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1. INTRODUCTION AND CONTEXT

The increasing size and complexity of modern field-programmable gate arrays (FPGAs)
continues to grow in line with Moore’s law, and state-of-the-art devices now incorporate
billions of transistors and myriad features. Programmable logic devices may serve as
all or part of the platform for future systems on a single chip [Xilinx 2013b; Altera
2012b; Lattice 2012; Microsemi 2013]. This exponential growth and feature evolution
brings with it deep questions on the architecture of device features, and gives rise to
challenges across the broad spectrum of CAD tools required to optimize designs for
the devices. Some questions can be explored with the commercial CAD tools that sup-
port specific devices [Altera 2013; Xilinx 2013a], but exploration of new architectural
features beyond simple variants of commercial architectures and the investigation of
enhanced algorithms for various stages of the CAD flow require open-source tools that
can be modified by researchers.

Several at least partially open-source FPGA CAD flows exist. The RapidSmith tools
[Lavin et al. 2011] allow interaction with Xilinx’s commercial FPGA architectures and
CAD tools by providing a suite of design and chip database interaction functions and
visualization utilities; RapidSmith has been used to interface a hard macro placer
and a router with the Xilinx tool flow. The Torc project [Steiner et al. 2011] utilitizes
different APIs, but provides a similar ability to interact with and augment portions
of Xilinx’s commercial CAD flow. The VTR CAD flow we enhance in this work has a
different design goal than Torc or RapidSmith: instead of augmenting the tool flow for
a commercial FPGA, it allows the investigation of entirely new FPGA architectures
by taking a concise, human-readable architecture description as one of its inputs. The
fact that the entire flow is open-source also enables exploration of new CAD ideas that
require modifications to multiple stages of the CAD flow. Independence [Sharma et al.
2005] is an open-source placement and routing engine for FPGAs; like VTR it can be
targeted at different FPGA architectures. Independence is able to produce high-quality
placements for an even wider variety of FPGA routing architectures than VTR, but does
so at a very high CPU cost that limits its scalability to large designs.

The complexity and capability of FPGA software for commercial devices has grown
along with the devices, but the open-source VPR/VTR software [Betz et al. 1999; Luu
et al. 2009; Rose et al. 2012] has struggled to keep pace, and indeed has fallen behind
on many fronts. If the open-source software cannot support known-good architectural
features, or achieve quality of results commensurate with that of commercial flows,
then the research results derived from the software could be significantly misleading.
The purpose of this article is to describe and measure a major new version of the
open-source VTR FPGA CAD flow that contains a series of important new features.

One of the key values to our research community is that the features described in
this article are integrated into a single, working and tested version of software. While
some of the new features may have been implemented in isolation in prior versions of
the software, it is significantly more work to ensure that they operate alongside other
new features so that the total sum can be used to make progress in the field. This
level of effort is onerous: it has been noted in other branches of computer science and
engineering that “Computer Science is now Big Science,” reflecting the idea that it is
difficult to make progress without pursuing a large-scale many-person effort. This is
becoming true in our sub-discipline of FPGAs. And so, this article reports on the most
recent advances within the large-scale effort to provide the community with a robust
open-source framework that we believe will enable a variety of new research on FPGA
CAD and architecture.

Our major contributions are enhancements to the VTR flow that will enable FPGA
research and several new algorithmic ideas and results as detailed here.
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(1) We provide an integrated and open-source tool flow with many new features which
work together to enable a wider variety of CAD and architecture experiments. For
example by adding CAD support for multi-clock circuits and high-speed arithmetic,
we enable modern circuits to be run through the flow and yield realistic results.
Prior versions of VTR handled such circuits poorly: the clocks in multiclock devices
were shorted into a single clock, and the arithmetic was implemented using many
levels of soft logic (i.e. look-up-tables). This could have led to inaccurate architecture
conclusions.

(2) We include architecture files that describe complex, realistic FPGA architectures.
As FPGAs evolve, the accurate capture and description of all of the capabilities and
features of the FPGA is both more difficult and more important. Building on the
work of [Luu et al. 2011], we enhance the description capability of the framework,
and describe a series of useful and complete experimental architectures. These
descriptions are a form of software themselves.

(3) We provide benchmark circuits that work with these tools and architectures. Both
architecture and CAD research need a representative set of example circuits from
which to draw their conclusions. Given the complexity of the architectures and
toolflow, it is important to cultivate and release a set of relevant applications that
are guaranteed to function with each software and architecture release.

(4) We detail a technique for the robust optimization of designs with multiple timing
constraints, even when some constraints are impossible to meet.

(5) We present a new packing algorithm for logic blocks with complex internal inter-
connect which is 25 x faster than prior work, while achieving higher result quality.

(6) We quantify the speed gain and routability impact of adding hard adders to an
FPGA architecture.

This article is organized as follows. After describing the overall flow of the tools, we
describe the new capabilities discussed earlier, and present measurements illustrating
the utility of each feature. We then describe the new clustering approach and archi-
tecture files. We provide a measurement of the quality of results of the new release,
compared to earlier versions of the software. This is important to be able to normalize
the relative capabilities of the different versions and to ensure that adding features
has not degraded the basic algorithms. The final sections conclude and point to future
work on this project.

2. OVERALL FLOW

The overall VTR CAD flow is depicted in Figure 1. There are two inputs to the flow:
the user-designed Verilog application circuit, and an FPGA architecture description
file [Luu et al. 2011] which is a human-readable (and writable!) description of the phys-
ical logic, routing and I/O of a hypothetical FPGA. ODIN [Jamieson et al. 2010] elabo-
rates the Verilog, translating and partially synthesizing the Verilog code into a netlist of
primitives. This synthesis includes the division of a design’s larger memories and mul-
tipliers into pieces that can be accommodated by the memories or multipliers available
on the device, as described by the architecture file [Rose et al. 2012]. The soft logic in
this netlist is then optimized by the ABC tool [Mishchenko et al. 2009], a slightly mod-
ified version of release 70930, and technology mapped into the appropriate-size lookup
tables (LUTs) and flip-flops. VPR performs all physical optimization—clustering, place-
ment and routing—of the logic primitives (LUTs, flip-flops, small multiplies, etc.) into
the complex logic and other blocks described in the architecture file. VPR also performs
all the analysis steps that measure result quality: timing analysis, area estimation and
power estimation.
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Fig. 1. Overall CAD flow.

The contributions of this work are in the ODIN-II and VPR stages of this flow. These
stages directly read and adapt to the architecture file, so we will first describe the new
architecture files released with VTR version 7.0, along with the benchmark circuits we
use to measure the flow quality.

3. ARCHITECTURES AND FILES

As FPGA architectures have become increasingly complex, so too have their architec-
tural descriptions, and hence the creation of a complete and realistic FPGA architecture
can be difficult. To lower this barrier to FPGA research, we have created a set of care-
fully designed architecture description files to serve as templates. These architectures
can be used unmodified as VIR targets for researchers investigating new CAD algo-
rithms and can also be used as a baseline within which a new architecture change can
be inserted and investigated by FPGA architects. In the following section we describe
the various architecture files provided in the VTR 7.0 release, along with their recom-
mended usage and the benchmark circuits which can be targeted to each architecture.
See Section 11 for download instructions for the entire VIR 7.0 release, including
these architecture and benchmark files and a manual that describes the architecture
file syntax in detail.

3.1. Comprehensive Architecture File

The Comprehensive Architecture is the flagship architecture of the VTR release, and we
suggest that new users of VIR begin with it. It describes an FPGA architecture with
a number of modern features, including fracturable LUTSs, carry-chains, fracturable
multipliers, and configurable memories. Its architecture features are chosen to be in
line with both the recommendations of prior research and current commercial practice
in Xilinx’s Virtex 7 and Altera’s Stratix IV architectures. The routing architecture uses
length-4 wire segments, single-driver routing, an Fc;, of 0.15, an Fc,, of 0.1, and an
Fs of 3.

Figure 2 depicts the soft logic block which has 40 general input pins, 20 general output
pins, one carry-in pin, one carry-out pin, and one clock input pin. In this architecture
the general logic block inputs feed a full crossbar that allows them to drive the inputs
of any Fracturable Logic Element (FLE). The crossbar also allows any FLE output to
drive any FLE input. Each FLE consists of one fracturable LUT with two optionally
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Fig. 2. Soft Logic Block in the Comprehensive Architecture.

registered outputs. As shown in Figure 3, each fracturable LUT can operate as one 6-
LUT or as two 5-LUTs with all 5 inputs shared, in a manner similar to Xilinx’s Virtex
7 architecture [Xilinx 2013b].

Each 5-LUT in this architecture can optionally operate in an arithmetic mode, as
shown in Figure 4. As described later in Section 5, this release adds new support for
FPGA architectures with carry chains throughout the CAD flow. In this arithmetic
mode, each 5-LUT operates as two 4-LUTSs that drive two bits of a hardened full adder.
To avoid requiring additional input-selection multiplexers (which are costly), the two
4-LUTs share all their inputs. The sum output of the full adder is multiplexed with the
output of the original 5-LUT, so either (but not both) of these signals can be the 5-LUT
output in Figure 2. The carry in and carry out pins of the full adder are permanently
connected (hardwired) to adjacent adders, such that all 20 adders in a logic block form
a single chain. To implement adders larger than 20 bits, the carry chain connects the
carry out of the last adder in a logic block to the carry in of the first adder in the logic
block immediately below it using a dedicated inter-block routing path.

The multiplier logic block in the Comprehensive Architecture can operate as one
36 x36 multiplier, or be fractured into two independent 18 x 18 multipliers. Additionally,
each 18x 18 multiplier can be further subdivided into two independent 9x 9 multipliers.
The height of the multiplier blocks is four times the height of a soft logic block, and hence
it can access four horizontal routing channels. Overall, this multiplier architecture is
similar to that of Altera’s Stratix IV devices [Altera 2009]. Every eighth column of the
Comprehensive FPGA consists of a column of multiplier blocks.

This Comprehensive Architecture contains a configurable 32 kilobit RAM block,
which is also four times the height of a soft logic block and is instantiated in every
eighth column. The block has a configurable aspect ratio ranging from 32K words deep
x 1 bit wide (32Kx1) to 1Kx32, for both single and dual-port modes. In single-port
mode, the block can additionally be configured as a 512x64 memory. The I/Os of this
architecture are on the perimeter, with each I/O block holding 8 I/O pins, and each I/O
pin can be configured to be either an input or an output.
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The models that allow the toolset to compute the area, delay and energy consumption
of any circuit implemented on the FPGA are a key part of each architcture file. Ideally,
we would create area, delay and energy models of each block and routing structure
from a detailed transistor-level design in a consistent process technology. However, the
effort required to create such a transistor-level design for each structure on an FPGA
is extremely high. We adopted an alternative approach, where we use models based
on detailed transistor-level designs in a 45 nm Predictive Technology Model (PTM)
[Cao 2008] process for key structures such as the FPGA routing and use data from
commercial chips for other parts of the FPGA. All area, delay and power results are
scaled to a 40/45 nm process operating at 0.9 V so they are self-consisent as described
here.

—Area. The routing area is based on transistor sizings for a 45 nm PTM process
FPGA from the iFAR repository [Kuon and Rose 2008]. The area of logic, RAM and
multiplier blocks are taken from published Stratix III values [Wong et al. 2011],
scaled to 40 nm, and adjusted to account for architecture differences (e.g. our use of
32 Kb RAM blocks instead of 9 Kb).

—Delay. All delays are taken from comparable resources in the fastest speed grade of
Stratix IV, which is a 40 nm FPGA. The resistance and capacitance of the general
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routing wires are based on the intermediate level metal from the International
Technology Roadmap for Semiconductors [ITRS 2011] at 45 nm.

—FEnergy. The static and dynamic power of the logic block and general routing wires
come from a detailed transistor-level design in a 45 nm PTM process at 0.9 V. The
dynamic power for other blocks (e.g. multiplier blocks) is taken from the 0.9V, 40 nm
Stratix IV FPGA (adjusted for architecture differences where necessary), and the
static power for these blocks is set to zero.

3.2. Classical Architecture File

While the Comprehensive Architecture described here represents a much closer mod-
eling of modern FPGAs than has been typically used in the academic literature, we
recognize that some types of research benefit from dealing with much simpler FPGAs —
in particular those with only LUTs, flip-flops and I/Os. As such, we also provide in the
release the Classical Architecture, so that researchers can compare against legacy work
that may not support modern features such as multipiers, carry chains and memories.
Figure 5 illustrates the classical soft logic block. It consists of N basic logic elements
(BLEs), where each BLE is a LUT with an optionally registered output [Betz et al.
1999]. We provide a Classical Architecture with ten general inputs and four BLEs per
cluster (N = 4), and each of the LUTs has four inputs. All routing wires are length
4, single-driver, with Fc¢;, = 0.15 and Fe¢,,; = 0.25, and Fs = 3. There are eight I/O
pins per I/O block. The area and delay models come from a 90nm transistor-optimized
architecture from the iFAR repository [Kuon and Rose 2008].

3.3. Other Architecture Files

Several variants of the Comprehensive and Classical Architectures described earlier
are included in the VTR 7.0 release as indicated in Table I. These include an architec-
ture that uses a depopulated crossbar with the logic cluster to save area and simplified
architectures without fracturable LUTs, without carry chains, and/or without hard
logic. We also include an architecture with hard floating point units to show how to use
VTR to model an unconventional logic block.

3.4. Benchmarks

This release includes three sets of benchmarks appropriate for use with different ar-
chitecture files. The benchmarks are largely the same as those found in the VTR 1.0
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Table I. Major Architecture Files

File name Description

k6_frac_ N10_frac_chain_.mem32K 40nm Comprehensive Arch.: ten fracturable 6-LUTs with
carry chains, 32kb RAM and hard multipliers

k6_frac_ZN10_frac_chain_depop50_.mem32K _40nm Comprehensive Arch. with depopulated crossbar

k6_frac N10_.mem32K_40nm Comprehensive Architecture without carry chains

k6_frac N10_40nm Comprehensive Architecture without carry chains or
hard logic

k4 N4 90nm Classical Architecture: four 4-LUTSs per logic cluster
and no hard blocks

hard_fpu_arch_timing Classical Arch. with hardened floating point block

Table II. Heterogeneous Benchmark Data and Domain

# # # # Max
Circuit 6LUTs Mult Mem Bits Add Add Size Domain
bgm 38,537 11 0 12,719 98 Finance
blob_merge 8067 0 0 4510 14 Image Proc
boundtop 3053 0 32,768 521 20 Ray Trace
ch_intrinsics 425 0 256 0 0 Memory Init
diffeql 362 5 0 202 67 Math
diffeq2 272 5 0 204 68 Math
LUSPEEng 25,251 8 46,608 6083 47 Math
LU32PEEng 86,521 32 673,328 17,819 47 Math
mcml 107,784 30 5,210,112 29,611 130 Med Physics
mkDelayWorker32B 5588 0 532,916 1050 34 Packet Proc
mkPktMerge 239 0 7344 96 7 Packet Proc
mkSMAdapter4B 1960 0 4456 570 34 Packet Proc
or1200 3075 1 2048 896 121 Soft Proc
raygentop 1884 18 5376 831 33 Ray Trace
sha 2001 0 0 329 37 Cryptog
stereovision0 9567 0 0 5105 21 Comp Vision
stereovisionl 9874 152 0 4286 20 Comp Vision
stereovision2 11,012 564 0 15,096 35 Comp Vision
stereovision3 174 0 0 31 12 Comp Vision

release. The most important set are the heterogeneous benchmarks, which come from
a variety of real applications, including arithmetic-focused solvers, processors, medical
physics simulations, and image processing. Table II gives the number of different types
of resources each benchmark uses: the number of LUTSs in the circuit when mapped to
6-LUTSs, the number of multipliers, the total memory bits, the number of adders, and
finally the number of bits (i.e. length) of the largest adder. It also gives the application
domain of each benchmark. We encourage users to use the heterogeneous benchmark
set (together with the Comprehensive Architecture file) in their research, as they bet-
ter represent the architecture and use of modern FPGAs than simpler benchmark sets
and architectures.

For researchers interested in comparing with legacy work, we include the classic
MCNC circuits. These benchmarks are compatible with all architecture files but we
recommend using them with the Classical Architecture file. Lastly, we include small,
“toy” benchmarks that contain floating-point blocks for use with the floating-point
architecture file only.

Table III gives the data from a full VTR run (with default settings) of the heteroge-
neous benchmarks on the Comprehensive Architecture. The columns from left to right
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Table Ill. Heterogeneous Benchmark Statistics after Full VTR Flow

Wi Wirelength Crit Delay

Circuit (Tracks) (# CLBs crossed) (ns) Num CLB
bgm 82 607,288 30.81 3925
blob_merge 84 114,935 15.01 707
boundtop 54 29,302 6.30 256
ch_intrinsics 48 3,938 3.80 37
diffeql 62 10,367 16.82 35
diffeq2 58 8,959 12.72 26
LUSPEEng 96 426,212 86.92 2566
LU32PEEng 142 1,777,082 80.48 8762
meml 130 1,604,850 44.33 7676
mkDelayWorker32B 76 128,101 7.58 511
mkPktMerge 50 14,965 4.15 21
mkSMAdapter4B 60 26,001 5.76 201
or1200 82 55,672 9.00 289
raygentop 76 33,251 5.06 208
sha 62 18,243 9.99 202
stereovision0 64 118,420 4.47 1126
stereovisionl 108 205,770 591 1085
stereovision2 124 730,344 16.20 2258
stereovision3 32 745 2.79 13

are: the circuit name, the minimum routable channel width (W,,;,), the total wirelength
(measured in logic blocks traversed) and the critical path delay for a “low stress” rout-
ing where the channel width is W,;, plus 30%, and finally, the number of soft logic
blocks.

4. MULTIPLE CLOCK ANALYSIS AND OPTIMIZATION

Prior versions of VPR have supported only a single, simple form of timing analysis.
All registers in the design were considered to be on one clock domain, and I/Os were
implicitly assumed to be registered on this single clock domain. However, this assump-
tion does not match the behaviour of modern designs, which commonly include many
clocks [Hutton et al. 2005]. For example, a single DDR3 interface typically requires 5
to 7 clocks in an FPGA,; designs with various memory and serial interfaces therefore
commonly contain dozens of clocks. In addition, I/Os cannot always be modeled as sim-
ple registers — sometimes data is registered in the chip on the other end of the board
trace producing a different variety of timing constraint. To allow experimentation with
more complex designs and realistic benchmarks, VTR 7.0 allows one to specify, analyze
and optimize for more complex timing constraints. Currently only the VPR stage of
the VTR flow analyzes and optimizes these constraints as VPR has the most impact on
design timing; possible future work would be to make the earlier parts of the flow also
understand and optimize timing constraints.

4.1. Timing Constraint Specification

To allow specification of complex timing constraints in a flexible and standard way, we
support a subset of the Synopsys Design Constraint (SDC) language [Gangadharan
and Churiwala 2013], including:

—a (potentially different) target period for each clock in a design and a relative phase
for each clock vs. other clocks;
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—specification of whether groups of clocks are “frequency-related” and hence paths
between them should be analyzed synchronously, or whether transfers between the
clocks use asynchronous techniques and therefore should not be analyzed;

—optional board-level delays to and from chip inputs and outputs, respectively.

VPR 7.0 can also be run without an SDC file, as a convenience to CAD researchers
using simpler circuits. For single-clock circuits, VPR 7.0’s “no-SDC” behaviour matches
that of earlier VPR versions to allow easy quality comparisons; all I/Os are assumed
to be registered on the single clock, and the frequency of the single clock is maximized.
For multi-clock circuits with C clocks, VPR (without an SDC file) will assume there
are no synchronous transfers between clocks or between the I/Os and clocks, and will
attempt to simultaneously maximize the frequency of all C clock domains.

4.2. Timing Analysis

To compare CAD algorithms or FPGA architectures, we need both to analyze and report
a design’s timing and optimize all the timing constraints. As in prior versions of VPR,
timing analysis utilizes a graph that represents all the timing dependencies between
circuit elements that are connected [Betz et al. 1999]. VPR parses the SDC file and
creates a data structure that stores the number of timing constraints that will require
separate graph traversals and the source nodes, sink nodes, and timing constraint
value (e.g., 10ns) for each constraint. Figure 6 shows a sample circuit and its SDC
file. The first two lines constrain the two real clocks in the design, while the third line
creates a “virtual” clock for the output I/Os. The clock waveform created by each of these
three lines is also shown in Figure 6. The fourth line indicates that paths from clk1 to
the design outputs should not be analyzed, while the last two lines specify board-level
delays to and from the I/Os. This SDC file leads to 5 timing constraints, and the curved
arrows in the figure indicate the source and destination nodes of each constraint, while
the value of the timing constraint is marked on the arrow.
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For every timing constraint, we perform a pair of breadth-first traversals to compute
slacks. First, we perform a forward breadth-first traversal from the source sequential
elements (registers, I/0Os and any embedded blocks like RAMs that contain sequential
elements) to compute the arrival time at each node. Second, we perform a backward
breadth-first traversal from sink sequential elements, using the value of the timing con-
straint as the destination required time, to compute required times at all nodes. The
slack of a connection i for this timing constraint is then simply Trequired(@) - Tarriva(@). A
connection can be part of multiple paths with different timing constraints; for such con-
nections slack(i) is the minimum slack value for connection i over all timing constraints.
For a design with C timing constraints, 2 - C breadth-first traversals are required to
analyze all register-to-register paths. The circuit of Figure 6, for example, requires ten
(five forward and five backward) breadth-first traversals to compute the slack of every
connection across all constraints. For designs with several clocks, we have found timing
analysis is still a small part of VPR’s runtime; however, CPU time optimizations such
as those of [Hutton et al. 2005] would be a useful future work to keep timing analysis
fast for designs with many clocks or many different multicycle values.

4.3. Timing Optimization

The three major algorithms of VPR—clustering, placement and routing—all simultane-
ously optimize wirelength and circuit timing. To optimize circuit timing, the optimizers
in earlier versions of VPR determine the timing importance, or criticality, of a connec-
tion ¢ via the following criticality metric [Betz et al. 1999]:

slack(c)
Dmax ’

where D, is the delay of the longest path in the design. With multiple timing con-
straints, (1) is no longer sufficient, as the normalization by D,,, does not result in
a correct ranking of the criticalities of connections covered by different timing con-
straints. To see this, consider the circuit of Figure 6 and assume that the longest path
in the clk1 domain is 10ns, while the longest path in the c/k2 domain is 3 ns. Since all
slacks in the c/k2 domain will be < 4 ns, the criticality of every connection on a path
between clk2 registers will be > 0.6, if we apply (1) with D,,,, = 10 ns. The criticality of
connections in the clkI domain, on the other hand, can span the full range from 0 to 1;
the net effect is over-optimization of the clk2 domain at the expense of c/k1. The correct
normalization factor is now connection-specific; it is the value of the timing constraint
being applied in the current timing graph traversal. That is:

SZaCkconstraint(C) ]

max (Teonstraint, Dmax constraint)

Critic)=1— 1

(2)

Crit(c) = Veonstrainn Mmax [1 -

where T,onsiraine 1 the maximum permitted timing value (e.g. clock period) associated
with a timing constraint and D,,x_constraine 1S the maximum delay amongst the paths
covered by that constraint. The max in the denominator of (2) ensures that we compute
reasonable criticalities even if a timing constraint is impossible, and some paths have
delays greater than T,,,sqins- Note that a connection can be part of multiple paths
that contribute to multiple timing constraints; accordingly (2) computes the maximum
criticality over all constraints for each connection c.

Section 3.4 introduced the heterogeneous benchmark circuits on which we test multi-
timing constraint optimization. Unfortunately, 18 of these 19 benchmarks contain
only one clock, showing they still fall below the complexity level of modern indus-
trial designs. To test multi-timing constraint optimization, we therefore ran a series
of experiments where we set different timing constraints for: (i) the (usually single
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Table IV.
Relative timing and wirelength vs. timing constraints. All results are geometric aver-
ages from the heterogeneous benchmark circuits run on the Comprehensive Archi-
tecture without carry chains with a channel width of Wy, + 30%.

Clock constraint IO constraint | Clock Period I/O Delay  Wirelength
0.1 ns 0.1 ns 1.0 1.0 1.0
0.1 ns 1000 ns 0.99 1.31 0.99
1000 ns 0.1 ns 1.21 0.87 0.93
1000 ns 1000 ns 1.16 1.22 0.87

clock) register-to-register paths and (ii) paths between I/Os and registers for these
benchmarks. Table IV summarizes the results and illustrates that VPR is capable of
simultaneously optimizing multiple timing constraints well. For example, optimizing
both clock period and I/O timing (by constraining both to an impossible-to-meet 0.1 ns
constraint) improves I/O timing by 31% vs. optimizing only clock period (by setting an
easy I/O timing constraint of 1000 ns). This comes at only a 1% cost in the clock period
and a 1% increase in routed wirelength. Optimizing I/O timing alone can produce a
further 13% improvement in I/O timing and can reduce wirelength by 7% vs. optimiz-
ing both clock and I/O timing, but it increases the clock period by 21%. Thus, VPR
responds correctly to the constraints specified, trading off performance for wirelength
accordingly.

5. CARRY CHAINS

One of the key architectural decisions made in FPGAs is to determine which, if any,
logic functions ‘deserve’ to be built in hard, specific logic rather than be implemented
in the more generic soft logic. Early in the history of FPGAs, special hardened circuitry
was created for arithmetic circuits that require carry-like logic [Hsieh et al. 1990; Woo
1995] to improve the performance of addition, subtraction and any other operation
that used these functions. Since the long chain of carry computations (1 per bit of
addition/subtraction) was often the critical path of circuit, it was deemed worthwhile to
harden some or all of the logic, and also to harden the routing links between successive
bits so as to make the chain as fast as possible. Also, since adders are both common
and of variable length, the typical approach has been to locate the dedicated carry logic
within the soft logic basic logic element and to provide high-speed links both within
the CLB, and between CLBs. The notion of specialized logic within the soft logic block,
connected by high-speed routing can be implemented in quite a different number of
ways, so our goal in the VTR toolset is to support a variety of architectural options.
The hardening of the routing, and the specificity of the carry logic requires that the
entire tool flow be modified in significant ways to make successful use of the “carry
chain” structures. In the following sections we describe how each step in the VTR flow
is required to change, and some details of how the change is managed.

5.1. Architecture File Description of Carry Logic and Routing

We added functionality to the architecture description file to allow specification of
hardened adders, intra-CLB fast carry links, and inter-CLB fast carry-links.

As described in the next section, the ODIN II Verilog elaboration tool must be made
aware of the existence of special hardened adder units. This is done in the architecture
file snippet (in the ODIN II models section of the file) shown in Figure 7. The key word
‘adder’ directs ODIN II to synthesize to a hard adder primitive instead of emitting logic
equations for the adders that would be implemented by later synthesis steps in soft
logic. As shown, the architecture file lists the input and output ports of the adder.
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<model name="adder">
<input_ports>
<port name="a'"/>
<port name="b"/>
<port name="cin"/>
</input_ports>
<output_ports>
<port name="cout"/>
<port name="sumout"/>
</output_ports>
</model>

Fig. 7. Example declaration of adders for ODIN II.

<mode name="arithmetic">
<!-- Adder instantiation -->
<pb_type name="adder" blif_model=".adder" num_pb="1">
<input name="a" num_pins="4"/>
<input name="b" num_pins="4"/>
<input name="cin" num_pins="1"/>
<output name="sumout" num_pins="4"/>
<output name="cout" num_pins="1"/>
<!-- Delay information omitted for brevity -->
</pb_type>
<interconnect>
<direct name="cin" input="fle.cin" output="adder.cin">
<pack_pattern name="chain" in_port="fle.cin" out_port="adder.cin"/>
</direct>
<direct name="cout" input="adder.cout" output="fle.cout">
<pack_pattern name="chain" in_port="adder.cout" out_port="fle.cout"/>
</direct>
<!-- Rest of interconnect information omitted for brevity -->
</interconnect>
</mode>

Fig. 8. The adder mode in a CLB, and intra-CLB carry links.

Next, the physical adder itself is defined as a mode in the CLB section of the archi-
tecture file.! Figure 8 shows the code that defines a 4-bit adder and the links between
the individual bits within the CLB. In this case, for example, the CLB can be used in
an “arithmetic mode” as a 4-bit adder, or alternately as standard soft logic with LUTs
and flip-flops (this mode is not shown for brevity). The architect can specify an adder
of any size, though this is of course constrained by the number of input/output pins on
the CLB and its internal routing connectivity. Multiple small adders can be chained
together within a CLB with fast, dedicated-routing carry links; the Comprehesive Ar-
chitecture, for example, uses this approach to combine twenty 1-bit hardened adders
within one CLB. The pack_pattern construct labels the fast carry links inside a CLB
so that a new, “prepack” phase of the packing algorithm can exploit these links, as
described in Section 5.4.

Some additions may be too large to fit in one logic block and accordingly we allow
the specification of fast, dedicated physical connections between the adders of adjacent
CLBs. Figure 9 illustrates an example, vertical adder carry chain between CLBs, while

IThe mode construct specifies mutually-exclusive functionality within a complex block [Luu et al. 2011].
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—— — 8 —a—
cin cin cin
CcLB CcLB CcLB
cout cout cout
cin cin cin
CcLB CcLB CLB
cout cout cout
cin cin cin
CcLB CcLB CLB
cout cout cout

Fig. 9. Example of a vertical carry chain that propagates downwards.

<directlist>
<direct name="adder_carry" from_pin="clb.cout" to_pin="clb.cin"
x_offset="0" y_offset="-1" z_offset="0"/>
</directlist>

Fig. 10. Example definition of inter-CLB carry links.

Figure 10 shows its specification. The direct XML tag specifies these links in a relative
fashion: the from _pin and to_pin attributes specify which pins are connected (cout —
cin), and the offset attributes specify which logic blocks connect. Here, the x offset is 0
and y offset is —1 to specify chains that drive the adjacent block to the south.

5.2. Elaboration of Arithmetic in ODIN II

ODIN II infers addition/subtraction from the either the plus/minus sign in the Verilog
HDL code or from an explicit instantiation of an adder macro. If the inferred adder
(i.e. thelogical adder) is larger than the size of the physical adders, ODIN II implements
the logical adder using a composition of smaller adders of the actual physical size. In
the absence of hardened carry logic, addition and subtraction is synthesized into soft
logic as in prior versions of VTR. Subtraction is handled by ODIN II in standard 2’s
complement fashion: one of the inputs as negated and the carry-in is asserted.

Figure 11 shows example Verilog code for the explicit and implicit instantiation of a
hard adder. An addition is done via instantiation, while a subtraction is achieved via
inference. In both cases, ODIN II will generate instantiations of a hard-adder primitive
for the downstream tools to process. As well, ODIN’s multiplier synthesis code has been
modified to make use of hard addition/carry logic (if present in the architecture) when
combining results from hard multiplier blocks. Figure 12 illustrates the synthesis of a
6-bit adder (my_adder in Figure 11) into an architecture in which the physical adder is
4 bits wide, as in Figure 8. Here, two 4-bit hard adders are required to fully implement
the six bits, and the last two bits of the second adder are wasted.

We have found that for very small logical adders, the implementation of arithmetic
is more efficient and faster in soft logic. As such, a configuration option allows a user
to specify the minimum size addition (in terms of the number of bits) required for
ODIN to make use of hard adders. We assume that the carry lines within a hard adder
block and the carry-chain that joins hard adders together cannot be directly accessed
by other interconnect (i.e. these are not routed into general-purpose interconnect).
Consequently, if the carry-out bit of an adder/subtractor is used elsewhere in a user
circuit, ODIN II pads the adder to force carry-out data to a sum bit (which can drive
general interconnect).
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module exampleInstance (inl, in2, sum, diff);
input [5:0] inl, in2;

wire cin = 1°b0;

wire cout;

output [6:0] sum, diff;

adder my_adder (inl, in2, cin, cout, sum);
assign diff = inl - in2;

endmodule

Fig. 11. Example explicit and implicit instantiation of hard adders.

D
. 4 cin
iN1[3:0] =—— 3 4
4 SUMOU frimee SUM[3:0]
iN2[3:0] e—
cout
. 4 cin
{2'b00,iN1[5:4]} e—— 3 4
4 SUMOUT i SUM [6:4]
{2'b00,in2[5:4]} e——e |y ¢
cou

Fig. 12. Example 6-bit logical adder mapped to two 4-bit adders.

5.3. Logic Synthesis in ABC

The logic synthesis tool needs to, at the very least, pass the hard adder logic identified
during elaboration down to the later stages. An ideal logic synthesis tool would be
able to make intelligent decisions about when to keep adder logic, when to synthesize
non-adder logic into adders, and when it makes sense to combine adder logic with the
regular logic of a circuit. Our logic synthesis tool, ABC, treats adders as black boxes,
passing them through the flow without any logic optimizations. The inputs and outputs
of the adders are treated as primary outputs and inputs by ABC, preventing many
optimizations across them — for example, sweeping away unused inputs or leveraging
constant inputs for optimization.

5.4. Packing in VPR

We have added a “pre-packing” stage in VPR that assembles the adders elaborated by
ODIN II into groups, based on the number of adders inside a logic block. The main
packing algorithm keeps these pre-packed groups together to ensure that the adders
use the fast carry links within and between CLBs.

One complication with carry chains is that when a carry chain is packed into a logic
block, that logic block will often still have additional LUTs and flip-flops available for
non-adder logic. To utilize these resources, the packer fills these LUTs and flip-flops
using the same greedy packing algorithm used for other logic blocks. For example, in
the case of a registered addition, the flip-flops are packed in the same CLB as the carry
chain. Currently the prepacker requires that the architect label all carry chain links
in the architecture file, using the pack_pattern construct shown in Figure 8.

5.5. Placement - VPR

Ifalogical adder spans more than one CLB, the dedicated inter-CLB carry links must be
utilized to maintain high performance. These links are “hardwired” (not programmable)
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so the CLBs comprising a carry chain must be placed in a specific relative orientation
to make use of them: for example vertically adjacent in the architecture of Figure 9.
We have modified the placement engine in VPR to support the relative placement of
CLBs in any orientation. The architecture description file, as described earlier, specifies
dedicated carry connections between CLBs, and the specific pins on the CLBs used for
this purpose. When such pins are used by the design netlist, VPR groups the relevant
CLBs together into a “placement macro” which maintains the relative placements of
individual logic blocks within it. In VPR 7.0, the macro notion is not limited solely to
vertical carry chains; instead any shapes and sizes can be defined.

Each placement macro is placed as if it were a single entity. For example, if a carry
chain spans three logic blocks in a 3x1 column, then that entire 3x1 block of CLBs
moves as a unit. Thus, the simulated annealing-based placement engine must swap it
with 3 other vertically adjacent logic blocks (or vacant slots).

5.6. Interconnect Generation — VPR

Carry-chains require direct connections between logic block pins that do not pass
through general interconnect wires. Accordingly, we have modified the inter-CLB rout-
ing architecture generator in VPR [Betz and Rose 2000] to add edges directly between
the routing resource nodes that represent the approprlate pins as required by the new
directlist construct of Figure 10. The carry pins in commercial FPGAs must use these
dedicated links; they have no connection to the general routing. To model this restri-
tion, we now allow each pin on a logic block to specify a different fraction of routing
wires to which it should connect, F,. For the carry pins, an architect would set F, to 0.
When a design netlist uses a pin that cannot connect to the general routing, but which
can make a directlist connection to a pin on an adjacent block, VPR automatically cre-
ates a placement macro containing the relevant blocks to ensure the placement will be
routable.

In keeping with the architectural flexibility goal of VPR, these new constructs can
be used to model more than just carry chains. For example, many commercial FPGAs
incorporate nearest-neighbour direct connections that allow “regular” logic block out-
puts to connect to the inputs of nearby blocks without use of general routing wires.
An architect can now experiment with such connections by specifying appropriate di-
rectlist connections; by specifying a non-zero F, value for the block pins involved these
direct connections become optional, rather than mandatory, routing choices.

5.7. Hard Adder Logic Experiments

We now illustrate the use of hard adders and their impact on circuit speed. We make use
of the Comprehensive Architecture described in Section 3, which includes multipliers,
memories, a hard adder and a standard soft logic and routing architecture.

In the first experiment, we measure the impact of hard adder size on critical path
delay for designs that consist solely of an adder of varying size, with registered inputs
and outputs. The following four cases are used: 1) The VTR flow with hard adders
(each CLB has 20 one-bit adders, 2 adders for every fracturable 6-LUT), 2) the VTR
flow without dedicated adders, 3) the Altera Quartus II 12.0 flow with dedicated adders
on an Altera Stratix IV EP4SGX70HF35C2 device, 4) the same as #3 but with carry
chain use disabled.

Figure 13 plots the critical path delay in nanoseconds versus the size of the adder
in bits for all four scenarios. In all cases, the delay increases linearly as the number of
adder bits increases, as expected. We also observe the expected performance improve-
ment when using hardened adders for large user adders. For example, a hard 128-bit
adder is 5.6 x faster than a soft 128-bit adder in our architecture and 3.4x faster on
a Stratix IV architecture. We notice a difference of approximately 0.6 ns between the
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Adder Size vs Delay Comparison
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Fig. 13. Impact of adder size on critical path delay.

critical path delay of our carry-chain FPGA compared to that of Stratix IV. Quartus II
utilizes differences in LUT input delays to optimize a critical path, and Stratix IV also
has a nearest-neighbour interconnect which lets the registers feeding the carry chain
bypass the general routing. VTR with the Comprehensive Architecture does not sup-
port either of these features, leading to the extra 600 ps delay to reach a carry chain.
We also observe that soft adders are faster than hard adders for small logical adders.
For the VTR case, the crossover point occurs at around 12 bits, whereas for Stratix IV
the crossover point occurs at around 4 bits.

A second experiment measures the impact of our carry-chain architecture on the 19
heterogeneous benchmarks described in Section 3.4. Each circuit was implemented in
an FPGA with and without hard adders, and Table V shows the results. The first column
gives the benchmark name. The next five columns are all ratios of the result achieved
in an architecture with hard adders to those achieved in architecture without hard
adders; they are the minimum routable channel width (W,,,), the critical path delay of
the circuit routed at 1.3 xW,,,, the number of nets between logic blocks, the number
of soft logic blocks, and the total number of LUT + adder primitives in the circuit.
The final column gives the length (in bits) of the largest adder chain in the circuit. We
observe that, as expected, circuits with large adders tend to have an improvement to
critical path delay while circuits without large adders have little if any impact. We
also observe an increase in the number of CLBs needed with hard adders, which
was unexpected. This is due to the black-boxing of the hard adders in the ABC tool
preventing optimization across adder boundaries.

6. ENERGY MODEL

Energy consumption has become a major factor in the design of new FPGA architec-
tures. An FPGA’s energy consumption is a function of its architecture, circuit design,
and the CAD algorithms that synthesize the user design into the device. It is important
to integrate energy modeling into the CAD flow, both to enable researchers to evaluate
the energy consumption characteristics of new FPGA architectures and to develop new
CAD algorithms that can optimize energy.

Power models have been created for previous versions of VPR [Poon et al. 2005; Li and
He 2005; Jamieson et al. 2009], but each of these efforts focused only on the classical
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Table V. Hard versus Soft Adders. All Values Except Longest Chain are the Hard Adder Architecture
Result Divided by the Soft Adder Result

Circuit Wi Delay Num Nets Num CLB LUTSs + Adders Longest Chain
bgm 0.71 1.16 1.32 1.34 1.58 98
blob_merge 1.14 1.45 2.13 1.30 2.09 14
boundtop 0.90 0.98 1.08 1.10 1.17 20
ch_intrinsics 0.96 0.96 0.97 1.00 1.00 0
diffeql 1.19 0.75 1.11 0.97 1.16 67
diffeq2 1.12 0.77 1.30 0.96 1.48 68
LUSPEEng 0.84 0.75 1.23 1.22 1.38 47
LU32PEEng 0.82 0.70 1.21 1.23 1.37 47
meml 1.25 0.56 1.55 1.16 1.35 130
mkDelayWorker32B  1.00 1.04 1.15 1.14 1.19 34
mkPktMerge 1.09 0.91 1.05 1.40 1.44 7
mkSMAdapter4B 1.07 1.02 1.24 1.22 1.28 34
or1200 1.11 0.67 1.26 1.12 1.30 121
raygentop 1.12 1.00 1.29 1.20 1.26 33
sha 1.24 0.73 0.92 0.97 1.02 37
stereovision0 1.07 1.03 1.17 1.24 1.28 21
stereovisionl 1.04 1.03 1.22 1.22 1.38 20
stereovision2 0.81 0.93 1.06 0.94 0.87 35
stereovision3 0.94 1.04 1.01 1.00 1.14 12
geomean 1.01 0.90 1.20 1.14 1.28

stdev 0.15 0.21 0.26 0.14 0.26

LUT-based soft logic cluster, and did not support any kind of hard heterogeneous block.
None of these enhancements were integrated into the trunk of the software and hence
quickly became obsolete with new developments. In particular, those models do not
support the broader architecture description language created in VPR 6.0. The new
VTR 7.0 supports a much wider range of architectures, where architects can describe
arbitrarily complex blocks using the architecture description language.

In this section we present an overview of the energy model integrated into VTR 7.0,
which provides the ability to model the underlying FPGA at two levels of abstraction
- one quite detailed (at the transistor and layout level), and one relatively simple and
macroscopic. We feel these two methods are necessary as the architect may not have
the resources to complete a detailed design of each block and may be satisfied with less
accurate approximation. We provide both static and dynamic energy estimates.

6.1. Detailed Energy Estimation

The detailed energy estimation method described in Goeders and Wilton [2012] will
provide the most accurate capture of an architecture’s energy consumption in the VIR
flow. It works at the transistor level, but much of the transistor-level design for known
primitives (LUTSs, flip-flops, and multiplexers) is provided by VPR 7.0 itself. In the
detailed method, the physical structure of the logic block described in the architecture
file is translated into inverters, simple multiplexers, and wires. The architecture gen-
eration engine computes wire lengths by estimating overall area and approximating
the resistance and capacitance of the wires. It then determines transistor sizes from
the capacitance driven, by applying the method of logical effort [Weste and Harris
2010] which seeks to generally minimize the delay. Alternatively, users can override
automatic buffer sizes by explicitly defining them in the architecture file.

Once these structures are generated, energy estimation is performed for each in-
verter, multiplexer, and wire. These estimates depend on both the behavior of the
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input signals and the properties of the target technology. This information is generated
using two additional tools that are included in the release. The signal behaviors (the
switching activity and static probability) are computed using the ACE 2.0 [Lamoureux
and Wilton 2006] activity estimation tool, which the user must operate together with
known input vectors or random stimulation vectors. The CMOS technology information
must be provided in the form of Spice-level models. These are used by a script that per-
forms multiple SPICE simulations to extract a set of specific process characteristics,
including: transistor capacitances, leakage currents, P-to-N inverter ratio, and mul-
tiplexer output voltages. Since this only needs to be done once per technology, these
results are stored in a separate VIR 7.0 energy technology file. The VTR 7.0 release
provides energy technology files for the PTM [Cao 2008] 22nm, 45nm, and 130 nm
technologies, to save users effort.

As described in Goeders and Wilton [2012] both the inter-CLB routing circuitry and
the global clocking structure are always modeled using this procedure, and the logic
block can also make use of it. However, if the logic block is too complex or different in its
internal structure the architect may need to resort to modelling at a more abstract level,
which is described in the next section. Note that the energy modelling infrastructure
does not yet support multiple clocks.

6.2. Macro-Model Energy Estimation

An architect may not have the resources to engage at the given detailed level for
certain logic blocks, and other “hard” blocks like RAM and DSP blocks are not currently
energy-modeled at this detailed level in VPR, so it is important to provide higher-level,
faster-to-develop, abstractions. We support three simpler power estimation methods. In
the first, the architect models a block’s energy consumption by specifying the amount
of energy consumed per toggle of each input pin to the block. In the second method,
the user provides the equivalent internal capacitance of the block, and the activity is
averaged across all input pins to calculate the dynamic power. In the third method, the
user provides the absolute value of the dynamic power of the block. For each method,
the static power must be provided as an absolute value. The estimation method for
each block is specified within the architecture file. Data for the more abstract levels
of the energy model can typically be found by perusing the spread-sheet-based early
power estimators provided by FPGA vendors [Altera 2012a; Xilinx 2011].

6.3. Results

In this section we illustrate some of the measurements possible with the new energy
models. We performed power estimation on the heterogeneous benchmark circuit set
using the Comprehensive Architecture without carry chains. This architecture contains
a fairly standard soft logic architecture, together with hard memories and fracturable
multipliers. In this architecture, the power usage of routing, CLBs, and the clock
network are modelled using the detailed transistor-level approach. Power dissipation
of memories is modelled as an energy per toggle of the clock pin when the RAM is
enabled, and multipliers are modelled as energy per toggle of each input pin. The
static power of memories and multipliers are ignored. In the experiments, the FPGA
is auto-sized to fit the benchmark circuit, the channel width is the minimum channel
width for the circuit plus 30%, and the clock frequency set to the F,, reported by
timing analysis for each circuit.

Table VI provides the total estimated power usage for each of the benchmark circuits
(described in Section 3.4) as well as a breakdown between the major components of the
FPGA. The total power consumption ranges from 5 mW to 481 mW. On average, 51%
of the total power is static power due to subthreshold leakage; this high percentage
is partially due to the low operating frequency of some of the circuits. Overall, global
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Table VI. Power Usage, and Breakdown by Circuit (45 nm)

Circuit Properties | Architecture Power Power Breakdown
S
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bgm 32275 0 11| 3969 150 37.8 204.7 |33 53 44 0.0 16 1.9
blob_merge 6019 0 0| 784 94 968 28932 40 53 0.0 0.0 6.4
boundtop 3009 1 0| 324 78 || 152.3 16.1 | 56 44 47 0.8 0.0 7.8
ch_intrinsics 401 1 0 64 66 || 249.3 50|73 44 41 45 0.0 104
diffeql 484 0 5| 196 78 46.5 8960 39 28 0.0 30.0 3.0
diffeq2 320 0 5| 196 62 60.8 9.0 66 34 26 0.0 36.0 3.7
LUSPEEng 22601 45 8 | 2809 148 87 1067 | 9 49 49 07 02 0.8
LU32PEEng 76153 168 32| 9216 232 89 4389 |10 58 40 06 02 0.7
meml 101487 159 27 | 9025 144 12.7 3014 | 11 49 48 1.2 02 1.2
mkDelayW. 5214 43 0 | 2304 102 || 129.5 1053 |60 50 34 9.6 0.0 6.4
mkPktMerge 231 15 0| 676 70| 213.7 3872 |76 43 32 164 0.0 8.9
mkSMAdap. 1947 5 0| 324 72|/ 1785 17.8 |64 43 40 86 0.0 8.1
or1200 3041 2 1| 625 88 75.0 23.8 |42 47 47 11 00 4.7
raygentop 2142 1 7| 289 94|/ 202.6 294 |76 46 31 0.6 174 5.0
sha 2273 0 0| 289 66 699 10536 37 58 0.0 0.0 4.8
stereovisionQ 11289 0 0| 1225 78 | 229.1 75362 41 51 0.0 0.0 8.0
stereovisionl 10277 0 38| 1444 136 || 177.1 1274|169 58 35 0.0 2.7 4.9
stereovision2 29196 0 213 | 7396 208 55.2 480.5 |51 63 25 0.0 94 24
Average 17131 24 19 | 2286 109 || 1114 1126 |49 47 41 24 54 49

routing is responsible for 49% of the total power, CLBs (including local routing) for
41%, and the clock network for 5%. Memories and multipliers also contribute a few
percentage points on average; however, since their static power is ignored, this directly
depends on the number of memories and multipliers instantiated in the user circuit.

As expected, the results show that generally the power consumption grows with
the size of the benchmark circuit. However, other factors also play a large role. For
example, the second largest circuit (LU32PEEng) consumes 46% more power than the
largest circuit (mceml), primarily due to the much larger channel width (232 versus
144). This results in 58% of the total power of LUS2PEEng being from routing, versus
49% for the larger mcml circuit. Signal activities and operating frequency also play
a very significant role. For example, 51% of the power of the third largest circuit,
stereovision2 is dynamic power, versus only 10% and 11% for the largest two circuits.
This behaviour is also evident in the smaller raygentop and sha benchmarks. Although
they use identical sized FPGAs, the raygentop circuit uses nearly three times the power,
of which 76% is dynamic, versus 36% for the sha circuit.

7. CLUSTERING ADVANCES

The packing stage of the CAD flow maps “atoms” in a technology-mapped user netlist
into the “primitives” present in the FPGA logic blocks. VPR 6.0 incorporated a pre-
liminary implementation of a packer that could target complex logic blocks organized
with internal hiearchy, modes of operation, heterogeneity, and arbitrary interconnect
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Fig. 14. Architecture with hard-wired LUTSs (left) and how parts of a netlist may be clustered together to
utilize it (right).

between the primitives. This enabled researchers to explore heterogeneous FPGAs
containing configurable multipliers, memories, and other unique logic blocks. How-
ever, that packer exhibited poor run-time on architectures that were relatively simple
(full crossbar interconnect, for example), and there were examples where it was not
using the blocks as efficiently as it should have. Our long-term goal is to develop algo-
rithms that function according to the inherent packing difficulty of an architecture —
applying more computation effort only when needed. The packer in the VTR 7.0 takes
several steps in that direction.

The overall goal of the packing stage is to find a legal mapping of atoms to primitives
such that all logic blocks respect the constraints (routing and otherwise) imposed upon
them by the architect, while at the same time optimizing for some combination of
area and speed. As a result of the arbitary interconnect permitted within a block, the
position of an atom in the block matters, giving rise to a placement problem within
the block. There is also an associated routing problem. For example, in a logic block
with four flip-flops connected as a shift register, there may exist only one correct order
for packing the flip-flops, owing to limited routing flexibility. We will briefly describe a
series of enhancements to improve the run-time, architecture-adapability and quality
of results for the packer.

Best-Fit Enhancement. The previous version of the packer (VPR 6.0) used a first-fit
packing algorithm that depended on the order that primitives were specified in the
architecture description. It is far better for the algorithm itself to choose the within-
block placement independent of the order in the file, and so in VPR 7.0, we use a best-fit
algorithm. In the new approach, each potential primitive is considered as a target for
the atom under consideration, and the one with the fewest pins is selected; in essence,
we prefer to pack atoms into the least-flexible primitives that can accept them.

Grouping Highly-Constrained Atoms into Molecules. There are a number of intra-
logic-block structures that have been proposed over the years that use highly con-
strained routing from one primitive to another. A straightforward example is the typ-
ical connection between a lookup table and flip-flop — once the LUT is selected to be a
specific atom, only a connected flip-flop in the netlist may be chosen for the connected
flip-flop primitive slot. Another example of this limited flexibility are the carry-chain
links within a block discussed in Section 5. Such fixed connections imply groups of
atoms that must be considered as a single unit during packing — a notion we refer to as
a molecule. Simply put, a molecule is a collection of atoms, connected in a specific way,
that must be handled as a single unit during packing. A more complex example of this
is the concept of “hard-wired LUTSs” proposed in [Chung and Rose 1992] and illustrated
in Figure 14. That architecture contains inflexible connections between a cascade of
three LUTs with no intermediate fanout. The LUT atoms in the technology-mapped
netlist must match this pattern before they may be assigned to this special struc-
ture. In VPR 7.0 the architect can annotate interconnect structures in the architecture
file to indicate to the packer the need to pre-group structures in the netlist. During
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packing, these larger structures (molecules) are matched exactly to the fixed intercon-
nect among the primitives.

Approximate Routing with Pin Counting. As described earlier, the basic legality check
in the packer of VPR 6.0 routes every candidate atom-to-primitive mapping during
packing. For architectures with full connectivity between all internal primitives this is
unnecessary and it suffices to ensure that the external (to the block) pin counts are not
exceeded. In VPR 6.0 such counts were used to rapidly invalidate atom-to-primitive
mappings that were provably unroutable due to pin-count restrictions.

VPR 7.0 incorporates more sophisticated pin counting, based on the concept of pin
classes. Roughly speaking, any two pins (internal or external to the block) are part
of the same class if they are part of a common interconnect network. By performing
pin counting at the finer-grained pin-class level, the packer can reject bad candidate
mappings more often thus saving significant runtime of the intra-logic-block router.

Speculative Packing. In VPR 6.0, over 90% of runtime was spent in routing during
packing — the router was invoked every time an atom was mapped to a primitive
as a conservative check for legality. In VPR 7.0, the advancements in pin classes and
molecules mean that in most cases for straightforward architectures the selected atoms
will succeed in routing. For this reason, we speculatively pack a logic block and assume
that it will route. The router is not invoked for a logic block until the packer has
finished packing atoms to that logic block, after which a final route is performed. If
that route check passes, as it usually does, speculative packing has succeeded so the
packer moves on to pack the next logic block. If the router fails, then the algorithm will
revert back to the atom-by-atom routing for that block. Currently, the packer always
attempts speculative packing irrespective of the difficulty of the target logic block.

7.1. Results: Old vs. New Packer

To measure the improvements from these enhancements, we ran an experiment to
compare the packer in VPR 7.0 with that in 6.0, using the benchmarks described in
Section 3.4. Each circuit is run through the VTR 7.0 flow from elaboration with ODIN II
to logic synthesis with ABC to packing with one of AAPack 7.0 or AAPack 6.0, and then
placement and routing with VPR 7.0. All VPR settings are left at default values except
placement inner_num which is set to 10. The architecture being investigated is the
Comprehensive Architecture described in Section 3.1, but without carry-chains, as
VPR 6.0 cannot target architectures with carry chains.

The results are shown in Table VII. The leftmost column shows the names of the
benchmarks, and the other columns show the VPR 7 result divided by the VPR 6
result. The second column is the minimum channel width necessary to route the circuit,
followed by the critical path delay of the circuit at 1.3 x W,,;,, the total time needed to
perform packing, the number of inter-CLB nets and the number of CLBs after packing.
The final two rows give the geometric mean and standard of deviation for the values
of that column. On average, the packer is sped up 12-fold in VPR 7.0 versus VPR 6.0.
This shows that our techniques use substantially less computational effort than the
packer in VPR 6.0 for architectures with simple interconnect. With respect to quality
of results, on average, the number of external nets is reduced by 10% which results
in a 20% reduction in mininum channel width; the critical path delay is reduced by
6%, and the number of soft logic blocks is the same, showing that the new packer is
substantially improved.

8. POST-ROUTING NETLIST FOR TIMING AND POWER SIMULATION

Commercial FPGA vendors provide tools to generate a post-routing simulation netlist
and an associated SDF (standard delay format) file with delay information. These en-
able simulation of the implemented design with industry-standard simulators, such
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Table VII. Packing Results VPR7/VPR6

Circuit Woin  Delay Pack Time Num Nets Num CLB
bgm 0.71 0.83 0.45 0.89 1.00
blob_merge 0.78 1.00 0.16 0.82 1.00
boundtop 0.78 0.85 0.03 0.86 0.95
ch_intrinsics 0.89 1.01 0.04 0.92 0.93
diffeql 1.00 0.96 0.10 0.94 0.92
diffeq2 1.08 0.93 0.07 0.91 1.00
LUSPEEng 0.77 095 0.18 0.98 1.02
LU32PEEng 0.72  0.97 0.18 0.98 1.02
mcml 0.48 0.97 0.08 0.89 0.97
mkDelayWorker32B 0.80  0.92 0.07 0.91 1.01
mkPktMerge 1.00 1.06 0.14 0.99 1.00
mkSMAdapter4B 0.77 0.89 0.02 0.91 0.97
or1200 0.86 0.98 0.06 0.87 0.97
raygentop 0.92 1.00 0.11 0.90 1.01
sha 0.74  1.00 0.04 0.71 0.99
stereovisionQ 0.66 0.78 0.06 0.92 1.09
stereovisionl 0.82 0.92 0.06 0.92 1.09
stereovision2 0.71 0.92 0.08 0.94 1.06
stereovision3 1.00 0.90 0.05 0.89 1.00
geomean 0.80 0.94 0.08 0.90 1.00
stdev 0.17  0.07 0.12 0.05 0.04

as ModelSim, with accurate timing information extracted from the physical layout.
The post-routing netlist is typically structural-level HDL, comprising interconnected
primitives (e.g., LUTSs) that closely align with those in the FPGA architecture. Such
simulations serve two main purposes: 1) verifying functionality with timing consider-
ations, and 2) to facilitate more accurate power analysis and optimization through the
use of signal switching activities that model glitches.

VTR 7.0 now includes a post-routing netlist and SDF file generator. In addition
to the two purposes noted earlier, we can use this capability to verify the VTR tool
flow itself. In particular, one can simulate the front-end Verilog RTL and directly
compare its functionality with the post-routing Verilog netlist, providing a measure of
confidence that the toolchain is indeed error free. The post-routing generated structural
Verilog instantiates primitives drawn from a primitives.v library file in the VTR 7.0
distribution; LUTSs, flip-flops, combinational multipliers, and RAM blocks are currently
supported. FPGA architects wishing to perform timing simulations for architectures
containing other primitive types need only describe the functionality of the new blocks
in the primitives library file.

To demonstrate the new functionality, we performed a glitch analysis on a set of
benchmarks. Glitches are unnecessary spurious toggles on logic signals that arise as a
result of unequal path delays to a signal’s driving gate. While glitches do not present a
functionality problem, they do result in additional dynamic power consumption; in the
designs studied in Shum and Anderson [2011], for example, glitches consumed an aver-
age of 20% of total power. We implemented the benchmarks in an architecture with ten
6-LUTSs per logic block and length-4 routing segments and simulated with randomly
toggling primary inputs. Each circuit was simulated twice with the same vector set:
once without timing information (functional simulation) and once considering circuit
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Table VIII. Average Switching Activities without and with Consideration of Glitches

Avg. Avg. Avg. Avg.

Toggle Rate  Toggle Rate Toggle Rate  Toggle Rate
Circuit (func sim.)  (timing sim.) | Circuit (funct sim.) (timing sim.)
6-bit ripple adder 48.5% 57.9% pdc 22.3% 23.7%
alud 35.9% 38.3% dsip 48.2% 53.6%
apex2 31.5% 33.4% ex5p 28.7% 32.5%
apex4 24.7% 26.0% $38417 13.7% 14.8%
bigkey 42.1% 51.1% misex3 32.7% 35.1%

delays (timing simulation). Table VIII shows toggle rate results for the circuits, which
include a 6-bit ripple adder (that uses carry chains) and representative combinational
and sequential MCNC circuits. Toggle rates always increase with glitch-aware simu-
lation; the increase ranges from 5% to 21%, with an average of 10%. We expect the
new simulation netlist functionality will enable a variety of research on FPGA power
estimation and optimization, as well as research on how the underlying FPGA archi-
tecture influences signal toggle rates. It will also be useful for those studying repair
and redundancy methods for FPGAs.

9. NEW FEATURES OF ODIN II

Several new features of the frontend elaboration tool, ODIN II, are included in
release 7.0.

Memory Inference. ODIN II will now infer both single and dual-port memories from
2-dimensional arrays of bits [Somerville and Kent 2012], rather than requiring explicit
instantitation. ODIN can now also implement a logical memory out of either hard block
RAMs or soft logic and flip-flops. The user can control the soft vs. hard implementation
choice via a threshold parameter — if the logical memory is larger than the threshold
it is built out of hard blocks; otherwise it is built out of soft logic.

Simulation. To ease and automate checking the correctness of the flow we have
added a simulator into ODIN that can directly simulate either Verilog or any form
of BLIF emitted by other stages of the flow [Libby et al. 2011]. We use this feature
to test the correct functionality of every stage of the flow by emitting BLIF from it
and simulating it against the input Verilog. The benchmarks distributed with the VTR
flow are accompanied by a set of input and matching output test vectors to aid with
automatic checking of results.

Visualization. ODIN now includes a tool to visualize the gate-level structure of the
design early in the flow; users can interactively highlight blocks or paths and show
logic values generated by the ODIN II simulator [Nasartschuk et al. 2012]. This tool
helps FPGA architects understand the design structure and helps ODIN II developers
test and debug new elaboration features.

10. RESULTS AND COMPARISONS

In this section, we compare the VTR 7.0 release with prior versions. The first compar-
ison covers all of the releases of only the VPR stage on an older, simple architecture.
The second comparison is between the two most recent versions of the full VTR flow
on a modern heterogenous architecture.

10.1. Comparison of VPR Versions on a Homogeneous Multidriver Architecture

We compare VPR versions 4.3, 5.0, 6.0 and 7.0 to determine their quality of results
(QoR) in speed and other metrics. VPR 4.3 is used as the baseline measurement. The
architecture used for this experiment is one which all versions of VPR are capable of
targeting (and as such, is different from the architectures presented in Section 3.4)
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Table IX. VPR Cross-Version Comparison, Using Simple Architecture

VPR 4.3 VPR5.0 VPR6.0 VPR7.0 5.0/4.3 6.0/4.3 7.0/4.3
Post-pack Nets 1625 1625 1554 1553 1.00 0.95 0.95
Post-pack Clusters 731 731 730 730 1.00 1.00 1.00
Placement Est. WL 21129 21309 20273 19723 1.01 0.96 0.93
Wi 28.4 28.8 28.3 28.4 1.01 1.00 1.00
Total Routing WL 31166 31606 31112 31199 1.01 1.00 1.00
High Stress Crit. Path Delay (ns) 25.9 26.8 26.5 25.4 1.03 1.02 0.98
Low Stress Crit. Path Delay (ns) 19.7 19.7 19.6 19.8 1.00 1.00 1.01
Packing CPU time (s) 0.03 0.05 0.71 0.81 1.73 26.54 30.19
Placement CPU time (s) 12.2 13.3 29.5 17.9 1.09 2.43 1.47
Routing CPU time (s) 2.13 2.32 2.65 2.75 1.09 1.24 1.29
Total CPU time (s) 14.5 15.9 33.3 22.0 1.10 2.30 1.52

with the following attributes: it employs clusters with 4-input LUTs (K = 4) and four
LUTs in each cluster (N = 4). The internal cluster delay is set to the same value for
all versions. In the routing architecture, all wiring segments are set to length 4 and
employ tri-state (bidirectional) buffers, as single-driver interconnect is not available in
VPR 4.3. The routing flexibility parameters are set to F¢;;, = 0.25 and Fc¢,,; = 1.00,
and F's = 3. The MCNC 20 benchmark circuits are used as VPR 4.3 cannot target the
more complex heterogeneous circuits in other benchmark sets. The experiment was
run on an Intel 15-2500 machine (four 3.30GHz CPUs) with 16GB of main memory and
a 64-bit Ubuntu Linux environment (v12.04).

The flow of the experiment is as follows: each circuit starts as a technology mapped
netlist of LUTSs, flip-flops and I/0s, and goes through the VPR flow to determine W,,;,.
The routing is repeated at a ‘low stress’ channel width set to W,,;;, + 30% to obtain the
post-routed circuit delay and wirelength. In the table, we refer to the results obtained
during the minimum channel width run as ‘high stress’. Results shown are geometric
means across all 20 circuits over 3 placement seeds to minimize CAD noise.

One of most significant results from Table IX is the packing CPU time from the
recent two VPR versions, which is much larger than the two oldest versions. This is
due to the complex legality checks inside the packer, which were discussed in Section 7.
Unexpectedly, the placement in VPR 6.0 is also significantly slower than that in VPR
4.3; this has been largely remedied in version 7.0 by making the computation of net
bounding boxes incremental in placement as described in Betz et al. [1999]. The quality
of results from the packer are very close across all four versions. Both the VPR 6.0 and
7.0 packers produce packing solutions with ~5% fewer post-packed nets. The placement
in versions 6.0 and 7.0 also achieves ~4-to-7% lower estimated wirelength, which is
likely due to the smaller number of external nets produced by the packer.

Overall all four releases of VPR produce similar quality on this simple architecture,
but CPU time grew by 2.30x in VPR 6.0 vs. VPR 4.30, as VPR added support for more
complex features. In VPR 7.0 we have improved the situation by reducing CPU time by
33% vs. VPR 6.0, despite adding several new features. Further CPU time improvements
remain an important future work, given the many-hour to multi-day compile time of
both commercial and academic tools for the largest (500,000+ LUTSs), FPGA circuits
[Murray et al. 2013].

10.2. Comparison on Comprehensive Architecture without Carry Chains

We now compare the two most recent versions of VPR on a modern heterogenous archi-
tecture and circuits: the Comprehensive Architecture without carry chains described
in Section 3. Carry chains cannot be used, as VPR 6.0 did not support them. This
experiment was run on the same compute platform as the previous experiment. The
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Table X. Comparison of VPR 6.0 and 7.0 on Comprehensive without
Carry Chains Architecture

Statistic VPR6.0 VPR7.0 7.0/6.0
Post-pack Nets 3848 3468 0.90
Post-pack Clusters 861 867 1.01
Placement Est. WL 50059 38484 0.77
Min W 89.7 72.7 0.81
Routing Final WL 73126 57108 0.78
High Stress Crit. Path Delay (ns) 13.31 12.56 0.94
Low Stress Crit. Path Delay (ns) 13.12 12.36 0.94
Packing CPU time (s) 308.1 11.1 0.04
Placement CPU time (s) 58.5 44.7 0.76
Routing CPU time (s) 4.6 44 0.96
Total CPU time (s) 383.5 64.1 0.17

front-end of the flow was performed using the versions of ODIN II and ABC in VTR
7.0 while the back-end was either VPR 6.0 or VPR 7.0. Critical path delay results were
obtained by running the circuits with W,;, + 30% tracks. All results are geometric
means across the 19 heterogeneous circuits over 3 different placement seeds.

As shown in Table X, the packing CPU time in VPR 7.0 has been greatly improved
(about 25x speedup) versus VPR 6.0, as is expected from Section 7. The packer in
7.0 also absorbs 10% more nets than the version 6.0 packer on this more complex
architecture. With better packing quality and an improved placement move generator,
the minimum channel width required is reduced by 19% on average and that leads to
a 22% reduction in final routing wirelength. As for the placer, use of an incremental
bounding box calculation [Betz et al. 1999] reduced placement CPU time by 24%.
Overall the new VPR release has a 6 x compilation speedup with better wirelength and
no increase in critical path delay.

11. SOFTWARE ENGINEERING OF OPEN SOURCE PROJECT AND RELEASE

All of the software described in this article is provided under an open-source MIT
license and is available for download from http://code.google.com/p/vtr-verilog-
to-routing/.

In this release, we have improved our software engineering and release test envi-
ronment. First, there is a automated build environment that rebuilds the software
whenever new source code is uploaded to the active ‘trunk’ under development. The
automated build is triggered by every new commit to the archive. Each such build is
automatically tested with a small set of runs through the flow, which are checked both
for completion and quality of results (QoR). The results for compile time, area, number
of logic blocks and critical path delay are checked to be within range of stored “golden”
results. A second, longer quality test is triggered after the first one, which uses more
and larger circuits with the same types of checking. Subsequently, there is a nightly
build and a weekly build, each of which also tests QoR using progressively more and
larger circuits. This ability to track the QoR as the software changes is important to
the stability of the flow and tools.

The following website shows the ‘waterfall’ of all of these builds and tests: http://
canucks.eecg.toronto.edu:8080/waterfall.

Links in the waterfall display give the quality of results for each type of build/test in
a table. We have also begun to establish uniform quality guidelines across the software
submitted by all collaborators to the project. This is an effort to both keep the memory
footprint and execution time to a minimum, as well as keeping the code comprehensible
for new people engaged in the project. A key part of this has been the reviews of code
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submitted to the archive, and the revision to meet a coding standard. Without this, the
software as an extensible platform will become unmangeable.

For this release, a snapshot of the trunk code was captured and tested more exten-
sively to form the 7.0 public release. It is this code that is exercised in the tables in
Section 10 and for which extensive documentation is provided with the release distri-
bution. The trunk version will continue to evolve as it is the code under development.

For this release, we have also decided to unify the numbering scheme of all of the
component parts of VTR: ODIN, ABC, VPR, architecture files, scripts and benchmark
circuits. Each one of these will have the release number 7.0 associated with them. This
means that ODIN will jump many numbers ahead; and, we are attaching our own
release number to ABC since we have modified the source code in several ways to make
it work in our flow. The key idea is that, if users have the same version number of all
three stages of the flow, then our testing indicates all the software will work together.

12. FUTURE WORK

While this article describes significant increases in the capability of the VTR tool-
suite, there are still many enhancements that would increase its utility as an FPGA
architecture and CAD exploration tool, including the following.

(1) Combined Intra-Block and Inter-Block Routing. Modern commercial FPGAs con-
tain logic blocks with complex internal connectivity (e.g. depopulated crossbars)
that require internal-to-the-logic-block routing. In VPR 7.0, this routing is per-
formed during packing, and the final router completes only inter-block connections.
Separating within-block and between-block routing in this way prevents the final
router from permuting which signal connects to which input pin of a block, except
for the special case of full crossbar connectivity within a block. By upgrading the
final router to perform both inter- and intra-block routing in one step we believe we
will improve timing and wiring quality for architectures with complex intra-block
connectivity, possibly at the cost of a CPU time increase.

(2) Area Modeling. For complete architecture results, we require modeling of the area
taken up by all elements of the heterogenous architecture. This should include not
only proper transistor sizing and area estimation of the soft logic and routing by
incorporating techniques like those of Chiasson and Betz [2013] but also efficient
methods to estimate the area of memories and other hard blocks.

(8) Multi-Clock Energy Analysis and Post-Routing Netlist Generation. The energy anal-
ysis tool and the post-routing netlist generator assume there is only one clock in
the design; these features should be augmented to handle the new multi-clock
capability.

(4) Improved Synthesis Optimization with Hard Blocks. Our work on carry chain sup-
port has shown that once we make use of hard blocks (such as adders) at the
ODIN II stage, we prevent any downstream logic optimization across these hard
blocks in ABC. Accordingly, we will enhance ODIN II to perform key optimizations
such as comon sub-expression elimination and constant propagation in a “hard
block aware” way; we believe this will reduce both adder and general logic usage.
We will also experiment with improvements to ABC’s “white box” feature to make
the functionality inside hard blocks visible to ABC, allowing optimization across
the boundaries they form without destroying the optimized hard structure.

(5) Relationally Placed Macros. The carry chain work has added support to VPR for
relationally placed macros; this feature could be expanded to enable direct user
specification of such macros, which would enable experiments with floorplanning-
like flows.
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(6) ODIN 1II language support. We plan to continously improve the Verilog language
coverage in ODIN II, including for loops, functions, casez, casex and generate state-
ments, as well as combinational overriding and Verilog-2001 module syntax.

We also expect many new studies to be enabled by the features in this release of
VTR. Some of our own future work will use this release to investigate different ways
to incorporate arithmetic into FPGAs, new flows that leverage floorplanning to re-
duce compile time, and comparisons vs. industrial CAD tools on very large circuits.
The new multi-clock support enables studies into how to most efficiently design the
pre-fabricated clocking networks within an FPGA. Studies of FPGA block and routing
architecture can now be performed with more complex circuits, more up-to-date process
technology and with power trade-offs considered alongside area and delay. Other inves-
tigations into more radically different FPGA architectures such as 3D FPGAs [Ababei
et al. 2006] or NoC-enabled FPGAs [Abdelfattah and Betz 2013] will require VTR code
changes, but these investigations will also benefit from the more complete baseline
VTR software.

13. CONCLUSION

This article has presented the latest release of the Verilog-To-Routing CAD flow for
FPGAs. The release incorporates many enhancements, including multiple clock timing
analysis and optimization, carry chain support, energy modeling and clustering im-
provements. We have also presented measurements showing that while this version of
VTR is more feature rich, it is faster and has higher optimization quality than the prior
release. The full release includes architecture files that are more representative of mod-
ern FPGAs than those typically used in academic work and which include delay, area
and power modes upon which researchers can base further architecture enhancements.
The VTR 7.0 release represents the combined efforts of a large number of researchers
and groups around the world, and we believe it will enable the research community to
pursue new directions in FPGA algorithms, architectures and applications.
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