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ABSTRACT

The VPR toolset [6, 7] has been widely used to perform
FPGA architecture and CAD research, but has not evolved
over the past decade to include many architectural features
now present in modern FPGAs. This paper describes a new
version of the toolset that includes four significant features:
first, it now supports a broad range of single-driver routing
architectures [29, 4, 16]. Single-driver routing has signifi-
cantly different architectural and electrical properties from
the multi-driver approach previously modelled, and is now
employed in the majority of FPGAs sold. Second, the new
release can now model a heterogeneous selection of hard logic
blocks, which could include the hard memory and multipli-
ers that are now ubiquitous in FPGAs. Third, we provide
optimized electrical models of a wide range of architectures
in different process technologies, including a range of area-
delay tradeoffs for each single architecture. Prior releases of
VPR did not publish even one architecture file with accurate
resistance and capacitance parameters. Finally, to maintain
robustness and to support future development the release
includes a set of regression tests to check functionality and
quality of result of the output of the tools.

To illustrate the use of the new features, we present a
new look at the FPGA area vs. logic block LUT size ques-
tion that shows that small LUT sizes, with the use of care-
fully optimized electrical design and single-driver architec-
tures, have better area (relative to 4-LUTs) than previously
thought. Another experiment shows that several of the
previous architectural results are invariant in moving from
multi-driver to single-driver routing architecture and across
a range of process technologies.

Categories and Subject Descriptors: B.7 [Integrated
Circuits]: Types and Design Styles

General Terms: Algorithms, Experimentation

Keywords: FPGA, Architecture, CAD
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1. INTRODUCTION
Field-programmable gate arrays (FPGAs) have evolved

dramatically over the past ten years, as they have taken ad-
vantage of new process technologies and architectural inno-
vations. The VPR toolset [6, 7] has been widely used as the
core CAD tool in FPGA architectural exploration and CAD
algorithm research over that time. However, centralized de-
velopment of the tool largely stopped in the year 2000 with
the release of Version 4.30. Multiple research efforts have
made changes to VPR to investigate various aspects of ar-
chitecture, including alternative routing architectures [16],
hard-wired corners [25], power issues [23] and modifications
to logic clusters [17] among many others. VPR also formed
the basis for a commercial architecture exploration environ-
ment [18]. These efforts all produced useful research results
but the modified versions of VPR used to produce the results
either are not publicly available or lacked the architectural
flexibility or robustness required in a broadly useful research
tool (with the notable exception of [23] which was released
as a simple-to-apply patch to the VPR 4.30 release). In this
paper, we describe four significant new features of a new
release of VPACK/VPR that are major steps towards cre-
ating a modern research environment for FPGA CAD and
architecture.

One particular issue has arisen due to the lack of a robust
architectural exploration tool that can model heterogeneous
hard blocks such as memories and multipliers. Since almost
all large-scale modern designs contain significant quantities
of hard block memories, the modern academic architect is
limited to experimenting with very small (mid-1990’s size)
benchmark circuits that are increasingly unrepresentative of
the current use of FPGAs. This limits the ability of aca-
demic research to explore the architectural issues facing the
next generations of FPGAs.

To address these limitations, we have a developed a new
version of VPR, Version 5.0, which is publicly available at
http://www.eecg.utoronto.ca/vpr. This release has four
key features:

1. Single Driver Routing Architectures. The most com-
mon method for programmably interconnecting FPGA
routing tracks is to employ a single driver for every
distinct track [29, 4], as opposed to the multiple tri-
state or pass transistor drivers used in previous gen-
erations of FPGAs. The driver is itself driven by a
multiplexer. This type of routing architecture requires
a rather different routing architecture generator, which
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has to optimize for different kinds of constraints. VPR
5.0 supports this method of routing while continuing
to provide support for the legacy methods.

2. Heterogeneous Logic Blocks. Modern FPGAs all con-
tain blocks such as multipliers [29, 4, 3, 28] and mem-
ories [29, 4, 3, 28] that complement the conventional
lookup table (LUT)-based logic blocks, as discussed
above. VPR 5.0 can now support the placement and
routing of an arbitrary number of different types of
blocks combined on the FPGA.

3. Optimized Circuit Design in released Architecture Files.
To obtain meaningful results from VPR, accurate area
and delay measurements of the target FPGA are re-
quired. When using prior versions of VPR, a user
was required to design their own specific transistor-
level circuits to generate their own area, delay, resis-
tance and capacitance parameters relating to an archi-
tecture. This can be a difficult and time-consuming
process. VPR 5.0 is released with a large suite of ar-
chitecture files with many different soft logic architec-
tures and optimized transistor-level design targeting a
range of area and delay trade-offs from each. These
files also span across a wide range of process tech-
nologies, currently ranging from 180 nm CMOS down
to 22 nm CMOS based on the Predictive Technology
Models from [31].

4. Robustness. VPR became an effective tool in part be-
cause of its broad applicability across many architec-
tures, and because it was high-quality software with
an easy-to-understand software architecture. It com-
piles without difficulty on many platforms (and was
even used as part of the SPEC CPU2000 benchmark).
The aim in this new version is to maintain this level
of high quality design, both through careful software
engineering and the inclusion of a suite of regression
tests that permit short-turnaround software checking,
and longer-turnaround software coverage and quality
of result checking.

The remainder of this paper is organized as follows: Sec-
tion 2 provides background on FPGA architecture and VPR
itself. The new features implemented in VPR and the issues
encountered are described in Section 3. Then, in Section 4,
we illustrate the capabilities of the new VPR by explor-
ing two architectural issues enabled by the new features:
LUT size with fully optimized circuit design and single-
driver routing, as well as the effect of process scaling on
segment track length. Finally, conclusions and future work
are summarized in Section 5.

2. BACKGROUND AND TERMINOLOGY
The VPR toolset was designed to enable research in CAD

and architecture for FPGAs and one of its key features is
that it can perform timing-driven packing, placement, and
routing (and timing analysis) for a wide range of different
FPGA architectures that are described in a human-readable
architecture file. In this section, we review the architec-
tural parameters from the previous version of VPR that are
needed to understand the new features we present in this
paper. We also review the basic VPR-based CAD flow.
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Figure 1: Island Style FPGA

2.1 FPGA Architecture Parameters
VPR [6, 7] was designed to target island-style FPGAs

such as that illustrated in Figure 1. These FPGAs contain
I/O blocks and logic blocks surrounded by programmable
routing. As the logic blocks are all assumed to be identical,
a single logic block and its adjacent routing can be combined
to form a tile that can be replicated to create the full FPGA.
The basic logic block and routing architecture parameters
are reviewed in the following sections.

2.1.1 Logic Block Architecture

VPR 4.30 modelled a homogeneous array of logic blocks
in a two-level hierarchy; the first level consisted of a Basic
Logic Element (BLE) that could implement a combinational
logic function and a flip-flop. The combinational logic func-
tion has commonly been a LUT, but the tool can model any
function. The BLE description in VPR is parameterizable to
have different numbers of inputs, K. The second level of the
hierarchy is formed by groups of N BLEs, known as a logic
cluster, as shown in Figure 2. Although there are a total of
K ·N inputs and N outputs inside the cluster, the cluster
only presents I inputs and N outputs to the external-to-the-
cluster routing, where I ≤ K ·N . VPR 4.30 assumes that
all I inputs to the cluster and N outputs can be routed inter-
nally to all of the K ·N inputs of the BLEs in what is known
as a fully-connected cluster. Although commercial FPGAs
and [17] use clusters that are less than fully connected, both
VPR 4.3 and 5.0 continue to make the fully-connected as-
sumption. This internal-to-the-logic-cluster connectivity is
known as intra-cluster routing, to distinguish it from the
connections between the clusters, called inter-cluster rout-
ing, which is described below.

2.1.2 Routing Architecture

The inter-cluster routing network employed in VPR con-
sists of routing channels between the logic blocks as illus-
trated in the thick lines in Figure 1. Each channel is com-
posed of individual routing tracks which consist of wires and
programmable switches. The channel width, W, is the num-
ber of tracks in each channel. Programmable connections
between routing tracks are made within switch blocks that
can be found at the intersection of routing channels. The
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Figure 2: Logic Cluster

number of programmable connections incident upon a track
in a switch block is typically defined as the flexibility of
the switch block, and is referred to as the parameter Fs.
Connections between the clusters and routing channels are
formed in connection blocks; the fraction of tracks that an
input is connected to is referred to as Fcin

, and for the out-
puts as Fcout

.
A routing track typically consists of segments which travel

a distance L in logic clusters before being interrupted by a
programmable switch.

The routing tracks can also be programmably connected
to logic blocks or I/O blocks and the topology of these con-
nections and the connections between tracks has a significant
effect on the FPGA’s area and performance.

The previous VPR routing architecture generator assumes
that each routing track can be driven by multiple possible
sources, which we will refer to as multi-driver routing. These
multiple drivers are programmably connected to the track
either through pass transistors or tristate buffers, only one
of which is active during a given FPGA configuration.

2.2 Architecture File Description
In the previous version of VPR, a textual file descrip-

tion of the target FPGA is provided in a human-readable
architecture file. That file provides all of the parameters de-
scribed above, and several more. It also describes the delays,
either using absolute delays or resistance and capacitance
estimates, of the various components of the FPGA. These
delays must be determined through knowledge of the IC pro-
cess employed by the target FPGA, and through extensive
circuit design to choose appropriate transistor sizes. While
our research group had access to proprietary IC processes
provided by the Canadian Microelectronics Corporation, we
were unable to publish realistic architecture files with de-
lays, resistances and capacitances without violating non-
disclosure requirements. This meant that there have been
no publicly-available realistic architecture/electrical descrip-
tions of VPR-based FPGAs. Furthermore, the amount of
work required to design electrically realistic FPGA designs
is extensive. The new release of VPR includes architecture
files that have circumvented these issues.

2.3 VPR-based CAD Flow
The experimental process used in typical VPR-based CAD

and architecture research is illustrated in Figure 3. This flow
takes a benchmark design and an FPGA architecture with
electrical design specifications and “implements” the design
on the specified FPGA. The timing analyzer provides a mea-
sure of the critical path delay of the implemented circuit, and
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Figure 3: VPR CAD Flow

area models associated with VPR provide an approximation
of the area taken up by that circuit in that FPGA.

In the first step of the flow, the benchmark circuit is syn-
thesized and technology mapped, typically using a combina-
tion of tools such as SIS [24], FlowMap [8] or ABC [21], all of
which use BLIF as the input and output format. The output
after technology mapping must then be packed into the logic
clusters available on the FPGA. This is done using T-VPack
[19, 7], which performs a timing-driven packing. Once pack-
ing is complete, VPR is then used to perform placement and
routing for the circuit. Finally, timing analysis is completed
to determine the performance of the circuit on the FPGA.

A key step in the figure is called architecture generation,
which takes the human-readable architecture file parame-
ters, and generates the specific structures and connections
for the entire FPGA. This is a difficult process that has to
meet many simultaneous constraints as described in [7].

The most difficult part of architecture generation is the
creation of the routing resource graph which contains the
precise details of every wire and switch in the architecture.
The timing-driven placement algorithm uses the graph to
extract timing information needed during placement, and
the router directly uses the graph during routing both to
determine the available connections and the delay of con-
nections.

VPR was designed so that new ideas in routing archi-
tectures (those not presented as possibilities by the cur-
rent architecture file description) can be explored by making
changes only to the architecture generator without having to
change the placement tool, the router or the timing analyzer.
However, the scope of the changes required for the features
of this new version necessitated significant changes to the
entire tool that we will describe in the following section.
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Figure 4: Single Driver Routing

3. NEW FEATURES
In this section we describe the four key new features of

VPR: single-driver routing, heterogeneity modelling, a wide
set of electrically optimized architecture files, and a regres-
sion test suite.

3.1 Single-driver Routing Architecture
In single driver routing each routing track has only one

physical driver and programmability is achieved by using
a multiplexer on the input of the driver as illustrated in
Figure 4.

The work in [18, 16] has shown that the single driver ap-
proach first employed by [30] dominates the multi-driver ap-
proach, in the architectural sense, because it provides supe-
rior performance with less area. All of the recent devices
from the two largest FPGA vendors use single-driver rout-
ing architectures exclusively [4, 29]. VPR 5.0 now supports
a wide range of single-driver routing architectures (many
more than described in [16] in addition to the multi-driver
routing provided by VPR 4.30.

This restriction to a single driver means that logic block
outputs can only connect to the routing tracks whose drivers
are adjacent to the logic block, to avoid overly-long wires to
neighbouring logic clusters. Typical single-driver routing ar-
chitectures place the driver at one end of a wire rather than,
say, the middle, which would likely add unusable loading
to the wire. This implies that each wire can only send sig-
nals in a specific direction (right, left, up or down), and
so there must be two kinds of tracks in each channel: left
(or up)-driving and right (or down)-driving, a concept also
known as uni-directional routing. Despite this restriction,
prior work [18, 16] has shown that the total number of tracks
required per channel is only slightly more than needed in bi-
directional routing.

The routing architecture generator produces tracks in pairs,
one in each direction. The new single-driver routing ar-
chitecture generator is faced with the following constrained
graph generation problem: it must create a detailed routing
architecture with W tracks per channel, where a fraction of
the channel Fi should consist of tracks of length Li (where
length is measured in number of clusters traversed without
switching), each track can connect to Fs other tracks, each
logic cluster input pin can connect to Fcin

tracks and each
cluster output can connect to Fcout

tracks. These program-
mable connections must all be implemented by feeding the
pins and tracks to an appropriate multiplexer connected to
the single-drivers. An additional issue that must be faced is
that each of the multiplexers should be approximately the
same size, a constraint we call the mux balancing criterion.
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Figure 5: Example Single-Driver Switch Block

We constrain the multiplexer sizes to differ by no more than
2 inputs. In addition, the start point of each wire in a track
is staggered in the usual way [7]. The generation problem is
somewhat more constrained than the multi-driver case be-
cause there are fewer drivers for tracks and output pins to
connect to at each (X,Y) grid location. All of this, com-
bined with the goal of correctly generating an architecture
for a wide range of routing architecture parameters makes
this generation problem difficult.

The generation algorithm roughly proceeds in the follow-
ing way: connections from the logic block outputs to the
drivers are made first, followed by the track-to-track connec-
tions. The logic block output pins connections are created in
pairs (one for each direction in the uni-directional system)
connecting to a starting wire of each of the two adjacent
switch blocks, which drive in opposite directions. This pro-
ceeds in a round-robin until either the Fcout

specification is
met or all the available starting wires are used by that pin.
Each subsequent output pin continues the round-robin from
the tracks used by the previous output pin. Next, the track-
to-track connections are made to the single-drivers, using the
Wilton switch block pattern [26] for any starting and ending
wires. All other wires are connected to the multiplexers in
a round-robin fashion.

Figure 5 illustrates a single-driver routing switch block
produced by VPR 5.0, with Fs = 3, Fcin

= 0.25, and Fcout

= full (where full means connect to all possible local drivers;
this is typically less than all of the adjacent tracks). If the
figure is viewed in colour, the red lines are output pin con-
nections into the driver, the blue are input connection block
connections, and the green lines are track-to-track connec-
tions.

The routing algorithm used in VPR 5.0 to route a circuit
on the single-driver detailed routing architecture is the same
as that used in VPR 4.30, and is a timing-driven advance-
ment on the PathFinder algorithm [20].

As a demonstration of the capabilities of the single-driver
and multi-driver routing architecture generation capabili-
ties, Figure 6 gives the single-driver and multi-driver mini-
mum routable track counts (W) for a set of standard bench-
mark circuits implemented on an FPGA with clusters of 10
4-input LUTs, with Fcin

= 0.25, and Fcout
= full, and seg-

ments of length L=1. The average increase in track count
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Figure 6: Single- vs. Multiple-Driver Track Count

of the single driver architecture over the multiple driver is
14%, consistent with the results published in [18].

3.2 Heterogeneity
It is now common for there to be a heterogeneous set of

logic blocks on an FPGA. In addition to the basic soft logic
cluster, the additional blocks are often “hard” circuit struc-
tures that are designed to perform specific operations and,
for this reason, these heterogeneous blocks are commonly
called hard blocks. The differentiated blocks could also be a
different kind of soft logic cluster that gives better perfor-
mance or saves area [10, 9].

Commercial FPGAs commonly include hard memories and
multipliers, and there are many other possibilities that could
be considered for inclusion as hard blocks, such as crossbars
[13] and floating-point multipliers [5]. The specific selection
of which blocks to make hard and include in an FPGA is one
of the central questions in FPGA architecture. These blocks
can offer significant benefits when used but, if unused, they
are wasted. VPR 5.0 now supports the use of heterogeneous
logic blocks.

The basic X-Y coordinate system in VPR 5.0 is dictated
by the soft logic cluster tile: one grid unit in the X and Y
directions is designated as the space taken up by the basic
soft logic cluster. All other blocks must be multiples of this
size. Hard blocks are restricted to be in one grid width col-
umn, and that column can be composed of only one type
of block. Although this restriction prevents a more general
cross-column approach, it appears sufficient for all but the
extremely large hard blocks. Each hard block may be bro-
ken in a different number of sub-blocks, not unlike the logic
elements in a cluster. Each type of block may have differ-
ent timing characteristics, routing connectivity, and height.
The height of a block must be an integral number of grid
units. In the event that a block’s height is indivisible with
the height of the core, some grid locations are left empty.

The routing architecture is transparent ; this means that
if a hard block spans multiple rows, the horizontal routing
tracks pass through at every grid location, but there are no
input or output pins from the block where the routing passes
through.

VPR 5.0 models logic blocks, heterogeneous blocks, and
I/Os using the same data structure. This differs from the
previous version which modelled logic blocks and I/Os with
separate data structures. This new way permits an arbi-
trary number of different types of blocks to be modelled,
and actually simplified the code.

To make it easier to identify different blocks, colour was
added to all types of blocks in the core of the FPGA for

Placement. Cost: 1  bb_cost: 41.9917 td_cost: 5.81354e-08 Channel Factor: 100 d_max: 1.65135e-08

Figure 7: A Heterogeneous FPGA in VPR 5.0

up to 6 different colours. If there are more than 6 types of
blocks in the core, subsequent types use the same colour as
the 6th type. An unused block location will have a lighter
colour than a used block location. Figure 7 illustrates a
heterogeneous FPGA generated by VPR 5.0 with 8 different
kinds of blocks.

The timing parameters of all blocks are now specified us-
ing a timing matrix. The timing in a subblock is modelled
as a complete set of all possible delays from each input to
each output of the subblock. This is an improvement on the
previous version which allowed different delays for different
subblocks but each subblock can only have one single delay.
Heterogeneous subblocks can have purely combinational or
registered output.

VPR 5.0 uses an XML-based architecture file format so as
to leverage the convenient modelling hierarchy in XML [27].

These additions give VPR the capability to implement cir-
cuits with hard blocks. Although the support for hard blocks
in the flow upstream to VPR is not very sophisticated, we
have succeeded in synthesizing circuits with hard multipliers
from Verilog (through the ODIN tool [12]) through synthe-
sis, packing, placement and routing on an FPGA with 18
x 18 multipliers and clustered logic blocks (CLBs) of 10 4-
input LUTs, with Fcin

= 0.25, and Fcout
= full, Fs = 3,

and segments of length L=1. This was done for a number of
circuits obtained from OpenCores (http://www.opencores.
org) and internal University of Toronto projects (available at
http://www.eecg.utoronto.ca/~jayar/benchmarks/bench.

html. Table 1 gives the minimum routable track counts (W )
for these circuits, as a demonstration of the basic heteroge-
neous capability.

3.3 Electrical Optimized Architecture Files
In order to provide accurate area and delay results for an

architecture, VPR requires that the delay, resistance, capac-
itance, and area of various circuit elements of that architec-
ture be specified in an architecture file. When an industrial
FPGA is designed, circuit designers will spend months care-
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Table 1: Track Counts for Circuits with Multipliers

Circuit CLBs 18x18 Multipliers W

diffeq0 208 4 34
diffeq1 79 5 24
fir scu rtl 70 17 28
rs decoder 1 144 13 28
rs decoder 2 265 9 52
cf fir 3 8 8 22 4 22
cf fir 24 16 16 366 25 42
oc54 cpu 301 1 42
iir1 70 5 26
iir 46 5 30
Stereo Vision 1543 152 68
Ray Tracer 341 18 42

fully tuning and trading off aspects of the circuit design. It
is clearly not possible to expend such manual effort for every
potential architecture file. Furthermore, for any given logi-
cal architecture as specified by the list of parameters given
above, there could be many different electrical designs with
different area and speed trade-offs. A major feature of this
new release of VPR is the inclusion of a large suite of logical
architectures files, with optimized circuit design targeting a
range of area and delay trade-offs for each logical architec-
ture. The electrical design of these logical architecture files
was produced by the automated transistor sizing tool and
methodology described in [15]. In addition to this, we have
leveraged the Predictive Technology Models described in [31]
to produce architecture files describing optimized FPGAs in
a wide range of IC process technologies, from 180 nm CMOS
down to 22 nm CMOS. Architecture files were not released
in the past since they would reveal information obtained
under non-disclosure agreements but, with these predicted
models, such issues are avoided.

There are three primary inputs to the automated electri-
cal design tool: the logical architecture describing the high-
level structure of the FPGA including parameters such as
cluster size, LUT size, and routing flexibility. The tool can
only handle FPGAs built using cluster-based logic blocks
(delays and areas for hard blocks must be estimated sep-
arately by the user). The second input must describe the
process technology to determine the characteristics of the
transistors that will be used to implement the architecture.
Finally, an optimization objective must be supplied to de-
termine to what extent the transistors will be sized for area
or delay.

The sizing tool uses these three inputs to produce a tran-
sistor sizing specific for the given architecture and IC pro-
cess, optimized with respect to the optimization objective.
From the final electrical design determined by the tool, the
area and delay measurements needed for the architecture
file can be generated. In the past, optimizing the FPGA
transistor sizes for each architecture was not feasible and,
instead, fixed designs were used for a broad range of param-
eters. With the more thorough optimization that is possible
with this new optimizer, more realistic area and delay mea-
surements can be made which improves the quality of the
final area and delay measurements from VPR. The architec-
ture files are available for download from the VPR website,
and can be found directly at: http://www.eecg.utoronto.

ca/vpr/architectures. Table 2 gives a listing of the range

Table 2: Range of Parameters Included in Architec-
ture Listing

Parameter Range/Values Considered

Cluster Sizes 2 – 12
LUT Sizes 2 – 7
Track Length 1 – 8
Channel Width Up to 3 Values
Fcin

Up to 3 Values
Fcout

Up to 3 Values
Cluster Inputs Up to 3 Values
IC Processes 22 nm – 180 nm
Optimization Objectives Area10Delay, AreaDelay, Delay

Table 3: Regression test suites

Test Test Description

checkin reg tests Fast tests and high code coverage
arch sweep Randomly generated architectures
mult exp Designs with multipliers
N K sweep Comprehensive LUT and cluster sweep
options sweep All VPR options
QoR Quality of results

of logical architectures, IC processes, and optimization ob-
jectives that can be found in that website.

3.4 Robustness and Regression Tests
A key goal of the new release is to maintain two key prop-

erties of robustness from the original VPR: to be able to
work reliably across a wide-range of logical architectures,
and to be high quality software. We created a system and
suite of regression tests that gives high architecture coverage
and quality coverage. We note that while many researchers
have modified VPR for point experiments, it is far more dif-
ficult to keep these two properties intact. The regression
tests will also aid future developers modifying VPR 5.0 by
enabling them to test their implementations against known
results. One major challenge with developing a regression
test system is that the the exact results of the algorithms
used in VPR are often sensitive to small perturbations in
the inputs or order of computation. A naive approach of
comparing numerical metrics for equality results in many
failed tests for valid results. To overcome this problem, the
regression tests specify a range, that the user may adjust,
for each quantity and for each test in order to judge if a
difference is due to an error or experimental variation. A
second major challenge with the regression tests is the large
test space to cover. The goal was to test critical points in
this test space in as little time as possible. To achieve this
goal, different test suites were created to allow the user to
choose the coverage and runtime trade-offs to test. Table 3
gives an overview of the test suites available in the regression
test system.

4. EXPERIMENTSUSINGNEWFEATURES
This new version of VPR will enable the exploration of a

number of architectural issues, two of which will be exam-
ined in this section. The first will be to revisit the effect of
the logic block functionality on the performance and area of
an FPGA, with the use of single-driver routing and electri-
cally optimized circuits. The second will be to explore the
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effect of process technology scaling on FPGAs with differ-
ent routing segment lengths (L) and LUT size, again with
single-driver routing.

4.1 Experimental Methodology
We will employ the standard empirical methodology in

which benchmark circuits are implemented on each target
FPGA (using the CAD flow described in Section 2.3) and
the area and performance of each benchmark is measured.

A number of architectural parameters will be varied in the
following experiments. In all cases, the number of inputs to
the logic cluster (I) was set based on the LUT size (K)
and cluster size (N) using the formula I = K/2 ∗ (N + 1)
from [2] to ensure that 98 % of the BLEs can be used. The
routing channel width (W) will be set to be 20 % larger
than the minimum channel width required to route each
of the benchmark circuits. Since we are focusing only on
clustered logic block architectures (and not employing the
new heterogeneity feature) we will use the 20 largest MCNC
benchmark circuits. Each of these circuits was technology
mapped by SIS with FlowMap [8], clustered with T-VPack
[19] and then placed and routed with the new version of
VPR. Placement and routing is repeated with ten different
placement seeds and only the results from the fastest design
will be used.

We have used the new architecture files which include tim-
ing and area information required to produce accurate area
and performance results. For the experiments described
here, we will restrict our attention to FPGAs electrically
optimized for minimum area-delay product. These are the
architecture files labelled, under the “objective” column in
the archive (described in Section 3.3). as area · delay.

The area metric reported here is the usual minimum-width
transistor area-based model described in [14], which is based
on that in [7]. The critical path delay of each circuit is
measured by VPR’s timing analysis engine.

The final area and delay measurements reported for each
FPGA design will be the ensemble results across all 20 bench-
marks. The area is reported as the total area required for
the twenty circuits and delay is reported as the geometric
mean critical path delay for the twenty benchmark circuits.

4.2 Effect of LUT Size with Single-Driver Rout-
ing and Fully Optimized Circuits

In this section, we revisit (for the third time) the effect of
FPGA logic block LUT size on area and performance, as was
done in [2], but now in the context of single-driver routing
and electrically optimized circuits. Although [2] optimized
routing buffer sizes (to account for track length differences
with different logic blocks) our new architecture files opti-
mize every transistor, including logic and intra-cluster rout-
ing transistors, which the previous work did not. We look
at FPGA architectures with LUT size ranging from 2 to 7
and clusters size ranging 2 to 12. For this work, single-driver
length four (L=4) routing segments were used and the tar-
get process technology was 90 nm CMOS. The methodology
described above was used with the benchmark circuits and
the resulting area measurements for each architecture are
plotted in Figure 8. In this figure, each cluster size is plot-
ted as a different curve while the LUT size is varied along
the X-axis. The results for the different cluster sizes are all
similar which mirrors past observations [2] for multi-driver
routing.
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Figure 8: Area vs. Cluster and LUT Size
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Figure 9: Delay vs. Cluster and LUT Size

As well, the same general trend seen in [2] of increasing
area required for LUTs larger than size four can be seen in
the figure. However, unlike in [2], the FPGA area decreases
as the LUT size is reduced below four, whereas [2] has it
increasing. Since area is measured as the number of clusters
required multiplied by the area of these clusters (including
the routing), this means that the reduced area for clusters
with smaller LUT sizes more than offsets the increase in the
number of clusters required as the LUT size decreases. In
the prior work, the opposite behaviour was observed as the
increased number of clusters required dominated the area
results.

There are a number of potential reasons for these differ-
ences and the use of single-driver routing may be one con-
tributing factor. The overall area was observed to increase
for the smallest LUT sizes in past studies due to the in-
creased area required for inter-cluster routing [2]. We ob-
serve this increase as well but the increase is not as large.
In [2], as the LUT size increased from 2 to 7 the total rout-
ing area decreased by over 40 % but, for the same change in
LUT size, we observe a decrease in routing area of only 20
to 25 %. This smaller change in the routing area means the
penalty of the smaller LUT sizes is not as significant and
the area savings within the cluster of the smaller LUT sizes
is able to compensate. Since single-driver routing reduces
the area required for routing tracks, this may be one reason
for the difference. However, it is also possible, that the fully
optimized (for area-delay product) electrical designs, which
may have reduced transistor sizes for the smaller LUT sizes,
also contributed to this difference.
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Figure 10: Area-Delay vs Cluster and LUT Size

The average delay results are plotted for these architec-
tures in Figure 9. It can be seen that increasing the LUT
size improves the performance of the FPGA but the im-
provements begin to diminish beyond LUTs of size four. It
appears that increasing the cluster size typically offers bet-
ter performance. Both these trends match the general trends
seen in multi-driver routing [2].

The delay results can be combined with the area results
and the resulting area-delay product is plotted in Figure 10.
In this figure, one can see the 4-LUT architectures yield the
lowest area-delay designs but, in general, the results are very
similar for 3-, 4-, and 5-LUTs.

These results indicate that changes to the logic block ar-
chitecture are not necessary to take full advantage of single-
driver routing architecture since many of the conclusions
reached in past works continue to apply. In the next sec-
tion, we examine whether process technology scaling should
lead to any architectural changes.

4.3 Process Technology Scaling
The increased integration enabled by shrinking process

technologies enabled FPGAs to leverage the dramatic scal-
ing of Moore’s law. However, the shift to smaller technolo-
gies is also accompanied by new challenges, including those
related to interconnect scaling. In smaller process technolo-
gies, the delay of a constant-length wire increases. This in-
crease is partially offset by the ability to use shorter wires,
since logic also shrinks due to smaller transistors and, there-
fore, a shorter wire can still reach the same number of de-
vices. However, looking at the predictions from the Inter-
national Technology Roadmap for Semiconductors (ITRS),
the delay of local and intermediate-length wires is expected
to increase [1]. (This has long been recognized as a problem
for global wires as their dimensions often do not shrink with
each process node [11].) This has potential implications for
FPGAs as the routing, including the wiring, is a significant
fraction of the delay and area of an FPGA. The delay of the
routing may increase as a result; alternatively, area needed
for routing may increase as buffers are added and sized to
ameliorate the delay issues.

Given the potential for wiring delay to alter the delay and
area of the routing, we sought to investigate the potential
impact of process scaling on a number of architectural pa-
rameters. We explored the effect of new process technologies
on routing segment length and LUT size. Routing segment
length is interesting to consider because increased wire de-
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Figure 11: Area vs. Segment Length/Technology

lays should have the greatest effect on these parameters.
LUT size is worth investigating as it has the strongest influ-
ence on the cluster areas and shifts in sizing may alter the
best LUT size for a logic block.

The effect on segment length was first explored by consid-
ering segment lengths of between 1 and 9 clusters for tech-
nologies ranging from 180 nm down to 45 nm CMOS. In all
cases, 100 % single-driver routing was assumed and 4-LUT
logic clusters of size 10 were used for the logic blocks. When
measuring delays, the wires in the inter-cluster routing and
intra-cluster routing are modelled as having resistance and
capacitances that are based on their physical length (which
is set by the wire’s logical length and the area required
for the logic cluster and routing) and process technology.
These wires are assumed to be implemented in an interme-
diate layer of metal and the properties of these wires were
set based on the predictions from the ITRS [1]. In the de-
lay simulations, the transistors are modelled using the Pre-
dictive Technology Models from [31], as represented in the
newly-released architecture files.

The area and delay for each architecture was then deter-
mined using the standard experimental process described
above. Figure 11 gives the area (normalized to the architec-
ture with segment length 1) versus segment length with each
curve showing a different process technology. One can ob-
serve that the same general trends hold in all technologies.
Segments of length 1 and 2 have significant area overhead;
but for longer segment lengths, the area decreases until ap-
proximately length 9 where area begins to increase again.
These results are consistent with past observations made for
multi-driver architectures [7].

Figure 12 gives the delay (normalized in each technology
to the segment length 1 architecture) versus segment length
with each curve showing a different process technology. This
experiment offers finer resolution on segment length than
that in [7] and shows that there is a wide region in which
segment length does not affect FPGA speed when segments
are greater than length three. Most interestingly, the results
do not appear to be significantly affected by the different
process technologies.

The impact of process scaling on LUT size was also ex-
amined. For this investigation, single-driver length 4 rout-
ing segments were assumed and logic clusters of size 10 were
used. LUTs ranging in size from 2 to 7 were examined in
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Figure 13: Area vs. LUT Size/Technology

technologies ranging from 180 nm to 45 nm CMOS using the
Predictive Technology models [31]. The area and delay re-
sults for these architectures are plotted in Figures 13 and
14 respectively. In both figures, the different processes are
plotted in different colours as indicated in the legend. For
each technology, the results are normalized to the area or
delay of the 2-LUT architecture.

The area results are all consistent between the technolo-
gies with increasing LUT size leading to increased area. Sim-
ilarly, for the delay, the trends are similar for all technolo-
gies and the delay improves with increased LUT size until
6-LUTs beyond which there is only a minimal change to the
FPGA’s performance. Clearly, it appears that despite the
challenges of new process technologies, their effect on archi-
tectural parameters is minimal. It is likely, however, that if
other issues such as power consumption are considered then
architectural adjustments may be needed.

5. CONCLUSIONS AND FUTUREWORK
This paper has described four new features of the VPR

tool suite for FPGA CAD and architecture research, includ-
ing single-driver routing architectures, heterogeneity, elec-
trically optimized circuit and architecture files and software
regression tests. We have illustrated the new tool’s use by
performing a number of experiments showing each of these
features.

VPR 5.0 and the associated architecture files can be down-
loaded at http://www.eecg.utoronto.ca/vpr.
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5.1 Future Work
While this work is an important step in the development of

publicly available computer-aided design (CAD) tools that
can support modern FPGA architectures, there is much
work that remains. A significant limitation currently is the
lack of support for heterogeneous blocks in the upstream
tools in the CAD flow, from Register Transfer Level (RTL)
design to packing. The synthesis, technology mapping and
clustering support for hard blocks is limited to treating any
hard functionality as black boxes. Future improved up-
stream tools must be flexible enough to permit a wide range
of heterogeneous blocks; we suggest that they should all con-
nect to the same architecture description file for consistency
of specification. As well, given the close relationship be-
tween clustering and placement, integration of the currently
separate tools that perform these tasks (T-VPack and VPR)
would simplify the handling of hard blocks in the future and
work on this integration is already underway. It will also be
important to include power measurement and optimization
capabilities, such as those provided by [23] in previous ver-
sions. Finally, additional work is needed to add support for
features such as arithmetic carry chains and depopulation
of the intra-cluster routing that are now common in com-
mercial FPGAs. The challenge is to add this functionality
with sufficient flexibility to enable architectural exploration
of these features.
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