
Timing-Driven Placement for FPGAs

Alexander (Sandy) Marquardt, Vaughn Betz, and Jonathan Rose1

{arm, vaughn, jayar}@rtrack.com

Right Track CAD Corp., Dept. of Electrical and Computer Engineering,
720 Spadina Ave., Suite #313 University of Toronto, 10 King’s College Road

Toronto, ON, M5S 2T9 Toronto, ON, M5S 3G4

Abstract

In this paper we introduce a new Simulated Annealing-
based timing-driven placement algorithm for FPGAs. This
paper has three main contributions. First, our algorithm
employs a novel method of determining source-sink connec-
tion delays during placement. Second, we introduce a new
cost function that trades off between wire-use and critical
path delay, resulting in significant reductions in critical path
delay without significant increases in wire-use. Finally, we
combine connection-based and path-based timing-analysis
to obtain an algorithm that has the low time-complexity of
connection-based timing-driven placement, while obtaining
the quality of path-based timing-driven placement.

A comparison of our new algorithm to a well known non-
timing-driven placement algorithm demonstrates that our
algorithm is able to increase the post-place-and-route speed
(using a full path-based timing-driven router and a realistic
routing architecture) of 20 MCNC benchmark circuits by an
average of 42%, while only increasing the minimum wiring
requirements by an average of 5%.

1. Introduction

In this paper we introduce a new timing-driven placement
algorithm based on the existing placement algorithm within
VPR [1][2]. VPR incorporates a timing-driven router, but
does not consider timing during placement. A timing-driven
router can only produce routings that are as good as the
placement on which the routing is performed, so to extract

more speed out of an FPGA it is essential that timing-driven
placement algorithms be used.

To be useful, a timing-driven placement algorithm must pro-
duce high quality placements in reasonable amounts of time
without making large sacrifices in routability. Accordingly,
we have developed a Simulated Annealing based timing-
driven placement algorithm that satisfies all of these goals.

Our new timing-driven algorithm includes unique features
that have not been previously used. First, we have developed
a novel method to automatically compute and store delays
between any set of locations in an island style FPGA with
any routing architecture. These delays are then used during

placement to efficiently evaluate source to sink connection1

delays. Second, we present a new cost function that accu-
rately balances wire-usage and circuit speed in any ratio.
Third, we combine path-based and connection-based
approaches to timing-driven placement, and we achieve an
algorithm with the time complexity of a connection-based
approach while achieving the quality of a path-based
approach.

This paper is organized as follows. Section 2 discusses
placement and timing-driven placement. Section 3 describes
our new timing-driven placement algorithm, which we call
T-VPlace. Section 4 describes the method by which we eval-
uate the quality of our algorithm. Section 5 shows how we
select values for various parameters within our algorithm,
while Section 6 discusses the time complexity of our algo-
rithm. Section 7 compares the post-routing result quality of
placements produced by our new algorithm to that of place-
ments produced by a high quality routability-only placement
algorithm. Finally in Section 8 we present our conclusions.

2. Background

Placement is the process by which a netlist of circuit blocks
(which are either I/Os or logic blocks) are mapped onto
physical locations in an FPGA. In this section we first dis-
cuss Simulated Annealing, which is an algorithm that is
commonly applied to placement problems. Then we present
the VPR placement algorithm, which we have enhanced to

1. In a graph representation of a circuit we define a “connection” to be an
edge between a net driver and any of its terminals.

1.This work was performed at the University of Toronto. Sandy Marquardt
and Vaughn Betz are now with Right Track CAD, and Jonathan Rose is
now at both Right Track CAD and the University of Toronto.

produce our new timing-driven algorithm. After this, we
discuss timing-analysis. Finally, we present some existing
timing-driven placement algorithms.

2.1. Simulated Annealing

Both our new placement algorithm and VPR’s original
placement algorithm are Simulated Annealing based. In this
section we give a brief introduction to Simulated Annealing,
and discuss how it is applied to the placement problem.

The Simulated Annealing algorithm mimics the annealing
process used to gradually cool molten metal to produce
high-quality metal structures [12]. A Simulated Annealing-
based placer initially places logic blocks and I/Os (circuit
blocks) randomly into physical locations in an FPGA. Then
the placement is iteratively improved by randomly swap-
ping blocks and evaluating the “goodness” of each swap

with a cost function1. If the move will result in a reduction
in the placement cost, then the move is accepted. If the
move would cause an increase in the placement cost, then
the move sill has some chance of being accepted even
though it makes the placement worse. The purpose of
accepting some “bad” moves is to prevent the Simulated
Annealing-based placer from becoming trapped in a local
minimum.

2.2. The VPR Placement Tool (VPlace)

In this paper we will refer to the placement algorithm used
within VPR as VPlace. VPlace is a Simulated Annealing-
based placement algorithm that attempts to minimize the
amount of interconnect required to route a circuit by placing
circuit blocks that are on the same net close together. To
accomplish this, VPlace uses a bounding-box based [1][2]
cost function to estimate wire-length requirements.

The cost function used in VPlace has the following func-
tional form [1][2]

(1)

where there are Nnets in the circuit. The cost of each net, i, is
determined by its horizontal span, bbx(i), and its vertical
span, bby(i). The horizontal and vertical spans of a net are
demonstrated in Figure 1. The q(i) factor compensates for
the fact that the bounding box wire length model underesti-
mates the wiring necessary to connect nets with more than
three terminals. The values used for q(i) were obtained from

[13] so that q(i) is set to 1 for nets with 3 or fewer terminals,
and it slowly increases to 2.79 for nets with 50 terminals.
Beyond 50 terminals, the q(i) function linearly increases at
the rate of

q(i) = 2.79 + 0.02616·(Num_Terminals - 50). (2)

The complexity of this algorithm is O(n4/3) where n is the
number of blocks in the circuit.

2.3. An Introduction to Timing Analysis

Timing-analysis [3] must be done during timing-driven
placement to compute the delay of all of the paths in a cir-
cuit. These delay values are then be used to guide the algo-
rithm so that it can reduce the critical paths. This section
describes the method that we use for timing-analyzing cir-
cuits.

We must first represent the circuit under consideration as a
graph. Nodes in the graph represent input and output pins of
circuit elements such as LUTs, registers, and I/O pads. Con-
nections between these nodes are modeled with edges in the
graph. These edges are annotated with a delay correspond-
ing to the physical delay between the nodes.

To determine the delay of the circuit, a breadth first tra-
versal is performed on the graph starting at sources (input
pads, and register outputs). Then we compute the arrival
time, Tarrival, at all nodes in the circuit with the following
equation

(3)

Where node i is the node currently being computed, and
delay(j,i) is the delay value of the edge joining node j to
node i. The delay of the circuit is then the maximum arrival
time, Dmax, of all nodes in the circuit. 1. A typical cost function used in an FPGA placement algorithm may at-

tempt to minimize the amount of wiring and/or the delay of the resulting
circuits.

Wiring_Cost q i() bbx i() bby i()+[]⋅
i 1=

Nnets

∑=

bbx

bby

Figure 1: Example Bounding-Box of a 10 Terminal Net [1][2]

Tarrival i() Max j fanin i()∈∀ Tarrival j() delay j i,()+{ }=

To guide a placement or routing algorithm, it is useful to
know how much delay may be added to a connection before
the path that the connection is on becomes critical. The
amount of delay that may be added to a connection before it
becomes critical is called the slack [3] of that connection.
To compute the slack of a connection, we must compute the
required arrival time, Trequired, at every node in the circuit.
We first set the Trequired at all sinks (output pads and register
inputs) to be Dmax. Required arrival time is then propagated
backwards starting from the sinks with the following equa-
tion

(4)

Finally, the slack1 of a connection (i,j) driving node, j, is
defined as:

(5)

2.4. Timing-Driven Placement

Timing-driven placement algorithms attempt to map circuit
blocks (IOs, logic blocks) that are on the critical path into
physical locations that are close together so as to minimize
the amount of interconnect that the critical signals must
traverse. In this section we discuss some existing timing-
driven placement tools, starting with two FPGA-specific
placement tools, PROXI [4] and Triptych [5], followed by
two standard cell placement tools, Timberwolf [6], and
SPEED [7].

The PROXI [4] algorithm is a Simulated Annealing based
timing-driven placement algorithm that is designed for
FPGAs. This algorithm has good results but it is very com-
putationally intensive. It performs simultaneous placement
and routing by ripping up and rerouting all the disturbed
nets after each placement perturbation during the anneal.
The algorithm achieves an 8% - 15% improvement in
delay compared to the Xilinx XACT 5.0 place and
route system; however it has a significant disadvantage
in CPU compile time, ranging from 6 times for the smallest
design (a 12 x 12 array) to 11 times for the largest design (a
16 x 16 array). The computational complexity of this algo-

rithm (while not given in [4]) appears to be O(n3) from the
data they present, making it infeasible for large circuits.

The Triptych [5] CAD tools incorporate a timing-driven
placement algorithm that, like ours, is based on Simulated
Annealing. However, its approach uses only a single, unit-
delay model timing-analysis before placement begins to
evaluate the criticality of each connection, so their estimate

of where the critical path lies can be inaccurate. Also, its
cost function weights each source-sink connection by its
criticality, and focuses on minimizing the sum of these
weighted connection lengths. Hence this cost function
implicitly assumes that the delay of a connection is a linear
function of the Manhattan distance between its terminals.
Unfortunately, this assumption is not true for most FPGA
architectures — the delay of a connection is more complex.

Timberwolf [6] is Simulated Annealing based and is
designed for row-based standard cell ICs. Timberwolf does
a good job in reducing circuit delay, but it appears to be very
computationally expensive since it is fully path based (how-
ever the computational complexity of the algorithm is not
given in [6]). Additionally, the delay modeling used in Tim-
berwolf is not realistic for circuits implemented in deep-
submicron processes or for FPGAs since its delay formula-
tion ignores the wiring resistance of individual source-sink
connections. Also, Timberwolf assumes that all source-sink
connections on a single net have the same delay. Using this
delay formulation, Timberwolf reduces circuit delay by
28% - 50% at an area cost of 2.5% - 6% on three MCNC cir-
cuits for which timing results were available.

Another timing-driven placement algorithm is SPEED [7].
This algorithm uses quadratic programming placement tech-
niques to place Standard Cell designs. SPEED uses a star
model and the Elmore delay to compute the delay between
connections on a net. First the algorithm computes a star
node which is the center of gravity of all pins on the net, and
then an RC tree is constructed assuming that all connections
go from the driver to the star node and from the star node to
each sink. This method of modeling connectivity does not
accurately reflect how connections are made in an FPGA,
and therefore does not accurately reflect the delay of an
FPGA. Because SPEED is partitioning based and is not
designed for FPGAs, it is difficult for us to say how well it
could be adapted to FPGAs.

3. A New Timing-Driven Placement Algorithm:
T-VPlace

We have developed a new placement tool called T-VPlace
which is an extension to the original VPlace algorithm. T-
VPlace is both wireability-driven (minimizing wiring
requirements) and timing-driven. It is essential to consider
both the goal of minimizing wiring and reducing critical
path delay because a timing-driven only approach will lead
to circuits that require an unacceptable amount of routing
resources, while considering only wireability will lead to
slow circuit implementations. T-VPlace simultaneously
considers critical path delay and wireability and finds a rea-
sonable compromise between the two. T-VPlace is simu-
lated annealing-based and it uses the same annealing1. Slack is the amount of delay that can be added to the connection before

causing any path that it is on to become critical.

Trequired i() Min j fanout i()∈∀ Trequired j() delay i j,()–{ }=

Slack i j,() Trequired j() Tarrival i()– delay i j,()–=

schedule as the original VPlace algorithm. Figure 2 shows
the pseudo-code for the T-VPlace algorithm.

The following sections describe the T-VPlace algorithm in
detail, including descriptions of our novel method of model-
ing delay, our new cost function, and a brief description of
our approach to timing analysis.

3.1. Delay Modeling

To maximize the performance and quality of T-VPlace, we
must accurately and efficiently model the delay of each con-
nection in the circuit as the circuit is placed. The most
accurate technique would be to route each proposed place-
ment and extract the routed delay of each connection as [4]
did, but this approach requires unacceptable amounts of
CPU time. Instead, we create a “delay profile” of an FPGA

that is used to rapidly evaluate the delay of each connection
in the circuit given the placement of its terminals.

In a “tile-based” FPGA, the FPGA structure is homoge-
neous, i.e. every x,y location in the FPGA is constructed
from identical tiles. All current island style FPGAs are com-
posed of one identical tile, or a small number of distinct but
nearly identical tiles. We exploit the uniformity of such
architectures by computing the delay of a connection
between two blocks as a function only of the distance (∆x,
∆y) between them. To allow an efficient assessment of the
delay between blocks that are ∆x and ∆y distance apart, we
compute a delay lookup matrix indexed by ∆x and ∆y. To
compute a given (∆x, ∆y) entry in the matrix, we employ
the VPR router to determine the delay between two blocks
that are (∆x, ∆y) distance apart. To do this, a source block is

S = RandomPlacement ();
T = InitialTemperature ();
Rlimit = InitialRlimit ();
Criticality_Exponent = ComputeNewExponent();

ComputeDelayMatrix();

while (ExitCriterion () == False) { /* “Outer loop” */

TimingAnalyze(); /* Perform a timing-analysis and update each connections criticality */
Previous_Wiring_Cost =Wiring_Cost(S); /* wire-length minimization normalization term */
Previous_Timing_Cost = Timing_Cost(S); /* delay minimization normalization term */

while (InnerLoopCriterion () == False) { /* “Inner loop” */

Snew = GenerateViaMove (S, Rlimit);
∆Timing_Cost = Timing_Cost(Snew) - Timing_Cost(S);
∆Wiring_Cost =Wiring_Cost(Snew) -Wiring_Cost(S);
∆C = λ·(∆Timing_Cost/Prev_Timing_Cost) +

(1-λ)·(∆Wiring_Cost/Previous_Wiring_Cost); /* new cost fcn */
if (∆C < 0) {

S = Snew /* Move is good, accept */
}
else {

r = random (0,1);

if (r < e-∆C/T) {
S = Snew; /* Move is bad, accept anyway */

}
}

} /* End “inner loop” */

T = UpdateTemp ();
Rlimit = UpdateRlimit ();
Criticality_Exponent = ComputeNewExponent();

} /* End “outer loop” */

Figure 2: Pseudo-code for T-VPlace.

placed at a location (xsource, ysource) in the FPGA, and a sink
block is placed at (xsource+∆x, ysource+∆y). Then VPR’s
timing-driven router is used to perform a routing between
the two blocks, and the delay is recorded in the delay lookup
matrix at location (∆x, ∆y). This process is then repeated for
every possible ∆x and ∆y value in the FPGA. Notice that
our connection delay estimate does not depend on a net’s
fanout — the timing-driven router we use (VPR’s timing-
driven router) automatically inserts buffers during routing,
so the delay of time critical connections is not strongly
dependent on fanout.

Since we use the timing-driven router to compute the delay
between blocks, we are able to take advantage of all of the
architectural features in the FPGA. For example if two
blocks are on opposite sides of the FPGA and there is a long
line crossing the FPGA, the timing-driven router will recog-
nize this and the delay lookup matrix will reflect the small-
est possible delay (the one using the long line) between the
two locations. The reason that we use the smallest possible
delay between two blocks to compute the values in the delay
lookup matrix is because we know that after placement, the
router will be smart enough to use the fastest resource to
connect two locations on the critical path(s). By using the
timing-driven router to profile the delay as a function of dis-
tance in this way, we ensure that T-VPlace automatically
adapts to different FPGA architectures.

3.2. Cost Function

We need a cost function that reduces delay of connections
on the critical path, and allows the delay of non-critical con-
nections to be increased. To properly balance the trade-off
between wire-length minimization and critical path minimi-
zation, we have developed a new cost function that we call
the auto-normalizing cost function. Before we discuss this
new cost function we need to introduce some definitions.

We first introduce a new term called Timing_Cost for each
source sink pair, (i, j). This is the portion of the cost function
that will be responsible for minimizing the critical path
delay. Timing_Cost is based on the Criticality of each con-
nection, the Delay of each connection, and a user defined
Criticality_Exponent. The Delay for each connection is
obtained from the delay lookup matrix and the current
placement, the Criticality_Exponent is defined below, and

Criticality1 is defined as follows

(6)

where Dmax is the critical path delay (maximum arrival time
of all sinks in the circuit), and Slack is the amount of delay

that can be added to a connection without increasing the
critical path delay.

In our new cost equation, to control the relative importance
of connections with different criticalities, we compute a
power of the Criticality of each connection depending on a
variable called Criticality_Exponent (i.e.

CriticalityCriticality_Exponent). The purpose of including an
exponent on the Criticality in our new cost function is to
heavily weight connections that are critical, while giving
less weight to connections that are non-critical.

We now define the Timing_Cost of a connection, (i,j) as fol-
lows

(7)

And the total Timing_Cost for a circuit is the sum of the
Timing_Cost of all of its connections as follows

(8)

We now present our auto-normalizing cost function
(wiring_cost is defined in equation (1)):

(9)

Our auto-normalizing cost function depends on the change
in Timing_Cost and Wiring_Cost. It uses a trade-off vari-
able called λ to determine how much weight to give each
component. To normalize the weight of these two compo-
nents we use two normalization variables called
Previous_Timing_Cost and the Previous_Wiring_Cost that
are updated once every temperature. The effect of these two
normalization components is to make the function weight
the two components only with the λ variable, independent
of their actual values. This is convenient because it automat-
ically adjusts the weights of the two components so that the
algorithm is always allocating λ importance to changes in
the Timing_Cost, and (1-λ) importance to changes in the
Wiring_Cost.

If λ is 1 then we have an algorithm that focuses only on tim-
ing, but ignores wire-length minimization. If λ is 0, then we
have the original VPlace algorithm that focuses only on
minimizing wire-length. For example, if we have a λ value
of 0.7, we want every move to be 70% due to changes in
Timing_Cost, and 30% due to changes in Wiring_Cost. If

1. Note that this equation assumes single clock circuits.

Criticality i j,() 1
Slack i j,()

Dmax
-------------------------–=

Timing_Cost i j,() Delay i j,()

 Criticality i j,()Criticality_Exponent

⋅=

Timing_Cost Timing_Cost i j,()
i j, circuit⊂∀

∑=

∆C λ ∆Timing_Cost
Previous_Timing_Cost
--

 1 λ–() ∆Wiring_Cost
Previous_Wiring_Cost
---⋅

+⋅=

we did not normalize, and we had Timing_Cost values that
were orders of magnitude less than Wiring_Cost then the
cost function would only be affected by changes in the
Wiring_Cost even though we desired this to only account
for 30% of the change in total cost. Another benefit of this
auto-normalizing approach is that as the temperature
changes, we are constantly re-normalizing the weights of
the two components. Compare this to other approaches that
only normalize the components once at the beginning of the
algorithm [14], which means that if the two components
change at different rates, this normalization will become
increasingly inaccurate, and will inadvertently allocate
more weight to one of the components than was desired.

We use this cost function in our algorithm without modify-
ing the annealing schedule from VPR. Since the annealing

schedule is “adaptive”1, it performs well with our new cost
function.

3.3. A New Approach to Timing Analysis

There are different approaches to minimizing critical path
delay in timing-driven placement algorithms. A path-based
approach to timing-driven placement involves using timing-
analysis to compute path delays at every stage of the place-
ment and using these delays in a cost function. This path-
based approach is computationally expensive since moving
any connection requires that all paths that go through that
connection be re-analyzed. Another approach is connection-
based timing-driven placement, which involves performing
a path-based timing-analysis before placement, and then
assigning slacks to each connection in the circuit. Then
during placement more attention is paid to connections with
low slack (higher criticality), but the more global view of
the complete path delay is not used.

Our approach is to combine path-based timing-analysis and
connection-based timing-analysis. This is accomplished by
periodically performing a path-based timing-analysis after a
certain number of simulated-annealing moves are com-
pleted. While the delay values used in the placement are
always up to date (using the method described in Section
3.1), the slack values (obtained by this “infrequent” timing-
analysis) may be based on delay values that do not precisely
reflect the connection delays of the current placement. This
method ensures that the computation time spent on timing-
analysis does not significantly degrade the total placement
compile time. We have experimentally determined how
often a path-based timing-analysis must be done to get the
best results, and we discuss these experiments in Section 5.

4. Algorithm Evaluation

We use an empirical method to evaluate our placement algo-
rithm and to compare it to VPR’s original placement algo-
rithm. This involves technology-mapping, packing, placing,
and routing benchmark circuits into realistic FPGA archi-
tectures. The delay and wiring requirements of each circuit
implementation is then computed using sophisticated mod-
els, and from this we are able to compare the results of our
algorithm to the results of the existing VPR placement algo-
rithm.

4.1. CAD Flow

The CAD flow that we use to evaluate different placement
algorithms is basically the same as in [1][2], and is given in
Figure 3. First each circuit is logic-optimized by SIS [9] and
technology mapped into 4-LUTs by FlowMap [10]. Then
VPack is used to group the LUTs and flip-flops into Basic
Logic Elements. After this, each circuit is mapped onto an
FPGA with T-VPlace. Finally, VPR’s timing-driven router
is used to connect all of the wiring. Note that this flow is
completely timing-driven.

1. For a full description of the adaptive annealing schedule, see [1][2]

Figure 3: Architecture evaluation CAD flow [1][2].

Min #
tracks?

Circuit

Adjust channel
capacities (W)

Logic optimization (SIS)
Technology map to 4-LUTS (FlowMap + Flowpack)

Group FFs and LUTs into

Placement (VPlace

Routing (VPR,

No

Yes - Wmin determined

Routing
Architecture

Parameters
(Fc, etc.)

Routing with W = 1.2 Wmin

Basic Logic Elements

timing-driven router)

or T-VPlace)

(VPR, timing-driven router)

Determine critical path delay (VPR)

Figure 3 shows how VPR computes the minimum number
of tracks that are required for a circuit to successfully route.
Basically VPR repeatedly routes each circuit with different
channel widths (number of tracks per channel), scaling the
FPGA’s architecture until it finds the minimum number of
tracks in which the circuit will route. Note that at this mini-
mum track count the circuit is just barely routable, so we
call this a high-stress routing.

We define a low-stress routing to occur when an FPGA has
20% more routing resources than the minimum required to
route a given circuit. We feel that low-stress routings are
indicative of how an FPGA will generally be used (it is rare
that a user will utilize 100% of all routing and logic
resources) so this is the utilization that we use to evaluate
the speed of each circuit. We also evaluate how well the
router could do if there were an infinite amount of routing
resources in the FPGA. The critical path delay obtained
from these infinite-resource routings indicates the circuit
speed achievable in a very routing-rich FPGA, which we
feel is a good initial indicator of how well the placement
algorithm has performed. For our post-place-and-route
experiments we present both low-stress and infinite-
resource critical path delay numbers.

4.2. FPGA Architecture

The routing architecture that we use to evaluate our new
placement algorithm is an island style architecture similar to
the Xilinx Virtex [11] part. All the wires in the routing
architecture we use are of length 4 — i.e., each wire spans
four logic blocks before terminating. Half of the program-
mable switches in the FPGA routing are tri-state buffers,
while the other half are pass transistors. Previous research
has shown that this routing architecture has good perfor-
mance [1][2]. Also, we assume that the FPGA is composed
of logic blocks containing a single 4-LUT and a flip-flop.
We use this logic block for our experiments because we
wish to compare placement algorithms on large circuits, and
using small logic blocks effectively makes the benchmark
circuits larger (there are more blocks to place). We believe
that it is beneficial to perform experiments on large circuits,
typical of the designs being implemented in high-capacity
FPGAs today, in order to obtain the most accurate conclu-
sions about our algorithms.

5. Algorithm Tuning

In our algorithm we tune various parameters to get the best
performance. We must find the best value for λ (which
determines the trade-off between wire use and critical path
delay), the best Criticality_Exponent, and we must deter-
mine how often to timing analyze the circuits as the place-
ment evolves. To find the best values for these parameters,

we performed experiments on the 20 largest MCNC circuits
with the routing architecture described in Section 4.2.

By using the delays from the delay lookup matrix annotated
onto connections in the circuits, we are able to obtain criti-
cal path delay estimates from the placement algorithm with-
out performing a routing. These estimates allow us to fairly
compare the performance of T-VPlace with different algo-
rithm parameters in a reasonable amount of computation
time. We will later show in Section 5.4 that these placement
estimates of the critical path are a good tool (have good
fidelity with respect to the final routed delay) for comparing
algorithm performance.

5.1. Timing-Analysis Interval

The first parameter that we discuss is the timing-analysis
interval. For this experiment we set the value of λ to 1 (fully
timing-driven) and the Criticality_Exponent to 1. We then
vary how often we timing-analyze the circuit and update the
connection criticalities and slacks. The sweep goes from
once at the beginning of execution all the way up to timing-
analyzing within the inner loop of the placement algorithm
(see Figure 4 for the pseudo-code of the algorithm). We
present two tables showing the effect of this timing-analysis
interval. The first results shown in Table 1.1 are for timing
analysis performed in the outer loop of the placement algo-
rithm. This first column in this table shows the number of
temperature changes between each timing-analysis (which
we call the timing-analysis interval), the second column
shows the placement estimated critical path, and the third
column shows the Wiring_Cost.

Table 1.2 shows the effect of timing-analyzing the circuit in
the inner loop of the placement algorithm. The first column
shows how many times timing-analysis is performed in the

TABLE 1.1 Effect of timing-analysis in the outer loop

Timing-Analysis
Interval

Placement
Estimated Critical

Path (ns)
(20 Circuit
Geometric
Average)

Wiring Cost (20
Circuit Geometric

Average)

1 39.3 529.6

2 39.5 531.1

4 40.1 530.5

8 40.5 531.0

16 39.5 530.3

32 41.4 534.5

64 41.3 528.3

128 43.0 522.9

Never 43.0 522.9

inner loop of the annealer at each temperature; the second
column shows the placement estimated critical path; the
third column shows the Wiring_Cost.

These results indicate that performing a timing-analysis
once per temperature is sufficient to obtain the best place-
ment results. It appears that this re-analysis interval does not
affect the bounding box (wirelength) cost of the placement.
For the remainder of our experiments, we set T-VPlace to
timing-analyze each circuit once per temperature change.

5.2. Criticality Exponent

The next parameter that we will discuss is the
Criticality_Exponent. We have performed two sets of exper-
iments to determine the best value for the
Criticality_Exponent. In the first experiment we have set λ
to 0.5. We then performed the same experiments with λ set
to 1. Again, all of the results presented are the placement
estimated critical paths and Wiring_Cost.

We first show the effect of the different
Criticality_Exponents when λ = 0.5 in Table 1.3. These
results show that increasing the criticality exponent up to
about 8 or 9 improves the placement estimated critical path,
at which point no more gains are apparent. These results
also show that large exponents improve the Wiring_Cost.
This fact deserves more discussion.

Large exponents make very few connections have a very
large Timing_Cost, and all other connections have an insig-
nificant Timing_Cost. Because we normalize Timing_Cost
and Wiring_Cost, we ensure that no matter how large the
Timing_Cost of a connection becomes, it will still only
account for a fixed percentage of the total normalized cost.
This means that a high Criticality_Exponent results in fewer
connections in the circuit being critical, but for these few
connections the Timing_Cost makes up the largest portion
of the normalized cost. For other non-critical connections
(which we know there are more of as the
Criticality_Exponent is increased), the Wiring_Cost makes
up the largest portion of the normalized cost. As a result, the

placement algorithm is able to focus on minimizing wiring
requirements for more nets as the Criticality_Exponent is
increased.

The next experiment (Table 1.4) shows that when λ = 1
(meaning the cost is purely timing based), an exponent
value of 2 or 3 is the best. Compared to the results that we
displayed in Table 1.3 the critical path is worse, and the
Wiring_Cost is much worse. It is surprising that the delay
results for a λ value of 1 are worse than a λ value of 0.5
since in λ = 1 case, the algorithm is only attempting to min-
imize delay, while in the λ = 0.5 case the algorithm is con-
sidering both delay and wire-length minimization. This
result deserves more discussion.

TABLE 1.2 Effect of timing-analysis in the inner loop

Number of Timing-
Analysis in the

Inner Loop at Each
Temperature

Placement
Estimated Critical

Path (ns) (20
Circuit Geometric

Average)

Wiring Cost (20
Circuit Geometric

Average)

1 39.3 529.6

10 39.2 528.8

50 40.1 525.6

100 39.7 530.9

TABLE 1.3 Effect of Criticality_Exponent with a λ value
of 0.5.

Criticality
Exponent

Placement
Estimated Critical

Path (ns)
(20 Circuit
Geometric
Average)

Wiring Cost (20
Circuit Geometric

Average)

1 38.9 342.0

2 37.1 343.4

3 35.9 344.0

4 34.8 344.7

5 34.7 343.7

6 34.8 341.6

7 34.3 339.6

8 34.3 340.1

9 33.8 339.6

10 34.3 337.9

11 34.3 336.3

TABLE 1.4 Effect of Criticality_Exponent with a λ value
of 1

Criticality
Exponent

Placement
Estimated Critical

Path (ns) (20
Circuit Geometric

Average)

Wiring Cost

1 39.3 529.6

2 36.4 540.9

3 36.1 567.4

4 37.6 593.3

5 36.5 623.8

6 40.2 681.0

7 43.8 717.3

When we set up the algorithm to only minimize delay (by
setting λ=1), it attempts to minimize the current critical path
at the cost of extending other non-critical paths. Since we
are only timing-analyzing the circuit once per temperature,
the algorithm has many moves between updates of the con-
nection criticalities and slacks. This means that it is likely
that the algorithm is able to significantly reduce critical
paths during one iteration of the outer loop, but at the same
time inadvertently make other paths very critical. This oscil-
lation effect makes it difficult for the placement algorithm
to converge to the best placement solution.

By including a wire-length minimization term in the cost
equation, we are able to reduce the oscillations of the place-
ment. This is because the wire-length term will penalize
moves that significantly increase the wire-length of the
placement, making them unlikely to be accepted even if
they would significantly reduce the current critical path.
Effectively, the wire-length term acts as a damper on the
delay minimization term in our cost function, and prevents
oscillation.

5.3. Trade-off Between Wireability and Critical Path
Delay

Now we are ready to evaluate the effect of the trade-off
parameter λ. The above results show that using a timing-
analysis interval of once per temperature, a
Criticality_Exponent value of 8, and λ of 0.5 provides the
best results so far. Based on these results, we set the timing
analysis interval to once per temperature, the
Criticality_Exponent to 8, and we varied λ. The results of
this experiment are shown in Table 1.5.

This table shows that an algorithm that is only wire-length
driven produces the best Wiring_Cost. It also shows that an
algorithm with a λ of 0.9 produces circuits with the best
placement estimated critical path delay. A λ of 1 is bad for
both critical path, delay, and wire-length for the reasons
explained above. We feel that setting λ to 0.5 provides the
best compromise between wire-length and critical path min-
imization, so the remainder of our experiments use this
value.

5.4. Verification of the Fidelity of the Placement Esti-
mated Critical Path Delay

In the previous section we used placement-estimated critical
path delays to tune the parameters used in the placement
algorithm. It is interesting to see how well this estimate cor-
relates to the actual post-place-and-route critical path
delays. To study the correlation, we present a λ sweep graph
with a Criticality_Exponent of 8 in Figure 4. This graph
shows the infinite routing resource post-place-and-route
delay, the low-stress post-routing delay, and the placement
estimated post-place-and-route delay. There is an excellent
correlation between the placement estimated critical path
and the infinite routing-resource critical path. Additionally
the low-stress results follow the same trend as the place-
ment-estimated results. We therefore believe that it is valid
to use the placement-estimated delay results as an evalua-
tion metric as we did in the previous section.

6. Complexity Analysis

The complexity of our algorithm is essentially the same as
VPlace. We perform a timing analysis once per temperature
change which is an O(n) operation. At each temperature we

execute the inner loop of the placer O(n4/3) times (i.e. we

TABLE 1.5 Effect of λ with a Criticality_Exponent of 8
and timing-analysis interval of 1.

λ

Placement
Estimated Critical

Path (ns) (20
Circuit Geometric

Average)

Wiring Cost (20
Circuit Geometric

Average)

0 51.6 312.7

0.1 40.0 315.8

0.2 37.8 318.5

0.3 36.7 322.8

0.4 35.6 331.1

0.5 34.0 339.8

0.6 33.2 353.6

0.7 32.5 373.9

0.8 32.5 400.7

0.9 32.4 439.7

1 43.4 725.3

0

1e-08

2e-08

3e-08

4e-08

5e-08

6e-08

0 0.2 0.4 0.6 0.8 1

Low-Stress Post-Place-and-Route
Infinite Routing Post-Place-and-Route

Placement Estimated

Figure 4: Graph showing the fidelity of the placement
estimated critical path.

λ

C
ri

tic
al

 P
at

h
(n

s)

perform O(n4/3) swaps). In the inner loop we have an incre-
mental-bounding-box-update operation that is worst case
O(kmax), where kmax is the fanout of the largest net in the
circuit. The average case complexity for this bounding box
update is O(1) [1][2]. Also in the inner loop is the computa-
tion of the Timing_Cost for each connection affected by a
swap. This is also O(kmax). In the average case this is
O(kavg) where kavg is the average fanout of all nets in the
circuit. Since kavg is typically quite small, the average com-
plexity of this Timing_Cost computation is O(1) as well.

The overall result is that our algorithm is worst case

O[(kmax·n)4/3], but on average it is O(n4/3)1. T-VPlace takes
about 2.25 times as long as VPlace to place the largest
MCNC circuit (clma, which consists of 8300 LUTs) —
about 9 minutes vs. 4 minutes on a 450 MHz Pentium.

1. The average case complexity is really the only relevant value here. The
complexity of the algorithm is the average over millions of swaps, so a
user will always see the average case complexity.

TABLE 1.6 Post-place-and-route comparison of VPlace and T-VPlace (cluster size = 1).

Circuit

Post-Place-and-Route Minimum
Channel Width (Wmin)

Post-Place-and-Route Critical Path
(ns)

W = ∞

Post-Place-and-Route Critical Path
(ns)

W = Wmin + 20%

VPlace T-VPlace
(λ = 0)

T-VPlace
(λ = 0.5) VPlace T-VPlace

(λ = 0)
T-VPlace
(λ = 0.5) VPlace T-VPlace

(λ = 0)
T-VPlace
(λ = 0.5)

alu4 14 14 14 40.3 40.4 29.8 42.4 41.2 33.4

apex2 15 17 16 46.9 46.3 32.3 47.7 46.5 48.8

apex4 17 16 18 40.9 44.8 28.2 42.0 46.8 31.7

bigkey 13 13 10 36.0 35.2 21.6 36.7 35.4 25.2

clma 16 16 17 90.2 91.1 72.3 116.0 166.0 130.0

des 11 12 11 40.5 48.9 30.2 50.4 57.4 43.7

diffeq 11 11 12 35.2 37.5 30.8 38.9 41.0 34.9

dsip 12 12 12 27.9 27.2 21.7 28.3 28.8 22.9

elliptic 14 16 15 70.6 76.1 46.1 79.5 79.6 58.1

ex1010 14 15 15 85.0 77.5 52.9 96.2 78.6 70.5

ex5p 17 17 19 39.6 40.4 28.1 42.7 42.7 43.5

frisc 16 17 18 70.8 73.2 59.6 76.8 79.6 61.6

misex3 14 15 15 39.0 40.2 26.6 39.3 75.0 34.3

pdc 22 21 24 81.7 74.5 49.9 122.0 114.0 73.0

s298 11 12 12 74.8 72.0 53.6 116.0 78.7 77.8

s38417 11 11 12 61.7 71.0 33.7 70.0 74.6 37.2

s38584.1 11 11 11 45.3 44.1 31.8 49.7 44.3 36.4

seq 16 16 16 45.7 41.0 28.1 46.4 43.7 39.5

spla 18 18 20 58.4 67.4 39.7 74.8 100.0 69.4

tseng 9 10 11 33.7 33.1 28.3 39.8 38.4 33.1

Geom. Av. 13.78 14.22 14.50 50.1 51.0 35.2 57.1 59.2 45.7

%diff w.r.t
VPlace

— +3.2% +5.2% — +1.8% -29.7% — +1.04% -20.0%

7. Results: VPlace vs. T-VPlace

In this section we compare the post-place-and-route results
from VPlace and T-VPlace. Again, our results are obtained
by implementing 20 MCNC benchmark circuits in the
FPGA architecture described in Section 4.2. Additionally,
all of the results that we present are based on a
Criticality_Exponent of 8, and a timing-analysis interval of
once per temperature change.

The results we show are post-place-and-route for both
VPlace and T-VPlace. Table 1.6 shows that for the infinite
routing case, T-VPlace improves circuit speed by about 42%
(a 30% decrease in delay) on average compared to VPlace.
For the low stress routing case, T-VPlace improves circuit
speed by 25% (a 20% reduction in delay) on average com-
pared to VPlace. The cost of this speed gain is only a 5%
increase in the minimum channel width. It is likely that the
low-stress routing results do not show the same improve-
ment in speed as the infinite routing results due to the fact
that the placement algorithm has made it more difficult for
the router to optimize the critical path(s). This is because T-
VPlace produces circuits that have shorter critical paths than
VPlace, but more of them. The result is that the router has
many more paths to shorten, making it more difficult in the
low-stress routing case for the router to get close to the
“lower bound” that the infinite routing results represent.

8. Conclusions

In this paper we discussed our new timing-driven placement
algorithm, T-VPlace. This algorithm has several new fea-
tures of interest. In particular, it performs a delay profiling
of an FPGA to allow architecture-independent and CPU
efficient timing-driven placement. It also uses an auto-nor-
malizing cost function that allows the user to specify any
desired trade-off between delay and wirelength throughout
the entire placement anneal. We also introduced a new com-
bination of connection-based and path-based approaches to
timing-analysis. Finally, we experimentally determined
good values for various cost parameters, and showed how
these values impact both the wireability and delay of circuit
placements.

We showed that T-VPlace is both CPU-efficient, requiring
only 2.5x more CPU time than a high quality wirelength-
driven placement algorithm, and that it significantly
improves circuit speed (on average by 42%). Our new T-
VPlace algorithm accomplishes this improvement at a cost
of only a 5% increase in the wiring requirements relative to
the completely wirelength-driven VPlace algorithm. Overall
it is clear that timing-driven placement can significantly
improve performance without sacrificing a large amount of
area.

9. References

[1] V. Betz, “Architecture and CAD for Speed and Area Optimi-
zation of FPGAs,” Ph. D. Dissertation, University of Tor-
onto, 1998.

[2] V. Betz, J. Rose, and A. Marquardt, Architecture and CAD
for Deep-Submicron FPGAs, Kluwer Academic Publishers,
February 1999.

[3] R. Hitchcock, G. Smith and D. Cheng, “Timing Analysis of
Computer-Hardware,” IBM Journal of Research and Devel-
opment, Jan. 1983, pp. 100 - 105.

[4] S. Nag and R. Rutenbar, “Performance-Driven Simultaneous
Place and Route for Row-Based FPGAs”, ICCAD, 1995, pp.
332 - 338.

[5] C. Ebeling, L. McMurchie, S. Hauck, and S. Burns, “Place-
ment and Routing Tools for the Triptych FPGA,” IEEE
Trans. on VLSI, Vol. 3, No. 4, Dec 1995.

[6] W. Swartz and C. Sechen, “Timing Driven Placement for
Large Standard Cell Circuits,” DAC, 1995, pp. 211 - 215.

[7] B. Riess and G. Ettelt, “SPEED: Fast and Efficient Timing
Driven Placement,” IEEE International Symposium on Cir-
cuits and Systems, 1995, pp. 377 - 380.

[8] S. Yang, “Logic Synthesis and Optimization Benchmarks,
Version 3.0,” Tech. Report, Microelectronics Center of North
Carolina, 1991.

[9] E. M. Sentovich et al, “SIS: A System for Sequential Circuit
Analysis,” Tech. Report No. UCB/ERL M92/41, University
of California, Berkeley, 1992.

[10] J. Cong and Y. Ding, “Flowmap: An Optimal Technology
Mapping Algorithm for Delay Optimization in Lookup-
Table Based FPGA Designs,” IEEE Trans. on CAD, Jan.
1994, pp. 1-12.

[11] Xilinx Inc., “Virtex 2.5 V Field Programmable Gate Arrays”,
Advance Product Data Sheet, 1998.

[12] S. Kirkpatrick, C. Gelatt and M. Vecchi, “Optimization by
Simulated Annealing,” Science, May 13, 1983, pp. 671 -
680.

[13] C. Cheng, “RISA: Accurate and Efficient Placement
Routability Modeling,” ICCAD, 1994, pp. 690 - 695.

[14] W. Swartz and C. Sechen, “Timing Driven Placement for
Large Standard Cell Circuits,” DAC, 1995, pp. 211 - 215.

[15] A. Marquardt, “Cluster-Based Architecture, Timing-Driven
Packing, and Timing-Driven Placement for FPGAs,”
M.A.Sc. Thesis, University of Toronto, 1999.

