
Area and Delay Trade-offs in the Circuit and Architecture
Design of FPGAs

Ian Kuon and Jonathan Rose
The Edward S. Rogers Sr. Department of Electrical and Computer Engineering

University of Toronto, Toronto, ON
{ikuon,jayar}@eecg.utoronto.ca

ABSTRACT

Field-programmable gate arrays (FPGAs) are used in a wide
range of markets that have differing cost, performance and
power consumption requirements. It would be advantageous
if a single device family could serve these varied needs but
the economics of catering to this wide distribution of mar-
ket demands suggest more than one family is appropriate.
Consequently, FPGA vendors have moved to provide a more
diverse set of families that sit at different points in the area-
speed-power design space.

In this work, our goal is to understand the circuit and ar-
chitectural design attributes of an FPGA that enable trade-
offs between area and speed, and to determine the magni-
tude of the possible trade-offs. This will be useful for archi-
tects seeking to determine the number of device families in
a suite of offerings, as well as the changes to make between
families.

We have found that varying both architecture and tran-
sistor sizing of an FPGA allows the effective area to change
by a factor of 3.6 from largest to smallest and the speed to
change by a factor of 2.6 from fastest to slowest. It is in-
teresting to observe that the range of area and delay trade-
offs possible by varying only the transistor sizing of a single
architecture is larger than the ranges observed in past ar-
chitectural experiments. In addition to transistor size, we
note that LUT size is one of the most useful parameters for
trading off area and delay.

Categories and Subject Descriptors
B.7.1 [Integrated Circuits]: Types and Design Styles

General Terms
Design, Measurement, Performance

Keywords
FPGA, Architecture, Optimization

1. INTRODUCTION
Field-programmable gate arrays (FPGAs) have evolved to

the point that they are now used in a wide range of mar-
kets including consumer electronics, automotive, industrial

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FPGA’08, February 24–26, 2008, Monterey, California, USA.
Copyright 2008 ACM 978-1-59593-934-0/08/02 ...$5.00.

and high-performance computing in addition to their origi-
nal primary market of communications. These markets of-
ten have very different needs with some requiring the best
performance while others are more focused on minimizing
cost. These differing requirements make it difficult for a sin-
gle FPGA family to serve these different market needs. As
a result, industry practice has moved to provide different
FPGA families to cater to these different market needs. It
is now common for FPGA manufacturers to offer a high end,
high performance family [2, 15, 32] and a lower cost, lower
performance family [3, 16, 31].

This trend is almost certain to continue as new processes
require FPGA architects to make increasingly difficult de-
sign choices between between cost, performance and power
consumption. These choices can dramatically affect the gap
between FPGAs and both the full or partially-fabricated
application-specific integrated circuits (ASICs) with which
they compete. For example, we reported that a pure soft
logic FPGA (with no hard memory or other blocks) is 35
times larger, 3 to 4 times slower and consumes 14 times
more dynamic power than the equivalent standard-cell ASIC
implementation [14]. Given this large gap, the ability to
trade-off one attribute for another is particularly important
and it would be useful to understand the extent to which
any one of the area, performance or power gaps can be nar-
rowed. For different markets, area, performance and power
are of different importance and closing one of the gaps could
be essential. By exploring the trade-offs possible the limits
for FPGAs can be better understood since that will demon-
strate the extent to which any of the gaps can be narrowed.
Also, if embedded FPGAs become viable, there will be a
further increased need for FPGAs that make different cost,
performance and power trade-offs.

There has been little exploration of the extent to which
area, speed and power can be traded. Past studies have
focused almost exclusively on high-level logical architecture
changes such as changes to the routing [18], logic block [1, 21]
or both [7, 8]. However, the high-level logical architecture
is only one variable in the design of an FPGA that can be
varied. For every architecture, there are a range of possible
electrical implementations that trade cost, performance and
power through the use of different circuit structures or tran-
sistor sizings which has been largely ignored in past studies
[18, 1, 7]. Some electrical design issues such as V DD and
Vt optimization have been explored [8] but again little at-
tention has been paid to the issues of transistor sizing and
circuit structure. Instead, it has been assumed (possibly for
simplicity) that there is only a single circuit structure and

149

transistor sizing of interest such as that which minimizes the
circuit’s area delay product. However, as is often seen in the
custom design world, there are a range of logically equivalent
but electrically distinct implementations [24]. We believe
the same holds true for programmable circuits and, in this
paper, we explore the range of area and delay trade-offs that
are possible in the design of an FPGA by varying both its
logical architecture and its electrical implementation. This
exploration can inform architects the extent to which area
and delay can be improved for FPGAs and is a step towards
understanding how many different FPGA families are neces-
sary. Together, architecture and electrical implementation
provide significant leverage that can significantly alter either
the performance or cost of an FPGA.

Full manual exploration and optimization of designs within
this space is not feasible and, therefore, we have developed
a tool to perform much of the optimization. This tool is
briefly described in a subsequent section. It is important
to note that we aim to observe the size of the design space
for general-purpose FPGAs. Another degree of freedom in
optimization would be to create FPGAs that are heavily tai-
lored towards specific application domains [9]. However, we
believe there is a need for different general-purpose FPGAs
that occupy different points within the design space.

The remainder of the paper is organized as follows. A
brief background and the basic architectural and circuit as-
sumptions on which this work is based are presented in
Section 2. Section 3 describes the FPGA-specific transistor-
level optimization tool that was developed to assist in ex-
ploring the design space. Section 4 outlines the procedure
used to measure performance and area within the design
space. Section 5 examines the range of trade-offs possible
with transistor sizing. The impact of transistor sizing in
conjunction with architectural changes is then explored in
Section 6 to determine both the magnitude of changes possi-
ble and to determine the parameters that provide the most
leverage when making area and delay trade-offs. Finally,
Section 7 concludes.

2. ARCHITECTURAL AND ELECTRICAL

DESIGN ASSUMPTIONS
To keep this work tractable, we place some limitations on

the design changes we will explore. First we will focus only
on area and delay trade-offs. Power consumption trade-offs
will not be considered. This is reasonable since we have
confirmed, as has been previously reported [21], that power
consumption is closely related to area for many architectural
changes. Techniques such as power gating [8] can alter the
relationship between area and power consumption but these
techniques are not supported by our current computer-aided
design (CAD) tools.

Additionally, we will restrict the architecture and circuit
structures we will consider. The assumptions we make are
described in the following sections.

2.1 Logical Architecture
We focus exclusively on the classic island-style FPGAs

consisting of a Cluster-based Logic Block (CLB) surrounded
by programmable routing. This structure and the main ar-
chitectural parameters are shown in Figure 1. We further
limit ourselves to a homogeneous routing topology in which
all the routing tracks are unidirectional as described in [34,

(a) Island-Style Architecture

(b) Cluster-based Logic Block

1

2

N

...

L = 2

W

= 8

...

k- LU T F lip-F lop

BLE

k- LU T F lip-F lop

BLE

k- LU T F lip-F lop

BLE

C luster -

based Logic

Block

C luster -

based Logic

Block

C luster -

based Logic

Block

C luster -

based Logic

Block

C luster -

based Logic

Block

C luster -

based Logic

Block

Fc, input

= 3 /8

...
...

...
...

...
...

Figure 1: FPGA Logical Architecture

18, 20] and have the same length. The length of a track,
L, is defined as the number of logic blocks it reaches. We
assume that there is an equal number of tracks in the hori-
zontal and vertical directions and we refer to this quantity as
the channel width, W . A fraction of the tracks in a channel,
Fc,input, connect to each of the logic block’s input pins.

Logic blocks are composed of one or more Basic Logic
Elements (BLEs) and each BLE is made up of a lookup
table (LUT) of size k and a flip-flop. The number of BLEs
in a logic block is defined as the cluster size, N . When logic
blocks contain more than one BLE, programmable intra-
cluster routing connects the logic block inputs to the inputs
of each BLE. The intra-cluster routing is assumed to be
fully populated as each BLE input is able to connect to all
the logic block inputs and all the BLE outputs. All these
assumptions and parameters define the logical architecture
of the FPGA.

2.2 FPGA Tiles
A single logic block and its neighbouring routing channels

must be instantiated thousands of times to create a com-
plete FPGA. It is not practical to individually optimize each
logic block and routing track. Instead, in this work a single
tile consisting of a logic block and the neighbouring routing
tracks is designed. When creating a complete FPGA that
single tile is replicated.

This use of a single tile places restrictions on the logi-
cal architectures that can be explored. In particular, the
channel width is restricted to multiples of twice the segment
length [18]. (For bidirectional routing tracks, the channel
width must be multiples of the segment length.) This quan-
tization of the channel width ensures that every tile is iden-
tical with an equal number of routing tracks starting and
stopping in each tile. When determining the architectural
parameters for our experiments we ensure this quantization
is maintained.

150

2.3 Circuit Assumptions
At the circuit level, the FPGA architectures we will con-

sider consist purely of multiplexers, inverters, configuration
memory, and user-circuit flip-flops. The flip-flops are a rel-
atively small part of the design that does not significantly
affect an FPGA’s performance or area. Therefore, we do not
investigate the range of possible flip-flop implementations.
The remaining structures all make up the majority of the
FPGA’s area. The design of the configuration memory and
the inverters is straightforward. For the configuration mem-
ory, a standard 6-transistor SRAM cell is assumed. However,
multiplexers have a range of possible electrical implementa-
tions. We assume multiplexers are constructed using NMOS
pass transistors. To restore signals to the full rail, a level
restoring PMOS is added to the inverters connected to the
multiplexer output. A one-level NMOS pass transistor tree
is assumed for multiplexers with a width less than 4 (i.e. a
one hot encoding) and a two-level NMOS tree is assumed
for all larger multiplexers as described in [19, 17].

To keep the scope of this work reasonable, we will only
consider changes in transistor sizes within these previously
described circuit structures. We will not consider threshold
voltage or supply voltage changes such as those in [8] since
these are only useful for power trade-offs.

The high-performance 90 nm CMOS process from ST Mi-
croelectronics [27] will be used exclusively in this work. We
use only standard Vt transistors and assume a supply voltage
of 1.2 V. In the future, we plan to consider more advanced
process technologies.

2.4 Comparison to Commercial Architectures
While the architecture of modern FPGAs is significantly

more complex with multiple types of routing segments, logic
blocks with more features such as adders [32, 2] and various
different types of logic blocks such as multiplier [32, 2], mem-
ory [32, 2] and processor [32] blocks, focusing on the compar-
atively simple architecture described above is still useful for
exploring the area-delay trade-offs we will consider in this
work. Despite the new features, the basic LUT and flip-flop
is still crucially important as it gives an FPGA its general-
purpose capabilities and the trade-offs made in the design
of that basic logic and routing continue to have a signifi-
cant impact on the overall area and performance of FPGAs.
If anything, the additional architectural features found in
modern devices have the potential to further expand the
range of trade-offs possible when designing an FPGA since
with each new component comes the capability to adjust its
performance or area.

3. TRANSISTOR-LEVEL OPTIMIZATION

TOOL
When designing an FPGA at the electrical and architec-

tural level, there are inherent trade-offs between area and
delay that must be made. Our goal is to explore these trade-
offs and examine what we call the area-delay design space for
FPGAs. These explorations require a multitude of different
combinations of logical architecture and electrical design of
the circuits in that architecture to be considered. It is not
feasible to manually size the circuitry for each possibility as
has been done in past architectural experiments [7, 1]. In-
stead, we have developed a transistor-level optimization tool
to assist in this exploration and, in this section, we will give

Wbuffer,p

Wbuffer,n

Wmux,n

Wbuffer,p

Wbuffer,n

Wmux,n

W
b
u

ff
e
r,

p

W
b
u

ff
e
r,

n

W
m

u
x
,n

W
b
u

ff
e
r,

p

W
b
u

ff
e
r,

n

W
m

u
x
,n

Figure 2: Routing Track Sizing

a brief overview of this tool. With this tool, it is possible to
specify a logical architecture and some high-level electrical
parameters as inputs and receive as an output the transistor
sizes for a range of different circuit-level implementations at
different points in the area-delay space.

3.1 FPGA-Specific Optimization Issues
The transistor-level optimization of custom (non-program-

mable) integrated circuits has been well studied and a va-
riety of approaches have been proposed to automate this
process [12, 26, 11]. Programmable circuits and, FPGAs
in particular, present unique optimization challenges. The
most significant is that, due to the programmability, it is
not known what end-user circuit will be implemented on the
FPGA. This means that the critical path is not known at
design time (of the FPGA itself), and, therefore, improving
the performance of the circuit is no longer straightforward
because different circuits may place different demands on
the various elements within the FPGA.

The second unique feature that must be considered in the
design of FPGAs is the large number of logically equiva-
lent components. All these equivalent components must be
sized identically to maintain their equivalence. As a result,
the designer no longer has the freedom to increase the size
of one component to improve performance and, instead, all
similar components must be increased in size. An example
of this is a routing track and the multiplexers that select the
signal driving this track as shown in Figure 2. For perfor-
mance reasons, increasing the size of the transistors in the
multiplexer (up to a point) would be advantageous but, be-
cause this same multiplexer also loads the routing channel
in more cases than it is used, increasing the transistor sizes
may not provide the desired reduction in overall delay. We
refer to this effect as logical self loading and we note that
similar issues are faced in other custom designs that involve
repeated circuit structures such as memories. It is possible
to alter these logical equivalency requirements by creating
different architectures with distinct classes of switches [6,
13]; however, for transistor-level optimization, we treat log-
ical equivalency as a fixed constraint.

This characteristic of repeated structures within the FPGA
circuit design also simplifies the optimization problem since
there are many fewer independent variables compared to
the total number of transistors. This reduction is significant
since an FPGA has hundreds of millions of different transis-
tors that can be on a user’s critical path but there are only
on the order of a hundred unique transistor sizes that must
be optimized.

3.2 Optimization Overview
To handle and leverage these challenges and opportuni-

ties, a custom optimization tool was developed. The tool
is given as inputs the logical architectural parameters de-
scribed in Section 2.1, high-level electrical parameters such

151

as the basic structure to use for multiplexers and the desired
optimization objective. Based on these inputs the tool pro-
duces the optimized transistor sizes for all the components
in an FPGA tile. The optimization process is summarized
in Figure 3.

The tool sizes the transistors in the FPGA to balance the
performance and area of the FPGA according to the de-
sired optimization objective. As described earlier, the per-
formance of the FPGA depends on the users’ designs. For
the purpose of optimization, it is not possible to directly
measure and, hence, optimize that performance. Instead,
a representative measure of the design’s performance must
be created. The approach we use for this measurement
is described below. Area is comparatively straightforward
to measure and the area measurement methodology is de-
scribed in Section 4.2; however, during optimization, only
the area of a single tile is considered. The complete process
described in Section 4.2 will only be used for the final re-
sults to reflect the area costs of the transistor sizing and the
logical architecture.

3.2.1 FPGA Performance Metric

The speed performance metric for the optimizer must fully
capture the performance of all the components of the FPGA.
A simple approach to this is to take a set of circuits that
make up the critical paths in a collection of benchmark de-
signs. The performance of these circuits could be measured
and combined to create the performance metric. However,
this approach is inefficient since many of the circuits may be
relatively similar. Even taking one critical path circuit could
be excessively demanding computationally because the same
component such as a LUT may appear in the path multiple
times.

To reduce the computational demands, an alternative ap-
proach was used for this work. The shortest register to reg-
ister path within the FPGA that still contains all the unique
components within the FPGA tile is used for optimization.
The delay of this path is not used as the performance met-
ric since it does not use the circuit components of an FPGA
at the same frequency as they occur in end-user’s circuits.
Instead, the performance metric used for optimization is cre-
ated by taking a weighted average of the delays of the indi-
vidual components within this shortest path. The weighting
factors are set based on the frequency with which each com-
ponent was observed to occur in the critical paths in our set
of benchmarks.

3.2.2 Optimization Objective

Our goal is to explore the range of trade-offs possible with
area and delay and, hence, the optimization tool must pro-
duce range of transistor sizings that make these different
trade-offs. The tool is driven to create these different de-
signs by varying the objective function that the optimizer
attempts to minimize. With different functions, a different
balance between the performance of the FPGA and the area
required to achieve that performance is reached.

Various forms of optimization objectives were considered
for the tool. The final form of the function that was se-
lected was AreamDelayn where m and n are real numbers
greater than or equal to zero. By varying m and n, different
objective functions are created which will lead to a range
of different transistor sizings. This form of the function is
easy to understand. Setting m = n = 1 gives a design that

Path Generation

Logica l

Architecture

Optim ization

Objective

Electr ica l

Architecture

F ull

E lectr ica l

D esign

Optim ization

Phase 1

T ILOS-based
Algor ithm

Optim ization

Phase 2
H SPIC E & Greedy

Algor ithm

Figure 3: Optimization Methodology

minimizes the area delay product which has conventionally
been the goal of circuit design in FPGAs [7, 1].

It is also worth noting that in conventional custom circuit
design, optimization frequently takes the form of minimizing
the area subject to a delay constraint. Such a form is not
as useful for FPGA-based optimization again because the
performance of the FPGA is not known until user circuits are
implemented on the FPGA. Therefore, the absolute value of
any delay constraint would not be informative.

3.2.3 Optimization Algorithm

Optimization is performed in two phases. In the first
phase, transistors are modelled as simple linear resistances
with the resistances inversely proportional to the transistor
width. Delay is then computed using the standard Penfield-
Rubenstein RC model from [25]. Optimization is then per-
formed using a slightly modified version of the TILOS al-
gorithm [12]. For this delay model, the algorithm should
generally be able to achieve an optimal result but it must
be emphasized that it is only optimal given the simple RC
delay model. Logically equivalent components are defined
to have the same transistor sizes and the optimizer always
maintains this relationship. Other approaches such as log-
ical effort [28] or related fanout-of-four based sizings could
be used but those approaches are not directly suited to han-
dling the effects of logical self-loading.

While the TILOS algorithm can achieve optimality for the
simple RC delay model, the linear RC model has long been
known to not accurately reflect the behaviour of transistors
[23]. Therefore, further optimization, which captures the
true behaviour of the transistors, is necessary. For example,
compared to an unoptimized design, the sizings produced
by TILOS have improved performance by 69 % but with the
next phase of the algorithm that will be described below the
performance was improved by 77 % overall. Clearly, TILOS
delivered most of the gains but a second phase to refine the
sizes is necessary.

Using the sizes determined from the TILOS algorithm as
a starting point, the second phase of optimization refines
the sizes with a greedy iterative sizing algorithm that uses
delay measurements from Synopsys HSPICE [29]. As the
name implies, this algorithm looks at each parameter (which
defines the transistor size for all logically equivalent compo-
nents) iteratively and explores a range of values for the pa-
rameter. The best value is selected and the process repeats

152

with the next parameter. If the best value of any parameter
is changed, the process will repeat over all the parameters
again until one complete pass through all the parameters is
made without adjusting any sizes. While this simple algo-
rithm produces mediocre results on its own, we found that
when applied after the first phase of optimization the re-
sult is satisfactory. Testing with simple circuits that could
be exhaustively optimized found that this combination gave
results that were consistently within 2 % of optimal. The
disadvantage of this approach is that significant computing
resources are required but this is acceptable since our goal is
design space exploration and not fast optimization. In gen-
eral, we are able to obtain a sizing in under 12 hours.1 More
advanced optimization techniques such as those proposed in
[11] would likely enable significant run-time improvements
but they either require custom simulators or access to inter-
nal computations within standard simulators.

3.3 Optimization Output
The final output from the optimizer defines the transis-

tor sizes of all the components that make up the FPGA
logic tile. As described earlier, for each architecture, differ-
ent optimization objectives are used to produce a range of
different sizings that make different trade-offs between de-
lay/speed and area. These sizings only define the electrical
implementation of the programmable fabric that makes up
an FPGA and, therefore, further steps are required to pro-
duce performance and cost measurements of the resulting
FPGA. The approach used to take these measurements is
described in the following section.

4. AREAANDPERFORMANCEMEASURE-

MENT METHODOLOGY
The inherent programmability of FPGAs means that un-

til an FPGA is programmed with an end-user’s design there
is no definitive measure of the performance or area of the
FPGA. Only after a circuit is implemented on an FPGA
is it possible to measure the performance of the FPGA in
a meaningful manner. Similarly, determining the effective
area of an FPGA also requires the implementation of end-
user circuits on the FPGA to accurately determine the re-
sources required. In this section, the specific methodology
used to measure the performance and the area of an FPGA
implementation is defined.

4.1 Performance
The performance of a particular FPGA implementation is

measured experimentally using the 20 largest MCNC bench-
marks [33]. Each benchmark circuit is implemented through
a complete CAD flow on the input FPGA fabric and a final
delay measurement is generated as an output. The geomet-
ric mean delay of all the circuits is then used as the figure
of merit for the performance of the FPGA implementation.
The steps involved in this process are illustrated in Figure 4.

Synthesis, packing, placement and routing of the bench-
mark circuit onto the FPGA is done using SIS with FlowMap
[10], T-VPack [22] and VPR [5] (an updated version of VPR
that handles unidirectional routing is used). Placement and

1This time could be easily reduced by using fast SPICE sim-
ulators such as Synopsys NanoSim [30] but we have elected
not to make use of such simulators since run time is not a
significant issue

Electr ica l D esign

Architecture F ile

P&R w ith VPR
Benchm ark

C ircu its

C r itica l Path

H SPIC E

D elay

Figure 4: Performance Measurement Methodology

routing is repeated with 10 different seeds for placement.
Only the placement and routing with the best performance
will be used. The tools cannot directly make use of the tran-
sistor size definitions of the FPGA fabric and, instead, a sim-
plified timing model must be provided. This timing model
is encapsulated in VPR’s architecture file and includes fixed
delays for both the routing tracks and the paths within the
logic block. We generate this file automatically from the
transistor size definition.

After placement and routing is complete, VPR performs
timing analysis to determine the critical path of the design
implemented on the FPGA. While this provides an approx-
imate measure of the FPGA’s performance, it is not suffi-
ciently accurate for our purposes since the relatively simple
delay model does not accurately capture the complex be-
haviour of transistors in current technologies. To address
this, we have created a modified version of VPR that emits
the circuitry of the critical path. This circuit is then simu-
lated, with the appropriate transistor sizes and structures,
using HSPICE. The delay as measured by HSPICE is used
to define the performance of this benchmark implemented
on this particular FPGA implementation.

One concern with this method is that routing and timing
analysis in VPR is performed with the inaccurate timing
model and, as a result, poor routing choices may be made
or timing analysis may incorrectly predict the design’s crit-
ical path. Adequately addressing this problem would likely
require simulation of the n-most critical paths in a design
to verify the timing analysis results and this quickly be-
comes computationally infeasible for a reasonable n and a
large number of benchmark circuits. Furthermore, if sig-
nificant discrepancies are observed it suggests that inappro-
priate routing decisions may also have been made and ad-
dressing this challenge would require overhauling the entire
timing analysis engine within VPR. However, we do not be-
lieve this to be a concern in this work for two reasons. First,
we observed for any individual sizing a high degree of corre-
lation between the critical path delays as reported by VPR
compared to the critical path delays as reported by HSPICE
for the full set of benchmarks. However, for different sizings,
the delay measurements between VPR and HSPICE are not
as consistent and, hence, the need for HSPICE simulation in

153

the first place. Secondly, in this work we restrict ourselves
to relatively simple routing architectures that are homoge-
neous. With only a single type of routing interconnect the
fidelity of VPR’s timing analysis is relatively good.

4.2 Area
The most accurate method for measuring the area of dif-

ferent electrical implementations would be to layout a com-
plete FPGA tile consisting of both the logic and routing.
However, this is not feasible since we wish to examine a
large number of different architectures and transistor siz-
ings and, instead, we must resort to using a model to de-
termine the area of an FPGA tile. The model considers
transistors from two sources: the general circuitry used in
the design and the configuration SRAM used to configure
the circuitry. The SRAM is treated separately because it is
the single most frequently repeated structure in the FPGA.
Significant effort is therefore spent optimizing the layout
of the 6 transistors that make up a single bit. It is also
possible to significantly improve the effective area per bit
by merging diffusion regions between bits. In our model,
the area of the SRAM component of a design is estimated
assuming a fixed area per SRAM bit and this fixed area
includes a significant amount of sharing. For the remain-
ing general circuitry, the model estimates the area required
for each individual transistor using a method similar to the
minimum-transistor-widths approach [7] but with the model
re-calibrated to reflect the design rules of our process (STMi-
croelectronics 90 nm G CMOS [27]). The absolute area is
determined by multiplying the minimum width transistor
area count by the actual minimum width transistor area.
This minimum width transistor area model does not con-
sider the impact of diffusion sharing between transistors or
the occasional need to increase the space between devices
to allow for inter-transistor routing. To address these inac-
curacies we scale the estimated minimum width transistor
area estimate by a constant to match the layout area of some
sample designs that were created for this purpose.

It was important to obtain a reasonably accurate absolute
area measurement and not just one with reasonable fidelity
as has been appropriate in the past [7, 1] because the abso-
lute area is needed to determine the length of interconnect
segments. For both the routing tracks and the local intra-
cluster lines, interconnect is not negligible and, therefore, we
use the estimated tile area to determine the length of these
lines.

To allow for comparisons across different logical architec-
tures (e.g. with different LUT or cluster sizes), the final area
metric is the product of the area of an individual tile and
the number of tiles (or equivalently clusters) required for all
the benchmark circuits. This metric ensures that changes
that alter the amount of usable logic are fully reflected in
the area measurement. This is particularly important when
the number of inputs to a cluster is reduced or when the size
of the LUT is changed since those changes alter the amount
of usable logic within a tile/cluster.

5. AREA AND DELAY TRADE-OFFS
We now employ the methodology described above to first

examine the magnitude of the area and delay changes possi-
ble with transistor sizing. Not all trade-offs are useful and,
therefore, we discuss and define what we believe to be the
boundaries of useful trade-offs.

0

1E-08

2E-08

3E-08

4E-08

5E-08

6E-08

7E-08

3.5E+07 4.5E+07 5.5E+07 6.5E+07 7.5E+07 8.5E+07

G
e

o
m

e
a

n
 C

ri
�

c
a

l
P

a
th

 D
e

la
y

 (
s)

Area (Tile Area * Required Tiles)

Figure 5: Area Delay Space

Table 1: Architecture Parameters
Parameter Value

LUT Size, k 4
Cluster Size, N 10
Number of Cluster Inputs, I 22
Tracks per Channel, W 104
Track Length, L 4
Interconnect Style Unidirectional
Driver Style Single Driver
Fc,input 0.2
Fc,output 0.1
Pads per row/column 4

5.1 Transistor Sizing for a Single Architecture
For any specific architecture, transistor sizing enables a

range of implementations between the two extremes of min-
imum delay and minimum area solutions. The different im-
plementations occupy different points in the area-delay de-
sign space. Figure 5 plots these different points that form
the delay versus area curve for the cluster size 10, 4-LUT
architecture fully described in Table 1. As described in
Section 4.1, delay is measured as the geometric mean of the
critical paths of the 20 largest MCNC benchmarks [33] when
placed and routed on an FPGA with the particular transis-
tor sizing. Area is measured using the model described in
Section 4.2 to estimate the size of the tile.

Transistor sizing clearly enables a large range of area and
delay possibilities with a range of 2.0 × in area from the
smallest to largest design and 16.3 × from the fastest to
slowest design. Table 2 compares this area-delay range to
the range seen when architectural parameters have been var-
ied in past studies. In each case, the range is measured as the
largest area or delay relative to the smallest area or delay
observed for the architectures considered. Previously, the
largest range was achieved when cluster size and LUT sizes
are both varied. In that case, ranges of 3.2 × and 1.7 × were
observed in delay and area respectively [1]. While the area
range is of a similar magnitude to that seen from transistor
sizing, the delay range from architectural changes is con-
siderably smaller than that from transistor sizing indicating

154

Table 2: Area and Delay Impact of Transistor Sizing
and Past Architectural Changes

Variable Delay Range Area Range

Transistor Sizing (Full) 16.3 2.0

Cluster Size (1-10) [1] 1.6 1.5
LUT Size (2-7) [1] 2.2 1.5
Cluster & LUT Size [1] 3.2 1.7
Segment Length (1-16) [7] 1.6 1.6

the significant effect transistor sizing can have on perfor-
mance. It is also important to recognize that architecture
and transistor sizing are independent since the transistor siz-
ing for each architecture can be varied to achieve different
area-delay trade-offs.

5.2 Reasonable Trade-offs
While the full range of transistor sizing possibilities illus-

trates the important role sizing plays in determining perfor-
mance trade-offs, reasonable architects and designers would
not consider this full range useful. At the area-optimized
and the delay-optimized extremes, the trade-off between area
and delay is severely unbalanced. This is particularly true
near the minimal area sizing where the large negative slope
seen in Figure 5 indicates that, for a slight increase in area,
a significant reduction in delay can be obtained. In relative
terms, there is a 9.2 × reduction in delay for only a 2.3 %
increase in area. Clearly, a reasonable designer would always
pay 2.3 % in area to gain the 9.2 × reduction in delay. Our
goal, then, is to explore the “interesting” and realistic trade-
offs between area and delay, and, clearly, regions where the
trade-offs are unbalanced are not normally of interest.

Selecting the regions in which the trade-offs are useful is
a somewhat arbitrary decision. Intuitively, this region is
where the elasticity, defined as

elasticity =
ddelay

darea

area

delay
(1)

is neither too small or too large. Since we do not have a
differentiable function relating the delay and area for an ar-
chitecture, we approximate the elasticity as:

elasticity =
% change in delay

% change in area
. (2)

When the elasticity is -1, meaning a 1 % area increase
achieves a 1 % performance improvement, the trade-off be-
tween area and delay is certainly interesting. However, based
on conversations with a commercial FPGA architect [4], we
will view the trade-offs as “interesting” when a 3 % area in-
crease is required for a 1 % delay reduction (an elasticity of
-1/3) and when a 1 % area increase improves delay by 3 %
(an elasticity of -3). All points within this range of elas-
ticities will make up what we call the interesting range of
trade-offs. While this restriction only explicitly considers
delay and area, it has the effect of eliminating designs with
excessive power consumption because those designs would
generally also have significant area demands.

With this restriction on the data from Figure 5, the range
of trade-offs possible is decreased to a range of 28 % in de-
lay from slowest to fastest and 21 % in area from largest
to smallest (The range is expressed here in percent not a

multiplicative factor). While this is a significant reduction
in the effective design space, the range is still appreciable
and it demonstrates that there are a range of designs for a
specific architecture that can be useful. Applying this same
criteria to the past investigation of LUT size and cluster
size [1], we find that the range of useful trade-offs is 17 %
from fastest to slowest and 11 % from largest to smallest.
This space is smaller than the range observed for transistor
sizing changes. From the perspective of designing FPGAs
for different points in the design space, transistor sizing ap-
pears to be the more powerful tool. However, architecture
and transistor sizing need not be considered independently
and, therefore, in the next section we examine the size of the
design space when these attributes are varied in tandem.

6. TRADE-OFFSWITHTRANSISTOR SIZ-

ING AND ARCHITECTURE
For each logical architecture, a whole range of different

transistor sizings, each with different performance and area,
are possible. In the previous section, only a single architec-
ture was considered, but now we explore varying the tran-
sistor sizes for a range of architectures. We considered a
range of architectures with varied routing track lengths (L),
cluster sizes (N) and LUT sizes (k). A comparison between
architectures is most useful if the architectures present the
same ease of routing. Therefore, as each parameter is varied,
it is necessary to adjust other related architectural param-
eters such as the channel width (W) and the input/output
pin flexibilities (Fc,input, Fc,output). We determine appro-
priate values for the channel width experimentally by find-
ing the minimum width needed to route our benchmark cir-
cuits. The minimum channel width is increased by 20 % and
rounded to the nearest multiple of twice the routing segment
length to get the final width which, as described earlier, is
necessary to ensure a tileable design. The input pin flexibil-
ity (Fc,input) is determined experimentally as the minimum
flexibility which does not increase the channel width require-
ments. The output flexibility is set as, 1/N , where N is the
cluster size. For each architecture, the full range of transis-
tor sizing optimization objectives were considered and the
results for all these architectures and sizes are plotted in
Figure 6. In total, 58 logical architectures were considered.
With the different sizings for each architecture, this gives a
total of 822 distinctly sized architectures.

Each point in the figure is a different combination of ar-
chitecture and transistor sizing. Again, it is necessary to
consider which points within this design space are “inter-
esting” in the manner defined above. A slight adjustment
to our criteria is necessary to handle the discrete nature
of architectural changes. We start by assuming the design
with minimum area-delay product is of interest. From this
point, we extend the region of interest using our standard
threshold that the boundary of interest is if a design re-
quires a one percent area increase for a three percent delay
improvement or a three percent area increase for a one per-
cent delay improvement. In Figure 6, these boundaries are
shown as curves extending from the minimum area-delay
point. Points which are below these boundaries (provided
they are not dominated by a point with less area for the
same delay) are considered to be of interest. This elimi-
nates many of the FPGA implementations as not useful but
it still leaves a wide range of interesting possibilities. The

155

2.E-09

3.E-09

4.E-09

5.E-09

6.E-09

7.E-09

8.E-09

9.E-09

1.E-08

3.0E+07 5.0E+07 7.0E+07 9.0E+07 1.1E+08 1.3E+08 1.5E+08 1.7E+08

G
e

o
m

e
a

n
 C

ri
�

ca
l

P
a

th
 D

e
la

y
 (

s)

Area (Tile Area * Required Tiles)

All Points Minimum Area Delay Fastest Interes!ng Smallest Interes!ng Elas!city = -3 Boundary Elas!city = -0.333 Boundary

Figure 6: Full Area Delay Space

Table 3: Span of Different Sizings/Architecture

Area Delay Area Architecture
(1E8 (ns) Delay
µm2) (µm2

· s)

Fastest 1.31 3.14 0.41 N=8, K=7,
L=4Interesting

Min. Area 0.45 4.64 0.21 N=8, K=4,
L=6Delay

Smallest 0.37 8.00 0.30 N=6, K=3,
L=4Interesting

Range 3.6 2.6 2.0

smallest interesting design and the fastest interesting design
are highlighted in the figure and summarized in Table 3.

Compared to conventional experiments which would have
only considered the minimum area-delay point useful we see
that in fact there are a wide range of designs that are inter-
esting when different design objectives are considered. The
span of these designs is of particular interest and is summa-
rized in Table 3. In terms of area, we see that there is a
range of 3.6 × from the largest design to the smallest design
and, in terms of delay, the range is 2.6 × from the slowest
design relative to the fastest design. It is clear that when
creating new FPGAs there is a great deal of freedom in the
area-delay trade-offs that can be made and, as can be seen
in Table 3, both transistor sizing and architecture are key
to achieving this full range. To gain a deeper understanding
of this space and how to best make these trade-offs we now
explore each of the architectural parameters independently.

6.1 Segment Length
Figure 7 plots the transistor sizing curves for architec-

tures with 4-LUT clusters of size 10 with the routing seg-
ment lengths varying from 1 to 8. It is immediately clear

3.5E-09

4.0E-09

4.5E-09

5.0E-09

5.5E-09

6.0E-09

6.5E-09

7.0E-09

3.5E+07 4.5E+07 5.5E+07 6.5E+07 7.5E+07 8.5E+07 9.5E+07 1.1E+08

G
e

o
m

e
a

n
 C

ri
�

ca
l

P
a

th
 D

e
la

y
 (

s)

Area (Tile Area * Required Tiles)

L = 1 L = 2 L = 4 L = 6 L = 8

Figure 7: Area Delay Space with Varied Routing
Segment Lengths

that the length-1 and length-2 architectures are not useful in
terms of area and delay trade-offs. Similar conclusions have
been made in past investigations [7]. From the trade-off per-
spective, the remaining segment lengths are all very similar.
Clearly, segment length is not a powerful tool for adjusting
area and delay as a single segment length generally offers
universally improved performance.

6.2 Cluster Size
A range of cluster sizes from 2 to 12 were examined and the

results across the full range of transistor sizings are shown in
Figure 8. The routing segment length is 4 and the clusters
were composed of 4-LUT BLEs. This is a more promising
parameter for making area and delay trade-offs because we
see that at different points in the design space, different

156

3.5E-09

4.0E-09

4.5E-09

5.0E-09

5.5E-09

6.0E-09

6.5E-09

7.0E-09

3.5E+07 4.5E+07 5.5E+07 6.5E+07 7.5E+07 8.5E+07 9.5E+07 1.1E+08 1.2E+08

G
e

o
m

e
a

n
 C

ri
�

ca
l

P
a

th
 D

e
la

y
 (

s)

Area (Tile Area * Required Tiles)
N = 2 N = 4 N = 6 N = 8 N = 10 N = 12

Figure 8: Area Delay Space with Varied Cluster
Sizes

cluster sizes are best. For high performance (and high area),
we see that the larger cluster sizes are best but, for smaller
area (and worse performance) smaller cluster sizes are best.
However, the differences are not extremely large, and we
conclude that cluster size is only of limited use when making
these design trade-offs.

These results highlight the importance of considering tran-
sistor sizing during pure architectural investigations. When
optimizing for area, the best cluster sizes were, in order, 8,
6, 12, 10, 4 and 2 but when optimizing for area a completely
different ordering of 4, 6, 10, 12, 2, 8 results. Clearly, a
specific design objective must be considered during archi-
tectural studies and any architectural conclusions may only
be valid for that specific objective.

6.3 LUT Size
Finally, for a cluster size of 8 and routing segments of

length 4, a range of LUT sizes from 3 to 7 were exam-
ined across a full range of transistor sizings. The results
are shown in Figure 9. In terms of area-delay trade-offs, we
see that LUT size is clearly the most useful architectural
parameter to vary of the parameters considered. At differ-
ent points in the design space different LUT sizes are clearly
best. For a minimum area-delay product a LUT size of 4
is best but for better performance larger LUT sizes are ad-
vantageous. Similarly, smaller LUT sizes are useful when
area is a more important concern. In comparison to the
other parameters, LUT size provides the most significant
leverage for trading off area and delay. The exploration of
the complete design space had also shown this as the LUT
sizes between the fastest, smallest, and area-delay optimal
designs in Table 3 were all different.

7. CONCLUSION
This paper has explored the trade-offs between area and

delay that are possible in the design of FPGAs when both
architecture and transistor sizing are varied. An automated
transistor design tool was used to create a range of different
circuit implementations for every architecture investigated.
Compared to past pure architecture studies, we find that
varying the transistor sizing of a single architecture offers a

3.0E-09

4.0E-09

5.0E-09

6.0E-09

7.0E-09

8.0E-09

3.50E+07 5.50E+07 7.50E+07 9.50E+07 1.15E+08 1.35E+08 1.55E+08

G
e

o
m

e
a

n
 C

ri
�

ca
l

P
a

th
 D

e
la

y
 (

s)

Area (Tile Area * Required Tiles)

k = 7 k = 6 k = 5 k = 4 k = 3

Figure 9: Area Delay Space with Varied LUT Sizing
(N=8)

greater range of possible trade-offs between area and delay
than was possible by only varying the architecture. By vary-
ing the architecture along with the transistor sizings, we see
that performance could be usefully varied by a factor of 2.6
and area by a factor of 3.6. We observe that LUT size is the
most useful architectural parameter for making trade-offs
between area and delay. As well, we see that such architec-
tural conclusions could not be properly made if transistor
sizing were not explicitly considered.

We plan to extend this work to also examine the trade-offs
that are possible between area, delay and power consump-
tion. In addition to this, we hope to explore the possibilities
when additional architectural features, such as additional
types of routing segment lengths and more advanced logic
blocks, are considered. With the addition of power and
more advanced architectures, an even larger design space
can likely be found.

8. REFERENCES

[1] E. Ahmed and J. Rose. The effect of LUT and cluster
size on deep-submicron FPGA performance and
density. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 12(3):288–298, March
2004.

[2] Altera Corporation. Stratix III device handbook, Nov
2006. ver 1.0.

[3] Altera Corporation. Cyclone III device handbook,
Sept 2007. ver. CIII5V1-1.2.

[4] T. Bauer. Xilinx. Private Communication.

[5] V. Betz and J. Rose. VPR: A new packing, placement
and routing tool for FPGA research. In Seventh
International Workshop on Field-Programmable Logic
and Applications, 1997.

[6] V. Betz and J. Rose. Circuit design, transistor sizing
and wire layout of FPGA interconnect. In Proceedings
of the 1999 IEEE Custom Integrated Circuits
Conference, pages 171–174, 1999.

[7] V. Betz, J. Rose, and A. Marquardt. Architecture and
CAD for Deep-Submicron FPGAs. Kluwer Academic
Publishers, 1999.

157

[8] L. Cheng, F. Li, Y. Lin, P. Wong, and L. He. Device
and Architecture Cooptimization for FPGA Power
Reduction. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems,
26(7):1211–1221, July 2007.

[9] K. Compton, A. Sharma, S. Phillips, and S. Hauck.
Flexible routing architecture generation for
domain-specific reconfigurable subsystems. In
International Conference on Field Programmable Logic
and Applications, pages 59–68, 2002.

[10] J. Cong, J. Peck, and Y. Ding. RASP: a general logic
synthesis system for SRAM-based FPGAs. In FPGA
’96: Proceedings of the 1996 ACM fourth international
symposium on Field-programmable gate arrays, pages
137–143, New York, NY, USA, 1996. ACM Press.

[11] A. R. Conn, I. M. Elfadel, J. W. W. Molzen, P. R.
O’Brien, P. N. Strenski, C. Visweswariah, and C. B.
Whan. Gradient-based optimization of custom circuits
using a static-timing formulation. In DAC ’99:
Proceedings of the 36th ACM/IEEE conference on
Design automation, pages 452–459, New York, NY,
USA, 1999. ACM Press.

[12] J. P. Fishburn and A. Dunlop. TILOS: A posynomial
programming approach to transistor sizing. In
International Conference on Computer Aided Design,
pages 326–328, November 1985.

[13] M. Hutton, V. Chan, P. Kazarian, V. Maruri, T. Ngai,
J. Park, R. Patel, B. Pedersen, J. Schleicher, and
S. Shumarayev. Interconnect enhancements for a
high-speed PLD architecture. In FPGA ’02:
Proceedings of the 2002 ACM/SIGDA tenth
international symposium on Field-programmable gate
arrays, pages 3–10, New York, NY, USA, 2002. ACM.

[14] I. Kuon and J. Rose. Measuring the gap between
FPGAs and ASICs. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and
Systems, 26(2), 2007.

[15] Lattice Semiconductor Corporation. LatticeECP2/M
Family Handbook, Version 01.6, August 2007.
http://www.latticesemi.com/dynamic/view_

document.cfm?document_id=19028.

[16] Lattice Semiconductor Corporation. LatticeECP2/M
Family Handbook, Version 02.9, July 2007.
http://www.latticesemi.com/dynamic/view_

document.cfm?document_id=21733.

[17] E. Lee, G. Lemieux, and S. Mirabbasi. Interconnect
driver design for long wires in field-programmable gate
arrays. In IEEE International Conference on Field
Programmable Technology, pages 89–96, December
2006.

[18] G. Lemieux, E. Lee, M. Tom, and A. Yu. Directional
and single-driver wires in FPGA interconnect. In IEEE
International Conference on Field-Programmable
Technology, pages 41–48, December 2004.

[19] D. Lewis, E. Ahmed, G. Baeckler, V. Betz,
M. Bourgeault, D. Cashman, D. Galloway, M. Hutton,
C. Lane, A. Lee, P. Leventis, S. Marquardt,
C. McClintock, K. Padalia, B. Pedersen, G. Powell,
B. Ratchev, S. Reddy, J. Schleicher, K. Stevens,
R. Yuan, R. Cliff, and J. Rose. The Stratix II logic
and routing architecture. In FPGA ’05: Proceedings of
the 2005 ACM/SIGDA 13th international symposium

on Field-programmable gate arrays, pages 14–20, New
York, NY, USA, 2005. ACM Press.

[20] D. Lewis, V. Betz, D. Jefferson, A. Lee, C. Lane,
P. Leventis, S. Marquardt, C. McClintock,
B. Pedersen, G. Powell, S. Reddy, C. Wysocki,
R. Cliff, and J. Rose. The StratixTM routing and logic
architecture. In Proceedings of the 2003 ACM/SIGDA
eleventh international symposium on Field
programmable gate arrays, pages 12–20. ACM Press,
2003.

[21] F. Li, Y. Lin, L. He, D. Chen, and J. Cong. Power
modeling and characteristics of field programmable
gate arrays. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems,
24(11):1712–1724, Nov. 2005.

[22] A. Marquardt, V. Betz, and J. Rose. Using
cluster-based logic blocks and timing-driven packing
to improve FPGA speed and density. In ACM/SIGDA
International Symposium on Field Programmable Gate
Arrays, pages 37–46, 1999.

[23] J. K. Ousterhout. Switch-level delay models for digital
MOS VLSI. In DAC ’84: Proceedings of the 21st
conference on Design automation, pages 542–548,
Piscataway, NJ, USA, 1984. IEEE Press.

[24] J. M. Rabaey. Digital Integrated Circuits A Design
Perspective. Prentice Hall, 1996.

[25] J. Rubinstein, P. Penfield, and M. A. Horowitz. Signal
delay in RC tree networks. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and
Systems, 2(3):202–211, July 1983.

[26] S. S. Sapatnekar, V. B. Rao, P. Vaidya, and
K. Sung-Mo. An exact solution to the transistor sizing
problem for CMOS circuits using convex optimization.
IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 12(11):1621–1634,
November 1993.

[27] STMicroelectronics. 90nm CMOS090 Design Platform,
2005. http://www.st.com/stonline/products/
technologies/soc/90plat.htm.

[28] I. Sutherland, R. Sproule, and D. Harris. Logical
Effort : Designing fast CMOS circuits. Morgan
Kaufmann Publishers, 1999.

[29] Synopsys. HSPICE. http://www.synopsys.com/
products/mixedsignal/hspice/hspice.html.

[30] Synopsys. NanoSim. http://www.synopsys.com/
products/mixedsignal/nanosim/nanosim.html.

[31] Xilinx. Spartan-3e, November 2006. Ver. 3.4.

[32] Xilinx. Virtex-5 user guide, October 2006. UG190
(v2.1).

[33] S. Yang. Logic synthesis and optimization benchmarks
user guide version 3.0. Technical report,
Microelectronics Center of North Carolina, Jan 1991.

[34] S. P. Young, T. J. Bauer, K. Chaudhary, and
S. Krishnamurthy. FPGA repeatable interconnect
structure with bidirectional and unidirectional
interconnect lines, Aug 1999. US Patent 5,942,913.

158

	Introduction
	Architectural and Electrical Design Assumptions
	Logical Architecture
	FPGA Tiles
	Circuit Assumptions
	Comparison to Commercial Architectures

	Transistor-Level Optimization Tool
	FPGA-Specific Optimization Issues
	Optimization Overview
	FPGA Performance Metric
	Optimization Objective
	Optimization Algorithm

	Optimization Output

	Area and Performance Measurement Methodology
	Performance
	Area

	Area and Delay Trade-offs
	Transistor Sizing for a Single Architecture
	Reasonable Trade-offs

	Trade-offs with Transistor Sizing and Architecture
	Segment Length
	Cluster Size
	LUT Size

	Conclusion
	References

