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ABSTRACT

Soft processors have become an increasingly common com-
ponent of systems that use Field-Programmable Gate Ar-
rays (FPGAs), and are used to implement a wide variety of
control and data processing functionality. Often, some ad-
ditional functionality needs to be added to a system when
there is very little space left on the physical device. This
functionality may not be performance critical, and so could
be implemented on a slow soft processor. For this reason it
may be useful to have a processor that is as small as possible
yet similar to other commonly-used processors. This paper
describes the design, implementation and release of a 32-bit
soft processor based on the MIPS-I instruction set and opti-
mized for minimal use of FPGA resources. The ‘supersmall’
soft processor is as much as 2.2 times smaller than Altera’s
Nios II/e (the smallest of their 3 processors) yet only a factor
of 10 times slower.

1. INTRODUCTION

Softprocessors — processors implemented in programmable
logic, have become an increasingly common component of
FPGA-based designs [1]. Although slower than “hard” pro-
cessors — processors implemented directly in transistors,
soft processors have found wide application where the fastest
speeds are not required, because they are easily integrated
along with other logic in an FPGA. For example, in [2] a
soft processor is used to implement some subsystems of the
robot’s control system, while time-critical components are
performed in hardware. Other examples of this kind of use
include [3] and [4].

The speed requirements of software applications run-
ning on a soft processor will vary dramatically; we believe
that there will be some applications that have very low speed
requirements, perhaps far less than the capabilities of any
currently available soft processors. In this case, it wouldbe
beneficial to have a processor that is as small as possible,
allowing the designer to perhaps use a smaller (and cheaper)
FPGA, or to squeeze that ‘last little bit’ of functionality onto

a system with just a few soft logic resources left. Thesuper-
small soft processor is an attempt to explore the degree to
which both of these design constraints (usability and low
FPGA resource consumption) can be met. It is a 32-bit pro-
cessor that implements a large subset of the MIPS-I instruc-
tion set architecture (ISA) [5]. At the same time, it has been
designed to consume the fewest possible FPGA resources.
Ideally, the supersmall processor is intended to be a drop-in
replacement, supplanting another soft processor that is too
large to fit in the remaining space of an FPGA. We note that
a plausible alternative to this approach might be to run the
desired code on a faster, (and likely bigger) processor that
is already in place on the FPGA. This may be appropriate,
but won’t work if there isn’t such a processor, or if the com-
putational capacity of that processor is already used, or if
the complexity of managing the resulting multi-threading is
undesirable.

2. RELATED WORK

Prior research on soft processors [6] [7] has focused on ex-
ploring their architecture and improving the performance
and/or the area-delay product. The present work focuses ex-
clusively on area, to the exclusion of performance. Some
previous efforts — such as Altera’s Nios II processor [8],
and the Eric5 super-small soft-core CPU [9], have also ad-
dressed area optimization. The work in [8] for instance, fo-
cused on the the design of area-efficient multiplexers in FP-
GAs, and the ensuing software and hardware workarounds.
The work in [9] and [10] created a custom ISA designed
for efficient implementation on an FPGA; this necessitated
the creation of an entire custom software support toolchain,
which prevents the re-use of a large software infrastructure.
As well, almost all soft processors intended for area effi-
ciency, including not only [9] but also Xilinx’s Picoblaze
[11] and Lattice’s Mico8 [12] feature a word length of less
than 32 bits, which limits the memory that can be addressed
without the use of memory segmentation. Our supersmall
processor employs full 32-bit memory access and data reg-
isters.



3. TARGET FPGA ARCHITECTURE, SOFTWARE
TOOLS AND SETTINGS

The supersmall soft processor is implemented on an Altera
Stratix III FPGA [13]. A key feature of this FPGA is its fun-
damental logic unit, consisting of Adaptive Logic Modules
(ALMs), which are themselves composed of two Adaptive
Look-up Tables (ALUTs) and two registers. These ALMs
can implement certain commonly used logic structures, such
as shift registers and counters with particularly good effi-
ciency, something we make use of in this work. On the
Stratix III, ten ALMs are coalesced into groups called Lo-
gic Array Blocks, or LABs.

Note that this processor could been implemented on other
Altera FPGAs; the one vendor-specific part of the Verilog
code that we use is the instantiation of memories inside the
processor. Although some optimizations have been made
that take advantage of the Stratix III’s ALM, the core method-
ology for resource minimization is fairly device-agnostic,
and the Stratix III results should be fairly representativefor
FPGAs in general.

4. INSTRUCTION SET ARCHITECTURE

The MIPS-I instruction set architecture (ISA) was originally
introduced by Hennessy et al. in [14] and was designed both
for performance and simplicity of hardware implementation.
The MIPS ISA is one of the broadly used embedded pro-
cessor instruction sets. One of the original features of the
MIPS-I ISA was a feature known as “branch delay slots,”
whose purpose was to give the pipeline useful work to do
while a branch is resolved. This is a performance-oriented
architectural feature, but because our goal is to make a very
small processor, not a very fast one, it simply gets in the way.
However, we chose not to remove the branch delay slot as
this would make the object code of our processor completely
incompatible with that of MIPS-I.

Branch delay slots are supported on the supersmall through
the use of a second instruction register, a design that costsno
performance and uses minimal logic, but does consume an
additional 32 registers. In this regard, designs such as [9],
which created their own custom ISA, are ultimately more
capable of minimizing their resource footprint.

The following instructions from the MIPS-I instruction
set are also not supported: multiplication and division (mult,
div), floating point operations (add.s, mul.s) and unaligned
loads and stores (lwl, swr). For complete details on the in-
struction set coverage, see:http://www.eecg.utoronto.
ca/ ˜ jayar/software/SuperSmallProcessor/isa.
html . Note also that there were some MIPS-I instructions
that were covered by patents, but those patents have now
expired.

5. PROCESSOR DESIGN

The goal of the supersmall processor design is to be as small
as possible in the Altera Stratix III FPGA, without regard to
performance. Figure 1 gives an overview of the architecture
of the processor. In the following sections, we describe each
of the major elements of the processor (the arithmetic logic
unit (ALU), the multiplexers, and the exceptions support)
and how we strove to minimize its area.

5.1. Arithmetic Logic Unit

The key area saving achieved in the supersmall processor is
to implement the 32-bit arithmetic and logic operations one
bit at a time, in a serial ALU.

The ALU is fed by two 32-bit shift registers,A andB.
In each clock cycle, a single bit result is computed, which
is then fed back into eitherA or the NPC register, as appro-
priate. This serialization gives rise to the key performance
penalty (but also area win) of the supersmall processor, as it
will be roughly 32 times slower than a full 32-bit ALU.

5.2. Multiplexers

According to Metzgen in [8], “The key to optimizing de-
signs for an FPGA is to optimize the multiplexers,” since
the implementation of multiplexers in programmable logic
is particularly inefficient.

One method that we employ to decrease multiplexer re-
source usage is similar to that used to implement the ALU:
by serializing the datapath. When a 32-bit bus is multi-
plexed, whatever logic is needed to implement the multi-
plexer must be multiplied by 32 to implement it for the en-
tire bus. By serializing a bus, a 32-bit multiplexor becomes
a 1-bit multiplexor, with tremendous area saving.

This concept was applied when designing the supers-
mall’s memory subsystem. The MIPS instruction set has
separate instructions to access a word, half-word, or byte
from the 32-bit memory bus. Our initial implementation
simply multiplexed the 32-bit bus for each instruction. In-
stead, a far more area-efficient method is to use a shift reg-
ister to align the data as needed; this again trades away per-
formance for area, reducing the overall area by roughly 65
ALUTs.

5.3. Exceptions

We envision that the supersmall processor will be used in
control operations, which will have need for interrupts and
other types of exceptions. For this reason we have included
an option for the processor to handle exceptions, which, if
not needed, can be eliminated for more area savings.

The MIPS-I specification declares that exceptions sup-
port is implementation-dependent; we chose to create an



Fig. 1. Overall Architecture of Supersmall Processor

interface similar to that found in the earliest MIPS proces-
sors [5]: this consists of a set of registers contained in the
system coprocessor, or “coprocessor 0”, which are updated
whenever an exception occurs and are accessed in the same
way as data memory. When an exception occurs, execu-
tion jumps to a hard-wired location in memory, from which
software handles the exception. The co-processor excep-
tion registers are contain information about the exception,
including the address where the exception occurred and the
type of exception. Interrupts can be enabled or disabled by
writing to these registers.

The coprocessor registers were also implemented as shift
registers, and so their values are also accessed serially. These
registers, however, are relatively expensive: the overallcost
of full exception support is 94 ALUTs and 167 flip-flops.
While this would small in most processors, it is significant
given our area minimization goal. As a result we have in-
cluded an option in the the supersmall processor Verilog
code to reduce or remove the exception support, as sum-
marized in Table 1.

Support # # # #
Level ALUTs Flip-Flops ALMs LABs
Basic 76 136 73 9

Arith Ovflow 4 0 10 1
Coproc Unuse 0 0 0 0

Res Instr 7 0 13 0
Addr Err 10 32 22 2

Table 1. Area Cost of exceptions support

5.4. Integration with Altera System Construction Envi-
ronment

The supersmall soft processor has been designed, so far, for
the Altera FPGA environment. Altera provides a tool, called
’System on a Programmable Chip’ (SOPC) Builder, which
allows easy connection of different components to its soft
processors, their peripheral devices, as well as connections
among multiple processors.

SOPC builder uses the Avalon Bus standard [15] to con-
nect the various components. To enable integration as an
SOPC Builder component, we added an optional Avalon
Bus interface to the supersmall processor’s external memory
bus. If this option is enabled in the processor’s Verilog code,
this interface is exposed for external connection; the alterna-
tive (if the option isn’t used) declarations of on-chip internal
data and instruction memory are disabled. The Avalon Bus
port costs an additional 32 flip-flops, since it assumes a reg-
istered instruction bus, something that the Avalon Bus does
not provide.

6. MEASUREMENT RESULTS

In this section we give measurements of the size and perfor-
mance of various versions of the supersmall processor, and
compare it to the Altera Nios II 32-bit processor. The Nios
II comes in three separate versions which provide a tradeoff
between area and speed. The Nios II/e has been specifically
optimized for efficient area usage [16].



Processor ALUTs Flip-flops ALMs LABs LAB count LAB count
relative to relative to

w/o exceptions w/exceptions
Supersmall w/o Exceptions 138 200 152 16 1.0 0.6
Supersmall w/Exceptions 236 368 242 27 1.7 1.0

Nios II/e 491 302 337 35 2.2 1.3
Nios II/s 787 592 589 68 4.2 2.5
Nios II/f 1085 984 897 103 6.4 3.8

Table 2. Measured Area Comparison between Supersmall and Nios II

6.1. Measurement Methodology

All measurements of processor area - the number of ALUTs,
ALMs, and LABs - were performed using Altera’s Quar-
tus II version 9.0 software. To do this, we created a simple
SOPC builder design, consisting of a 128K bytes of read-
only instruction memory and a 64K bytes read-write data
memory connected to the processor’s instruction and data
busses, respectively, along with a JTAG UART connected
to the data bus. Since the Nios and the supersmall’s exter-
nal interfaces both consist only of an instruction and a data
bus, this presented no difficulty. SOPC builder could then be
used to generate a new setup for each processor, on which
measurements could be made.

The processor component of the SOPC generated sys-
tem was placed in a Logic Lock region [17], which both
constrained the full synthesis, packing, and placement algo-
rithms to attempt to fit it into the smallest region possible,
while also allowing measurement of all logic parameters of
that section in isolation. All measurements given are for
that specific logic-locked region, with no constraints placed
on its size or location.

All compile options for Quartus were chosen to mini-
mize the area occupied by the processor. The complete list
of settings employed can be downloaded (in the file super-
small.qsf) from the website given at the end of this paper;
several that were found to be of significant importance are
described here. Timing-driven synthesis was disabled, (be-
cause we wish to optimize for area). This turned out, surpris-
ingly, to be particularly important for the many shift regis-
ters we employed in the design - the timing-driven synthesis
of parallel load shift registers used much more soft logic
than the non-timing driven optimization.

As well, the Quartus setting “minimize area with chains”
was set while packing registers, which ensures that the pack-
ing of flip-flops into ALUTs is as aggressive as possible.
Both of these settings significantly reduced both ALM and
LAB counts.

6.2. Area Measurements

Table 2 compares the area of the supersmall processor, with
and without exception handling, to the area of the three ver-

sions of the Nios II processor from Altera.
In configuring the Nios II processor, to ensure a fair

comparison, no memory management unit, debug console,
or additional exceptions were enabled. Hardware multiply
support was enabled where relevant, since this would likely
be enabled on a Stratix III.

Table 2 gives the count of ALUTs, flip-flops, ALMs and
LABS required for each processor. Recall that ALUTs and
flip-flops are packed into ALMs, and ALMs are packed into
LABS, and so the clearest view of area comes from the LAB
counts. As can be seen, the supersmall processor without
exceptions is 2.2 times smaller than the Nios II/e in terms
of LAB count. The supersmall processor with exceptions is
1.3 times smaller than the Nios II/e.

Note that the supersmall with exceptions has a signifi-
cantly greater advantage in ALUT count over the Nios II/e,
but it actually uses more flip-flops than the Nios II/e; in a
flip-flop-short environment, this may make it less desirable.
This is a consequence of the supersmall’s attempt at compat-
ibility with the exception-handling interface of early MIPS
processors, rather than devising its own FPGA-optimized
scheme, such as that featured in the Nios II. A more care-
fully optimized implementation of the exceptions should re-
duce the size of the supersmall with exceptions.

6.3. Performance Measurements

In this section we describe the measurement of the perfor-
mance of the supersmall processor against the Nios II pro-
cessors. We benchmark them using the SPREE benchmark
suite [7], which is a freely available set of 20 different em-
bedded processor applications. These benchmarks were cho-
sen because of their variety, public availability, and their pre-
vious usage in soft processor performance comparisons. No
benchmark involved the use of exceptions, however, so this
does not provide any indication of the relative performance
of the processors’ implementation of exceptions.

Each benchmark was compiled with a modified version
of gcc (available at the download site given at the end of
this paper), with the compile options-O3 -mips1 -mgp32 -
msoft-float -mlong32. To obtain valid measurements, each
of the benchmarks was executed on a software simulation of



Execution Cycle Counts
Benchmark Supersmall Nios II/e Nios II/s Nios II/f
bubblesort 171620 13854 4316 3993
crc 871282 183360 31773 25889
des 94668 13492 3617 3533
fft 714642 113146 3650 3007
fir 90776 8864 1310 1752
quant 418589 127358 5944 5167
iquant 575782 119088 3286 3667
turbo 13752420 2233341 516404 424913
vlc 1364847 193697 44391 29911
bitcnts 1878424 214020 55995 41702
CRC32 22209701 503390 125886 142940
qsort 3720720 384057 132893 103568
sha 2690600 252155 58245 41677
stringsch 5402994 580213 134602 149204
FFT 51881436 6084367 883319 633635
dijkstra 19657914 1766350 427187 370040
patricia 6962527 619453 261025 193196
gol 12106839 2173464 353082 251718
dct 71264602 6948710 903412 646663
dhry 3636853 460323 139207 107328
Geo Mean 2606121 309051 53290 45439
v II/e 8.4 1.0 0.17 0.15
v II/f 57 6.8 1.2 1.0

Table 3. Benchmark Cycle Counts on each Processor

the respective processors, using Mentor Graphics’ Model-
sim simulator. These simulations gave a precise cycle count
for each program on each processor, as given in Table 3.

The processor was then run through exactly the same
CAD flow as that used for the size comparisons above, and
the maximum frequency determined by Quartus’ TimeQuest
Timing Analyzer using the slow 1100mV 85◦C timing model.
To achieve the highest frequency from the placement and
routing, the clock constraint was set to 1 GHz. All version
of the supersmall processor were found to have the same
critical path, and therefore, the amount of exceptions sup-
port included is not specified. The mean wall clock execu-
tion time could then be determined by the quotient of the
geometric mean cycle count and the max frequency, as pro-
vided in Table 4.

Table 4 shows that the Nios II/e is about 10 times faster
than the supersmall, and that the Nios II/f is about 60 times
faster. As expected, there is a considerable speed penalty
to be paid, particularly for the serialization of the processor.
However, it is interesting to note that the speed penalty is
not the 32 times cycle count penalty involved with ALU in-
structions, as other instructions do not require work on all32
bits of a word. Also, as we discussed in the introduction, the
processor’s application is for non-speed critical workloads.

7. RELEASE OF CODE

The complete Verilog source code for the supersmall proces-
sor is available (under a liberal 2-clause BSD license) from
the following location:http://www.eecg.utoronto.
ca/ ˜ jayar/software/SuperSmallProcessor/ .

That website contains documentation, as well as a slightly
modified GNU compiler toolchain targeted towards the pro-
cessor.

8. CONCLUSIONS AND FUTURE WORK

In this work we have designed, built, measured and released
the smallest possible soft processor implementing a sub-
set of the MIPS-I instruction set on an Altera Stratix III
FPGA. This processor is meant to be used in the circum-
stance when area is the critical resource and performance
much less of a constraint. As such, we have sacrificed sig-
nificant (and disproportionate!) performance to achieve a
minimum area. The smallest version of the processor is 2.2
times smaller than the Nios II/e commercial soft processor
from Altera, and operates a factor of 10 slower in wall-clock
performance.

In the future, we hope to explore the use of unused mem-
ory blocks for aiding the area reduction, as well as further



Wall Clock Wall Clock Wall Clock
Processor Mean Cycle Fmax Execution Relative to Relative to

Count (MHz) Time (us) Nios II/e Nios II/f
Supersmall 2606121 221.2 11783 9.8 59
Nios II/e 309051 257.5 1200 1.0 6.1
Nios II/s 53289 201.0 265.1 0.22 1.3
Nios II/f 45438 229.1 198.3 0.17 1.0

Table 4. Performance Comparison of Supersmall and Nios II Processors

optimizations of the present core. In addition, we intend to
make the device easily portable to other FPGA vendors’ de-
vices.
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