The Transmogrifier-2: A 1 Million Gate Rapid Prototyping System

David M. Lewis, David R. Galloway, Marcus van lerssel, Jonathan Rose, and Paul Chow
Department of Electrical and Computer Engineering
University of Toronto

Abstract

This paper describes theahsmogrifier2, a second-generation multi-FPGA rapid prototyping system. The
largest ersion of the system will comprise 16 boards that each contaiAltera 10K50 FPGAs, four I-Cube
interconnect chips, and up to 8 Mbytes of mem@he interfFPGA routing architecture of the TM-2 uses a
novel interconnect structure, a non-uniform partial crosdbat proides a constant delay betweery awo
FPGAs in the system. The TM-2 architecture is modular and scalable, meaning that systmosi®kizes
can be constructed from copies of the same board, while maintaining routability and the constant delay feature.
Other features include a systemdkeprogrammable clock that als single-gcle access to 6thip memory
and programmable clockaweforms with edge resolution of 10ns.

The first Tansmogrifier2 boards hee been manatctured and are functional. Thieave recently been used
successfully in some simple graphics acceleration applications.

1 Intr oduction

Continuing adances in the density and speed of FPGA® Imade them &fctive implementation ehicles
for increasingly complesystems. Neertheless, contemporary FPGAs lag semi-custom ASICs agtar fof
10 or more in densityand lack system-el facilities, such as lge RAMs and clocks, that are needed to
implement lage systems. Multi-FPGA field-programmable systems can be used not only to prototype these
larger designs, Ut also as field-configurable compute accelerators. A number of field-programmable systems
have been described [1] [2] [3] [4] [5] [6] [7], and can be roughly classified either as emulation systems, or
custom compute engines. Emulation systems tend to fpetedrat a wide range of applicationat bufer
from low clock rates, while custom compute engines tend te hechitectures that constrain the applications
to those that fit the computational moddeoéd by the hardare. The Tansmogrifier2 (or TM-2, for short) is
a flible rapid prototyping system thatfefs high capacityhigh clock rates, and is fible enough to
implement a wide ariety of systems. This systenfat a higher dgree of flgibility than prezious compute
engines, although it isxpected that a design to be implemented on the TM-2 is designed with the TM-2 in
mind as a tayet, as opposed to being @ication engine for arbitrary designs that will later be implemented
in semi-custom or full-custom silicon.

We have previously constructed a small-scale rapid prototyping system, rdmesiogrifierl (TM-1) [7]. It
contained 40K FPGAaes and 128KB RAM, andas capable of implementing small systems. Constructed

page 2

from a commercial rapid prototyping board plus other components anchsaftive TM-1 \as dificult to

use and required that the user bggitally present to operate the machine. A number of designs were
successfully implemented on the TM-1, with our pesitind ngative experiences laely leading to the
goals for the TM-2 project.

The remainder of this paper describes the goals of the TM-2 project and the resulting architecture and
design. Section 2 describes the goals of this project. Section 3 describes the routing archivedbpedde
for the TM-2. In Section 4, the influence of the goals and technical constraints on the detailed design are
described. The sofave deelopment system for the TM-2 is briefly described in Section 5, and Section 6
provides a summary of the projesturrent status.

2 Goals

Our perience with implementing applications on the TM-1, and the desire to createcimesflage-
scale and easily usable system lead to thewigllp goals for the TM-2:

1. Modularity and Scalability. The terms modular and scalable refer to t&lated, bt distinct
properties. By scalable, we mean that the architecture should be usable in a range of sizes, up to
some upper bound. The term modular refers to #neinwwhich these systems are constructed, and
means that all systems anglbfrom a number of identical modules. Each module is a single FPGA
together with sdicient routing resources to pride all interconnect to the rest of the system.

2. 1 Million Gate Capacity, Modern FPGAs. The system should be configurable up to Hikg plus
RAM, and use modern FPGAs to acldghis capacityThe TM-2 uses the Altera 10K50 [11], with
35K usable logic gtes (not including embedded RAM). A 32-FPGA systeoeeds 1M gtes.

3. Well-Behaved Inter-Chip Routing Delay. Routing delay can be the primary performance limit in a
field-programmable system. In a scalable system such as the TM-2Zyullike the routing delay
to grav as slavly as possible as the size of the system increases. Furthermore, the routing delay
should be easily predictable foryasize of system.

4. High Speed.The TM-2 should be capable of implementing systems with “reasonably” high user
clock rates, on the order of 10MHz when the user ignores the underlying architecture of the system.
We epect that higher clock rates will be acfible when the user optimizes the implementation for
the specific architecture of the TM-2.

5. User Programmable, High Quality Clocking. The system should be able to generate an adequate
number of clock signals of arbitrary frequgrand duty gcle, and to establish phase relationships
between multiple clocks. The clocks should be fully programmable gol@ lay gcle basis. This
feature is useful for generation of high quality write enables for commodity asynchronous RAMSs,
which must be precisely controlledutbnot assertedvery ¢cle. Clock frequenc and edge
resolution should be fine enough that there is no significant impact on system performance. System-
wide slew must be ngligible. It should also be possible to deriother frequencor phase related
clocks from &ternal signals.

Transactions on VLSI

page 3

6. High RAM and I/O Bandwidth. The system should Y& lage amounts of high-bandwidth RAM,
with high speed access. Because RAM is radgtiinexpensve compared to FPGAs and total
system cost, we prefer to pide an &cess amount of RAM, with the consequence that most of it
will not be used in typical applications, if this hay aghantage in increasing speed or decreasing
routing chip requirements. Similarithe system should prigle alundant 1/0 to thexdernal logic. I/

O must scale with logic capacitfhe TM-2 includes aindant SRAM or DRAM, with a lge /O
capacity

7. User Friendliness.The system should support a fully automated CA.floshould be possible to
compile from high leel design dan to configuration bit streams for the idiual components
with a single command. Hardie and softare support should be pided for deligging, so an
adequate number of signals can be olebwithout re-compiling the design. It should be possible
to access the TM-2 across a netky including devnloading, usage, status monitoring, and
delugging, without needing to be wdically present to perform reset operations. The TM-2
provides hardwre fcilities for delbigging, as well as core sofiwe to support the creation of
software interéces to it.

8. Programming Time. Download into the TM-2 should bast, under 10 seconds.

9. Reliability. The TM-2 should be constructed in an electrically angsighlly rolust mannerThe
system should pvent defectie designs from causing destruetiosercurrents in chips, with
possible chipdilure as a result. The TM-2 includes interlocks tav@né hardvare ilures.

10. Manufacturability . The TM-2 must be straightfoesd to manudcture; lov-cost, standard PCB
technology and commercial, fahe-shelf IC5 should be usedxelusively. No exotic signalling
should be used for the interconnect, although this is a tempting digressaritgg masse number
of signals in such a system.

3 Routing Architecture

The reconfigurable intdfPGA interconnect architecture is they laspect of the TM-2 that determines
system performance. 8\bayin by discussing the fefct of the goals in Section 2 on the architecture.

3.1 Requirements and Oerivew

The requirement for a modular and scalable system, together withanamability constraints, leads us
to an implementation which consists of a number of identical PCBs plugged into a backplanevithes pro
interconnect between the PCBs. Each PCB contains one or more modules, where a module is defined as a
single FPGA and some reconfigurable interconnect. The backplane is assumed tovbe quadaining
only a fixed set of connections between the slots. This implementation leads to the primary design
difficulty: the potentially lage number of backplane wires required tove interconnect between all
modules. The éy limitation in fabrication is the maximum number of wires a goint in the backplane,
and it is this number that our routing architecture attempts to reduce. The goal of good system speed also
restricts the choice of interconnect structures to those with moderate, and easily predictable delay

Transactions on VLSI

page 4

The following assumptions concerning the qualities of the FPGAs, raatuébility concerns and usage
of the system by users also guide the architecture:

» The pin assignment on the FPGAs can be imposed by theasefsystem - i.e. both routability and
speed of the inglidual FPGAs is maintained in the presence of arbitrary pin permutations. Studies
presented in [10] suggest thatdikpin assignments on contemporary FPGA® Ismall influences on
routability and speed.

» System I/O signals are assigned to specific pins as specified by thengseannot be altered by the
TM-2 compilation. This allas the user to plug the TM-2 into some other system withoviting
every time the design is recompiled.

» A single module contains both the FPGA on a PCB, agghergrammable interconnect to support the
FPGAs on the PCB in girsized system. (Here size refers to the number of modules).

A manufacturing goal for the backplane is toveamoderate pin counts on the modules, and wiring
density as lov as possible.

Our initial analysis, and the discussion presented in this paper assumes that the FPGA has 300 pins,
although the Altera 10K50 actually has 304 usable signal piesudd' 300 pins in this paper as it is a
round number

The simplest possible structure is a full crossbais is clearly infeasible as a system containing 32
FPGAs, each of which has 300 signal pirmuld require32 x 300 = 9600 wires from the FPGASs to the
crossbarclearly an rcessve level of compleity. A full crossbar is not scalable or modykas the amount

of routing hardware gravs asO(nz) , SO the size of each module g0asO(n).

The ne&t simplest routing architecture is a partial crossalo related to a folded Clos netk [1] [8].
A partial crossbar netwk corverts a lage crossbar into a collection of smaller crossbars, arranged as
three stages of crossbars. In field-programmable systems, dheuter stages can be med into the
FPGAs, preided that the FPGAs can be routed witly @ssignment of I/O signals to the pins of the
FPGA. The netark is folded about the middle, so the inner stage can beimplemented in a sysigalph
crossbar This architecture requires a collection of smaller crossbars, the size of which isgaal inte

multiple of the number of FPGAs in the system. The coxiglef this system gnes asO(nZ) , but since

each of the crossbars needs only a moderate number of pins, the total routingréaaiwplgity is
acceptable. It is possible to includefmignt crossbar capacity on each module to accommodate dglestlar
desired system,ub the backplane wiring count for systems of 32 FPGAs is still 9600 auddvbe
difficult to manuécture. Havever, the partial crossbar is aluable idea that is used in the design of the
hierarchical routing architecture for the TM-2. Separate crossbars are required for the 1/O signals if it is
desired to be able to assign each 1/O signal to a specific I/O connector pin.

The TM-2 routing structure uses the partial crossbar structurenddifies it to tak adwantage of the

Transactions on VLSI

page 5

FPGA
'/ crossbar
A \ '/
A
B
B
C
D c
1o ——
D

crossbar for 110

Figure 3.1 Partial Crossbar with Non-uniform Routing
Density

natural hierarch and resulting locality of wiring within circuits. Figure 3.1 wisoa partial crossbar
architecture, containing four FPGAs anatilO modules. The internal routing of the FPGAwdes one

stage of crossbaand separate routing chips interconnect the FPGAs. This figure illustrates the use of
locality in routing by adjusting the number of signals between each FPGA, witiethigzes representing

a lager number of wires. In Figure 3.1, the circuit has a highgegeof local connedtity, represented by
thicker lines, between FPGAs A and B, and between C and D. Each FPGA is assumedysidadyph
close to a crossbar with the same label. Tdrging dgree of connedtity between FPGAs is reflected in

the diferent number of wires between these FPGAs andipally nearby crossbars. The local wiring
could be distribted across all of the crossbanst boncentrating it in pfsically nearby crossbars reduces

the maximum wiring density of the backplane, although the total number of wires is constant.

3.2 Relation of Wire Counts to Hierarchical Bi-partitioning

This section shes hav the wire counts to each crossbar can be related to the cut counts in &eecursi
bipartitioning of a netwrk. This principle is illustrated by means of arample, with typical wire counts
chosen. Assume that we argagi some circuit, and wish to implement it in four FPGAsdd so, we will
recursvely bipartition the neterk to fit in the FPGAs. Figure 3.2 illustrateswhthe wiring can be
distributed across the crossbars in a manner that directly results from the hierarchical partitioning of a

Transactions on VLSI

page 6

120

(a) Bipartitioning of Circuit

e
L

(b) Second Bipartitioning of Circuit

(e) Merging Partial Crossbars for Multiple Levels

— = backplane connector

|:| E (to other modules)

(f) Structure of a Single Module

Figure 3.2 Construction of Non-uniform Partial
Crossbar using Bipartitioning

circuit. Figure 3.2(a) shes the result of the first bipartitioning of the circuit, resulting in 120 signals that
cross the top-keel cut. In Figure 3.2 (b) the second bipartitioning of each of the left and right partitions
splits these 120 signals into 60 for each of the partitions, and induces another 100 nets between each

Transactions on VLSI

page 7

of the nev partitions. Figure 3.3(c) demonstratesvhitiree crossbars could be used to implement this
interconnect. The total connedty of three crossbars can be split into eight smaller partial crossbars by
dividing the 240 pin crossbar into fouand each of the 200-pin crossbars into pieces, as shm in

Figure 3.2(d). Net, in Figure 3.2(e) these are grouped together so that each FPGA has an associated
crossbarlt is not necessary to group all of the partial crossbars related to a single module into a single
physical crossbar chip, although this doesehaome desirable properties that will be mentioned. later
Finally, Figure 3.2(f) ss a modular structure that contains a single FPGA and a 160 pin crossbar
(65+65+15+15) implementing the dwseparate partial crossbars. Backplane wiring according to the
density in Figure 3.2(e) is used to connect the modules. Whilexhimpte shws all partial crossbars
meiged into a single psical crossbar déce, there could be multiple psical crossbars corresponding to
routing at the arious leels of hierarci, or esen multiple plysical crossbars for a singlesé of hierarcly.

This network can be implemented with reduced backplane wiring dersitypared to a uniform partial
crossbarAs shovn in Figure 3.2(e) Tthe maximum density is (@5 x 2 + 15x 4) between modules A

and B, or C and D, in contrast to the 32 x 8) wires between B and C thabwld be required for a
uniform partial crossbar

3.3 Derivation of Crossbar Sizes

The abee example has assumed specifadues for the number of interconnect wires required at each
level. The nat step is to determine the wiring requirements for a non-uniform partial crossbar according to
the typical routing requirements of a recuedy bipartitioned circuit. Rerg’rule, which predicts the total
amount of wiring that leges a system of a\g@n size, can be used to predict the number of cuts induced
when a circuit is bipartitioned.

A circuit implemented in the TM-2 can be wied as a hierarghof networks, with a lgel-k system
comprising 2k FPGAs. A leel k+1 system is constructed with 2vid-k systems and some

programmable interconnect. Conceptuallylevel-k + 1 system is constructed by using adek + 1

crossbar to interconnecttvevel-k systems. In realifithe technique demonstrated in Figure 3.2 is used to
implement all lgels of the hierarghat a single feel of routing. Figure 3.3 illustrates the relationship
between a hierarchical routing architecture and our routing architecture. Figure 3.3(a) illustrates a
hierarchical routing architecture. Figure 3.3(b) illustrates the number of pins at egictahel hov this

can be locally transformed into a flat routing architecture. If therenarpins per FPGA at i@l k, then
m, , , of these pass throughvied k and up to leel k + 1. The crossbar sezg no purpose for these pins,
so it is possible to transform it into the flat structure, that directly connggcts to the net level, and
connectsm,—m, , ; at level k.

Rents rule can be used to estimate the size of the crossbar atvesdbrigystems witlk levels. Rent

rule states that the number of wiresvieg a subsystem that contai@scomponents, each of which has

Transactions on VLSI

page 8

Pg pins, isP = Pg x SR, whereP is the number of pins on the subsystéty.in this case is the number

of pins on an FPGA. The RemtmonentR is typically in the range of 0.5 to 0.7. ARponent of 0.7 is
assumed in the TM-2 interconnect to alla high dgree of routability

RPEEROR0

Xbar Xbar Xbar Xbar

N N

Xbar Xbar

\

(a) hierarchical routing architecture

LY QO

m
kel
{/2 Mer1

(b) locally flattening the routing

Xbar

Figure 3.3 Flattening a Hierarchical Routing Architecture

Letm, be the number of pins per FPGAVew a level-k system, which containzk FPGAs. The total

number of pins across all FPGAs is predicted by Remtile to be ZKXRX Pg, so m is

2 Rxpy

2k

kx(R-1)

_, 2(k—1)><(R—1)xPB

x Pg pins per FPGA. A kel k—1 system hasn,_; =

pins per FPGA leang level k—1. The diference between thesedwuantities, gien in Egn (1), is the
number of pins that should be routed atle.

k(R—1)

me-me, ;=2 "=1)x2 x Py (1)

This dervation predicts that a total oIN xmy pins should be \ailable at the top iel of the

interconnect for use as I/O pins. This numbeaisiri excess of those that are actually required for 1/O -
more than 2900 for our system. This is due to #ut that Rens rule is only useful in predicting wire

Transactions on VLSI

page 9

count for systems made up of agamumber of components Teal with this, we takthe &cess pins and
distribute them across all\els, in proportion to the contrition of (1) to the total number of pins wired at
all levels. Specificallythe total number of pins that should be connected atvelsiérom level 1 to N is
given by Egn (2).

N
z (21—R_1)x2|(R—1)xPB @
i=1
Distributing the total number ofvailable pins according to the ratio of (1) to (2) in the total number of

pin available, Py, leads to Eqn (3) as the number of pins at eaeh.le

1-R K(R—1)
2 —-1)x2
Wy e IRy ©)
z (2 R_1yx 2 R-D
i=1

For a 5 leel system and 300 pin FPGA, thigakiates tow, - = 107.3x 0.81é< wires at lgel-k. In

practice, the number of wires must be rounded up to a muItipﬂé,ostince modularity requires that the

same number of wires must go from each FPGA to each of2fhenodules. Another practical
consideration is that the wiring count at the toelas increased slightly to handle the I/O requirements.

Table 3.1 1/O Capacity of TM-2

System Size Total System Number of I/O | /O per
(# of FPGAS) I/0 modules FPGA
2 64 1 32
4 128 2 32
8 256 4 32
16 256 4 16
32 512 8 16

Fixing the I/O pins to specific ghical pins on the TM-2 system means that there isxpeatation of
locality between an I/O pin on the TM-2, and the FPGA that connects to that pin.

Figure 3.4 shas the actual wire counts used at eactelldor a 5-leel system, rounding thealue

predicted by (3) up to a multiple @F This shavs the crossbar for eachvé explicitly, in contrast to the
single crossbar in Figure 3.2(f)aflle 3.2 contains similar data for all system sizes.a5-level system,
the W, 5 from (3) are 87.1, 70.8, 57.5, 46.7 and 37.9 wires, which can be compared the actual counts

Transactions on VLSI

page 10

Table 3.2 Routing Resources at Each Level of Hierarchy

System Size (# FPGAS)

level 2 4 8 16 32

1 300 | 156 | 124 92 84
2 144 96 80 72
3 80 64 48
4 64 32
S 64

shawvn in the last column ofdble 3.2. The disparity between Eqgn (3) and actual counts is greatest for the

5-level system due to the contraints on wire counts being a multipﬂek.dﬂa/ertheless, the counts are
similar, except at the top iels where some of thevel-3 and Ieel-4 routing resources Y% been pushed

into the level-5 routing. This done to maximize thexilglity of the routing, and to prade support for the

I/0 network. Figure 3.5 illustrates the success of the non-uniform crossbar in reducing wiring count on the
backplane. This plot sks the number of wires at each position on the backplane for both a uniform
partial crossbarand the non-uniform 5yel one with the parameters listed abolt can be seen that the
non-uniform partial crossbarfefs a much lwver, and relatrely constant, wiring density

Wi N

It is also useful to definey, \ = — which is the number of wires per FPGA that go to each of the
' 2

other FPGAs at el K. At each leel k, 2k -1 sets

of Wi N wires go to the backplane and ultimately to crossbars on other modulesy\xQ{r,\ileNires are

connected to the crossbar on this module. AncBfier1 sets ofw, \, wires, which originate at FPGAs

on other modules, are also connected to the crossbar

Transactions on VLSI

page 11

Module i Backplane Connector
FPGA
0| 42 |
: Level 1
42 42
3*18
18 —
3%18 Level 2
7%6
— Level 3
6 ——:7%6
15*2
2 - Level 4
T oi15%2
31%2
5 . Level 5
P 31%2

Figure 3.4 Routing Resource Distribution for 32

Table 3.1 indicates that the number of 1/Os per module decreases wjgh &istems. This is
incorvenient, as it mads the I/O connections tBf between systems o&rous sizes. Instead, the TM-2

uses a uniform 1/O chunk of 64 pins. Each module contains an I/O connector6dndéd crossbar to
implement the outer stage of the routing rarky but is only usable on a subset of the modules.

All discussions of the hierarchical interconnect up to this powg haed a 32 module system as a design
example. Bble 3.2 gres the ract number of signals at eaclvee for systems of arious sizes, and
introduces the complication thatveeal diferent configurations of crossbars are required. Furthermore, for
each system, a difrent number of signals go from the FPGA to the backplane interconnect, and from the
FPGA to the crossbars on the module. Since each of the crossbars velyeatiall (maximum 32
connections), it is possible to ngerthem into one or more ¢g@r crossbar chips. Figure 3.6 illustrates this
technique using a single ydical crossbar to implement the FPGA routing, and a second crossbar to
implement the outer stage of the routing ratwfor the 1/O. In &ct, both of these can be med into a

single plysical crossbar as sia. The pinsB; go to crosshars on other modules, the @hsgo to the

Transactions on VLSI

page 12

5000
4500 | L
4000 |
3500 |
3000 |
2500 |
2000 |

o /ﬁW Wﬂ\

0 6 12 18 24 30

Figure 3.5 Wring Density on Backplane

crossbar on this module. From thepoeis discussionsB; + C; = 300. In a system witiN modules,

each of the subset of modules in which the 1/0O connector is functional has an 1/O connect64 argita

crossbarwith X; = 6_1\? signals going to the routing crossband64— X, signals leaing the module for

other modules. On modules without an I/O conne@&érpins to the routing crossbar are used for routing
the 1/0O signals from other modules.

Can potentially be a
single crossbar chip FPGA

to backplane

300

i6a
1’0 ‘L' 1/O Xbar Routing Xbar

64-Xi

Figure 3.6 Use of Analog Switches to Reduce Pin
Count on Crossbar Chip

Table 3.3 shas the alue of these parameters for each size of system. In the most straighdforw
implementation, the crossbars argé&enough to prade connections for the maximum number of signals
used in ap configuration. Pins that ar&aess to ayconfiguration are left unused. The crossbar must ha

Transactions on VLSI

page 13

at least128+ max(B;) + max(C;) + max(X;) + max(Y;) = 600 pins. Pins used foB, andC; are the

principal contrilutors to the total number of pins. The introduction of analog switches between these tw

sets of signals can allothe crossbar pins to be used as eijeor C, pins, as shen in Figure 3.6. This

changes the number of crossbar pins requiret®+ max(B; + C;) + max(X;) + max(Y;) = 522. It is

not practical to emplpthis technique across all possible system configurationst does turn out to be
useful to apply it seleately to reduce the number of crossbar chips required.

Table 3.3 Implementation Parameters for Different System Szes

2 150 150 32 32
4 186 114 16 48
8 204 96 8 56
16 222 78 4 60
32 230 70 2 62
max 230 150 32 62

4 Design of The TM-2

This section describes the practical issues associated with implementing the routing architecture,
together with the methods used to meet the goals outlined in Section 2 of the paper

4.1 Physical Constraints and Module Capacity

The practical limit on the number of PCBs that can fit on a single backplane is about 16. This
immediately forces us to define a single PCB card as containoghtwules. A module continues to be
defined as hang a single FPGA, RAM, and interconnectit mov two modules are placed on a single
card, and the smallest system i®tmodules. This also slightly reduces the total number of wires on the
backplane compared to an implementation with one module per PCBeh& lgiring is nav contained
within one PCB. Furthermore, the maximum wire length is half of the length thalid e with a 32 slot
backplane. While the total number of wires on the backplane is slightly reduced, the number of pins per
PCB is nearly doubled, requiring an 800-pin connector on the card.

4.2 RAMs

RAM access speed is &k to be the performance limit in mampplications. Although all signals
between FPGAs are routed through the interconnectioronietey maximize routing flebility, the RAMs
are directly connected to FPGASs to reduce délap factors mitigite the loss of flability that this incurs.

Transactions on VLSI

page 14

10 connector Debugging

FPGA FPGA
house- f
keeping fr
RAM RAM
clocks 10 lcube 0
it
RAM RAM
11 Icube rl
im
i
switch lcube Icube | [switch
ibl ibr

0 0 y

Backplane connector
Figure 4.1 Organization of the TM-2 Printed Circuit Board

First, address and data pins are permutable in RAMSs, so there is some freedom for the FPGA router to
choose pins. Second, RAMs are leggemsve than FPGAS, so it is reasonable to include gelamount

of RAM, and preide the ability to use FPGA pins connected to unused RAM pins for general
interconnect. As a result, certain FPGA pins are hardwired to RAM pins, and are also connected to the
interconnect structure.

Each FPGA on the TM-2 hasdvibanks of RAM directly connected to the pins of the FPGA. Each bank,
labelled 0 and 1, can contain up to 256K*64 bits. This requires a total of 174 address, data, and control
pins on each FPGA. These pins are also connected tovtlestlterel interconnect that can pide a
sufficient number of pins. The reason for choosing thveest level interconnect for RAM pins is that
higher level interconnect in the hierargitan alvays be used for \eer level purposes, it not vice ersa.

This requires the use ofel-1, level-2, and lgel-3 interconnect, depending on the size of the system.

Direct control of the RAMs wuld require eight byte enables, read enable, and write enable pins for a
total of 10 pins per RAM bank. FPGA pins are a reddyi scarce commodityand so to reduce the number
of pins while still preiding flexible control of the RAMs, each bank is controlled by a 5-bit code that
encodes the size of the access, andiges the lav address bits for accesses smaller than 64 bits.This
method verks well for systems that access memory as a linear, &uiaig poor for systems thatant to

Transactions on VLSI

page 15

access an arbitrary subset of bytes inoadwor substrings aligned at smaller boundaries, such as graphics
applications. A better approachould have been to ally the choice of both encoded accesses and ra
accesses.

4.3 Debugging Facilities

Delugging fcilities must be praded so that the user can dynamically probg signal in the system,
after partitioning, placement, and routing of the system has been performed. Althougbinglpins are
similar to 1/0, an important distinction is that it must be possible to selgstigmal for dehgging without
rerouting the entire system. It must be possible to accessigmal while only performing incremental
reconfiguration of the systemo Bupport this, the TM-2 has a 32-biisbthat spans the entire system.
Every crossbar chip is also connected to thisidgimg lus. Ary signal that isaailable on an FPGA or I/
O pin can be probed in real time by reconfiguring whieherossbar chip is connected to it.

A second option for delgging is a JAG serial chain. A JAG chain is connected to all FPGAs and
crossbar chips. Although this is muchveéw than the real-time daef@ging lus, it can inspect the state of
the FPGAs wen when the pad ders are disabled, which can happen during systemtorrent &ults.

4.4 Module Design

Figure 4.1 illustrates arverview of the design of the TM-2 PCB. The TM-2 uses I-Cube 1Q320 Field-
Programmable Interconnect Bees for the programmable interconnect. Thesgcds implement a 320-
pin crossbarnecessitating that the TM-2 interconnect be partitioned interaedeices. The use of
delugging connectors increases the total number of pins required sliglitgll of the interconnect for
two TM-2 modules can be accommodated in four 1Q32dcds. The I-Cube labelled in the figure
implements the outer stage of the routing mekwfor the I/O signals, and thevid-1 crossbar for both
modules. Although the systemaw described in Section 3 awimg one I/O connector per module, since
no system has more than one 1/0 pey modules, a single I/O connector and crossbar w@ed on each
PCB. Connections between I-Cuband I-Cubegbl andibr provide the signals between theastages of
the routing netwrk. I-Cubeim implements the crossbhar avdéd1 and higher for both modules, and I-
Cubesibl andibr implement higher kel crossbars for the left and right modules respelgti Some

analog switches are required to share pins betweel, thad C; pins for the 32-module configuration to

implement all interconnect within four I-Cubes.

4.5 Automated Design Using TM2-gen

Hand design of the TM-2 PCBowld be a tedious and errprone process. Instead, we implemented a
program calledm2_gento automate the design proce¥m?2_genis controlled by a small number of
parameters that define the PaBn2_genallocates pins to the FPGAs and I-Cube crossbars according to
the specification, and applies a number of consigtehecks. It also generates the netlist for the PCB and
for the backplane. Finallyt generates a systenvés description file that specifies the connectionveing
FPGA to each of the I-Cube chips. This information is in the form of a flat file thatsnmakassumptions
about the TM-2 hierarchical routing structure. It is used by the-dhiiprglobal routergr, which reads in

Transactions on VLSI

page 16

this description file and performanious consisterycchecks to madk sure that the file describes a logically
correct structure, and reports the total amounvail@ble routing resource&r has no assumptions about
the routing structure, and has detectagshintm2_gen (unfortunately after the first backplaneas sent
out for fab!)

4.6 Clocking

High quality low-skew programmable clocks are required by the gsarcuits, as well as the ability to
emplgy external clocks. The TM-2 has a field-configurable clock generator on each PCB, which generates
four clocks, tvo of which are distribted on the clock netwks of the Altera 10K50, and twof which are
distributed on the lv-skew routing networks of the Altera 10K50. The field-programmable clock
generators are implemented in a clock FPGA, which generates 4-bit nibbles for each of the clock
waveforms at a 25MHz rate. Each bit represents the laieevof the clock for a 10ns time intatvand
the waveform pattern is serialized using a system-wide-36ew 100MHz clock that is distrilted by a
high quality clock tree. This enables user logic in a separate clock generation chip to produce clock
patterns of arbitrary comptity with 10ns edge resolution. A separate synchronization line is connected to
all clock FPGAs to allw them to synchronize clock patternsorFexample, a 70ns clock auld be
generated using four distinct nibble patterns repeating in a periodic manner and the synchronization line
would be used to signal the first of these.

Up to four eternal clocks can be used in the TM-2 dllow arbitrary phase related clocks to be
generated, each of thgternal clocks enters a serial to parallel shiffiseer which pravides nibble-wide
data to the clock FPGA at a 25MHz rate. The clock FPGA can then generate arbitrary clocks that are phase
aligned to thexernal clocks.

Two more clock generators are pided for each RAM bank to control the Output Enal@&)(and
Write Enable YWWE) signals. Each of these clock generators is qualified by the logic that decodes the RAM
control signals as described in Section 4.2. Thisvallthe FPGA to generate control signals at its clock
rate, while qualified write enable signals are generated to 10ns resolution. $oigl&®RAM access is
possible with clockycles only slightly longer than RAM access time.

4.7 Status, Pwer Monitoring, Host Communication and Boot

Each PCB contains a small FPGA, called the hoemsgikg chip, which is connected to askio allav
configuration of the system and status monitoring. Thési®& connected to a standard printer parallel port
on a host SUN Sparcstation and usesnaviires on the TM-2 backplane. It als each of the FPGA and
interconnect chips in the system to be vidlially configured. A byte-serial protocol that aHe rapid
burst mode transfers of awehundred KB per second enables complete system configurationw a fe
seconds.

The house&eping chip also is connected to each of the FPGAs via four wires called the nibke b
simple protocol is defined for thisi® that can be used for moderate speed access to tisecuseit. High
bandwidth host communication is performe®iocustom designed hardve that attaches to theternal I/

Transactions on VLSI

page 17

O connectors.

Design errors may cause the usegircuit to drve conflicting logic alues onto a net, causing an
overcurrent into the FPGAs. Although the FPGAs areisblenough to tolerate a moderateeleof aluse,
it is desirable to detect this situation and shutrdthe system. Both the FPGAs and the I-Cube chips ha
dedicated pins that can disable the padedsi The TM-2 contains p@r supply current monitoring
circuitry that will detect anwercurrent into the FPGAs or I-Cubes, shuivddahe appropriate chips, and
provide an alert to the host.

5 Software

The CAD softvare for the TM-2 will ultimately prnade a fully automated fle from the uses design to
configuring the TM-2. This includes ngéng multiple design files, generated either from HDLs or
schematics, partitioning the neivik across modules to fit the logic, embedded RAMs atetreal RAMs,
global routing to preide connections between the modules, bit file generation, and interacti
configuration and delgging. D date, we hae completed only part of this flo Designs at present must be
manually partitioned among the FPGAs. Fully automated global routingnismglace, as well as a
number of debgging and 1/O features as described welo

5.1 Ports Package

The TM-2 port multipleor package can be used to create a simple, easy to use, moderate speed
communications path between a useircuit and the host comput&ata can be sent between the circuit
and a uses program running on a remot@nkstation @er the netwrk, with no hardwre design required
by the userTo use the package, the communication ports of the circuit are listed in a port description file
that gives the name of each port, its direction (input or output), its width in bits and the namgs of an
handshaking signals to be used. The ports package consists pditis: a hardare generation package,
and a software inter&ce.

When the circuit is compiled for the TM-2, the haedes generation package synthesizes a wrapper
circuit and adds it to the usgrtircuit.The wrapper circuit handles the details of transferring data to or
from the ports of the user'circuit over the 4-bit nibble s to the hous&eping chip, which will then
communicate with a program running on the host (cafteimon) over the parallel port.

The softvare side of the ports multipler package is a library of routines that can be called from a user

Transactions on VLSI

page 18

Figure 5.1 The TM-2 Printed Circuit Board

program running on aevkstation. Resembling the UNIX stdio package, the routinew &tle program to
open named ports on the circuit in the TM-2, and transfer data to or from them.

5.2 Global Router

The global router for the TM-2, callep, determines the configuration of the 1-Cube interconnect chips
given the inteichip connection netlisGr models the system as a collection ofj&ds, each of which may
hasre some hardwired resources directly connected to it, and a collection of crossbar chipgietharer
FPGAs, RAMSs, I/O connectors, and LEDs, angéhan associated property describing pin permutability
Gr reads an interconnect file, generatedrb® gen which describes the connections betweeyetarand
interconnect chip, and a netlist generated by the partitioner oiGrsperforms best-fit routing by sorting
the nets according to theivie of TM-2 routing required, andimout, and uses the interconnect chip with
the best fit to implement the neGr is written with simplicity as its foremost goal, and uses

straightforvard algorithms that ar@(nz) in the number of pins. Despite this, it can route a full size
system in under 20 seconds on a 70MHz Sparcstati@n produces the configuration information for the
I-Cube bit file generation, and a netlist information file that can be used to incrementally modify the
routing for deligging purposes. It also determines the pin assignment for each signal that is required for
each FPGA.

5.3 Tm2mon

Transactions on VLSI

page 19

Diagnostic and monitoring softewe for the TM-2 is bilt as a collection of small tools that communicate
with a central control process, calld@n2mon. Tm2mon is a serer process that is responsible for
downloading, communication, status monitoring, andudgjing the TM-2. It runs on the machine with the
parallel port connection to the TM-2. It creates a local areaonktsoclet and accepts connectiongeo
which requests for denloading, status, and nibbleid protocol padakts can be sent. This pides the
highly useful feature that the base haagevcan be easily accessed and manipulated by otinkstations
on the netwrk, including the Internet. dbls running on other machines interact with the TM-2 by
communicating using thien2mon protocol. In addition to standardwlnload and status monitoring tools,
users can create custom saite front ends that interact with the TM-2. Dgbing softvare can read the
network routing file produced bgr, and incrementally modify the I-Cubes to access the desired signals on
the delngging lus.

6 Status and Plans

We hare constructed and detpged tvo TM-2 PCBs. A picture of one is shio in Figure 5.1. &r a
colour \ersion, please see http://wvegcg.toronto.edu/~jayar/research/tm2.htme Wae constructed
several simple circuits, and the compile andvdtbading process appears to beustb Our most recent
circuit is a triangle dmaing circuit that rasterizes triangles into a framdfdr on a personal computer
transferring the dataver a PCI his. This comprises about 700 lines of C code, compiled usirtgnttee
compiler [9].

We plan to perform minor har@we reisions and construct a full-scale 16 PCB system within tRe ne
year This system may also use the Altera 10K100 to suppert 2M cates. It will also incorporate a
DRAM on each PCB to store multiple configurations of the FPGAs and I-Culiths.thdé on-board
configuration memotya fav dozen configurations can be stored on the TM-2, amchidaded in a fe
tens of milliseconds.

7 Conclusions

In this paper we he presented the architecture and design of the TM-2xtagemeration Field-
Programmable rapid prototyping system. The major feature of the architecture isvéherauting
architecture, whichwaids the high wiring density thatould be incurred by a gallar crossbar structure.

At present, tw PCBs hae been bilt and tested. One PCB has been used to prototyeeasgraphics
acceleration hardare algorithms, which directly e the frame bffer of an personal computer through a
PCI kus interfice. A lage efort has been placed into the sofie system which automatically routes and
programs the complete system.

8 Acknowledgments

The authors wish to ackmtedge the donations of components from Altera and 1-Cube, and the direct
funding from NOREL Technologies, the Natural Sciences and Engineering Research Council of Canada,
and Ricoh Corporation.

Transactions on VLSI

[1]
(2]

3]
[4]
[5]
[6]
[7]

(8]
9]

page 20

References

M. Butts, J. Batchelled. \arghese, An Efficient Logic Emulation System”, Proc. ICCD, 1992, pp. 138-141.

M. Slimane-Kadi, D. Brasen, G. SaugiéA Fast-FPGA Prototyping System That Usesxjransve High-
Performance FPIC”, in Proc. 2nd Annuabkkshop on FPGAs, 1994.

R. Tessier J. Babb, M. Dashl, S. Hanon, A. &gwal, “The Mrtual Wires Emulation System: A Gateftefent
ASIC Prototyping Enironment”, Proc.2nd Annual Bvkshop on FPGAs, 1994,

J. Millemin, P Bertin, D. Roncin, M. Shand, H.oliati, P Boucard, “Programmable Agé Memories:
Reconfigurable Systems Come of Age”, Proc. IEE&n$ VLSI Systems, March 1996, pp. 56-69.

J. Arnold, D. Buell, E. Dds, “Splash 2", in Proc. 4th AnnualGM Symp. on Brallel Algorithms and
Architectures, 1992, pp. 316-322.

R. Amerson, R. CartekV. Culbertson, PKeulkes, G. Snider‘Teremac - Configurable Custom Computing”, in
Proc. FPGA-95, pp. 32-29.

D. Gallowvay, D. KarchmerD. Chav, D. Lewis, J. Rose, “The ransmogrifier: The Unrersity of Toronto Field-
Programmable System”, Second Canadiarkéhop on Field-Programmable \Bees, Kingston, Ontario, June
1994. Also wmailable as CSRI 8chnical Report 306 via angmous ftp from ftp://ftp.csri.toronto.edu/csri-
technical-reports/306/.

P. Chan and M. SchlagAtchitectural Tadeofs in Programmable-dé&e-Based Computing Systems”, in Proc.
FPGAs for Custom Computing Machines, 1993, pp. 152-161.

D. Gallovay, “The Transmogrifier C Hardare Description Language and Compiler for FPGASs”, IEEE
Symposium on FPGAs for Custom Computing Machines, FCCM ‘95, April 1995.

[10]M. Khalid and J. Rose, “The fetct of Fixed I/O Pin Positioning on The Routability and Speed of FPGAec.

Canadian Wrkshop of Field-Programmable ees, FPD 95, pp. 94-102.

[11]Altera Flex Logic Handbook, Altera Corp., 1996.

Transactions on VLSI

