on a calculated ordering, which was in turn based on a specific cost metric.  In the present 

work, we propose a new method that iterates over various states of the fully constructed graph 

employing an ensemble cost function that measures the degree of success in meeting the generation 

specifications. 

2.2.3 Extensions for Sequential Circuits 

In [8], Hutton et al. extended the above method of generating combinational circuits to sequential 

circuits. Here sequential circuits were broken into a set of combinational sub-circuits separated by flip-

flops that could be characterized and generated separately and then "glued" together during generation to 

form a full circuit. 

The combinational sub-circuits are identified by thinking of sequential circuits as consisting of chains of 

combinational logic that are connected to the next stage by flip-flops and are connected to any previous 

stage by feedback connections. To find these combinational sub-circuits the nodes in a circuit are 

partitioned into groups, termed sequential levels, based on the sequential level numbers of the nodes. 

The sequential level number of a node x, sequential_level (x), is defined as 0 if x is a Primary Input, 1 + 



 11

sequential_level (y) for a flip-flop x with input y, and MIN(sequential_level(yi)) over all inputs yi to x 

otherwise. In combinational circuits, there is a single sequential level. In sequential circuits, the sequential 

levels form a hierarchy. An example of this abstract model of a sequential circuit is given in Figure 3 [8]. 

Primary inputs

Sequential level 0

Flip−flops

Sequential level 1

(level 0 only)

Sequential level 2

Primary output (any level)

Primary output (any level)

Back
edges

combinational
sub−circuit

combinational
sub−circuit

combinational
sub−circuit

 
Figure 3 - Hutton et al.’s Model of a Sequential Circuit [8] 

With the circuit broken into a hierarchy of sequential levels, Hutton et al.’s [7] combinational 

characterization is applied to each sequential level with extra characterization added to model flip-flop 

and feedback connections that cross sequential level boundaries. Hutton et al. [8] characterizes the 

connections that enter or leave each sequential level with the ghost input shape (GIshape) defined as the 

number of edges entering a sequential level at each delay level and the ghost output shape (GOshape) 

defined as the number of edges that exit from a sequential level at each delay level. 

Hutton et al. [8] generates synthetic sequential circuits in two steps: In Step I, the combinational logic at 

each sequential level is generated separately by the method described in Section 2.2.2 above with 

modifications made to choose the set of nodes for flip-flop connections and the set of nodes for feedback 

connections from the ghost input and output shapes. In Step II, the sequential levels are connected 

together by connecting each sequential level to the flip-flops at the next sequential level and then by 

connecting each sequential level to the previous sequential levels by randomly making feedback 
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connections. In Step II, the nodes used in flip-flop connections or feedback connections are chosen from 

the respective sets. 

The key disadvantage of Hutton et al.’s [8] sequential circuit model is many circuits don’t have the 

pipeline-only structure implied by the sequential levels in this model.  Certainly, the pipeline portion of 

circuits have this structure, but all others do not. 

2.2.4 Quality of Previous Circuits 

In Hutton et al. [7,8] the quality of the generated circuits was judged by comparing real circuits and clone 

circuits generated from the characterizations measured from each real circuit. This process of judging real 

circuits against their clones is called validation and is illustrated in Figure 4. It is the framework we will 

use to judge the quality of our synthetic circuits. Note, because we directly compare the circuit 

characteristics of the clones against that of the real circuits this approach is a direct validation approach 

versus an indirect validation approach as defined in [20]. 

 

Characterization 

Place and Route with VPR

Generation

Circuit 
Parameters 

Clone 
Circuit

Real 
Circuit 
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Figure 4 - Validation Process 

In Hutton et al. [7,8] the real and clone circuits were compared on the basis of wirelength achieved after 

placement and global routing. Circuits were placed and global routed using VPR [21,22] and the 
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wirelength measured. It was found that post-placement wirelength differed by 17% on average for purely 

combinational circuits and 40% on average for sequential circuits (which were generally larger than the 

combinational circuits). Note that Hutton et al. measured the average of the absolute value of the 

difference between the original and clone circuits. Also, for the sequential circuits, in almost all cases the 

wirelength of the clone circuit was greater than that of the original circuit. 

While the quality of combinational synthetic circuits was reasonably good, the quality of sequential 

circuits is too different from the original circuits to be used as reasonable proxies in FPGA architecture 

development. Hutton et al. [8] suspects that the reason behind the wirelength differences is that the 

generated circuits lack a hierarchy that can be observed in typical circuits. In this paper, we directly 

address this issue. 

3. NEW CIRCUIT MODEL AND CHARACTERIZATION 

In order to introduce hierarchy into synthetic circuits we identify that hierarchy through clustering. To 

characterize the result of a clustering, we define a new model that describes clusters and various aspects 

of their connectivity.  As discussed above, this new model will be employed in the context of Hutton et al. 

[7,8] with new circuit characterizations and new generation techniques. 

3.1 New Circuit Model for Sequential Circuits 

As described in Section 2.2.3, Hutton et al.’s [8] sequential circuit model is not very natural for all 

circuits. Here we choose a simpler circuit model that makes it easier for a hierarchy to be identified. It is 

similar to Hutton et al.’s [7] combinational circuit model described in Section 2.2.1 but with three 

additions made to account for flip-flops. The first addition is that flip-flops are placed at delay level 0, the 

same as the primary inputs. The outputs of these flip-flops drive into the combinational logic just as 

primary inputs do. Second, the flip-flops themselves must be driven. To do so, some of the regular 
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combinational nodes are designated as latched nodes, meaning that the node’s output drives the data 

input of a flip-flop. Finally, this edge that joins a latched node to its flip-flop  ("a DFF edge") is defined to 

have an edge length of 0. An example of this new circuit model is depicted in Figure 5. 

DFF

LUT

PI

PO

Latched Node

DFF Edge

 

Figure 5 - New Circuit Model 

These changes to the circuit model remove the pipeline-like assumption of the previous model, but still 

permit a well-defined characterization of all sequential circuits with a single clock. The new circuit model 

is also simpler, making it easier to identify a hierarchy (described in the next section) and to perform 

iterative-based generation (described in Section 4). 

3.2 Identifying a Hierarchy 

To identify a hierarchy in a circuit (while characterizing a pre-existing circuit) we partition the circuit into 

clusters. Figure 6 shows the sample circuit of Figure 5 partitioned into three connected clusters. The 

clusters in the circuit are defined given the graph of the circuit G =  (V,E) as resulting from a partition of 

V into a series of k clusters C1, C2,…Ck where the k-clusters are disjoint vertex sets that fully cover V.  

 

Figure 6 - A Circuit in Three Clusters 
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3.3 Characterization of Clustered Circuits 

We break the description of the new characterization into four sections. First, we describe the 

characterizations that we apply unchanged from Hutton et al.’s [7,8] work. Second, we describe the 

characterization of the connections between clusters. Third, we describe the new characterizations needed 

to deal with changes made necessary by the fact that the circuits are no longer single cluster systems. 

Lastly, we describe a characterization of an approximation to wirelength that we will use to control 

wirelength in the synthetic circuits that are generated. Throughout our description of our characterization 

we will use the circuit in Figure 6 as an example. 

3.3.1 Unchanged Characterization 

We keep unmodified from Hutton et al.’s [7,8] characterizations the number of nodes, the number of 

primary inputs, the number of flip-flops, the node shape, Primary Output (PO) shape, and fanout 

distribution. These characterizations are applied to each cluster separately. These values for the circuit in 

Figure 6 are summarized in Table 1. 

Table 1 - Unchanged Characterization for Figure 6 

Characterization Cluster 1 Cluster 2 Cluster 3 

Number of Nodes 8 11 9 
Number of PI 2 1 1 
Number of Flip-Flops 0 2 1 
Node Shape ( 2 3 2 1 ) ( 3 3 3 2 ) ( 2 3 2 2 ) 
PO Shape ( 0 0 0 1 ) ( 0 0 0 2 ) ( 0 0 0 0 ) 
Fanout Distribution ( 1 3 2 1 0 1) ( 2 2 2 1 2 0 ) ( 2 2 2 1 2 0 ) 
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3.3.2 Inter-cluster Characterization 

The structure of the connections between each pair of clusters C1..Ck is captured through two matrices 

that count the number of connections to combinational nodes and flip-flops between clusters. The first 

matrix we define as Comb=[combij] where combij is the number of inter-cluster connections that drive 

combinational nodes from clusters Ci to Cj. The second matrix we define as Latched=[latchij] where 

latchij is the number of connections that drive flip-flops from Ci to Cj. Figure 7 and 8 illustrate the inter-

cluster connections that each of these matrices separately capture for the circuit in Figure 6. We have 

separated the inter-cluster connectivity into these two matrices because we found that they are weakly 

correlated [23] and because it allows the generation of the combinational and sequential structure 

separately. The values of the Comb and Latch matrices for the circuit in Figure 6 can be seen in Figure 9 

and Figure 10 respectively. 

 

Figure 7 - Inter-cluster Connections to Combinational Nodes 

 

Figure 8 - Inter-cluster Connection to Flip-flops 

 

 

         Cluster 1          Cluster 2        Cluster 3

         Cluster 1          Cluster 2        Cluster 3 
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Figure 9 – Comb for the Circuit in Figure 6 
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Figure 10 – Latch for the Circuit in Figure 6 

3.3.3 New Intra-cluster Characterization 

Inside each cluster, we add additional characterizations for the input and output shapes, the latched 

shape, and the edge length distribution. 

The first addition to the circuit characterization was to explicitly include input and output shapes– the 

number of inputs and outputs entering each combinational delay level.  Hutton et al.'s [7,8] generation 

method derived bounds for these values, but we instead include it explicitly as his process was too 

complex with the inclusion of multiple clusters. 

The second addition is the latched shape, which is defined as the number of nodes connected to flip-flops 

at each delay level. For example, for Cluster 1 of Figure 6 we can see that only one node from the 2nd 

delay level is connected to a flip-flop and so it has a latched shape of ( 0 0 1 0 ). 

Sink Cluster 

Source Cluster 

Source Cluster 

Sink Cluster 
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The last addition was to modify the edge length distribution to account for inter-cluster edges not present 

in Hutton et al.’s [7,8] work. The inter-cluster edges need to be characterized because they range from 5 

to 45% of the total number of edges in the circuit and thus have a large impact on the circuit structure. 

We characterize the edge length distribution in three parts: the intra-cluster edge length distribution, the 

inter-cluster input edge length distribution, and the inter-cluster output edge length distribution defined 

as the number of edges at each edge length internal to the cluster, that input into the cluster, and that 

output out of the cluster respectively. Figure 11 illustrates the concept of intra-cluster, inter-cluster input, 

and inter-cluster output edges. 

Inter-cluster Input EdgesIntra-cluster Edges Inter-cluster Output Edges

Length 1

Length 2

Length 1

Length 2 Length 1

Length 2

 

Figure 11- Intra- and Inter- Cluster Edges 

The input shape, output shape and edge length distributions for the circuit in Figure 6 are summarized 

below. 

Table 2 – New Characterizations  for the Circuit in Figure 6 

Characterization Cluster 1 Cluster 2 Cluster 3 

Input Shape (0 5 6 2 ) ( 0 6 7 5 ) ( 0 6 4 5 ) 
Output Shape ( 8 5 2 0 ) ( 6 4 4 0 ) ( 7 6 4 0 ) 
Latch Shape ( 0 0 1 0 ) ( 0 0 0 0 ) ( 0 0 0 2 ) 
Intra-cluster edge length dist.  ( 1 12 1 0 ) ( 2 13 1 0 ) ( 2 14 1 0 ) 
Inter-cluster input edge length dist. ( 0 0 0 0 ) ( 0 1 3 0 ) ( 0 0 0 0 ) 
Inter-cluster output edge length dist. ( 0 1 1 0 ) ( 0 0 0 0 ) ( 0 0 2 0 ) 
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3.3.4 Wirelength Characterization 

To control the post-place and route wirelength of the synthetic circuits that we produce from our 

generation process (described in Section 4) we measure an approximation to wirelength in 

characterization that we will use in generation. The approximation is a metric that Hutton defined but 

never used in generation [24]. First, we will describe the metric and its motivation. Second, we will 

describe an algorithm to measure it. 

Hutton [24] used an approximation of wirelength instead of real post-place and route wirelength because 

he wanted to quickly characterize a small amount of information about local structure and thought that a 

full placement and routing of a circuit on an FPGA or ASIC would be too computationally expensive. 

Instead, he “placed” the graph within the combinational delay graph structure by assigning each node at 

each delay level a horizontal position and ordering the horizontal position so as to minimize the number 

of edges that crossed and the horizontal distance between connected nodes. In our modification of this 

placement algorithm, we minimize only the total horizontal distance. 

With the circuit “placed”, Hutton [24] measured his approximation to wirelength that he defined as: 

( )

( ) ( _ ( ) _ ( )Approx
x V G y Inputs of X

wirelength G MIN horizontal position y horizontal position x
∈ ∈

= −∑ ∑  (1) 

With this approximation we will control the wirelength of the synthetic circuits we produce in generation. 

3.4 Software Implementation of Characterization 

We rewrote Circ the software tool that Hutton [7,8] built to characterize circuits. The new tool, called 

CCirc, takes as input a circuit in the BLIF [1] netlist format and outputs statistical information 

corresponding to all of the characterizations discussed above, into a “stats” file. 
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CCirc uses a partitioner to identify a hierarchy in a circuit. We employed the hMetis partitioning package 

[25] to divide the circuit into clusters because it is a well-regarded partitioner that is freely available. It 

also possesses an easy-to-use API that can be called from within CCirc. hMetis is a multilevel min-cut 

partitioner and can partition circuits using a recursive bi-partition or k-way method with different node 

balancing conditions. 

The source code and executables for CCirc can be found at: 

http://www.eecg.toronto.edu/~jayar/software/Cgen/Cgen.html 

 

4. GENERATION 

We now describe a method of generating synthetic circuits. Its three key features are that i) it employs the 

new sequential model described in Section 3.1, ii) it generates circuits as groups of connected clusters as 

described in Section 3.2, and iii) its overall approach is to use iteration in the generation process, as 

opposed to the constructive approach taken by Hutton et al. [7,8]. 

The input to the generation process is the characterizations we defined in the previous section which are: 

the Comb and Latched matrices, the number of clusters, and for each cluster the number of nodes, the 

number of primary inputs, the number of flip-flops, the node shape, the primary output shape, the latched 

shape, the input shape, the output shape, the fanout distribution, the intra-cluster edge length distribution, 

and the inter-cluster input and output edge length distributions. The output from the generation process is 

a circuit in BLIF [1] or structural VHDL format ready to be placed and routed. We set the function of 

each LUT to be a NAND gate to give each LUT a logic type. 

The generation algorithm proceeds in four steps. In Step 1, we create the delay structure of the circuit by 

assigning edges between the level nodes in the circuit (recall that a level node contains all of the 
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individual nodes at each delay level).  In Step 2, the fanout distribution in each cluster is partitioned 

among the level nodes. In Step 3, the level nodes are split into individual nodes and the individual nodes 

are prepared for final edge assignment. In Step 4, edges are assigned between individual nodes in the 

circuit based on the delay structure of the circuit and the fanouts assigned to the individual nodes. We 

have broken the generation process into these four steps because we felt that trying to satisfy all the 

requirements all at once would be too computationally difficult and complex. At each stage of the 

algorithm, as an example, we will follow the generation of a synthetic circuit using the characterization 

given in Section 3 of the circuit given in Figure 6  

4.1 Creation of Delay Structure  

In the first step, we create the delay structure of a circuit. Individual nodes in the delay levels of a cluster 

are aggregated into level nodes. Edges between the level nodes are aggregated into super edges where a 

super edge is an edge between two levels nodes with a weight equal to the number of individual edges 

between the two level nodes. The grouping of the nodes and edges into larger aggregates allows us to 

first concentrate on the large-scale connectivity between delay levels in the clusters of the circuit before 

trying to satisfy other requirements such as the fanout distribution or  individual edge assignment. 

The input to this step is the delay structure characterization which consists of the Comb and Latched 

matrices, dmax, and for each cluster the node shape, the input shape, the output shape, the latched shape, 

the intra-cluster edge length distribution, the inter-cluster input edge length distribution, and the inter-

cluster output edge length distribution.  

The desired output is the delay structure with the weights of the super edges assigned to ensure that each 

individual node will be able to have its delay level correctly set, the delay structure will not force node 
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violations to be made during final edge assignment, and deviations from the given characterization are 

minimized 

Figure 12 illustrates the basic input into and output from delay structure creation. Figure 12a shows the 

individual nodes aggregated into level nodes. The desired numbers of input and output edges for each 

level node have been annotated from the Input and Output Shapes. Figure 12b shows target edge length 

distributions that our algorithm will attempt to satisfy. Figure 12c shows the inter-cluster matrices Comb 

and Latch in graph form that our algorithm will attempt to satisfy. The output of the algorithm is shown 

in Figure 12d. Here, the number of edges between the various level nodes (indicated by the edge weight) 

has been determined.  
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Figure 12 – Creation of the Delay Structure 
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The algorithm for solving this problem is divided into two parts. The first part creates the combinational 

connections in the circuit while the second part creates the sequential connections in the circuit making 

connections from level nodes with latched nodes to level nodes with flip-flops. We describe each of these 

parts separately. 

4.1.1 Creating the Combinational Delay Structure 

We create the initial solution to the Combinational Delay Structure by inserting all intra- and inter- cluster 

edges into the graph. Input into the algorithm is the delay structure characterization without the latched 

shapes or Latched matrix. Output from the algorithm is the Combinational Delay Graph Structure, an 

example of which is shown in Figure 13. The figure shows the level nodes in each cluster (and the number 

of individual nodes contained in a level node), the weight assigned to the super edges. 
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Figure 13 – Combinational Delay Structure 

The edges are inserted into the graph based on trying to satisfy the edge length distributions, Comb, the 

input shape, the output shape, and on making sure that each level node has enough unit edges to define 

the delay level of its nodes. The delay level of a node is defined if it has a unit edge from the delay level 

above. More details about this and all phases of this algorithm can be found in [23]. 
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After creating the initial solution, we employ an iterative algorithm that selects certain edges as 

candidates for relocation and accepts or rejects proposed changes based on a cost function. 

In the following paragraphs, we will describe the cost function, how edges are selected and modified 

("moves"), the overall structure of the algorithm, and the performance of the algorithm. 

The cost function of the iterative algorithm is as follows: 

cost= + + +Delay structure Edge Length Level Shape Problem NodeCombcost cost cost cost  
(2) 

Here, costComb measures the difference between the current Comb and its specification by subtracting the 

two matrices and adding the absolute values of the entries of the matrix, costEdgeLength measures the 

absolute difference between the current edge length distributions and their specifications, costLevelShape 

measures the absolute difference between the current input and output shapes and their specifications 

with congestion factors multiplying this cost at each level node to penalize level nodes that have too many 

inputs or outputs. Finally, costProblem Node measures the number of node violations that would be forced to 

be made during final edge assignment because of the number of edges that input into or output out of a 

level node. 

We selects super edges to change in the graph as in Figure 14. 

Randomly select a source edge source ∈ E(G)  

Randomly select destination edge dest ∈ E(G) s.t.  

 length(source) = length(dest) && weight(dest) < max_weight(dest) 

 Figure 14 – Move Generation  

We employ an iterative improvement algorithm, in which all changes that improve the cost function are 

accepted, and bad moves are accepted with a probability of 6/cos te ∆− . The algorithm continues until the 

cost is zero or until the number of moves attempted is fifty times the number of edges in the graph. 
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We can give an idea of the success of the optimization. The cost function measures the deviance of the 

result from the specification. We normalize the cost by dividing it by the number of edges in the graph. 

The optimizer is typically able to reduce costDelay Structure to about 5% of the total number of edges. Of this 

5%, costComb usually makes up 2%, costEdgeLength usually makes up 26%, costLevel Shape usually makes up 

67%, and costProblem Node usually makes up 4%. 

At the end of iteration, it is possible that node violations (which are nodes that have one or more of the 

following properties: no outputs, no inputs, too many inputs, or nodes with two or more connections 

from the same source node) remain.  In this case we post-process the graph by removing or adding edges 

to remove the violations. 

4.1.2 Creating the Sequential Delay Structure 

With the global combinational delay structure complete, the delay structure is finished by forming the 

connections between the level nodes with latched nodes and the level nodes with flip-flops. The input into 

this phase of the algorithm is the matrix Latched and the latched shapes in each cluster. The output is the 

finished delay structure graph. A picture of the completed delay graph structure can be seen in Figure 15, 

which shows the addition of the latched node to flip-flop connections. Our algorithm to create these 

connections is given in Figure 16. 
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Figure 15 - Completed Delay Structure 

 

While there exists latched node to flip-flop connections to be made { 

  randomly select a source_cluster and sink_cluster from the Latched matrix

  randomly select a source_level_node with unused latched nodes from the 

source_cluster using the Latched Shape 

  sink_level_node = 0th delay level in the sink_cluster 

  make a connection from source_level_node to the sink_level_node 

} 

Figure 16 – Algorithm to Create the Latched Node to Flip-flop Connections 

4.2 Degree Partitioning 

After creating the delay structure, the fanout distribution of each cluster (which is a set of fanout values 

that ultimately will be assigned to each individual node) is partitioned among the level nodes in the 

cluster. The input into this degree-partitioning step is the delay structure (generated above in Step 1) and 

the fanout distribution. The output is the delay structure graph with the fanout distribution partitioned 

among the level nodes such that the sum of the fanout degrees assigned to each level node matches the 

DFFPI 
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number of edges that leave the level node. The input and output of this step of the algorithm is illustrated 

in Figure 17. 
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Figure 17 – Assigning Fanout to Cluster 3 in the Delay Structure 

The degree partitioning occurs in three steps. In the first step, an initial assignment is made. In the second 

step, the degree partition is iteratively improved. In the third step, post processing is done to enforce the 

equality described above. 

The initial fanout assignment in each cluster is made based on the cluster’s fanout distribution and its 

node shape and output shape in the delay structure. It occurs in five steps as given in Figure 18 with 

Steps 1, 4, and 5 being based on Hutton et al.’s [7] work. Step 1 is performed because nodes with 

maximum combinational delay are either latched or are primary outputs. Step 2 is performed because 

latched nodes rarely fanout to more than one node. Step 3 is performed because only latched nodes and 

primary outputs are allowed to have zero fanout. Step 4 is performed because assigning high fanouts to 

such level nodes makes it then necessary to assign very low fanouts to these level node which may or may 

not exist in the number needed.  
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1. Assign each node at delay level d
max
 a fanout of 0. 

2. Assign level nodes with latched nodes the lowest unassigned fanout 

degrees 

3. Assign any remaining zero degree fanouts remain to level nodes with 

POs. 

4. Assign any low fanout degrees to level nodes that have a small output 

degree in relation to the number of its individual nodes  

5. Assign the remainder of the fanouts beginning with the largest 

fanouts based on the fanout capacity of the level nodes.  

Figure 18 – Steps for Initial Fanout Distribution Assignment 

After the initial assignment, the degree assignment is improved by swapping fanout degrees between level 

nodes in an attempt to improve the solution quality defined as: 

cost ( ) cost ( )Degree Fanout Edge Misassignment Fanout Penalty
LN Level Nodes

cost LN LN
∈

= +∑  (3) 

Here costFanoutEdgeMissassignment measures for each level node the absolute difference between the sum of the 

fanout degrees assigned and the number of output edges that were assigned in Section 4.1 and 

costFanoutPenality is a cost that penalizes level nodes with fanouts that will force node violations in the final 

edge assignment (described below in Section 4.4). 

The degrees to be swapped are chosen by first randomly choosing a non-zero fanout degree from the 

level nodes with higher total fanout than the number of output edges assigned. Next, we randomly choose 

a non-zero lower fanout degree from the level nodes with lower total fanout than the number of output 

edges assigned. An example of a degree move is given in Figure 19. 
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Figure 19 - Example of a Degree Move 

We employ an iterative improvement algorithm, in which all changes that improve the cost function are 

accepted, and bad moves are accepted with a probability of coste−∆ . Moves are continually generated in the 

algorithm until there is no change in the lowest cost for 5000 iterations or until the total cost is zero. 

After improving the solution quality, some small discrepancies may still exist between the sum of the 

fanout degrees assigned to each level node and the number of edges that exit the level node. Furthermore, 

there may still exist level nodes that have fanouts that will force multiple connections between two nodes 

during final edge assignment. The discrepancies exist in these cases because the output shape of the delay 

graph structure often does not exactly match the specification of the output shape. These discrepancies 

are resolved by randomly selecting and decreasing fanout values biasing the degree selection towards 

larger fanouts or if that cannot be done by adding extra edges. The number of these discrepancies tends 

to be small involving less than 1% of the total edges. 

4.3 Level Node Splitting 

The next step in the generation process is to split the level nodes into individual nodes (which will 

ultimately become 4-input LUTs, primary inputs, and flip-flops in the final generated circuit). The graph 

is also prepared for final edge assignment. The input into this phase of the algorithm is the fanout-
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assigned delay graph structure (described above in Section 4.2) with the latched shape, the primary 

output shape, and the number of primary inputs and flip-flops. The output from this is a graph where the 

individual nodes have been created at each level node and assigned a logic type from one of flip-flop, 

primary input, or LUT; where each node has an assigned fanout; where each node has a horizontal 

position and where all latched nodes and nodes that are primary outputs have been designated. The input 

and output of this Step for a sample cluster is show in Figure 20. The complete structure with all clusters 

is called the pre-edge assignment structure and is shown in Figure 21. The algorithm for splitting the level 

node into individual nodes is given in Figure 22. 
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Figure 20 – Level Node Splitting in Cluster 3 
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Figure 21 - Pre-edge Assignment Structure 
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1. Assign each individual node a fanout from the fanouts assigned to 

its level node. 

2. Select nodes to designate as latched by randomly selecting nodes of 

zero fanout or, if there are more latched nodes than zero fanout 

nodes, we randomly select nodes of the lowest fanout. 

3. Assign a logic type to all nodes.  

a. Designating all nodes at delay levels greater than one as 4-

LUTs.  

b. Designate the nodes at the 0th delay level as either a primary 

input or a flip-flop. 

i. Assign all nodes at the 0th delay level with zero fanout 

that are not latched to be flip-flops because only flip-

flops with primary outputs or primary inputs that are 

latched can have zero degree fanout assignments.  

ii. Randomly designate the rest of the nodes as primary input 

or flip-flop until we designate all primary inputs and 

flip-flops. 

4. Assign primary outputs  

a. Attach primary outputs to all non-latched nodes with zero 

fanout.  

b. Randomly attach any remaining POs to non-latched non-PI nodes. 

5. Assign each node a horizontal position to give meaning to the 

wirelength approximation discussed in Section 3.3.4. Assign 

according to Hutton et al. [7], in which high fanout nodes are 

assigned positions that balance them across each level node so as to 

not skew wirelength
Approx..

 

Figure 22 – Splitting the Level Node into Individual Nodes 
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4.4 Final Edge Assignment 

The last stage in the algorithm is final edge assignment. The input into the algorithm is the pre-edge 

assignment structure described above in Section 4.3. The output from this step is the completed synthetic 

benchmark circuit. The algorithm proceeds by creating an initial solution and then iterating to improve the 

solution. 

The initial solution is created in two parts. First, we create the connections to the combinational 

(individual) nodes and secondly we create the connections between the latched nodes and flip-flops. 

We make the connections to combinational nodes in the graph by visiting each level node in turn and 

forming connections to the individual nodes it contains in four steps as given in Figure 23. Our method to 

construct the initial solution is based on and evolves from Hutton et al.’s work [7]. 
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1. Create a source and destination list 

a. Create the destination node list from the level node’s individual nodes 

b. Create the source node list by sampling individual nodes with unassigned fanout from the 

source level nodes, which are all the level nodes with a super edge that inputs into the 

level node. 

2. Ensure that each destination node has its delay level well defined by assigning an edge between it 

and a source node that is a unit edge length apart.  

a. Choose a source node by randomly sampling the source node list for nodes that are a unit 

distance apart and choosing the source node that is closest in horizontal position to the 

destination node. This process of sampling the source nodes for a node that we can make 

a connection to is called the edge connection process. 

3. Ensure that the destination nodes are not single-input buffers by assigning them a second edge 

with the edge connection process. The only restriction on this node selection process is that the 

destination node cannot make a second connection to the same source node. 

4. Form the remainder of the connections.  

a. Randomly select destination nodes and make connections using the edge connection 

process until either we can no longer make further connections without creating node 

violations or we run out of source nodes.  

b. If any source nodes remain, randomly select destination nodes and make connections in 

spite of node violations in the hope that they will be resolved later during iterative 

improvement. 

Figure 23 – Assigning the Individual Edges to Combinational Nodes 

After making the connections to the combinational nodes, a similar method is used to make the latched 

connections. For all of the level nodes at the 0th delay level with flip-flops we assign individual edges as 

given in Figure 24. 
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1. Create a source node list by sampling unconnected latched nodes from its source level nodes.  

2. For all the flip-flops in the destination level node 

a. Randomly sampling the source list a number of times and selecting the latched node that is 

closest in horizontal position to the flip-flop 

Create a connection between the latched node and the flip-flop 

Figure 24 – Assinging the Individual Edges to Flip-flops 

After creating the initial solution, we again employ an iterative algorithm that selects certain edges as 

candidates for relocation and accepts or rejects proposed changes ("moves") based on a cost function. 

During all moves the algorithm the nodes remain stationary. 

The cost function of the algorithm is as follows: 

Approx
( )

( _ ) (1 )wirelength (G) Number of Violations( )β β
∈

= − + − ∑Edge Assign

n V G

cost desired wirelength n  (4) 

Here, desired wirelength is a parameter in generation that is discussed more fully in Section 4.5, and 

Number of Violations is a function that returns the number of nodes that have no inputs, too many inputs, 

two or more connections from the same source node, or if the node is a flip-flop with a connection to 

itself. The wirelength costs are normalized to the maximum horizontal position multiplied by the number 

of edges while the Number of Violations cost is normalized to the number of edges. We use the factor β 

to balance the goal of achieving the desired wirelength against the goal of having no node violations. The 

value is set to 0.02 because the wirelength cost is often much larger than the node violation cost and 

while achieving the desired wirelength is important it is more important that we have no node violations 

because they can create sizeable difficulties for our algorithm. 

We generate moves 95% of the time purely randomly while 5% of the time we target nodes with 

violations. 
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When we generate a purely random move, we start by randomly selecting an edge in the graph. With this 

edge we attempt one of two possible move types with equal probability. Each move preserves the 

combinational delay structure and the number of edges that output from each node. 

In the first move type, defined as an edge rotation, we move the end point of the edge to a new sink 

node. The new sink node is randomly chosen from within the same level node as the old sink node. 

In the second move type, defined as a double edge swap, we select a second edge and move the end point 

of each edge to the other edge’s sink node. The second edge is randomly chosen from the edges that 

output from the same level node that the first edge outputs from.  

For the 5% of moves that explicitly attempt to eliminate node violations, we randomly select a node that 

is in violation. If the violation type is either too many inputs or two or more connections from same 

source node, we select one of the problem edges and attempt an edge rotation. If the node violation is a 

flip-flop that connects to itself we attempt a double edge swap where we choose the first edge that 

connects the flip-flop to itself and the second edge from the list of all edges in the graph that connect to 

flip-flops and whose choice will preserve the Latched specification. 

We again employ an iterative improvement algorithm, in which all valid changes that improve the cost 

function are accepted, and valid bad moves are accepted with a probability that decreases exponentially 

with the change in cost. A move is valid if it will not create any flip-flops with loops back to themselves. 

The algorithm continues until the cost is zero or until the number of moves attempted is a hundred times 

the number of edges in the graph. 

After iteratively improving the graph, if we still have node violations we post process the graph by 

removing or adding any edges to remove the violations. 
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4.5 Wirelength Control 

To control the post-place and route wirelength of the synthetic circuits that we produce from our 

generation process we set the desired wirelength parameter in the cost function given above using one of 

three methods. In the first method, desired wirelength is set to be the wirelengthApprox of the initial 

solution. In the second method we set desired wirelength to be zero to drive wirelengthApprox to a 

minimum while in the third method we set desired wirelength to be the value of wirelengthApprox measured 

in the characterization of the original circuit as described in Section 3.3.4. 

To evaluate the three different methods of setting wirelengthApprox we generated synthetic circuits as 

described below in Section 5.1, placed and routed them as described in Section 5.2, and examined the 

post-place and route wirelength. 

We found that the desired_wirelength conditions that produced the best set of clones were to accept the 

initial wirelengthApprox for combinational circuits and to minimize wirelengthApprox for sequential circuits. 

The reason behind the difference between combinational and sequential circuits can be seen in Figure 25. 

It shows a typical relationship between the real post-place and route wirelength and the final 

wirelengthApprox for a series of clones generated from two sample combinational and sequential circuits 

from the MCNC benchmark suite. On both graphs, the real wirelength of the original circuits is marked. 

We defined this point as the best desired wirelength point.  This point is on the curve for the 

combinational circuit and not on the curve for the sequential circuits. This relationship was seen in almost 

all circuits. Cloned combinational circuits typically used less wirelength than the original circuit at the 

lowest values of wirelengthApprox and more wirelength at the highest levels of wirelengthApprox. Cloned 

sequential circuits however, typically used more wirelength at all possible values of wirelengthApprox. The 

best desired wirelength point was closest to the initial wirelengthApprox for combinational circuits while for 
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sequential circuits the best wirelength point was closest to the lowest wirelengthApprox. This suggests that 

combinational and sequential circuits have very different structures with sequential circuits being more 

tightly connected. 
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Figure 25 - Wirelength vs. WirelengthApprox 

4.6 Software Implementation of Generation 

We have built an implementation of the algorithm described in this section and called it, CGen, after 

Hutton et al.’s Gen [7,8]. CGen takes as input statistics from CCirc and outputs a circuit in BLIF or 

VHDL format. The source code and executables for CGen can be found at:  

http://www.eecg.toronto.edu/~jayar/software/Cgen/Cgen.html 
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5. VALIDATION 

In this section we present measurements of the realism of the synthetically generated circuits. Recall that 

Hutton et al. [7,8] determined realism by processing the original circuits and synthetic clones of those 

circuits through the same CAD flow, and comparing measurements on post-place and route results such 

as total wirelength.  We compare on the basis of post-placement and routing wirelength, track count and 

critical path delay. Our method is a direct validation approach [20]. First, we describe the circuits that we 

cloned and the parameters that are input into generation. Second, we describe the tool used to do the 

placement and routing, and the FPGA architecture used to make the measurements. Finally, we present 

and discuss the results. 

5.1 Clone Generation 

We used 23 circuits taken from the 17 largest MCNC benchmarks [1] and 6 new circuits created at the 

University of Toronto. We characterized the circuits with CCirc and generated clones with CGen. 

During characterization, we varied the number of partitions from 1 to 16, in order to study the effect of 

this parameter. We used both recursive bi-partitioning and k-way partitioning types, and used two 

different node balancing conditions for the two partitioning types.  

In generation, for final edge assignment we set desired wirelength to the initial wirelengthApprox for 

combinational circuits and zero for sequential circuits, as described in Section 4.5. 

For a circuit of 8 clusters, the generation process took, on average, 21 minutes per circuit which is 

significantly more time than Hutton et al.’s approach [8] but is not prohibitive and could decrease 

dramatically as software improvements are made. 
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5.2 Placement and Routing 

The circuits were placed and routed with VPR [21,22]. The FPGA architecture targeted was a simple 

architecture in which logic blocks are a single 4-input LUT and a flip-flop, the wires span only one logic 

block, and all routing switches are tri-state buffers. The circuits were routed under high stress routing 

conditions that attempt to find the smallest number of tracks per channel for which the circuits would 

successfully route. 

5.3 Results 

The partitioning conditions that produced the best results as measured by placement cost were 8 clusters 

created through a k-way partitioner that allowed a 20% greater weight in the largest cluster after 

partitioning.  

Using these partitioning conditions, we then measured the average absolute differences between the clone 

and original circuit for the total-post place and route wirelength, the minimum number of tracks needed 

to route the FPGA, and the critical path delay as a function of the number of clusters used in 

characterization. The results are plotted in Figure 26. In this graph we can see that the minimum number 

of tracks measurement closely follows that of wirelength while critical path delay shows no correlation to 

the number of clusters. (We suspect that our precise control of delay shape keeps the critical path delay 

consistently good.) 
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Average Absolute Difference between Original Circuit and Clone 
for Wirelength, Min. Number of Tracks, and Critical Path Delay 

vs. Number of Clusters
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Figure 26 - Wirelength, Minimum Number of Tracks, and Critical Path Delay vs. Number of 

Clusters 

In Table 1 we give measurements of quality for each circuit for 8 clusters. In the table, Orig. denotes the 

results for the original circuits, MH denotes the results using Hutton et al.’s method [8] to generate 

clones, and New stands for our new method of generating clones. 

As can be seen from Table 1, the mean of the average absolute difference in total detailed wirelength 

between the clone and original circuit is 14%, which is a significant improvement over Hutton et al.’s 

method [8] which obtained a difference of 48%. The standard deviation of this mean also has a significant 

improvement. The absolute difference in the number of routing tracks is 14%, which is also a significant 

improvement compared to Hutton et al.’s results of 46%. The critical path delay, achieves roughly the 
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same result as Hutton et al.’s work - within about 10% of the original circuit on average. In our 

judgment, over all three of these measurements, the new synthetic circuits are realistic proxies for the real 

circuits. 

Table 3 - Routability and Critical Path Delay Comparisons between Real and Clone Circuits 

Total Wirelength Minimum Number Critical Path Delay
of Tracks

Circuit Size Orig MH New Orig MH New Orig MH New
% diff % diff % diff % diff % diff % diff

alu4 1536 23852 -20% -8% 14 -21% -14% 8.4E-08 -18% 8%
apex2 1916 33868 -7% 4% 16 -6% 0% 8.7E-08 -1% 16%
apex4 1270 23059 -16% -8% 17 -24% -12% 7.9E-08 -8% 8%
des 1847 31344 49% 22% 10 70% 40% 1.0E-07 -4% -10%
ex5p 1072 20777 -12% -14% 17 -12% -12% 7.1E-08 -3% 1%
ex1010 4608 76083 20% 17% 15 20% 20% 1.6E-07 -16% -10%
misex3 1411 24100 -13% -4% 15 -13% 0% 8.6E-08 -19% -2%
pdc 4591 110830 -13% 12% 23 -22% 13% 2.2E-07 -43% -39%
seq 1791 33246 -18% 1% 17 -18% -6% 9.2E-08 -16% -10%
spla 3706 77666 -1% 18% 22 -14% 0% 1.3E-07 -13% 7%
bigkey 2159 26476 17% 14% 9 78% 22% 5.7E-08 -6% 3%
diffeq 1934 18913 59% 15% 12 42% 0% 7.9E-08 -5% 0%
dsip 1822 23317 -19% 14% 9 22% 11% 7.9E-08 -35% -11%
elliptic 4854 58017 66% 31% 16 44% 31% 1.1E-07 -13% -12%
frisc 4444 69611 62% 17% 20 55% 5% 1.4E-07 13% -5%
s298 1941 25423 8% 0% 11 36% 9% 1.4E-07 -11% 14%
tseng 1482 11520 104% 23% 11 64% 9% 5.5E-08 36% 19%
display_chip 2417 19158 116% 2% 10 90% 0% 7.6E-08 13% -3%
img_interp 3424 32545 76% 25% 12 58% 17% 9.3E-08 30% 11%
input_chip 1106 7526 83% 11% 8 88% 25% 5.6E-08 16% 8%
peak_chip 1146 6759 60% 4% 9 22% -11% 8.0E-08 2% 5%
scale125_chip 3856 26834 165% 29% 10 150% 40% 8.8E-08 25% 28%
scale2_chip 1524 11125 99% 19% 9 89% 22% 6.8E-08 15% 5%
abs mean 48% 14% 46% 14% 16% 10%
abs stddev 43% 9% 36% 12% 11% 9%  

To ensure that we have not over-tuned our algorithms to the circuits in our test set, we verified our 

results with a second set of circuits. The second set of circuits consists of fifteen circuits from Sun’s Pico 

Java Processor [26] and two MCNC circuits (s38417 and s38584.1) that were not used in the original 

test set. We characterized and generated clones of the circuits as in Section 5.1 and place and routed the 

circuits as in Section 5.2. We then measured the average absolute differences between clone and original 

circuit for the total-post place and route wirelength, the minimum number of routing tracks needed to 

route the FPGA, and the critical path delay as a function of the number of clusters used in 
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characterization. The results are plotted in Figure 27. The wirelength and minimum number of routing 

track results decrease rapidly with the number of clusters until they start to plateau at around 8 clusters, 

just as with the original test set. The absolute percent difference for these results at 8 clusters is 20% and 

21% respectively, which is slightly higher than with our original test set. The critical path delay results are 

on par with the previous test. 

In Table 4 we give measurements of quality for each circuit in the second test set for 8 clusters. In the 

table, the blanks in the MH columns indicate circuits that caused Hutton et al.’s [8] method to crash. We 

can see that with our new method the mean and standard deviation of the average absolute difference in 

total detailed wirelength between the clone and original circuit still shows a significant improvement over 

Hutton et al.’s method. If we look at the wirelength result for the two MCNC circuits, s38417 and 

s38584.1, we can see why the average wirelength result for the second test set is slightly higher than for 

the first. The wirelength result for these two circuits is drastically higher than the result for their original 

circuits; however, the result is still significantly better than that obtained using Hutton et al.’s method. We 

do not know why these two circuits use excessive wirelength, however with increasing number of clusters 

the wirelength difference decreases reaching 71% and 49% respectively with 24 clusters. One possible 

reason behind the excessive wirelength for these two circuits might be that our method of controlling 

wirelength is not perfect for all circuits. For almost all other circuits in the second test set, however, the 

wirelength difference between the clone and original circuit is less than 14%. The average wirelength for 

these circuits is 11%, which is less than the average found for the first set of test circuits. 
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Average Absolute Difference between Original Circuit and Clone 
for Wirelength, Min. Number of Tracks, and Critical Path Delay 

vs. Number of Clusters for Non-Tuned Circuits
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Figure 27 - Wirelength, Min. Number of Tracks, and Critical Path Delay vs. Number of Clusters 

for Non–Tuned Circuits 
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Table 4- Comparison between Real and Clone Circuits for Second Test Set 

Total Wirelength Minimum Number Critical Path Delay
of Tracks

Circuit Size Orig MH New Orig MH New Orig MH New
% diff % diff % diff % diff % diff % diff

prils_dp 501 4874 12% 8% 11 0% 0% 8.5E-08 28% 24%
rsadd_dp 521 4546 26% 18% 9 0% 47% 1.4E-07 16% 2%
code_seq_dp 588 5110 -29% 19% 8 13% 6% 7.8E-08 -7% 19%
dcu_dpath 1590 23193 62% 6% 19 26% 8% 6.4E-08 22% 4%
ex_dpath 3925 133554 39% 7% 17 59% 0% 2.6E-07 23% 11%
exponent_dp 644 7543 16% 7% 12 25% 8% 8.3E-08 17% 38%
icu_dpath 3813 69064 65% 9% 19 68% 7% 1.3E-07 36% 10%
incmod 1007 11319 1% 12 7% 1.8E-07 3%
imdr_dpath 1410 22384 3% 15 8% 1.8E-07 6%
mantissa_dp 1284 32050 10% 15 13% 6.3E-08 3%
multmod_dp 1893 22532 78% 4% 13 77% 0% 1.3E-07 10% 47%
pipe_dpath 798 7351 4% 0% 8 63% 19% 5.2E-08 8% 0%
smu_dpath 866 10023 10% 9 33% 1.5E-07 14%
ucode_dat 1806 43554 9% 16 82% 8.8E-08 13%
ucode_reg 230 799 86% 48% 3 133% 0% 2.5E-08 -36% 0%
s38417 7465 71038 201% 100% 11 200% 33% 8.6E-08 23% 3%
s38584.1 7489 69751 90% 11 82% 8.8E-08 47%
abs mean 56% 20% 60% 21% 20% 14%
abs stddev 55% 30% 61% 27% 11% 16%  

We conclude from the second test set results that the basic generation parameters are not over-tuned. 

In the results presented so far, we have grouped the clones by the number of clusters used in their 

partitioning. However, the best number of clusters to partition a circuit into, as defined by wirelength, is 

not constant across all circuits. For each circuit there exists a best and most natural number of clusters to 

partition a circuit into. In Table 5, we give measurements of quality for each circuit in both the first and 

second test set for the number of clusters that produces the best wirelength results. As can be seen from 

this table, the mean of the average absolute difference in total detailed wirelength between the clone and 

original circuit is 9%, The absolute difference in the number of routing tracks is 12%. The critical path 

delay, achieves roughly the same result as Hutton et al.’s work [8] - within about 12% of the original 

circuit on average. If we remove circuits s38417 and s38584.1 from consideration, those numbers drop to 

6% for wirelength, 10% for minimum number of routing tracks, and 10% for critical path delay 

respectively.  
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We include this comparison because selecting the most appropriate number of clusters on a per circuit 

basis could be considered a valid part of the characterization process, albeit one that is more labour 

intensive. 

Table 5 - Comparison between Real and Clone Circuits for Best Number of Clusters 

Total Wirelength Tracks Critical Path Delay
Circuit Size Clusters Orig MH New Orig MH New Orig MH New

% diff % diff % diff % diff % diff % diff
alu4 1536 13 23852 -20% -1% 14 -21% -7% 8E-08 -1% 11%
apex2 1916 3 33868 -7% 1% 16 -6% -6% 9E-08 -1% 17%
apex4 1270 13 23059 -16% 0% 17 -24% 0% 8E-08 -8% 0%
des 1847 16 31344 49% 16% 10 70% 10% 1E-07 -4% -11%
ex5p 1072 12 20777 -12% -3% 17 -12% -6% 7E-08 -3% 3%
ex1010 4608 8 76083 20% 17% 15 20% 20% 2E-07 -16% -10%
misex3 1411 9 24100 -13% -1% 15 -13% 0% 9E-08 -19% -6%
pdc 4591 3 110830 -13% 9% 23 -22% 4% 2E-07 -43% -36%
seq 1791 11 33246 -18% 0% 17 -18% 0% 9E-08 -16% -6%
spla 3706 5 77666 -1% 11% 22 -14% 0% 1E-07 -13% -1%
bigkey 2159 13 26476 17% 5% 9 78% 11% 6E-08 -6% 5%
diffeq 1934 16 18913 59% 7% 12 42% 8% 8E-08 -5% -4%
dsip 1822 13 23317 -19% 9% 9 22% 11% 8E-08 -35% -32%
elliptic 4854 9 58017 66% 20% 16 44% 19% 1E-07 -13% -7%

frisc 4444 8 69611 62% 17% 20 55% 5% 1E-07 13% -5%
s298 1941 8 25423 8% 0% 11 36% 9% 1E-07 -11% 14%

tseng 1482 9 11520 104% 20% 11 64% 27% 6E-08 36% 16%
display_chip 2417 8 19158 116% 2% 10 90% 0% 8E-08 13% -3%
img_interp 3424 15 32545 76% 10% 12 58% 0% 9E-08 30% 2%
input_chip 1106 9 7526 83% 5% 8 88% 13% 6E-08 16% -1%

peak_chip 1146 11 6759 60% 0% 9 22% 0% 8E-08 2% -6%
scale125_chip 3856 13 26834 165% 25% 10 150% 50% 9E-08 25% 16%
scale2_chip 1524 5 11125 99% 13% 9 89% 11% 7E-08 15% 12%
prils_dp 501 3 4874 12% 0% 11 0% -18% 8.5E-08 28% 3%
rsadd_dp 521 11 4546 26% 6% 9 0% 0% 1.4E-07 16% 0%
code_seq_dp 588 16 5110 -29% -1% 8 13% 50% 7.8E-08 -7% -14%
dcu_dpath 1590 14 23193 62% 1% 19 26% 0% 6.4E-08 22% 20%
ex_dpath 3925 13 133554 39% 2% 17 59% -6% 2.6E-07 23% 24%
exponent_dp 644 6 7543 16% -1% 12 25% 0% 8.3E-08 17% 24%
icu_dpath 3813 12 69064 65% -2% 19 68% -5% 1.3E-07 36% 6%
incmod 1007 8 11319 1% 12 8% 1.8E-07 19%
imdr_dpath 1410 8 22384 3% 15 7% 1.8E-07 -4%
mantissa_dp 1284 16 32050 -4% 15 0% 6.3E-08 2%
multmod_dp 1893 2 22532 78% 3% 13 77% -8% 1.3E-07 10% 35%
pipe_dpath 798 8 7351 4% 0% 8 63% 13% 5.2E-08 8% 10%
smu_dpath 866 11 10023 9% 9 11% 1.5E-07 -23%
ucode_dat 1806 11 43554 -2% 16 -13% 8.8E-08 4%
ucode_reg 230 14 799 86% 7% 3 133% 33% 2.5E-08 -36% -2%
s38417 7465 18 71038 201% 71% 11 200% 73% 8.6E-08 23% 40%
s38584.1 7489 18 69751 49% 11 36% 8.8E-08 14%
abs mean 51% 9% 51% 12% 17% 12%
abs stddev 47% 14% 45% 16% 11% 11%  

6. CONCLUSIONS 

We have introduced a new circuit characterization and new synthetic generation techniques that 

significantly improve the quality of synthetic circuits over previous methods. 
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The new characterization captures a hierarchy of a circuit by partitioning the circuit into clusters and 

characterizing each cluster and the connections between the clusters. 

Our new generation techniques impose this hierarchy on the synthetic circuits. The generation techniques 

use iteration to tightly control the generation process in contrast to all known synthetic circuit generators 

that use constructive approaches. 

The new synthetic generation techniques were judged realistic by cloning real circuits and comparing 

clones on the basis of post place and route statistics. For 8 clusters, the real and clone circuits differed by 

14% for total detailed wirelength, 14% for minimum number of tracks needed to route each circuit, and 

10% for critical path delay. If we further choose the best number of clusters for each circuit (as defined 

by wirelength) we found that the real and clone circuits differed by 9% for total detailed wirelength, 10% 

for minimum number of tracks needed to route each circuit, and 10% for critical path delay. 

This is a key (but not final) step towards the goal of having the ability to create larger circuits than 

already exist. 

Several areas are open to future research. The key next step is to see how circuit structures combine and 

scale with size so that we can generate larger circuits. A second area is to explore alternatives to using 

wirelengthApprox to control wirelength during synthetic circuit generation. One such alternative would be 

to place the circuit during final edge assignment on an FPGA to obtain positions for the individual nodes 

in the graph and then use this information to obtain the precise wirelength information for edges. A third 

area is to examine the use of different partitioners in characterization to see what effect they have on 

synthetic circuit quality. A fourth area of research is to prove the realism of synthetic circuits by showing 

that their substitution for real circuits does affect the conclusion of any FPGA architecture or CAD tool 

algorithm experiment. 
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Dear Dr. Mayaram, 
 
Thank you for arranging the review of our paper, “Synthetic Circuit Generation Using Clustering 
and Iteration”.  We have now revised the paper extensively as per the comments from the 
reviewers, and below we respond to all of the comments from the reviewers.  The original 
comments are preceded by the bar (“|”) character, followed by our response. 
 
Paul Kundarewich and Jonathan Rose 
  
 
Review Number 1. 
 
 
| Although the general motivation and the basic ideas of the current methodology 
| are well-presented, a major concern is the readability of the (lower-level) 
| technical content (Sections 3 and 4). In my opinion, the style of presentation 
| makes the paper accessible to a very narrow audience -- only those researchers 
| very familiar with Hutton's work and other works in the field. 
| It is true that the authors give an overview of Hutton's work (Section 2.1) 
| and the other relevant contributions in the field (Section 2.2). However, 
| the technical aspects in Sections 3 and 4 are quite difficult to follow 
| in the absence of, e.g., an illustrative example (which is badly needed, 
| in my opinion). The authors try to exemplify from time to time: 
| e.g., the creation of the combinational (Fig. 9) and sequential (Fig. 10) 
| delay structures, but the related comments are quite insufficient. 
| I think an illustrative example accompanying the presentation would 
| significantly improve the readability. 
 
We have made a number of changes in order to address the readability of Sections 3 and 4. 
 
In Section 3, we have added more concrete examples to provided a better description of the new 
characterizations introduced in that section.  These can be found in Tables 1 and 2, and Figures 9 
and  10.   
 
In Section 4, we have added an illustration of the generation process with an example. The 
example is generated from the characterizations of Figure 6 in Section 3. This example appears in 
Figures 12, 17, and 20. They show in graphical form the basic input and output of the various 
steps in the algorithm. This will help provide the reader with a more global view of what is going 
on in each step. 
To reduce the amount of text that the reader is presented with we have moved the descriptions of 
the algorithms into Figures 14, 16,18, and 22-24.  To simplify the descriptions they have been put 
into pseudo-code format. 
 
With the increased number of figures and the reduced amount of main text we hope that these 
sections have become more readable. 
 
| Section 5 presents many experiments which show clear improvements over 
| Hutton's work. However, this is the only work the current results are compared 
| with. Would it be possible to present some comparisons with other existent 
| works presented in Section 2.2 ? Or at least explain why other comparisons 



| are not possible. 
 
This is a very good point.  It would be very beneficial if it was possible to make these kinds of 
comparisons.  The field isn’t as mature as, say the partitioning, placement and routing fields, 
where this kind of direct comparison has been made possible through extensive standardization of 
benchmarks.  In synthetic circuit generation, the basic goal is to achieve “realistic” circuits, but 
there is not agreed-upon quantitative metric of what realistic means.  Indeed, Hutton first 
proposed that realism meant being able to synthesize a clone with similar wirelength to the 
original.  Ghosh and Brglez assume that they have something realistic by mutating an existing 
design.  There are no standard input and output formats of these generators which would permit a 
direct comparison. We do note in  Section 2.2 qualitative rather than quantitative differences 
between our approach and others: 

 
a) Clearly would not realistic (Darnauer and Dai, Iwama) 

 
b) Have different goals (Ghosh/Brglez, Wilton, Pistorius) 
 
We outline these reasons in Section 2.2 where I make the comments: 
 
Darnauer and Dai 
"However, the approach lacks control over the fanout and unit delay 
profile of gates in the circuit." 
 
Ghosh/Brglez: 
"However, the approach does not lend itself to the possibility of scaling 
the mutants to larger circuit sizes, which is a key motivation behind 
synthetic circuit generation." 
 
Iwama: 
"While the resulting circuit is realistic from a logical standpoint, the 
method suffers from a lack of control over the physical properties of the 
netlist...No validation was done on any of the synthetic circuits as the 
application of their work was towards evaluating the ability of synthesis 
tools to reoptimize circuits they transform." 
 
Pistorius: 
"Success is not judged on the basis of the wirelength or delay properties 
and it is unclear as to whether under these latter criteria the circuits 
would prove realistic. No characterization or method to judge success is 
given at the second level of hierarchy." 
 
Wilton 
"The weakness of the method is its use of only combinational MCNC 
benchmarks in logic portions of the generated circuits." 
 
Stroobandt/Verplaetse 
"This method produces circuits that are too regular and that have 
unrealistic delay profiles [19]. Verplaetse et al. [19] attempt to fix these 
problems and achieves good wirelength results with the real circuit and 
clones differing by 7% on average. It is unclear whether or not the delay 
profile problem has been sufficiently fixed since no direct comparison is made 
between the synthetic circuit delay profile and that of a real circuit." 

 
Specifically for  Stroobandt/Verplaetse's work we do not make comparisons because: 
 



1. Their software does not output circuits in a format that the t-vpack/VPR flow 
can currently handle.  

2. While their synthetic circuit generation software is on the web we have not 
found software that generates their input files. Therefore, we would need to 
hand generate these files. These files require that the Rent’s Rule exponent 
be known at different circuit sizes. We are not aware of any existing tool to 
do this. The time to calculate these parameters for each MCNC circuit we felt 
was prohibitive. Furthermore, although they do provide a few sample input 
files, these samples are very small and possibly do not represent the 
complexity of their generation efforts. Thus, we are not sure if such a 
comparison would be fair if one were indeed to be made. 

 
 
| The authors offer links to the source code and executables 
| (Sections 3.4 and 4.6), which is very good. 
 

Thank you! 
 
 
| Minor remarks 
 
| 1. Please check ref.[18] in your Reference list: I think there is an error at the title. 
 
 This has been corrected. 
 
| 2. You are often writing a comma between subject and predicate (which is 
| not grammatically correct). E.g., ``Darnauer and Dai [..], generate ...'' 
| You are doing this mistake several times in Section 2.2 . 
 

This has been corrected. 
 
 
 
Review Number 2. 
 
Comments to the Author 
---------------------- 
 
|Your model that incorporates clustering as well as the idea of equating flip flops to primary inputs 
|as being the top most level is quite clever. Your iterative algorithm also allows for expandability in 
|modelling new and different parameters which is quite good. Some specific comments are made 
|below. 
 
| Sec 2.1.2 - You mention "several other parameters are omitted here for simplicity". You need to  
| at least list them here. Otherwise, the reader is left wondering about the validity of your                
| omission. 
 

These parameters have now been listed. 
 
| Section 3.3.2 - You mention that the matrices are weakly correlated but there is no proof for that. 
 

 
We have added a reference to Paul Kundarewich’s thesis, which is available online, 
which gives the proof for this.  There is too much data to include in the paper. 
 

 



| Section 4 - General comment: There is too much prose in the document when a straightforward  
| pseudo code would significantly enhance the comprehension of the ideas in this paper.  
 
 Agreed. As mentioned in the comments to reviewer #1 the amount of prose has been 
reduced by changing the description of the code to pseudo-code and moving it into figures. 
 
| You really mean structural VHDL right? You should be specific. 
 

This has been corrected. 
 
| Section 4.1 - This is dire need of a simple figure otherwise one has to plod through the prose  
| laboriously to understand what is going on here. 
 

As mentioned above to reviewer #1 we have added a figure that shows the input and 
output of this step of the algorithm. 

 
| Figure 9 is extremely confusing - you need to mark the nodes differently (cannot figure out which  
| is the weight, which is the #inputs, #outputs etc.) 
 

We have simplified the figure and added comments to explain the characteristics. 
 
| Section 4.1.1 - In the cost equation, how do you convert the matrix into a scalar (Cost comb)?  
| There are multiple ways of doing this - you should be precise in mentioning here. 
 

We have added more detail to describe the calculation. 
 
| General comment: in several places you mention "hill climbing iterator ...". This is not only  
| repetitious but confusing since it makes the reader wonder if these simulated annealing  
| problems are fundamentally different or are just the cost functions different. 
 

We have replaced this term with “iterative improvement algorithm.”  The algorithm is a 
modified form of an annealer. 

 
| General comment: Your equations need to numbered. 
 

This has been corrected. 
 
| Section 5 - The second sentence: what does "comparing measurements on the results" mean?  
| Isn't that exactly what you are doing too? 
 

This has been corrected to “comparing measurements on post-place and route results  
such as total wirelength” 
 

| In the results, you don't talk about the "scalability" of this approach since generation of bigger  
| circuits than current circuits is the goal of this work as explicitly stated in the introduction. 
 

The reviewer is correct in that this is our goal. But before we achieve our goal of scaling 
circuits to larger sizes we need to first get circuits of the same size correct. We mention this 
in the introduction. To further reinforce this we have added a statement to the conclusion. 

 
| Also, on page 36, you mention "We do not know why" the two circuits have excessive  
| wirelength. Even a possible conjecture is better than leaving the issue completely unresolved. 
 

We have added the conjecture “One possible reason behind the excessive wirelength for 
these two circuits might be that our method of controlling wirelength is not perfect for all circuits.” 



 
| In general, I like the ideas in the paper. However, the writing needs to be polished up. The  
| authors need to describe more of the rationale for why they ended up making the decisions that 
| they did. There also needs to be a big picture description of the algorithm. The algorithm  
| descriptions feel like they are prose descriptions of the program and it is difficult as a reader to  
| keep all the issues in mind when reading. 
 

This has been done. As stated above a lot of the prose has been taken out and put into 
pseudo-code sections. A rational for breaking things up has been provided – essentially 
that the whole optimization problem is too computationally difficult and complex. 
 
 
 

 
Review Number 3. 
 
 
| You have significantly improved the work by Mike Hutton and the 
| results section is devoted to saying how much better your method is 
| than Hutton's work. It is a pity though that you did not compare 
| your results to the last available methods from other 
| groups. Especially the work by Verplaetse (for which you say you do 
| not know if the delay profile problem is solved) seems to be worth 
| comparing with (he has a web site with the code available on it). 
 
 See the comments above to Reviewer #2 on this issue. 
 
| in your assessment of the quality of benchmarks (sections 1, 2.1.4, 
| and 5.3), you could use the terminology introduced by Verplaetse et 
| al. in [Proceedings of the International Conference on VLSI, 
| 2002. pp. 31-37] about direct and indirect validation. 

 
We have added a section in the background and later stating that our approach is a “direct” 
one according to their terminology, vs. indirect. 
 
 

| The background and previous work section is elaborate and contains 
| all other related works that I know of with a relevant description 
| of their merits and drawbacks. I appreciate this in your paper. Just 
| a thought: would it not be more logical to start with section 2.2 
| and then, based on the reasoning that Hutton's approach is better 
| suited to your needs, continue with section 2.1? 
 

This is a good suggestion, thank you.  We have changed it to be this way. 
 

| I have problems understanding the meaning of the first sentence of 
| section 3. Any clustering method induces some form of hierarchy (by 
| the way in which the clusters are chosen). Introducing hierarchy 
| simply by using clustering is straightforward (nothing new). It is 
| the way in which you choose the clusters (and hence defines the 
| hierarchy) that brings something new. 
 

The reviewer makes a good comment.  We are not trying to say that we’ve invented 
hierarchy, simply adding it to the large suite of characterizations that Hutton et al started created.  
 



 
| The "new" model in section 3.1 may be new to Hutton's model, but is 
| the most natural way to describe sequential circuits. We have been 
|  working with this model (implicitly) for a long time now. So I would 
|  not stress the novelty of this too much.  

 
 

We agree, but would argue there is novelty in the addition of hierarchy to all of the other  
characterizations. 
 

| Also, in section 3.2, I 
| fail to see why the hierarchy in figure 6 would resemble the 
| "natural" hierarchy. What makes you state this? I would argue that a 
| random clustering approach will NOT find the natural hierarchy in a 
| circuit at all! 
 

 
This is a good observation – we cannot claim to be finding the natural hierarchy, which we 
agree is a difficult problem.  We will change this to say find simply “a hierarchy.” 

 
| Section 4: I would still call your method constructive, even with 
| the iteration. The iteration just ensures that the constructive 
| approach can be adjusted subsequently to improve upon the 
| results. So the first step is still constructive, the subsequent 
| steps might be called mutations. In my view, your approach combines 
| "cloning" and "mutations". 
 

The reviewer is correct that the must be a constructive initial phase.  This is true for all 
iterative solutions. 
 

| It is generally bad practice to have long subscripts (as in the 
| equations on pages 21, 25 and 29). Subscripts should be at most 3 
| characters and explained in the corresponding text. 
 

We agree that this deviates from convention, but would prefer to retain the long  
subscripts so that we don’t have to add more words to the paper. 

 
| wonder if it is not possible to prevent violations from the 
| beginning instead of having to remove them afterwards (end of 
| section 4.1.1). Have you looked at this? 
 
 

Yes, in fact that is what is attempted when the initial solution is created. 
In almost all cases it is not possible to prevent node violations and that is why we need 
to iterate. 

 
| I did not understand the reasons behind the "desired_wirelength" 
| conditions as explained on page 31 and in figure 13. Figure 13 is 
| supposed to explain the reasons but (1) it shows a typical example 
|  (this gives no reason, it just shows it might be a good approach) 
 

The purpose of the “desired_wirelength” parameter is to control the wirelength in the final 
placed and routed circuit. We have changed the first sentence to emphasize this fact.  

 
What was previously: “We have three methods of setting the desired wirelength 
parameter in the cost function given above.” 



 
Is now changed to: “To control the post-place and route wirelength of the synthetic 
circuits that we produce from our generation process we set the desired wirelength 
parameter in the cost function given above using one of three methods. 

 
We took an experimental approach to evaluating the effectiveness of the 3 approaches to 
setting desired_wirelength. Figure 13 is trying to explain why the 1st approach (desired 
wirelength is set to be the wirelengthApprox of the initial solution) works well for 
combinational circuits while the 2nd   approach (set desired wirelength to be zero to drive 
wirelengthApprox to a minimum) works well for sequential circuits. We state this when we 
write: 

 
“To evaluate the three different methods of setting wirelengthApprox we generated synthetic 
circuits as described below in Section 5.1, placed and routed them as described in 
Section 5.2, and examined the post-place and route wirelength. 
We found that the desired_wirelength conditions that produced the best set of clones 
were to accept the initial wirelengthApprox for combinational circuits and to minimize 
wirelengthApprox for sequential circuits.” 

 
After explaining the figure (which we rewrite below to improve the clarity) we suggest a 
reason why this is so when we state that “This suggests that combinational and 
sequential circuits have very different structures with sequential circuits being more tightly 
connected.” 

 
|  and (2) it is not clear from the paper what is shown in the 
| figure. I would have expected measured wire lengths in function of 
| time (or number of iterations) for several values of 
| desired_wire length. Please explain this figure (and the section) 
| much more clearly.  

 
 
What was previously: “It shows a typical relationship between real wirelength and 
wirelengthApprox for two example combinational and sequential circuits from the MCNC 
benchmark suite. On both graphs, the point at which the real wirelength of the clone 
matches or would have matched the real wirelength of the original circuit is marked. We 
defined this point as the best desired wirelength point.” 

 
Is now: “It shows a typical relationship between the real post-place and route wirelength 
and the final wirelengthApprox for a series of clones generated from two sample 
combinational and sequential circuits from the MCNC benchmark suite. On both graphs, 
the real wirelength of the original circuits is marked. We defined this point on the graph as 
the best desired wirelength point.” 

 
 
| Also, the words "within the graph" and "not 
| within the graph" on page 31, line -8, should probably be "on the 
| curve" and "not on the curve" since all points are definitely within 
| the graph (entire figure). 
 

This has been corrected.  
 
|Your results section should also contain figures of the time needed 
| to obtain the results. I can imagine that the iterative techniques 
| (hill climbing approach) take a lot more time than Hutton's original 
| approach (especially important since you are aiming at large 



| circuits). But how much is the difference? Is the time increase 
| prohibitively expensive? 
 
 This is a good point, we have added the following paragraph: 
 

“For a circuit of 8 clusters, the generation process took, on average, 21 minutes  
per circuit which is significantly more time than Hutton et al.’s approach [8] but is  
not prohibitive and could decrease dramatically as software improvements are  
made.” 

 
| At the end of page 40, you present a fourth area of future research 
| and should be the first on your list of things to do. It would even 
| be better if you could include such results in this paper. 
 

We agree that this is an important area for future work. 
 
 
| Language issues: 
 
| abstract, last two sentences: write this in present instead of past 
| tense 
 

This has been corrected. 
 
| page 4, line -2: "its delay" -> "their delay" 

 
This has been corrected. 

 
| page 6, line 1: "For a circuit, Hutton" (insert ",") 

 
This has been corrected. 
 

| when referring to paper [7], you always refer to "Hutton" alone 
| although there are multiple authors. Therefore it would be better to 
| refer to "Hutton et al.". Then, you can also use "they" instead of 
| "he" as you already do on the first line of page 8. 

 
This has been corrected.  
All Hutton have been changed to Hutton et al. 
All Hutton’s have been changed to Hutton et al.’s 
 

| page 8, line -6: "are partitioned" instead of "are partitioning" 
 
This has been corrected. 

 
| in section 2.2, remove the comma's each time after "<names> 
| [<ref>]," in the beginning of a sentence. 

 
This has been corrected. 
 

| paragraph 3.3.4, line 2: "in characterization that we will use" What 
| do you mean? 



 
| page 25, line 5: remove comma in "by first, randomly choosing" 

 
This has been corrected. 
 

| page 28, line 5: "numbers of connections": remove first "s" 
 
This has been corrected. 
 

| page 28, line 8: "a unit distance" instead of "a unit distant" 
 
This has been corrected. 
 

| page 36, line 12: "." at end of sentence 
 
This has been corrected. 
 

| page 36, line -5: "results ... is" -> "result ... is" 
 
This has been corrected.  
 

| page 36, line -5: "than (for) the first." 
 
This has been corrected. 

 
| page 36, line -4: "than (the results for) their original circuits;" 

 
This has been corrected. 

 
| page 38, line 1: "We conclude that from...": remove "that" 

 
This has been corrected. 
 

| section 6, line 1: "techniques": remove "s" 
 
We think the plural is more appropriate. 
 

| section 6, line 2: "improve(s)" 
 
Same as above. 
 

| page 40, line 9: "If we further, choose": remove "," 
 

This has been corrected. 
 


