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ABSTRACT a system with just a few soft logic resources left. Baper-

) _ small soft processor is an attempt to explore the degree to
Soft processors have become an increasingly common comMyhich hoth of these design constraints (usability and low

ponent of systems that use Field-Programmable Gate Ar-ppGA resource consumption) can be met. It is a 32-bit pro-
rays (FPGAs), and are used to implement a wide variety of cessor that implements a large subset of the MIPS- instruc-
control and data processing functionality. Often, some ad- o set architecture (ISA) [5]. At the same time, it has been
ditional functionality needs to be added to a system when yesigned to consume the fewest possible FPGA resources.
there is very little space left on the physical device. This Ideally, the supersmall processor is intended to be a drop-i
functionality may not be performance critical, and so could replacement, supplanting another soft processor thabis to

be implemented on a slow soft processor. For this reason itj5rge to fit in the remaining space of an FPGA. We note that
may be useful to have a processor that is as small as possiblg paysible alternative to this approach might be to run the

yet similar to other commonly-used processors. This papergesired code on a faster, (and likely bigger) processor that
describes the design, implementation and release of at32-bijg already in place on the FPGA. This may be appropriate
soft processor based on the MIPS-I instruction set and opti-pt won't work if there isn't such a processor, or if the com-
mized for minimal use of FPGA resources. The ‘supersmall putational capacity of that processor is already used, or if

soft processor is as much as 2.2 times smaller than Altera'sihe complexity of managing the resulting multi-threadisg i
Nios Il/e (the smallest of their 3 processors) yet only adact | ,ngesirable.

of 10 times slower.

2. RELATED WORK
1. INTRODUCTION
Prior research on soft processors [6] [7] has focused on ex-

Softprocessors — processors implemented in programmabléloring their architecture and improving the performance
logic, have become an increasingly common component ofand/or the area-delay product. The present work focuses ex-
FPGA-based designs [1]. Although slower than “hard” pro- clusively on area, to the exclusion of performance. Some
cessors — processors implemented directly in transistors,previous efforts — such as Altera’s Nios Il processor [8],
soft processors have found wide application where thedaste and the Eric5 super-small soft-core CPU [9], have also ad-
speeds are not required, because they are easily integratedressed area optimization. The work in [8] for instance, fo-
along with other logic in an FPGA. For example, in [2] a cused on the the design of area-efficient multiplexers in FP-
soft processor is used to implement some subsystems of th&sAs, and the ensuing software and hardware workarounds.
robot’s control system, while time-critical components ar The work in [9] and [10] created a custom ISA designed
performed in hardware. Other examples of this kind of use for efficient implementation on an FPGA,; this necessitated
include [3] and [4]. the creation of an entire custom software support toolchain

The speed requirements of software applications run-which prevents the re-use of a large software infrastrectur
ning on a soft processor will vary dramatically; we believe As well, almost all soft processors intended for area effi-
that there will be some applications that have very low speedciency, including not only [9] but also Xilinx’s Picoblaze
requirements, perhaps far less than the capabilities of any[11] and Lattice’s Mico8 [12] feature a word length of less
currently available soft processors. In this case, it windd  than 32 bits, which limits the memory that can be addressed
beneficial to have a processor that is as small as possiblewithout the use of memory segmentation. Our supersmall
allowing the designer to perhaps use a smaller (and cheapemprocessor employs full 32-bit memory access and data reg-
FPGA, or to squeeze that ‘last little bit’ of functionalitpto isters.



3. TARGET FPGA ARCHITECTURE, SOFTWARE 5. PROCESSOR DESIGN
TOOLSAND SETTINGS
The goal of the supersmall processor design is to be as small

The supersmall soft processor is implemented on an Altera@S Possible in the Altera Stratix IIl FPGA, without regard to
Stratix [l FPGA [13]. A key feature of this FPGA isits fun-  Performance. Figure 1 gives an overview of the architecture
damental logic unit, consisting of Adaptive Logic Modules Of the processor. In the following sections, we describéeac
(ALMs), which are themselves composed of two Adaptive of Fhe major element.s of the processor (the a.rlthmeuc logic
Look-up Tables (ALUTSs) and two registers. These ALMs Unit (ALU), the multiplexers, and the exceptions support)
can implement certain commonly used logic structures, such@nd how we strove to minimize its area.

as shift registers and counters with particularly good effi-

ciency, something we make use of in this work. On the 51, Arithmetic Logic Unit

Stratix Ill, ten ALMs are coalesced into groups called Lo- _ _ _ _
gic Array Blocks, or LABs. The key area saving achieved in the supersmall processor is

o implement the 32-bit arithmetic and logic operations one

Note that this processor could been implemented on othef", : . .
it at a time, in a serial ALU.

Altera FPGAs; the one vendor-specific part of the Verilog h is fed b 32-bit shif . q
code that we use is the instantiation of memories inside the T EAILUkIS eI y tvyo | b It shi } r.eglsteraA ar:j B.h' h
processor. Although some optimizations have been made,In each clock cycle, a single bit result is computed, whic

that take advantage of the Stratix I1l's ALM, the core method IS _then f_ﬁ? back_ irll_to e_ithe‘k_or th(_e NPC Legli(ster, an appro-
ology for resource minimization is fairly device-agnostic priate. This serialization gives rise to the key performeanc

and the Stratix Ill results should be fairly representatore penalty (but also area win) of the supersmall processot, as |
FPGAs in general will be roughly 32 times slower than a full 32-bit ALU.

5.2. Multiplexers

4. INSTRUCTION SET ARCHITECTURE According to Metzgen in [8], “The key to optimizing de-

) ) ) ) signs for an FPGA is to optimize the multiplexers,” since

The MIPS-Iinstruction set architecture (ISA) was origlpal  the jmplementation of multiplexers in programmable logic
introduced by Hennessy et al. in [14] and was designed bothjg particularly inefficient.
for performance_ and simplicity of hardware implementation One method that we employ to decrease multiplexer re-
The MIPS ISA is one of the broadly used embedded pro- goyrce usage is similar to that used to implement the ALU:
cessor instruction sets. One of the original features of theby serializing the datapath. When a 32-bit bus is multi-
MIPS-I ISA was a feature known as “branch delay slots,” plexed, whatever logic is needed to implement the multi-
whose purpose was to give the pipeline useful work to do pjexer must be multiplied by 32 to implement it for the en-
while a branch is resolved. This is a performance-orientedjre pys. By serializing a bus, a 32-bit multiplexor becomes
architectural feature, but because our goal is to make a very, 1_pit multiplexor, with tremendous area saving.
small processor, nota very fastone, it simply getsintheway s concept was applied when designing the supers-
However, we chose not to remove the branch delay slot asy s memory subsystem. The MIPS instruction set has
this would make the object code of our processor completely separate instructions to access a word, half-word, or byte
incompatible with that of MIPS-I. from the 32-bit memory bus. Our initial implementation

Branch delay slots are supported on the supersmall througimply multiplexed the 32-bit bus for each instruction. In-
the use of a second instruction register, a designthatoosts stead, a far more area-efficient method is to use a shift reg-
performance and uses minimal logic, but does consume arister to align the data as needed; this again trades away per-

additional 32 registers. In this regard, designs such as [9] formance for area, reducing the overall area by roughly 65
which created their own custom ISA, are ultimately more ALUTSs.

capable of minimizing their resource footprint.

The following instructions from the MIPS-I instruction
set are also not supported: multiplication and divisionlfmu
div), floating point operations (add.s, mul.s) and unaligne We envision that the supersmall processor will be used in
loads and stores (lwl, swr). For complete details on the in- control operations, which will have need for interrupts and
struction set coverage, sdwtp://www.eecg.utoronto. other types of exceptions. For this reason we have included
ca/ ~jayar/software/SuperSmallProcessor/isa. an option for the processor to handle exceptions, which, if
html . Note also that there were some MIPS-I instructions not needed, can be eliminated for more area savings.
that were covered by patents, but those patents have now The MIPS-I specification declares that exceptions sup-
expired. port is implementation-dependent; we chose to create an

5.3. Exceptions



1

l {Branch Resolution Unit

\

Register A

Instruction Register > Data
PC | Memory || File ALY Memory

> Register B 1

¢ *—l Legend:
PC: Program Counter

NPC: Next Program Counter
BadVaddr | Status | Cause | EPC EPC: Exception Program Counter
ALU: Arithmetic Logic Unit

NPC

\

EPC ——

Coprocessor 0

Fig. 1. Overall Architecture of Supersmall Processor

interface similar to that found in the earliest MIPS proces- 5.4. Integration with Altera System Construction Envi-
sors [5]: this consists of a set of registers contained in theronment
system coprocessor, or “coprocessor 0”, which are updated

whenever an exception occurs and are accessed in the samghe supersmall soft processor has been designed, so far, for
way as data memory. When an exception occurs, execUthe Altera FPGA environment. Altera provides a tool, called
tion jumps to a hard-wired location in memory, from which 'System on a Programmable Chip’ (SOPC) Builder, which
software handles the exception. The co-processor excepyjiows easy connection of different components to its soft

including the address where the exception occurred and theymong multiple processors.

type of exception. Interrupts can be enabled or disabled by

writing to these registers. SOPC builder uses the Avalon Bus standard [15] to con-

nect the various components. To enable integration as an
The coprocessor registers were also implemented as shifsopC Builder component, we added an optional Avalon
registers, and so their values are also accessed serialgeT  Bys interface to the supersmall processor’s external mgmor
registers, however, are relatively expensive: the oversit bus. If this option is enabled in the processor’s Verilogesod
of full exception support is 94 ALUTs and 167 flip-flops.  this interface is exposed for external connection; therdte
While this would small in most processors, it is significant tjye (if the option isn’t used) declarations of on-chip imtal
given our area minimization goal. As a result we have in- data and instruction memory are disabled. The Avalon Bus
cluded an option in the the supersmall processor Verilog port costs an additional 32 flip-flops, since it assumes a reg-
code to reduce or remove the exception support, as sumistered instruction bus, something that the Avalon Bus does

marized in Table 1. not provide_
Support # # # #
Level ALUTs | Flip-Flops | ALMs | LABs
Basic 76 136 73 9 6. MEASUREMENT RESULTS
Arith Ovflow 4 0 10 1
CoFr;rocl Ur;use (7) 8 103 8 In this section we give measurements of the size and perfor-
Agj :'ES r 10 32 99 2 mance of various versions of the supersmall processor, and
rem compare it to the Altera Nios Il 32-bit processor. The Nios

Il comes in three separate versions which provide a tradeoff
between area and speed. The Nios ll/e has been specifically
optimized for efficient area usage [16].

Table 1. Area Cost of exceptions support



Processor ALUTs | Flip-flops | ALMs | LABs LAB count LAB count
relative to relative to
w/0 exceptions w/exceptions

Supersmall w/o Exceptions 138 200 152 16 1.0 0.6
Supersmall w/Exceptions 236 368 242 27 1.7 1.0
Nios ll/e 491 302 337 35 2.2 1.3
Nios Il/s 787 592 589 68 4.2 25
Nios II/f 1085 984 897 103 6.4 3.8

Table 2. Measured Area Comparison between Supersmall and Nios Il

6.1. Measurement Methodology sions of the Nios Il processor from Altera.

In configuring the Nios Il processor, to ensure a fair
comparison, no memory management unit, debug console,
or additional exceptions were enabled. Hardware multiply
support was enabled where relevant, since this would likely
be enabled on a Stratix IlI.

All measurements of processor area - the number of ALUTS,
ALMs, and LABs - were performed using Altera’s Quar-

tus Il version 9.0 software. To do this, we created a simple
SOPC builder design, consisting of a 128K bytes of read-

only instruction memory and a 64K bytes read-write data Table 2 gives the count of ALUTSs, flip-flops, ALMs and

memory Connec_ted to the prqcessor’s instruction and Olatal_ABS required for each processor. Recall that ALUTs and
busses, respectively, along with a JTAG UART connected flip-flops are packed into ALMs, and ALMs are packed into

to the data bus. Since the Nios and the supersmall’s exter- .
nal interfaces both consist only of an instruction and a datal(;g‘uBnSté arfssg;rr:ebgesaergﬁt \t/rlﬁaws%f aerresicafllm?zéfsrggrsvli_tﬁc?u ¢
bus, this presented no difficulty. SOPC builder could then be : ' P P

used to generate a new setup for each processor, on Whicﬁxceptmns is 2.2 times smaller than the N_|os Il/e m_term_s
of LAB count. The supersmall processor with exceptions is
measurements could be made.

The processor component of the SOPC generated sys-l'3 times smaller than the N|os_II/e. . _—
Note that the supersmall with exceptions has a signifi-

tem was placed in a Logic Lock region [17], which both _ .
constrained the full synthesis, packing, and placemeiwtalg can'FIy greater advantage n ALUT count over t_he N'OS.”/e’
rithms to attempt to fit it into the smallest region possible, ]E)IUt ]:r actl;]ally uses more fl|r;]-_flops thankthg :\“OSC:I/E,’ ”E)Ia
while also allowing measurement of all logic parameters of Ip-Tiop-s ortenvironment, this may ma’ e itless desirable
that section in isolation. All measurements given are for Th's IS a consequence of the sgper;mallsattempt at compat-
that specific logic-locked region, with no constraints pldc ibility with the excepnon—han_dl_lng |_nterface of early M$P
on its size or location. processors, rather than devising its own FPGA-optimized
scheme, such as that featured in the Nios Il. A more care-

All compile options for Quartus were chosen to mini- ! . . .
mize the area occupied by the processor. The complete Iistl‘uIIy optimized implementation of the exceptions should re
duce the size of the supersmall with exceptions.

of settings employed can be downloaded (in the file super-
small.gsf) from the website given at the end of this paper;
several that were found to be of significant importance are.3. Performance M easur ements

described here. Timing-driven synthesis was disabled, (be

cause we wish to optimize for area). This turned out, surpris In this section we describe the measurement of the perfor-

ingly, to be particularly important for the many shift regis mance of the supersmall processor against the Nios Il pro-

ters we employed in the design - the timing-driven synthesis cessors. We benchmark them using the SPREE benchmark

of parallel load shift registers used much more soft logic suite [7], which is a freely available set of 20 different em-
than the non-timing driven optimization. bedded processor applications. These benchmarks were cho-

As well, the Quartus setting “minimize area with chains” sen because of their variety, public availability, anditpee-
was set while packing registers, which ensures that the-pack Vious usage in soft processor performance comparisons. No
ing of flip-flops into ALUTs is as aggressive as possible. benchmark involved the use of exceptions, however, so this
Both of these settings significantly reduced both ALM and does not provide any indication of the relative performance
LAB counts. of the processors’ implementation of exceptions.

Each benchmark was compiled with a modified version
of gcc (available at the download site given at the end of
this paper), with the compile option®3 -mipsl -mgp32 -
Table 2 compares the area of the supersmall processor, witimsoft-float -mlong32To obtain valid measurements, each
and without exception handling, to the area of the three ver-of the benchmarks was executed on a software simulation of

6.2. Area Measurements



Execution Cycle Counts
Benchmark| Supersmall| Nios Il/e | Nios Il/s | Nios Il/f
bubblesort 171620 13854 4316 3993
crc 871282| 183360 31773| 25889
des 94668 13492 3617 3533
fft 714642| 113146 3650 3007
fir 90776 8864 1310 1752
quant 418589 127358 5944 5167
iquant 575782| 119088 3286 3667
turbo 13752420| 2233341| 516404| 424913
vic 1364847 193697| 44391| 29911
bitcnts 1878424| 214020 55995| 41702
CRC32 22209701 503390| 125886| 142940
gsort 3720720, 384057| 132893 103568
sha 2690600 252155| 58245| 41677
stringsch 5402994| 580213| 134602| 149204
FFT 51881436 6084367 883319| 633635
dijkstra 19657914 1766350 427187| 370040
patricia 6962527 619453 261025| 193196
gol 12106839| 2173464| 353082 251718
dct 71264602 6948710 903412| 646663
dhry 3636853 460323| 139207 107328
Geo Mean 2606121| 309051| 53290| 45439
vlil/e 8.4 1.0 0.17 0.15
v I/ 57 6.8 1.2 1.0

Table 3. Benchmark Cycle Counts on each Processor

the respective processors, using Mentor Graphics’ Model- 7. RELEASE OF CODE
sim simulator. These simulations gave a precise cycle count
for each program on each processor, as given in Table 3. The complete Verilog source code for the supersmall proces-
sor is available (under a liberal 2-clause BSD license) from
The processor was then run through exactly the samethe following locationhttp://www.eecg.utoronto.
CAD flow as that used for the size comparisons above, andcg/ ~ jayar/software/SuperSmallProcessor/ )
the maximum frequency determined by Quartus’ TimeQuest  Thatwebsite contains documentation, as well as a slightly

Timing Analyzer using the slow 1100mV 86 timing model.  modified GNU compiler toolchain targeted towards the pro-
To achieve the highest frequency from the placement andgegsor.

routing, the clock constraint was set to 1 GHz. All version

of the supersmall processor were found to have the same
critical path, and therefore, the amount of exceptions sup-
port included is not specified. The mean wall clock execu- ) ) )
tion time could then be determined by the quotient of the In this work we have designed, built, measured and released

geometric mean cycle count and the max frequency, as pro_the smallest possible soft processor implementing a sub-
vided in Table 4. set of the MIPS-| instruction set on an Altera Stratix Il

FPGA. This processor is meant to be used in the circum-

Table 4 shows that the Nios Il/e is about 10 times faster stance when area is the critical resource and performance
than the supersmall, and that the Nios II/f is about 60 times much less of a constraint. As such, we have sacrificed sig-
faster. As expected, there is a considerable speed penaltyificant (and disproportionate!) performance to achieve a
to be paid, particularly for the serialization of the prosms minimum area. The smallest version of the processor is 2.2
However, it is interesting to note that the speed penalty istimes smaller than the Nios ll/fe commercial soft processor
not the 32 times cycle count penalty involved with ALU in- from Altera, and operates a factor of 10 slower in wall-clock
structions, as other instructions do not require work o82ll  performance.
bits of a word. Also, as we discussed in the introduction, the  Inthe future, we hope to explore the use of unused mem-
processor’s application is for non-speed critical worki®a ory blocks for aiding the area reduction, as well as further

8. CONCLUSIONSAND FUTURE WORK



optimizations of the present core. In addition, we intend to [11] X. Inc.,
make the device easily portable to other FPGA vendors’ de-

vices.
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