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ABSTRACT
Interconnect synthesis tools ease the burden on the designer
by automatically generating and optimizing communication
hardware. In this paper we propose a novel capability for
FPGA interconnect synthesis tools that further simplifies
the designer’s effort: automatic cycle-level synchronization
of data delivery. This capability enables the creation of inter-
connect with significantly reduced hardware cost, provided
that communicating modules have fixed latency and do not
apply upstream backpressure. To do so, the designer speci-
fies constraints on the lengths, in clock cycles, of multi-hop
logical communication paths. The tool then uses an integer
programming-based method to insert balancing registers into
optimal locations, satisfying the designer’s constraints while
minimizing register usage. On an example convolutional
neural network application, the new approach uses 43% less
area than a FIFO-based synchronization scheme.

Keywords
Convolutional Neural Networks; FPGA Interconnect Synthe-
sis

1. INTRODUCTION
Interconnect synthesis and system integration tools, such as

Altera Qsys[2], Xilinx IPI[21], and LatticeMico[16], provide a
higher-level design entry method than manually writing HDL:
they automate the creation of the hardware that connects
functional modules together. Similarly, Network-on-Chip
(NoC) architectures like CONNECT[18], Split+Merge[12],
and Hoplite[13] provide ready-made interconnect solutions
for FPGA designs. These tools and architectures simplify
the creation of large, complex hardware systems.

A consequence of designing at this level of abstraction is
that the implementation of the interconnect is hidden from
the designer behind a standardized signaling protocol like
Avalon[2] or AXI[4]. As a result, a functional module can
not assume, in general, that the interconnect will provide a
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Figure 1: Three solutions for ensuring that inputs at
module D arrive at the same time: a) Using an au-
tomated system-building tool and modifying module
D (as D′) by adding FIFOs at its inputs, or building
the interconnect manually and adding two pipeline
stages b) after or c) before module B.

specific end-to-end latency, or that the latency will even be
constant during system operation.

This presents a challenge when functional modules require
synchronized data arrival from two or more sources. To
guarantee synchronization even in the face of unknown inter-
connect latency, FIFOs or similar constructs can be inserted
just before the functional module inputs, and dequeued when
the module sees fit.

The alternative would be to manually create the intercon-
nect with explicit, fixed, known latencies, such that the data
arrives at each functional module input at the correct clock
cycle by design. While this removes the area penalty incurred
by FIFOs, it requires significantly more effort for the designer.
They must either create the interconnect in HDL, giving up
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the productivity advantage of automated tooling, or (if their
tools allow) manually specify the locations of registers in the
interconnect. Not only must they add the correct number
of registers, but they could potentially select among many
equally-valid locations to insert them, with some yielding
higher area usage than others.

Figure 1 illustrates a motivating example, containing four
functional modules, of such a synchronization problem. Here,
modules B and C are internally fully pipelined with fixed
input-to-output latencies of 2 and 4 clock cycles, respectively.
Each takes a 9-bit input and produces a 256-bit output, as
a block RAM might commonly do, for example. Module
D requires matching inputs to arrive during the same clock
cycle.

If a tool is used to build this system, the four modules
would be connected with abstract logical links that are syn-
thesized to an implementation with an unknown latency.
The designer may employ the solution shown in Figure 1(a),
where module D is wrapped inside a new module D′ that
adds two 256 bit wide FIFOs to synchronize the data arrival
at the inputs.

However, if the designer had full control over the design
of the interconnect, they may opt instead to use balancing
registers to add the correct, fixed amount of extra latency to
synchronize data arrival, and avoid the unnecessary hardware
complexity of FIFOs. Two equally-valid solutions are shown
in Figures 1(b) and 1(c), with the latter having the lower
area usage of 18 (versus 512) registers. The choice of (c) over
(b) may be trivial to see in this example, but a larger more
complex system would present the designer with less-obvious
choices.

In this paper, we propose augmenting an interconnect
synthesis tool with the ability to automatically create area-
optimal, fixed-latency interconnect in response to the syn-
chronization needs of the designer’s application, effectively
enabling solutions such as Figure 1(c) to be generated auto-
matically.

This is accomplished by accepting, from the designer, a
set of synchronization constraints, which take the form of
equations or inequalities that relate the end-to-end latencies
of one or more logical links and a constant. The tool then
satisfies these constraints during interconnect creation by
inserting the correct number of balancing registers, favouring
solutions that use the minimal amount of total registers.

The problem of synchronizing pipelined systems with delay
buffers is itself not novel, as will be discussed in Section 2.
However, existing system-building tools for FPGAs lack this
capability; adding it would allow their use in constructing
new classes of applications, such as systolic arrays[15], beyond
the traditional use cases of “processor plus memory-mapped
IP cores” or streaming dataflow pipelines.

To this end, we will demonstrate the creation of an FPGA-
based implementation of a convolutional neural network
(CNN) accelerator using our new synchronization constraint
enabled system building methodology. Its area and per-
formance will be compared against a similar system built
using a FIFO-based synchronization approach resembling
Figure 1(a).

We will present a review of previous work on the syn-
chronization problem in Section 2 and our own interconnect
synthesis-specific formulation in Section 3, where we aug-
ment our own open-source GENIE interconnect synthesis
tool[19, 20] with the ability to apply synchronization con-

straints. This is followed, in Section 4, by the description of
the CNN accelerator example design. Section 5 evaluates and
compares its clock frequency and area against other design
approaches. Finally, we conclude in Section 6.

2. PREVIOUS WORK
The optimization problem of inserting the minimal amount

of delay elements to satisfy the synchronization of fixed-
latency pipelined computation blocks is a form of buffer
minimization problem and has been well-studied[11]. The
integer programming based approach that we will use to solve
it in Section 3.4 is a basic approach that has had refinements
made by others to improve its asymptotic runtime complex-
ity through decomposition approaches[7] or graph-theoretic
reformulations[5].

The buffer minimization problem has also found use in
High-Level Synthesis (HLS) tools[9, 6]. There, hardware
modules representing operations in a control/data flow graph
are scheduled to begin at a certain clock cycle in order to
satisfy dependencies, which naturally leads to the same prob-
lem of determining the optimal locations for delay element
insertion.

Our contribution is to apply this existing buffer minimiza-
tion problem in the context of FPGA interconnect synthesis
tools, thereby exposing synchronization directly to the end
user. Existing tools[2, 21, 16] do not have this capability;
individual components can stall upstream communication via
backpressure, but this complicates the interconnect imple-
mentation. Alternatively, the designer could buffer incoming
signals manually, as part of their functional modules.

FPGA-based network on chip architectures[18, 12, 13] are
not complete system-building tools like the software pro-
vided by the FPGA vendors. Furthermore, contention in
packet-switched networks makes packet latency variable, pre-
venting global synchronization of transmissions from taking
place. Our approach could theoretically be applied to circuit-
switched networks[10], however.

Previously, we introduced our own system-building and
interconnect synthesis software, GENIE[19, 20], which is
based on Split and Merge[12] routing primitives. Although
it is capable of creating backpressure-free interconnect, it
currently suffers from the same lack of global synchroniza-
tion capability as the existing vendor-provided tools. In this
paper, we augment it with synchronization constraints. This
will extend the automation afforded by interconnect synthe-
sis software to the creation of tightly-scheduled pipelined
systems, such as systolic arrays, in addition to (and co-
existing with) traditional memory-mapped and streaming
components.

3. PROBLEM DEFINITION
In this section, we begin with a review of the traditional sys-

tem representation seen by interconnect synthesis tools, and
proceed to augment this with our formalization of synchro-
nization constraints. An integer programming based method
will be provided to solve the constraints and generate the
necessary interconnect. Two additional post-processing opti-
mizations will be described that further reduce interconnect
area usage.
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Figure 2: Elements of GENIE’s representation of a
system, with example generated interconnect.

3.1 System Representation
First, we review the terminology used to represent a system

as seen by a generic interconnect synthesis tool. Although we
are extending GENIE in this paper, the concepts presented
here should be applicable and relevant to other tools as well.

The designer creates a system containing instances of com-
ponents that represent functional modules. The individual
input/output ports of each component are grouped into
higher-level connection points called interfaces which adhere
to some protocol and have well-defined roles for each con-
stituent signal. The designer defines logical links between
the interfaces of instantiated components to specify that
they should communicate. The tool then accepts this system
representation as input, and realizes it by instantiating the
components and connecting them with physical interconnect
according to the logical links.

The structure and details of the generated hardware will dif-
fer depending on the tool and interconnect architecture, but
in general will include functions for distribution, arbitration,
buffering, and conversion. For example, a network-on-chip
architecture will instantiate routers that perform most of
those functions, joined by wires. The GENIE tool we are
extending uses Split nodes for distribution, Merge nodes for
arbitration, and FIFOs or registers for buffering depending
on whether backpressure is required. The exact arrangement
of the primitives used by GENIE to realize the logical spec-
ification is defined by an optionally-customizable topology.
More details can be found in previous work[20].

Figure 2 illustrates an example of the basic elements in a
system representation: two component instances A and B are
connected with a logical link, which is turned into physical
hardware consisting of a split node, a register, and a merge
node, which connect to other components in the system that
are not shown. This is the baseline which we seek to extend
next.

3.2 Internal Links and Chains
In the existing representation, logical links originate and

terminate at the interfaces of components. In order to capture
the type of global synchronization requirements depicted in
the opening example shown in Figure 1, we must first extend
the basic system representation of the previous section with
the ability to specify communication through components.

Internal links serve this purpose – they define a communi-
cation path from one of a component’s receiving interfaces to
one of its transmitting ones. Each internal link has an associ-
ated fixed latency, in clock cycles, and is explicitly specified
by the designer as part of a component’s definition. It is also
possible for an interface to participate in multiple internal
links within a component, each with a different latency.

s m m s

physical interconnect internal
link

logical link #1

chain

5

A B C
logical link #2

Figure 3: A chain spanning three components A,
B, and C, with its constituent two logical links and
one internal link within B that has a latency of 5
clock cycles. Each logical link will be realized into
example interconnect

We can now define a higher-level type of construct called
a chain, which captures a transmission beginning at one
component, through zero or more intermediate components,
and terminating at an ultimate destination. A chain defines a
contiguous set of one or more logical links and internal links.
Figure 3 illustrates an example of a chain spanning three
components - A, B, and C. The intermediate component B
has an internal latency of 5 clock cycles.

3.3 Synchronization Constraints
Recall that the goal of this work is to automatically gen-

erate interconnect that obeys user-specified synchroniza-
tion constraints. Now, with the ability to capture multi-
component transmissions using chains, we are ready to intro-
duce the formulation of the constraints proper. Given a set
of N ≥ 1 chains h1, h2, . . . , hN , a synchronization constraint
takes the form:

h1 ± h2 ± · · · ± hN op K (1)

where op is a comparison operator (one of <,≤,=,≥, >),
and K is an integer. Each term hi represents the end-to-end
latency, in clock cycles, of that chain. This general form
allows the designer to specify arbitrary latency relationships
between chains, or to bound the latency of an individual chain.
A chain (and its constituent logical links) can participate in
multiple constraints.

Figure 4 restates the example system in Figure 1 as an in-
put to GENIE using chains, logical links, and synchronization
constraints. The explicitly-specified physical interconnect
in the original example has been replaced with logical links
between components A, B, C, and D, whose interfaces have
been named ‘in’ and ‘out’. The latencies of B and C are cap-
tured with internal links. The requirement for D’s inputs to
arrive simultaneously has been captured as a synchronization
constraint between two chains h0 = {A.out→ B.in,B.out→
D.in} and h1 = {A.out → C.in,C.out → D.in}, with the
constraint being that h0 = h1.

3.4 Optimization Problem Formulation
The synchronization constraints are used as an input to

the tool. The goal is to use them to guide the generation
of interconnect. However, in general, there may be many
legal solutions, differing in the number of total inserted
registers; ideally, we would like to find the solution that
yields the fewest. This is the well-known buffer minimization
problem[11], and this section formalizes a version of it using
the system representation terminology introduced previously.
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Figure 5: A single chain consisting of one internal
link and two logical links, which are synthesized into
interconnect containing a total of four primitives
and six physical links p0 through p5. W (p1) is the
width in bits of link p1 and L(p4) is the necessary
extra latency, in cycles, of p4.

Let C be the set of all user-provided constraints, each
taking the form of Equation 1. For a constraint c ∈ C, let
Hc represent the set of chains that appear on the left hand
side. A chain h ∈ Hc has an associated set of logical links,
Gh, which is a subset of all logical links G. Chains also
traverse internal links, that are represented by the set T.

The tool realizes logical links into physical interconnect
consisting of hardware primitives connected by physical links,
which directly represent RTL nets. P is the set of all physical
links. By splicing registers into physical links, cycles of delay
can be added in appropriate places to satisfy the overall
set of synchronization constraints. If we define L(p) as the
number of registers to insert into physical link p, then the
goal of the overall optimization problem is to solve L(p) for
all p ∈ P.

We also wish to satisfy the constraints using the minimum
total amount of registers. If W (p) represents each physical
link’s width in bits, then this objective can be codified as
the minimization of the following cost function:

# of registers =
∑
p∈P

W (p)L(p) (2)

Figure 5 illustrates the relationship between an example
chain h0 and its constituent logical, internal, and physical
links, as well as the properties W and L of physical links.
The latency L of a physical link is a numerical annotation
that is only later realized as extra registers.

To solve the set of constraints C, each constraint c ∈ C is
first converted from the form of Equation 1, as provided by
the user, into that of Equation 3 by expanding each chain
term hi into its constituent physical links pi and internal
links ti:
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Figure 6: Left: a Split node feeding four physi-
cal links with differing latencies. Right: applying
systolic retiming, the number of required register
stages is reduced from 7 down to 3.

h1 ± h2 ± · · · ± hN op Kc (1)

L(p0)± · · · ± L(pN ) op Kc ± L(t0)± ...± L(tM ) (3)

The left-hand side consists of unknowns (the latency of
physical links to solve for), and the right-hand side of con-
stants (the user’s constraint constant Kc together with the
fixed latencies of internal links denoted by L(ti)). Intercon-
nect primitives in GENIE have zero latency, but for general
applicability, the latencies of interconnect primitives should
also be included on the right-hand side.

The resulting system of inequalities is in a canonical form
suitable for solving using integer programming: the (nonneg-
ative, integer) unknown variables L(p) are on the left-hand
side, and constants are on the right-hand side. A solution
to the IP problem yields the values of L(p) for all for all p,
subject to the optimization criterion of minimizing the cost
function of Equation 2, which is linear with respect to the
unknown variables L(p).

Note that additional techniques[7, 5] can be used to im-
prove the asymptotic performance of solving this optimization
problem.

3.5 Systolic Retiming Transform
The solution to the optimization problem can lead to

scenarios like the left side of Figure 6. Here a Split node (used
for distributing signals to different destinations) fans out to
four physical links that were assigned three distinct latency
values. Realizing this assignment requires 7 register stages
- the sum of the 2, 2, and 3 register stages for destinations
B, C, and D. However, if we allow for the freedom to change
the topology of interconnect primitives after initial latency
assignment, a less-costly solution can be found, as shown
in the right side of the figure where an extra Split node is
used to reduce the cost to three register stages. We call this
optimization the systolic retiming transform.

It is performed after the initial L(p) values have been
assigned by the solution of the optimization problem. The
overall process is:

1. Sort the Split node’s fanout physical links into bins by
their latency assignments L(p).

2. Remove the initial Split node.

3. Create a Split node for each bin from step 1.

4. Connect each Split node from step 3 to the original
destinations in the respective latency bins, but reset
the latency on these new physical links to 0.
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5. Connect the Split nodes together with physical links
whose latencies are the differences between successive
bins.

6. The last Split node can be removed and its sole fanout
reassigned to the second-last Split node.

After performing the systolic retiming transform, the up-
dated latency values L(p) on each physical link are used to
insert the corresponding number of register stages.

3.6 Long Register Chain Optimization
Current FPGAs can repurpose logic blocks to be used as

distributed RAM resources. Although they are not as wide
or deep as larger, traditional block RAMs, they still offer
more bits of storage per logic block than registers do.

After satisfying the design’s synchronization constraints
and performing the systolic retiming transform, we perform
one final post-processing optimization: long chains of bal-
ancing registers are replaced with a single distributed RAM
based implementation to reduce area usage. Unlike a FIFO,
this memory-based delay element is functionally equivalent
to a chain of registers (for example, it preserves non-valid
bubble cycles rather than compacting them).

Chains of registers are replaced with memory-based delay
elements when the estimated cost is lower. This depends on
the length of the chain, the data width, and FPGA-specific
architecture parameters such as the maximum depth and
width of distributed RAM elements.

As an aside, the introduction of registers embedded directly
in the routing fabric of the latest FPGAs[3] will change the
cost/benefit analysis of performing this optimization. It may
be preferable to leave chains of registers untouched when
targeting such architectures.

3.7 Limitations and Scope
Backpressure-free synchronization with balancing regis-

ters requires that components have internal links with fixed,
static latencies. This will exclude any part of the system
that communicates with off-chip peripherals that have non-
deterministic latency, such as DRAM controllers. A less-
obvious limitation of the presented approach is that it ex-
cludes communication patterns in which N > 1 sources wish
to communicate with 1 sink and the N transmissions are not
guaranteed to be mutually-exclusive in time. This scenario
implies one or more of the sources would have to be stalled
to avoid data loss, implying the need for backpressure and
thus non-fixed latency due to the resulting stalls.

A real system may contain a mixture of both types of
communication: latency-insensitive with backpressure, and
backpressure-free. These regions may even interact with
one another. For example: an off-chip memory controller
feeding returned read data into an adjoining network of fixed-
latency processing modules. It’s not possible to determine
when valid read data will be returned from memory, but
our synchronization constraints could still be applied to the
latter region to correctly distribute that data relative to its
entry into the region.

4. DESIGN EXAMPLE
In this section, we describe a concrete example application

for which synchronization constraints can be used effectively:
a Convolutional Neural Network (CNN) accelerator targeted

kd

iw

ih
kw

kw

ow

oh

dot product

Nk

(xo,yo,j)

kd

input
kernel #

j

output

+
add biasj

Figure 7: Visualization of the dot product between
a kernel and a kernel-sized subvolume of the input.
This produces a single output voxel.

towards image classification workloads. There exist many
FPGA implementations of CNNs (for example, [23]), and
so our goal is not to improve on the state of the art of
CNN architecture. Rather, we wish to illustrate the power
of synchronization constraints in aiding the creation of a
functionally correct, high-performance implementation using
an interconnect-centric design flow. We will begin with an
overview of the CNN context and then provide a description
of the overall design, followed by the implementation details
and results in the next section.

4.1 CNN Background
CNNs are a machine learning technique[17] and have been

effectively used in applications ranging from image classifi-
cation [14] and speech recognition[1], to playing the game
of Go[22]. CNNs operate in two modes: training and infer-
ence. Training ‘teaches’ the network to classify inputs, and
involves feedback. Inference is a feed-forward process that
uses the trained neural network to classify inputs. As we
have chosen the problem of image classification, training can
be performed offline, so we focus only on building hardware
to perform inference.

Each input image is split into color channels and stacked
together to form a 3-dimensional volume. This image under-
goes a chain of different computation stages, each producing
an intermediate volume that represents higher-order features
of the original image. The final output is a low-dimensional
array that directly represents the probabilities of different
image categories. The most time-consuming[8] processing
stages are the convolutional layers from which CNNs derive
their name. Our accelerator only implements these.

A convolutional layer convolves its input image with Nk

different kernels to produce the output. Each kernel con-
tains weights from off-line training that are constant during
inference. The image, kernels, and output can be visualized
as 3-dimensional volumes, and the convolution process as
a repeated dot product of volumes: Each voxel of the out-
put volume is produced by calculating the dot product of
a kernel volume, of width/height kw and depth kd, with an
equally-sized sub-volume of the image, and then adding a
kernel-specific bias constant. This dot product operation,
restated as Equation 4, is also visualized in Figure 7.

out(xo, yo, j) =

kw−1∑
x=0

kw−1∑
y=0

kd−1∑
z=0

kernj(x, y, z) · inp(x + x0, y + y0, z)

+ biasj

(4)
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To generate the entire output volume (and complete the
convolution), multiple such dot products must be performed.
Each time, a different kernel and/or a different image sub-
volume is chosen. The former corresponds to the z coordinate
of the output voxel, and the latter to the x and y coordinates
of the output. Additionally, When the sub-volume is swept
across the input image in the x and y dimensions, the amount
it moves within the input is called the stride. Equation 4
assumes a stride of 1 for simplicity.

Note that in the overall convolution, many dot product
operations share either the same kernel or the same region
of the input volume. This is exploited to achieve high paral-
lelism in our hardware implementation, which is described
next

4.2 Hardware Design
Our CNN design is able to process a single convolutional

stage at a time, with size parameters that are configurable
at runtime. The input image volume and kernels are initially
stored in off-chip memory and are streamed into on-chip
buffers, and the output volume is written back into off-chip
memory as well. Voxels are represented using 16-bit fixed-
point integers.

We accelerate the convolution by performing many of
its constituent dot product operations in parallel. This is
implemented with an array of N × M dot product units
(DPUs), as shown in Figure 8. Each DPU consumes 16 input
voxels and 16 matching kernel voxels per clock cycle, using
hardened FPGA DSP blocks to do voxel-wise multiplication
and accumulation. The image and kernel data are supplied
by N on-chip image and M kernel buffers, each providing
256 bits of data per cycle. They are labeled I0 through IN−1

and K0 through KM−1 respectively, in Figure 8.
Since many DP operations share either kernel or image

data, the buffer outputs can be broadcast to many DPUs
simultaneously, efficiently utilizing on-chip read bandwidth.
Each kernel buffer is broadcast to a row of DPUs, and each
image buffer can broadcast to one of the N columns (targeting
a different column every clock cycle).

The blocks marked ITER in Figure 8 sequentially gen-
erate addresses to read the image buffers, and each ITER
unit reads a different image buffer every clock cycle. The
kernel buffers also have address-generating logic, but it is
built-in, feeding only its associated buffer with a straightfor-
ward access pattern, and is thus omitted from the figure for
simplicity.

Once all image and kernel buffers have been filled, control
logic issues a LAUNCH signal that begins address generation
by the ITER units and the kernel buffers’ built-in equivalents.
The addresses are used to read the respective kernel and
image buffers, feeding DPUs with data, which eventually
produce a result.

This process is repeated many times, as neither the entire
image (nor all the kernels) will necessarily fit into the avail-
able on-chip buffers. The synchronization of the delivery of
kernel and image data streams to DPUs is the problem which
we aim to help solve using the synchronization constraints
described in this paper.

5. IMPLEMENTATION AND RESULTS
In this section, we seek to measure the difference in quality

of results (area, clock frequency) when building the CNN
accelerator system using an interconnect synthesis flow aug-
mented with synchronization constraints. To this end, we
build three different versions of the system using GENIE:

1. A basic, unpipelined implementation with no significant
synchronization requirements and low performance.

2. A pipelined implementation, which introduces synchro-
nization requirements that are addressed by the manual
addition of FIFOs to the functional modules.

3. The same pipelined implementation as Version 2, but
with the synchronization requirements solved using the
flow described in Section 3.

The first näıve unpipelined version is easy enough to make
functionally correct with minimal manual effort, but suffers
from low performance as a result.

The second version improves on this by inserting pipeline
registers to increase clock frequency, at the cost of complicat-
ing the problem of achieving functional correctness, which is
solved with the insertion of FIFOs and adds a small amount
of extra effort for the designer. This implementation repre-
sents a realistic higher-performance solution that a designer
may choose, if they do not have access to the synchronization
constraint flow presented in this paper.

The third version keeps the performance-increasing pipeline
registers from the second version, but uses the synchroniza-
tion constraint flow to allow GENIE to automatically insert
balancing registers, rather than relying on manually-inserted
FIFOs. We will demonstrate that this version maintains
high performance and uses significantly less area than the
FIFO-based design.

5.1 Methodology
All three versions are generated with GENIE. In each, we

also vary the number of DPUs in the accelerator by changing
the number of columns (N) of the DPU array. This increases
the size of the accelerator, adding computational power, while
also increasing the distances that signals need to travel.
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The design was synthesized with Altera Quartus Prime
Pro 16.0 and targets an Arria 10 10AX115S2F45I2SGES device.
We measure clock frequency, register usage, and the number
of Adaptive Logic Modules (ALMs). ALMs represent post-
packing logic, register, and distributed RAM usage, and thus
the overall consumed area (not including DSP blocks).

5.2 Version 1: Unpipelined Implementation
The first version achieves correct operation without op-

timization of the clock frequency. It represents a realistic
first design iteration. The key simplification made in this
initial version is that kernel and image data are broadcast
combinationally to all DPUs simultaneously, rather than
distributed in a systolic pipelined fashion.

For correct operation, kernel and image data must arrive
simultaneously at each DPU. In this version, this synchroniza-
tion is achieved by manual insertion of registers to balance
arrival times. The location, and number, of such registers
are determined by inspection of the signal paths and existing
fixed latencies.

Figure 9 shows the paths taken by the image and kernel
data through the computation array toward a single DPU,
as well as the fixed latencies of the intervening blocks and
generated interconnect. From inspection, it is trivial to
balance the two paths by manually inserting four registers
between the LAUNCH signal generator and a kernel buffer.

Canonically, this register insertion is performed for all
kernel buffers individually. Fortunately, since this version of
the array broadcasts LAUNCH to all kernel buffers simulta-
neously, a single instance of the four registers can be used,
and the output broadcast to all of the kernel buffers. In the
two other versions of the array, synchronization will be more
complicated once this broadcast is removed.

Table 1: Area and Frequency for Unpipelined Array
N DSP ALM REG Fmax (MHz)
4 512 14421 40335 333
6 768 21290 56603 265
8 1024 28977 72819 230

11 1408 48349 97250 169

Table 1 shows the speed and area results for various pa-
rameterizations of the Version 1 CNN hardware: changing
N increases the number of DPUs, and by extension, DSP
block usage, ranging from a third of the 1520 available DSPs
at N = 4, to 93% of the DSPs at N = 11. Since the cir-
cuit broadcasts data combinationally to all DPUs, it is no
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Figure 10: FIFOs are inserted at each DPU to syn-
chronize kernel and image data arrival times. A
DPU asserts the ready signals to simultaneously de-
queue both FIFOs.
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Figure 11: A section of the modified Version 2
DPU array, showing the locations of manually-added
pipeline registers as well as the pairs of FIFOs added
in front of each DPU.

surprise that the observed clock frequency drops (from 333
to 169 MHz) as the number of DPUs increases – the signals
must travel longer distances to reach their destinations. Ex-
amination of the most-critical paths from timing analysis
confirms this intuition.

5.3 Version 2: FIFO-based Implementation
To achieve higher clock frequencies, we can break up the

broadcast of the image and kernel data with pipeline registers.
However, this affects the kernel and image data arrival times
at each DPU and complicates their synchronization. One
solution is to place FIFOs in front of every DPU, as shown
in Figure 10.

This requires a manual change to the DPU module, but can
be performed once and then replicated aross the entire array.
As long as the FIFOs are deep enough to cover the worst
case arrival disparity, the designer can independently vary
the amount of delivery pipeline stages without concern about
functional correctness. Figure 11 illustrates a portion of the
array after the insertion of FIFOs and pipeline registers.

Table 2 gives the area and frequency measurements for
the Version 2 FIFO-based implementation. The ∆ column
compares the results with the Version 1 unpipelined system
described previously. The clock frequency improves by up
to 40% but the average ALM and register usage is increased
by 167% and 84% respectively. ALM usage is affected by
the FIFOs, as they are configured to use distributed RAM
rather than more expensive block RAM.

While using FIFOs to maintain synchronization is simple
for the designer to implement, it is not an elegant solution for
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Table 2: Area and Frequency of Pipelined+FIFO
Implementation

N DSP ALM REG Fmax (MHz)
∆ ∆ ∆

4 512 39329 2.73x 40335 1.74x 378 1.13x
6 768 59160 2.78x 103645 1.83x 343 1.30x
8 1024 79976 2.76x 136955 1.88x 321 1.40x

11 1408 117982 2.44x 187181 1.92x 236 1.40x
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Figure 12: N − 1 synchronization constraints, c0
through cN−2, that force all the possible N chains
feeding image buffer I0’s address input to have equal
latency, avoiding collision of read addresses as they
arrive at the buffer.

a system which originally had no backpressure and completely
deterministic data arrival times. Ideally, we would like to
insert the correct amount of registers in the correct locations
automatically, using registers to balance delays instead of
FIFOs. This is done in Version 3 below, using synchronization
constraints.

5.4 Version 3: Synchronization Constraint Im-
plementation

In this version, we begin with the kernel and image buffer
broadcasts manually pipelined in the same systolic fashion
as in Figure 11, but without the FIFOs for synchronization.
Instead, to achieve correct data delivery in the presence of the
pipeline registers, we define several sets of synchronization
constraints, which GENIE will use to automatically insert
the necessary registers to balance delays.

The ITER units have been carefully designed such that,
as long as they receive the LAUNCH signal simultaneously,
all N of them will never send a transmission to the same
destination image buffer during the same clock cycle. This
temporal mutual-exclusivity of transmissions is critical to
avoiding the need for backpressure within the design, and
must be preserved all the way from the output of the ITER
units to the inputs of the image buffers. Therefore, the first
set of constraints ensure exactly this scenario, by demanding
that all possible LAUNCH to image buffer chains are of the
same length. Figure 12 illustrates these constraints for the
first image buffer, I0. Similar sets of constraints are needed
for the remaining image buffers, I1 through IN−1.

The next set of constraints is intended to fulfill the role
previously performed by the FIFOs: to ensure that kernel and
image data arrive synchronized at each DPU. This requires
the chain supplying the kernel data to a DPU to have the
same latency as all chains (from all image buffers) supplying
the image data.

Figure 13 illustrates these constraints. Note that we choose
a single arbitrary ITER unit for the N image data chains,

K0

I0I1IN-1 . . .

ITER
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ITER
1

ITER
N-1

LAUNCH

. . .

DPU

hN h1 h0hN-1

c0: h0 = h1

c1: h1 = h2

cN-1: hN-1 = hN

. . .

Figure 13: N synchronization constraints, c0 through
cN−1, that force kernel and image data to arrive si-
multaneously at a DPU.

rather than the quadratic-in-N -sized exhaustive set that
traverses through all possible ITERs. We are allowed to
perform this simplification due to the first set of constraints
of Figure 12, which forced all ITER-to-image-buffer chains
to be equal.

Figure 14 shows the hardware that results from applying
this total set of synchronization constraints. As before, four
registers have been added to delay the LAUNCH signal be-
fore it reaches the first kernel buffer. These four registers
were inserted manually in the original unpipelined implemen-
tation, but now they are inferred automatically from the
constraints.

In addition to these registers, more have been automatically
added to balance data arrival. Proceeding down the column
of kernel buffers, each buffer receives its 1-bit LAUNCH
signal one cycle after the previous – the optimizer naturally
favoured delaying the signal here, at the input of the kernel
buffers, rather than at the more expensive 256-bit outputs.

Our constraints forbid the optimizer from employing a
similar elegant solution for delaying the 1-bit LAUNCH
signal to the ITERs for image data. This is because each
ITER ultimately feeds all DPU columns, and thus can’t be
individually delayed at the source. The best legal solution
was instead to add an increasing number of expensive 256-bit
registers at the top of every DPU column to delay the image
data.

Table 3: Area and Frequency for Synchronization
Constraint-based Array

N DSP ALM REG Fmax (MHz)
4 512 21835 68673 376
6 768 32867 101206 343
8 1024 45024 133617 330

11 1408 69218 182658 248

The clock frequency and area usage of the Version 3 hard-
ware are given in Table 3. As with the other two versions,
area usage increases and clock frequency decreases with in-
creasing array size.

Figure 15 compares these results to that of the other two
versions. Clock frequency remains within 5% of Version 2,
which is expected since it uses the same arrangement of
pipeline registers. However, this same level of performance is
achieved using 43-45% fewer ALMs than Version 2 (Figure
15b). Given that the total number of registers remains
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Figure 14: Version 3 DPU array resulting from
the application of the synchronization constraints.
Automatically-inserted balancing registers are dis-
tinguished from the manually-inserted broadcast dis-
tribution registers.

roughly the same (Figure 15c), this observed difference in
ALM usage can be attributed to Version 2’s per-DPU FIFOs.

Compared to Version 1, Version 3 uses 43% more area
(ALMs) to achieve a 47% increase in clock frequency at
the largest array size of N = 11. Using synchronization
constraints, this result was achieved automatically by GENIE
and provided an easy way to achieve a correct pipelined
implementation of the neural network array without the
need to modify any of the functional blocks of the system.

6. CONCLUSION
We have created a means for an interconnect synthesis tool

to satisfy data synchronization requirements by automatically
inserting the correct number of balancing registers into area-
optimal locations within the interconnect. The requirements
are represented as inquality-based constraints provided by the
designer. For portions of a system that lack backpressure, this
automates and therefore simplifies the creation of globally,
rather than locally, synchronized interconnect for correct
circuit operation.

To illustrate the utility and potential gains of this ap-
proach, we applied it to the design of an FPGA-based con-
volutional neural network accelerator. Here, synchronization
constraints were used to help solve a realistic design prob-
lem: maintaining correct data synchronization in spite of the
insertion of performance-enhancing pipeline registers. The
backpressure-free interconnect generated with our approach
used less area than a more traditional FIFO-based method
of synchronization, which would be a more representative
implementation given existing interconnect synthesis tools
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Figure 15: Absolute and relative a) clock frequency,
b) ALM usage, and c) register usage of the three ar-
ray implementations, with varying array size from
N = 4 to N = 11. The relative values compare
the synchronization constraint implementation ver-
sus the unpipelined and FIFO implementations.

and their communication protocols. The end result is that
system building tools can more efficiently build interconnect
for a new class of applications that contain fixed-latency
pipelined modules.

Although the general form of our constraints allow a de-
signer to use them to explicitly add performance-enhancing
pipeline registers to a design, rather than manually add them
as we have done in our example, this still requires manual
intervention by the designer to know which paths are criti-
cal. In the future, we envision synchronization constraints
propagating to the place-and-route stage of synthesis, where
back-end tools are already capable of inserting pipeline reg-
isters embedded into the FPGA interconnect[3]. With the
presence of synchronization constraints, such late-stage phys-
ical modifications could be performed on the design while
ensuring that the resulting circuit will continue to operate
correctly.
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