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Abstract. Monte Carlo �MC� simulations are being used extensively in
the field of medical biophysics, particularly for modeling light propa-
gation in tissues. The high computation time for MC limits its use to
solving only the forward solutions for a given source geometry, emis-
sion profile, and optical interaction coefficients of the tissue. How-
ever, applications such as photodynamic therapy treatment planning
or image reconstruction in diffuse optical tomography require solving
the inverse problem given a desired dose distribution or absorber dis-
tribution, respectively. A faster means for performing MC simulations
would enable the use of MC-based models for accomplishing such
tasks. To explore this possibility, a digital hardware implementation of
a MC simulation based on the Monte Carlo for Multi-Layered media
�MCML� software was implemented on a development platform with
multiple field-programmable gate arrays �FPGAs�. The hardware per-
formed the MC simulation on average 80 times faster and was 45
times more energy efficient than the MCML software executed on a
3-GHz Intel Xeon processor. The resulting isofluence lines closely
matched those produced by MCML in software, diverging by only less
than 0.1 mm for fluence levels as low as 0.00001 cm−2 in a skin
model. © 2009 Society of Photo-Optical Instrumentation Engineers.
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Introduction

hotodynamic therapy �PDT� is an emerging treatment mo-
ality in oncology and other fields. Improvements in PDT
fficacy, particularly for interstitial applications, require faster
omputational tools to enable efficient treatment planning.
he fundamental mechanism of PDT is the administration of a
hotosensitizer, followed by the irradiation of the target vol-
me with light of a specific wavelength to activate the photo-
ensitizer locally.1–4 Advances in PDT have enabled this
herapy to be applied to more complicated treatment volumes,
articularly in interstitial applications such as those in the
rostate and the head and neck region.5–9 Compared to con-
entional treatments such as surgery, radiotherapy, and che-
otherapy, PDT is a minimally invasive procedure that

chieves tumor destruction without systemic toxicity. This is
specially beneficial for head and neck cancers, since the sur-
ical resection of even small tumors can lead to functional
mpairment or disfiguration.10 To maximize the efficacy while
educing complication rates, it is important to employ accu-
ate models of light propagation in turbid media that can take

ddress all correspondence to: Lothar Lilge, Department of Medical Biophysics,
ntario Cancer Institute, Princess Margaret Hospital, Rm. 7-416, 610 University
venue, Toronto, ON, Canada M5G 2M9. Tel: 416–946–4501 x5743; Fax: 416–
46–6529; E-mail: llilge@uhnres.utoronto.ca
ournal of Biomedical Optics 014019-
into account complex tumor geometry and the heterogeneity
in the tissue’s light interaction coefficient and responsivity to
PDT, for clinically robust treatment planning.

Among other factors, light dosimetry plays a critical role
in PDT treatment planning. Selective tumor necrosis is largely
dependent on reaching a sufficiently high light dose or fluence
�in J cm−2� within the tumor while not exceeding the thres-
hold level of necrosis in the surrounding normal tissues.
Therefore, a successful PDT treatment relies on the accurate
computation of the fluence throughout the clinical target vol-
ume, which comprises the tumor and other surrounding tis-
sues or organs at risk. Among other techniques for computing
the fluence distribution, the Monte Carlo method is often em-
ployed due to its flexibility in modeling 3-D geometries of the
tissue with varying optical properties and light sources with
predetermined emission patterns, its high reproducibility, and
its accuracy.11 Similarly, Monte Carlo �MC� simulations are
used widely as the gold standard in radiotherapy treatment
planning and there is a clear trend toward adopting the MC
method for clinical radiotherapy dose calculations in commer-
cial treatment planning systems.12,13 Unfortunately, such
simulations are also known to be very time consuming and

1083-3668/2009/14�1�/014019/11/$25.00 © 2009 SPIE
January/February 2009 � Vol. 14�1�1



d
m
t
h
t
c
n
d
e
p

p
i
v
w
p
i
p
a
p
p
t
l
t
w
h
c

�
t
i
d
m
r
t
s
n
a
c
p

h
s
a
h
r
m
c
M
p

2
2
T
s
i
i
b
t
i

Lo et al.: Hardware acceleration of a Monte Carlo simulation…

J

ifferent variance reduction schemes or efficiency-enhancing
ethods are traditionally introduced to reduce the computa-

ion time.14 However, the computation time for MC remains
igh and this limits its use to solving only the forward solu-
ions for a given source geometry, emission profile, and opti-
al interaction coefficients of the tissue. PDT treatment plan-
ing requires solving the inverse solution to achieve a given
esired dose distribution. Accelerating MC simulations would
nable the use of MC-based models for solving such inverse
roblems.

Attempts to accelerate MC simulations for modeling light
ropagation in tissues have been limited to software parallel-
zation schemes. For example, one such scheme involved di-
iding the simulation into many independent groups, each of
hich was executed on a different computer or processor in
arallel.15,16 One potential problem with the software parallel-
zation approach is the need for dedicated access to a com-
uter cluster to achieve the desired performance. Overall, this
pproach is not easily accessible as the costs of high-end com-
uting infrastructure are substantial, thus hindering the de-
loyment of complex MC-based models. This paper explores
he use of custom-built hardware to accelerate the MC simu-
ation for computing light dose in PDT. The key advantages of
his approach include the greater scalability, portability, as
ell as lower power consumption due to the use of dedicated
ardware. In addition, a purpose-built system could be signifi-
antly cheaper than a large-scale computer cluster.

Using the widely accepted MC for multilayered media17

MCML� code as the gold standard, this paper demonstrates
he feasibility of the hardware-based approach for accelerat-
ng MC simulations applied to the computation of fluence
istributions. The final MCML-based hardware design, imple-
ented on a programmable hardware prototyping platform,

educes the computation time of MCML simulation by 80
imes compared to a 3-GHz Intel Xeon processor. Unlike
oftware-based techniques, this custom hardware design does
ot use general-purpose processors to execute computation-
lly intensive operations. Instead, the hardware design was
reated de novo on programmable logic devices called field-
rogrammable gate arrays18 �FPGAs�.

The remainder of this paper discusses the FPGA-based
ardware design, called here FPGA-based MCML or FBM for
hort. Beginning with a brief overview of MCML, the unique
spects of the design are explained to highlight how various
ardware acceleration schemes were utilized to achieve the
educed computation time. The validation results and perfor-
ance analysis are presented, followed by the possible impli-

ations of the significant reduction in computation time for
C-based models within the context of PDT treatment

lanning.

MCML
.1 Overview
he MCML approach and code17 provides an MC model of
teady state light transport in multilayered media. It assumes
nfinitely wide layers and models an incident pencil beam that
s perpendicular to the surface. Extended sources and their
eam profiles are modeled separately by convolving the pho-
on distribution obtained for a pencil beam �for example, us-
ng the CONV program19�. Three physical quantities are
ournal of Biomedical Optics 014019-
scored in MCML, namely absorption, reflectance, and trans-
mittance. Absorption in the tissue is stored in a 2-D array
A�r��z�, which represents the photon absorption probability
density as a function of radius r and depth z �measured in
cm−3, and normalized to the total number of photon packets�.
It can be further converted into photon fluence �measured in
cm−2�. To obtain the isofluence lines of various light sources
such as a Gaussian beam the CONV program is used to parse
the simulation output file and generate a new file with the
locations of the contour lines.

To reduce computation time, two variance reduction
schemes are employed: scoring in cylindrical coordinates and
the use of photon packets. Nonetheless, millions of photon
packets are still required for generating a low-noise fluence
distribution map. Each photon packet undergoes three key
steps that are repeated continuously in the simulation: hop,
drop, and spin, following the naming convention in the
MCML program �Fig. 1�. The hop step moves the photon
packets from the current position to the next interaction site
by computing the step size through sampling a probability
distribution based on the photon’s free path. The drop step
adjusts the photon packet’s weight to simulate absorption,
based on the absorption coefficient at the site of interaction.
Finally, the spin step computes the scattering angle using the
Henyey-Greenstein function.20 When a photon packet exits
the tissue through the top or bottom layer, it is terminated. If
the photon weight has reached a threshold value, a survival
roulette is performed to determine if the tracking of the pho-
ton packet should end. If the photon survives, its weight is
increased due to energy conservation requirements.

2.2 Modifications
Considering the envisioned application in PDT treatment
planning and the hardware design requirements, two key
modifications were made to the MCML program. First, since
fluence is the quantity of concern in PDT treatment planning,
only the absorbed photon probability density as a function of
position within the 2-D absorption array A�r��z� is recorded;
the reflectance and transmittance were ignored to reduce the
memory resource requirements in hardware. The second ma-
jor modification involved the conversion of all floating-point
operations into fixed-point operations. This nontrivial conver-
sion was necessary because floating-point hardware is very
inefficient on FPGAs. One subtle detail of this conversion is
the need for look-up tables, commonly used to avoid compu-
tationally intense operations such as trigonometric and loga-
rithmic functions.

Hop

Drop and Spin

Reflect or
Transmit?

Roulette

Hit Boundary

Not Hit
Boundary

Fig. 1 Key steps in the MCML program.
January/February 2009 � Vol. 14�1�2
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FPGA-Based Hardware Acceleration
his section provides background information on general
ardware design on FPGA-based platforms, primarily for
eaders interested in exploring hardware acceleration for their
pplications. The details of the FBM hardware design are
iven in Sec. 4.

.1 FPGAs
n FPGA chip is a prefabricated silicon chip that can be
rogrammed electrically to implement virtually any digital
esign. Its flexibility is derived from its underlying architec-
ure, consisting of an array of programmable logic blocks in-
erconnected by a programmable routing fabric. Additionally,

odern FPGAs contain two specific structures that are used
xtensively in this work: on-chip memory blocks that can be
sed to store reasonable quantities of data �a maximum of
bout 7 Mbits on the devices used� and “hard” �dedicated
onprogrammable circuitry� multipliers.

An FPGA chip enables the design of dedicated custom
ardware, providing increased performance for computation-
lly intensive applications, without the high power consump-
ion and maintenance costs of networked clusters. Compared
o graphics processing units �GPUs�, FPGAs offer greater
exibility in the design as one has the ability to customize the
nderlying architecture, instead of being constrained by it.
he subtlety of the NVIDIA GPU architecture, for example,
an make it difficult to achieve high performance for certain
pplications, such as those with significant divergent behav-
ors leading to warp serialization and undesirable memory ac-
ess patterns. Therefore, the FPGA-based approach was se-
ected to create hardware architecture that is tailored to the
ata flow and computation for the specific application.

The design presented in this paper was implemented on a
ulti-FPGA platform called the Transmogrifier-4 �TM-4�,21

eveloped at the University of Toronto. This platform con-
ains four FPGAs from the Altera Stratix I device family �Al-
era Corporation, San Jose, California� and is designed to
ommunicate easily with a computer.

.2 Hardware Design Method
ardware design requires the explicit handling of two con-

epts that are normally abstracted from software design:
ycle-accurate design and structural design. Cycle-accurate
esign requires a hardware design that must specify precisely
hat happens in each hardware clock cycle. A typical soft-
are designer will not be concerned with the number of clock

ycles consumed in a processor for a section of code �al-
hough they do profile the code to determine and reduce per-
ormance bottlenecks�. Structural design requires a hardware
esigner to specify exactly what resources to use and how
hey are connected. For software design, the underlying archi-
ecture and the internal execution units of a processor are not
pecified by the program or considered by the programmer.

To simplify the design flow in hardware development,
omputer-aided design �CAD� tools are used, which are
nalogous to the compiler used by the software programmer.
AD tools typically accept a hardware description language
s input, which is a textual description of the circuit structure.
he tools perform many sophisticated optimizations to deter-
ournal of Biomedical Optics 014019-
mine the precise logic implementation, location, and connec-
tivity routing to create a working high-speed digital hardware
implementation.

To implement a large hardware design, the problem must
be broken down into smaller subproblems, each of which is
solved by the creation of a module that is simulated in a
cycle-accurate manner to ensure data consistency. Due to the
vast amount of information gathered, a full system simulation
cycle-by-cycle for large designs such as FBM will be too
time-consuming.

Therefore, an intermediate stage involving the use of a
simpler C-like language that models the cycle-accurate hard-
ware design is employed to simulate the full system more
quickly. This stage also allows for the testing and debugging
of the additional complexity of cycle-accurate timing before
considering structural design necessary in the final hardware
design.

The design of an MCML system on the TM-4 followed
these hardware design methods, including the intermediate
cycle-accurate timing stage. Verilog22,23 was selected as the
hardware description language, and Altera Quartus II 7.2 soft-
ware was the CAD tool to synthesize the Verilog design into
hardware structures as well as to configure the FPGA. A
C-based hardware modeling language called SystemC24 was
used to develop the cycle-accurate intermediate stage between
software and hardware design.

3.3 Hardware Acceleration Techniques
An FPGA can implement any digital circuit including those
with significant amounts of computation and the custom cir-
cuit can run faster than software on a processor for two rea-
sons. First, an FPGA can implement many computational
units in parallel and second, it allows exact organization of the
data flow to keep all computational units busy.

A key factor limiting the amount of parallelism and hence
the speed of an FPGA-based solution is the number of logic
elements available on the device. Therefore, minimizing the
number of logic elements required for binary logic computa-
tion maximizes the performance per FPGA.

To achieve the goal of maximizing parallelism and com-
putational throughput, three hardware acceleration techniques
are commonly applied. First, to greatly reduce the size of a
computational unit, the conversion from floating point to fixed
point data representation is used, although careful design and
modeling are essential to ensure that the proper precision
level is maintained. Second, look-up tables can be created in
on-chip memory to precompute values for expensive opera-
tions �such as trigonometric functions�, thereby saving a large
number of logic elements. The third key technique is pipelin-
ing, which optimizes the computational throughput. The pipe-
lining approach, similar to an assembly line, breaks down a
complex problem into simpler stages, each of which is re-
sponsible for performing a simple task. Since each stage per-
forms its task independently, the net throughput is increased,
thereby speeding up the computation. An example of a pipe-
line is shown in Fig. 2, where the calculation Y =aX2+b is
broken down in a pipelined fashion into three stages. There-
fore, a continuous stream of a new input data can be fed into
this pipeline. Assuming each stage here takes the same
amount of time, pipelining increases the throughput by a fac-
January/February 2009 � Vol. 14�1�3
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or of three. While pipelining leads to a significant perfor-
ance gain, the complexity involved in designing and verify-

ng the individual stages increases appreciably in
ophisticated designs such as MCML.

FBM
.1 Hardware Design
he hardware-accelerated MCML design contains both hard-
are and software components. The hardware component re-

ides on the TM-4 system and performs the core MC simula-
ion. The software on the host computer performs the
reprocessing steps and postprocessing steps. The former in-
ludes the parsing of the simulation input file and the initial-
zation of the hardware system based on the simulation input
le. The latter includes the transfer of the simulation results
rom the TM-4 back to the host computer and the creation of
he simulation output file containing the absorption array. The
bsorption array is then used to generate the fluence distribu-
ion. The key steps illustrating the overall program flow from
he user’s perspective are shown in Fig. 3.

The TM-4 platform21 itself contains four Stratix I FPGA
evices and each FPGA device houses one instance of FBM.
he four instances together share the execution of the MC
imulation. FBM, in turn, consists of two major hardware
odules: a controller and a photon simulator core. The con-

roller implements miscellaneous tasks that are not part of the
omputationally intensive simulation of each photon. It reads
nitialization information from the host computer and writes
he simulation results back when the simulation is completed.
his controller keeps track of the status of the simulation and
ommunicates with the host computer.

The photon simulator is the core of the design and it dic-
ates the overall performance of the system. The architecture
f the simulator core is shown in Fig. 4. The table below the
rchitectural diagram outlines the on-chip memory usage, key

Stage 1
X2=X*X

Stage 2
aX2=a*X2

Stage 3
Y=aX2+b

InputX OutputY

Fig. 2 Example of a three-stage pipeline for computing Y=aX2+b.

Interface
Software

TM4

Simulation
Inputs

1

2 3

4 Simulation
Results

FPGA 1

FPGA 3

FPGA 2

FPGA 4

ig. 3 Overall program flow: step 1, parsing of the simulation input
le; step 2, transfer of initialization information to the TM-4; step 3,

ransfer of simulation results from the TM-4; and step 4, creation of the
imulation output file.
ournal of Biomedical Optics 014019-
computational blocks, and the latency �number of clock
cycles� required by each module. The on-chip memory is
mainly dedicated to storing look-up tables and the absorption
array A�r��z�. As for the key computational blocks, the most
resource intensive blocks are listed, such as multipliers, divid-
ers, and square root blocks. The fact that only eighteen mul-
tipliers, two square root blocks, and one divider are required
by the compute-intense blocks in modules 4a, 4b, and 4c in-
dicates the extensive optimizations applied to the current
hardware design. Finally, the latency represents the number of
stages in each module of the pipeline. A single pass through
the entire pipeline is equivalent to a single iteration in the key
loop of the MCML program �Fig. 1�. The pipeline has 100
stages, meaning 100 photon packets at different stages in the
simulation are handled concurrently once the pipeline is filled.
Increasing the number of stages serves to decrease the com-
plexity of each stage, thereby improving the clock speed, as
already discussed. An example of using this technique is mod-
ule 2, which lies in the critical path of the circuit. Sixty stages
were used to increase the clock speed of this part of the circuit
and hence the overall clock speed of the pipeline at the ex-
pense of increased complexity. To illustrate the complexity of
the photon simulator core, the implementation of the Spin
module, which computes the scattering angle and updates the
new direction of the photon packet,17 is described here.

�x� =
sin ���x�z cos � − �y sin ��

�1 − �z
2

+ �x cos � . �1�

A direct implementation of this computation would be very
inefficient, resulting in low clock speed and high resource
usage for each of the three direction cosines. The Stratix
FPGAs on the TM-4 only contain dedicated hard multipliers,
and do not contain dedicated hardware to perform division,
square root or trigonometric functions. Hence, look-up tables
stored in the on-chip memory are used to approximate the
trigonometric functions. The division and square root func-
tions are implemented directly in the FPGA programmable
fabric since the high precision required here makes a look-up
table based solution impractical. As these computations are
relatively slow, they are split into many pipeline stages to

Select

1. Compute
Step Size

2. Check
Boundary 3. Hop

4a. Reflect
or Transmit

4b. Drop

4c. Spin

5. Roulette

New Photon
Packet

Previous Photon
Packet

Module On-chip memory
usage

Key Computational blocks
(Resource Intensive)

Latency (Number of clock
cycles)

1. Compute Step Size Log lookup table 3 multipliers 1
2. Check Boundary --- 3 multipliers, 1 divider 60
3. Hop --- 3 multipliers 1
4. a) Reflect or Transmit
b) Drop
c) Spin
Shared Resources

---
Absorption array
Trig lookup tables
Fresnel and other
trig function lookup
tables

---
3 multipliers, 1 square root
---
15 multipliers, 1 divider, 1
square root

37
37
37
N/A

5. Roulette --- --- 1

Fig. 4 Pipelined architecture of FBM.
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ncrease the clock speed. The same pipelining technique is
sed to improve the performance of multipliers. Wherever
ossible, multipliers and dividers are shared to reduce re-
ource usage, at the cost of increased complexity of the
esign.

Another unique aspect of the hardware design is the mul-
iplexing �sharing� of computational units among modules 4a,
b, and 4c, shown in Fig. 4. This is possible because the result
rom only either modules 4b and 4c or module 4a alone is
sed at any given time. The tight coupling of all connected
odules is required to minimize resource usage and maximize

peed. It is imperative that modules 4a, 4b, and 4c finish all
heir operations within exactly 37 clock cycles to ensure data
onsistency. The final stage �Roulette� determines whether a
hoton packet is still active, in which case it continues iterat-
ng at the beginning of the pipeline. Otherwise, a new photon
acket is selected to immediately enter the pipeline.

.2 Trade-Offs

ue to the resource constraints on the prototyping platform
sed, several important trade-offs were made on the final
ardware design. First, the size of the on-chip memory
7.4 Mbits for the Stratix I chip on the TM-4� limited the
recision of each look-up table. Therefore, the number of en-
ries for each look-up table was determined based on the sen-
itivity of the function in the expected range of values. For
xample, the logarithmic function used in the computation of
he step size s is highly sensitive within the range of 0 to
—the expected range of values provided by the uniformly
istributed random number �, as shown in Eq. �2�:

s = − ln���/�t. �2�

o further maximize the on-chip memory space available to
he look-up tables, the absorption array was limited to a maxi-

um size �256�256 elements in the radial and z direction,
espectively�. Also, the number of layers supported by the
ardware was set to a maximum of five due to the same
emory constraints. Note that even though the number of

ayers is fixed at a maximum of five layers, the layer proper-
ies can still be modified easily through the same input simu-
ation file format as used in the MCML program. The dimen-
ions of the voxels �dr and dz� can also be modified.

Table 1 Optical properties of the five-layer skin

Layer ua �cm−1�

1 �epidermis� 4.3�32�

2 �dermis� 2.7�23�

3 �dermis with plexus superficialis� 3.3�40�

4 �dermis� 2.7�23�

5 �dermis plexus profundus� 3.4�46�

* Tissue optical properties according to Tuchin.25
ournal of Biomedical Optics 014019-
5 Validation Procedures
5.1 Validation Model

For the purpose of validation and performance comparison, a
skin model was selected as the simulation input to the MCML
program. The tissue optical parameters presented in Table 1
are based on the light scattering study of tissues by Tuchin.25

The optical parameters of the skin for two wavelengths were
used, namely 633 nm and 337 nm. To test the accuracy and
performance of the hardware system with different tissue op-
tical parameters, the absorption coefficient and scattering co-
efficient were varied systematically in a separate experiment,
as described in the next section.

5.2 FPGA System-Level Validation

System validation consisted of three phases. The first phase
involved verifying the FBM simulation output against the
gold standard MCML executed on an Intel Xeon processor.
Since MC simulations are non-deterministic, it is important to
separate the error introduced by the hardware implementation
from the statistical uncertainty inherent in an MC simulation.
In other words, a fair comparison between MCML and FBM
can only be obtained by considering the variance in the output
of the MCML simulation. The output is a 2-D array that
scores the absorbed photon probability density �in cm−3� as a
function of radius and depth. To quantify the difference be-
tween these arrays, the relative error E�ir��iz� between the
corresponding elements is computed using the following for-
mula:

E�ir��iz� =
�As�ir��iz� − Ah�ir��iz��

As�ir��iz�
, �3�

where As is the gold standard absorption array produced by
MCML after launching 100 million photon packets, and Ah
contains the corresponding elements in the absorption array
produced by FBM. To visualize the distribution of the relative
error, a 2-D color map was generated, showing the relative
error in percent as a function of position. For comparison, a
reference color map depicts the relative error in the output
from MCML compared to the gold standard absorption array
to account for the statistical uncertainty between simulation
runs. Photon packet numbers ranging from 105 to 108 were
simulated.

- 633 nm �337 nm�.

�cm−1� g n Thickness �cm�

�165� 0.79�0.72� 1.5 0.01

�227� 0.82�0.72� 1.4 0.02

�246� 0.82�0.72� 1.4 0.02

�227� 0.82�0.72� 1.4 0.09

�253� 0.82�0.72� 1.4 0.06
tissue

us

107

187

192

187

194
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To summarize the effect of varying the number of photon
ackets, the mean relative error �Eq. �4�� was computed by
veraging the relative error in all elements in the absorption
rray with values above a randomly selected threshold
0.00001 cm−3�. The setting of a threshold is necessary since
elative error is undefined when As�ir��iz� �gold standard

CML output� reaches zero. This analysis enables the quan-
ification of the impact of look-up tables and fixed-point con-
ersion in the hardware implementation.

Eave =
�iz=1

nz �ir=1
nr E�ir��iz�

nrnz
, �4�

here Eave is defined as the mean relative error, E�ir��iz� is
he relative error for each element �as defined in Eq. �3��, and

z=256 and nr=256.
To further characterize the behavior of the hardware sys-

em with varying tissue optical parameters, the performance
nd relative error based on 108 photons were analyzed as a
unction of the target albedo. In a single-layer geometry, the
arget albedo defined as �s / ��a+�s�, was systematically var-
ed from 0.50 to 0.96 in order to investigate the effects of
issue optical property on both the speedup and error.

The third phase for system-level validation of the FPGA-
ased hardware design involved analyzing the effect of the
rror within the context of PDT treatment planning. Isofluence
aps were generated from the FBM output based on 108 pho-

on packets. The relative shift in the position of the isofluence
ines was analyzed by comparing against the gold standard

CML output.

Results
.1 Validation
igures 5 and 6 show the distribution of the relative error for
05 and 108 photon packets, respectively, using Tuchin’s skin
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model at �=633 nm. In both cases, the accuracy of FBM was
comparable to that of MCML, as demonstrated by the simi-
larity between the two error distributions �Figs. 5�a� and 5�b��.
The statistical uncertainty decreased for the simulation that
used 100 million photon packets, as indicated by the expan-
sion of regions within the r ,z plane showing less than 5%
error �Fig. 6�. This is expected as the variance in MC simu-
lation decreases by 1 /�n, where n equals the number of pho-
ton packets. Figure 6�a� also shows some slight differences of
about 1 to 2% �manifesting as an S-shaped region with lower
error� in the region with a radius of 0.5 cm �the high fluence
region�. Further analysis revealed that this S-shaped pattern
can be eliminated by replacing the random number generator
in the original MCML with the version implemented in the
hardware �Tausworthe generator26�. The disappearance of the
S-shaped pattern with the use of the same random number
generator �Tausworthe generator� shows that the minor devia-
tion observed was due to the statistical differences in the se-
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uence generated by two different random number generators
Figs. 6�c� and 6�d��.

To analyze the effect of photon packet number on the ac-
uracy of the simulation, the mean relative error was com-
uted �Eq. �4��. Figure 7�a� shows that the mean relative error
f FBM closely tracked the mean relative error of MCML,
oth decreasing as the number of photon packets increased.
igure 7�b� shows the impact of converting from double-
recision floating point operations to fixed point operations
ombined with the impact of the use of look-up tables on the
elative error. As shown by the plot, the conversion introduced
n increase in relative error of 0.2 to 0.5%.

In the second phase of the validation, the mean relative
rror as a function of the albedo was plotted �Fig. 8�a��. The
esults show that for albedo values above 0.7, the increase in
rror was 0.5 to 1%, while for albedo values less than 0.7, the
dded error was up to 2%. This increase was mainly caused
y the significant reduction in the number of non-zero absorp-
ion array elements. For example, at an albedo of 0.90, there
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ig. 7 Relative error as a function of the number of photon packets sim
etween two independent MCML runs. �a� �, relative error comparin
esults produced by the C program modeling look-up tables and fixed
oint operations. Each point represents the mean obtained from four
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were 11407 non-zero elements out of 65536 �256 by 256�
elements, while at an albedo of 0.5, only 351 non-zero ele-
ments were left. The small voxel size used �dr=0.01 cm and
dz=0.002 cm� also contributed to this difference.

To investigate the impact of 1–2% additional error within
the context of PDT treatment planning, the isofluence lines for
the impulse response based on the simulation input param-
eters from Table 1 were plotted �Fig. 9�. The isofluence lines
produced by FBM and MCML matched very well. A shift in
the position of the isofluence lines was only noticeable for
fluence levels at 0.00001 cm−2 �eight orders of magnitude
smaller than the fluence near the center—1000 cm−2�. The
detected shift was only around 0.1 mm, which is of little sig-
nificance in PDT treatment planning. Note that the 1 to 2%
error introduced is well within the uncertainties due to the
variations in tissue optical properties, as shown by Rendon
et al.27
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.2 Performance
he execution speed of FBM was compared to the original
CML executed on a single Intel Xeon 3-GHz processor. For
complete end-to-end application runtime comparison, the

untime includes file I/O, system initialization, the MC simu-
ation, and all pre-processing/post-processing operations to
enerate the final simulation output file. Table 2 shows the
pecifications of the test platform used to execute MCML.
he software version of MCML was compiled using full com-
iler optimizations �gcc-O3 optimization flag�.28

As shown in Table 3�a�, the runtime of the MC simulation
sing 100 million photon packets was reduced from over
.5 h in software to approximately 2 min in hardware for the
33 nm case. The overall speedup was 78 times including a
ata transfer time of 8 s. Using the tissue optical properties at
37 nm �Table 3�b��, the overall speedup was 66 times,
ainly due to the much shorter execution time and hence the

elative importance of the data transfer time. However, the
ata transfer rate was far from expected due to a known issue
n the communication channel on the TM-4 prototyping sys-
em. Normally, the communication channel �host-to-FPGA
CI �peripheral component interconnect� bus� supports a
andwidth of 266 MBytes /s for writes to the FPGA and
54 MBytes /s for reads from the FPGA to the host.21 Cur-
ently, it takes 8 s to transfer 610 kBytes of data. Hence, the
se of commercial prototyping platforms with fully functional
ommunication channels should yield a net 84 times speedup
or the 633 nm case and 80 times speedup for the 337 nm case
ithout any modifications to the design. Figure 8�b� shows

hat as the albedo increased, the speedup increased from 77 to
7 times, since the MCML software executes more expensive
omputations for calculating the scattering angle in the Spin
unction at higher albedo. The average speedup was 80 times
ith the current TM-4 platform running at a clock speed of
/75 times compared to that of Xeon processor.

Table 4 shows the resource utilization �number of logic
lements, DSP blocks, and on-chip memory usage� and clock
peed of FBM on a Stratix I FPGA device and a modern
tratix III FPGA device. On Stratix I, only one instance of the
urrent design can be accommodated. On Stratix III, two in-
tances of the same design can be replicated for an additional
wofold speedup. Although this design only occupies about
6.3% of the available logic elements on Stratix III, on-chip
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memory size restrictions limit the number of replicas to two.
Also, the FBM design can run at 1.5 times the clock speed on
Stratix III. As the figures presented in Table 4 are based on the
full compilation report generated by Altera Quartus 7.2 using
an existing Stratix III device, it is possible to increase the
speedup by an additional factor of 3 to a projected speedup of
240 times given a platform with four Stratix III FPGA chips
and a high-speed communication interface.

Table 5 shows the power consumption and energy effi-
ciency of MCML on a network cluster with 84 cores versus
the TM-4 with the same performance. The worst-case power
for the processor was obtained from the specifications pub-
lished by Intel. Perfect parallelism was assumed for a network
cluster with no communication overhead. The power con-
sumed by memory, Ethernet, and other off-chip components
was ignored. The worst-case power for the TM-4 was based
on the maximum power consumed by all four Strattix I chips
on the TM-4. While a power simulation of the FBM design
using the Quartus tool showed a much lower power consump-
tion, the worst case power �60 W� was chosen to remain con-
servative in the comparison. The power-delay product is a
metric used to compare energy efficiency of different imple-
mentations. It provides a convenient way to normalize power
and delay trade-offs. The results show that FBM is 45 times
more energy efficient than the Intel Xeon processor based on
worst-case power consumption.

Table 2 Specifications of test platform.

University Health Network Linux Cluster.

Processor Intel Xeon 3-GHz CPUa

�130 nm�

Memory 2 GBytes RAM

Cache 512 kBytes

Operating system Red Hat Linux 3.2.2-5

Compiler gcc 3.2.2
aProcessor architecture can affect execution time.
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Conclusion
sing the MCML program as the gold standard, custom pipe-

ined hardware designed on a multi-FPGA platform known as
he TM-4 achieved an 80 times speedup compared to a
-GHz Intel Xeon processor. The development time was ap-
roximately 1 person-year and future modifications can be
eadily implemented due to the use of a modularized pipe-
ined architecture. Isofluence distribution maps generated by
BM and MCML were compared at 100 million photon pack-
ts, showing only a 0.1 mm shift in the hardware-generated
sofluence lines from those produced by MCML for fluence
evels as low as 0.00001 cm−2. This shift is negligible within
he context of PDT treatment planning considering the typi-
ally much larger margin of safety for surgical resection or
reatment planning in radiation therapy.

Implications and Future Work
he limitations of the current prototype design, such as the
umber of layers, could be relaxed on newer FPGA platforms,
hich offer more on-chip memory and other resources. Mi-
rating the current design to modern Stratix III FPGA chips
ill result in a projected 240 times speedup, requiring minor

Table 3�b� Runtime of MCML and FBM for 100
simulation runs. �Input parameters from Table 1-

Device Clock Speed
Simulation
Time �s�

Data T
Time

Intel Xeon 3.06 GHz 3100 0

TM-4 41 MHz 39 8

Table 4 Comparison of two FPGA devices an
instance of the design on a single chip� on both

FPGA
Device

Number of
Logic

Elements

Stratix I
EP1S80F1508C6
�130 nm�

64,000
out of

79,000 LUTsa

Stratix III
EP3SL340H1152C3
�65 nm�

44,000
out of

270,000 ALMsa

aThe types of logic elements provided by the Stratix I an
bAlthough it appears that 3 instances of the design ca
accommodated due to memory block size restrictions.

Table 3�a� Runtime of MCML and FBM for 100
simulation runs. �Input parameters from Table 1-

Device Clock Speed
Simulation
Time �s�

Data T
Time

Intel Xeon 3.06 GHz 9150 0

TM-4 41 MHz 109 8
ournal of Biomedical Optics 014019-
modifications to the communication interface. In future stud-
ies, the use of external memory will have several implica-
tions. First, more replicas of the design can be accommodated
since the on-chip memory space is a limiting factor, directly
translating to an increase in the attainable speedup. Second,
using external memory enables the 3-D modeling of tumors,
which for realistic cases would require at least 1024�1024
�1024 voxels �a minimum of 4 GBytes assuming 4 bytes
per voxel�. Finally, the significantly larger memory space of-
fered by external memory will enable further optimization of
the number of entries in the look-up tables to improve the
accuracy of the simulation. Determining the precise trade-offs
between accuracy and resource usage as well as the migration
to newer platforms will be the subject of future work.

For investigators interested in accelerating other light
propagation models such as FEM-based models that solve the
radiative transfer equation numerically using the diffusion
approximation,29 an FPGA-based approach may serve as an
alternative. Here, the unique technical challenges will prima-
rily include mapping the matrix operations onto hardware and
implementing an iterative solver based on techniques such as
the conjugate gradient method.30 Tailoring the FPGA-based

photon packets averaged over four independent
.�

Total
Runtime �s�

Overall
Speedup

Speedup excluding
data transfer

3100±1 1 1

47±1 66±1 80±1

resource utilization of the current design �one
s.

umber of
SP Blocks

On-chip
Memory

Clock
Speed

160
out of
176

4.8 Mbits
out of

7.4 Mbits

41 MHz

104
out of
1152

4.8 Mbits
out of

16.7 Mbitsb

62 MHz

x III devices are different.
e Stratix III device, in reality only 2 instances can be

photon packets averaged over four independent
.�

Total
Runtime �s�

Overall
Speedup

Speedup excluding
data transfer

9150±1 1 1

117±1 78±1 84±1
million
337 nm

ransfer
�s�
d the
device

N
D

d Strati
n fit it th
million
633 nm

ransfer
�s�
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ardware to the system of matrices specific to the application
ill be a key step in the design process.

The possible implications of this study are twofold. First,
he pipelined design could form the basis on which more com-
lex MC simulations or other light transport models can be
uilt. The flexible pipelined architecture enables the addition
f extra stages such as those required by external memory
ccesses without significantly impacting the performance.
econdly, the dramatic reduction in treatment planning time
chieved by an FPGA platform may potentially enable real-
ime treatment planning based on the most recent images of
he treatment volume, taking into account the changing tissue
ptical properties as the treatment progresses. Currently, pre-
reatment models assume constant values for tissue optical
roperties and ignore the dynamic nature of tissues, which
ould directly affect treatment outcomes in interstitial PDT.31

he significant performance gain provided by the hardware
pproach can potentially enable PDT treatment planning in
eterogeneous, spatially complex tissues using more sophisti-
ated MC-based models.
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