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Abstract—The goal of FPGA interconnect synthesis is to
generate a physical network that connects user-supplied func-
tional modules according to a logical specification of the desired
connectivity. In this paper, we augment an existing FPGA
interconnect synthesis flow with the ability to automatically
design the topology of the generated network while reducing its
area subject to user-supplied performance specifications. The key
specification is a per-transmission importance value representing
the designer’s willingness to have a transmission contend with
other transmissions. The designer may also optionally specify
that certain transmissions will never temporally overlap. We
present an iterative algorithm that generates a topology which
respects these specifications, with the goal of reducing area.
Optimization decisions are guided by pre-characterized area
models of interconnect primitives and an analytical worst-case
traffic contention model. We apply our approach to a case
study of an FPGA-based linear algebra application, where we
successfully optimize the topologies of two of its sub-networks
resulting in area savings of 60% and 75% with no overall
performance degredation.

I. INTRODUCTION

Hardware design is difficult, in part, due to the multitude of
architectural choices that are available. In designs with many
communicating elements, one key choice is the topology of the
communication network: given a set of desired transmissions,
there often exist many possible physical implementations, each
differing in the number and arrangement of routing primitives
(soft logic modules used for switching) and communication
links (wires) used to carry the transmissions.

The choice of topology affects not just area and clock
frequency, but also cycle count: the more physical resources
that transmissions share, the lower the worst-case throughput.
This is dependent on an application’s communication patterns,
and knowledge of those patterns can be exploited to reduce
the cost of the network.

Figure 1 illustrates this notion with an example in which
two source modules, X and Y, communicate with four sinks A,
B, C, and D, through routing primitives which are indicated
by circles. On the left is the topology which provides the best
worst-case throughput, as it has minimal sharing of routing
primitives. However, if it is known that some communications
are infrequent, such as the transmissions from X to C and D,
as well as from Y to A and B (which are drawn as dashed
lines in the figure), then these transmissions may tolerate the
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Fig. 1. Left: topology with maximal throughput. Right: optimized topology
with greatly reduced area and slightly reduced throughput

sharing of physical connections (as shown on the right) with
little performance loss.

In this paper, we augment GENIE [1], a system and
interconnect building tool, with the ability to automatically
generate application-specific topologies during its interconnect
synthesis flow. The tool accepts as input a set of logical
connections between user-created functional modules and
generates a complete system containing the modules and soft
interconnect that realizes the logical connectivity.

Connections are annotated with a new additional dimen-
sionless parameter called importance that is a specification
of desired relative throughput, independent of achieved clock
frequency, which is otherwise difficult to accurately control
when designing for FPGAs. A greedy optimization loop
iteratively simplifies a unidirectional crossbar topology to
minimize area while respecting transmission importance values.
The designer may also optionally provide guarantees about
transmissions’ temporal exclusivity with one another, and this
is also taken into account during optimization.

This paper is organized as follows: the next section discusses
related work on automatic topology synthesis. Section III
describes the topology optimization flow and its area and
traffic models. This is followed by Section IV in which we
evaluate the full new flow on an example application. Finally,
we conclude in Section V.

II. BACKGROUND

There is a body of existing work on application-specific
topology synthesis for both FPGA and non-FPGA targets.
Kapre et. al have studied the performance/area tradeoffs of
Butterfly Fat Tree (BFT) topologies on FPGAs [2], [3]. They
build BFT networks using two types of switches (t and π),
each consisting of Split and Merge primitives [4] that are also



used in our work. By changing the ratio of t to π switches
(controlled by a dimensionless Rent parameter), the bisection
bandwidth of the BFT topology can be adjusted to match a
particular application’s needs.

The ShrinkWrap Compiler [5] is a tool that generates
optimized interconnects for applications created using the
CoRAM framework [6], which automates the creation of
memory hierarchies. ShrinkWrap creates the interconnect
between the auto-generated memory components and the user’s
application modules, optimized according to the application’s
communication patterns, which are explicitly specified by
writing C-based control threads. Similar to our work, the
ShrinkWrap interconnect uses segregated unidirectional tree-
based networks, but the overall flow is specifically tailored to
the generation of memory hierarchies.

In the more general non-FPGA context, there exist topology
synthesis approaches that are based on iterative refinement start-
ing from a trivial over-provisioned design point. The work by
Murali et al. [7] emits a partial crossbar design that minimizes
the latency caused by temporal overlap of transmissions sharing
the network. This is achieved by beginning with a full crossbar
and determining which nodes can share network resources while
still satisfying performance requirements. Temporal overlap
is measured through simulation, and the space of candidate
crossbar configurations is tested via binary search.

A similar topology synthesis approach by Cong et al. [8]
generates networks optimized for power and area containing
arbitrary-radix routers. That approach begins with a topology
that exactly matches the logical connectivity, and iteratively
refines it such that network cost is reduced at the expense
of resource sharing and performance degradation. Groups of
transmissions can be mapped to a lower-cost shared bus when
the user explicitly marks them as mutually temporally exclusive.

Ho et al. [9] proposed a technique to generate application-
specific network topologies that have zero contention between
transmissions, guided by knowledge of which transmissions
overlap in time. They begin with a single network switch
handling all communications, and then progressively create new
switches and partition the traffic over them, using simulated
annealing to re-route transmissions and approximate graph
coloring to size inter-switch links.

Our work is specifically targeted for FPGA use, which
has unique challenges compared to ASIC or generalized
network contexts. For instance, the area and clock frequency
of the complete interconnect are more difficult to estimate
from independent characterizations of the individual network
building blocks. Hence, we introduce a novel way for the
user to specify their application performance requirements
via a per-transmission dimensionless parameter that is not
coupled to clock frequency. The topology synthesis process
outlined in this paper is used within the context of an existing,
full system generation tool, which inserts additional hardware
beyond just network switching blocks that affects network area
and performance.

III. TOPOLOGY OPTIMIZATION FLOW

The automatic topology generation algorithm is implemented
as an extension to the GENIE system-building tool [1],
whose inputs are a set of functional modules and the desired
transmissions between them. A transmission is a unidirectional
flow of data, from a source to one or more sinks, that occurs
one or more times during the lifetime of the application. The
output of GENIE is a full system containing functional modules
and interconnect composed of many types of primitive modules,
notably including Split and Merge nodes [4] that direct the
flow of traffic. Split nodes distribute their input to one of
many possible outputs, based on an address. Merge nodes
arbitrate among many incoming transmissions in a round-robin
fashion. The arrangement of Split and Merge nodes defines
the interconnect’s topology.

Previously, GENIE was capable of generating one of a few
pre-defined topologies (defaulting to a partial crossbar) in an
automated fashion, or an arbitrary topology using explicitly
instantiated Split and Merge nodes. Our work augments the
existing automatic partial crossbar generation step with an
iterative optimization loop that is guided by new specifications
relating to the application’s communication needs. For each
transmission t, we now require an importance value I(t) and
a packet length L(t).

A transmission’s importance is a dimensionless value be-
tween 0 and 1 indicating how much the user desires that the
transmission avoids contention with other transmissions. A
value of 1 indicates that this transmission should encounter as
little contention as possible, and a value of 0 means that the
user does not care how much contention it encounters. Since
contention results in throughput loss, importance becomes a
way of specifying throughput requirements.

The second specification is the transmission’s packet length
in clock cycles, as measured from the sender’s clock domain.
Longer transmissions will cause longer delays, and more
contention, at Merge nodes. The third (optional) specification is
of mutually-exclusive groups of transmissions, indicating that
the application will never initiate any two transmissions in the
same group simultaneously. The GENIE tool already provided
[10] the ability to specify mutual exclusion (which guides the
tool to instantiate simpler Merge nodes when possible), but we
now make additional use of it to guide topology optimizations.
When left unspecified, a transmission is assumed to have an
importance of 1, with a packet size of one cycle, and not be a
member of any mutual exclusion group.

A. Flow Outer Loop

The topology generation flow first clusters the user’s trans-
missions into connected components called domains, which are
operated on independently. Each domain is initially mapped to
a sparse crossbar implemented using Split and Merge nodes,
an example of which is shown in Figure 2. A sparse crossbar is
a good starting point, as it offers the least possible contention
and greatest possible throughput, should that be the user’s
desire. Then, if possible, this initial topology is iteratively
simplified via a series of refinement steps. Each refinement
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Fig. 2. a) A set of logical connections between functional modules forming
a domain. b) The logical connectivity realized as a sparse crossbar topology
using Split nodes, Merge nodes, and physical connections.
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Fig. 3. A topology refinement step, which combines two Merge nodes and
adds a Split node. The transmissions (x,y,p,q,r) routed over physical links
(A-F) now face greater contention.

step combines two existing Merge nodes, replacing them with
a single Merge node followed by a Split node, re-routing
the affected transmissions. This is illustrated in Figure 3. By
eliminating a Merge node, area consumption may be reduced,
but it may also increase contention between transmissions. This
is acceptable as long as the user’s importance specifications are
not violated by the refinement. Additionally, the area effect of
each refinement is estimated by GENIE, and must be beneficial
to be acceptable. After the initial crossbar topology, the flow
thus proceeds as follows:

1) Every remaining pair of Merge nodes becomes a refine-
ment candidate, as long as the proposed refinement yields
a topology that satisfies importance requirements and an
estimated area reduction.

2) If any refinement candidates exist, the one that yields
the greatest estimated area reduction is chosen.

3) Steps 1 and 2 are repeated until no acceptable refinements
can be found.

The proposed flow is a greedy traversal of a decision
tree. Choosing the first refinement candidate requires the
most work, as all pairs of Merge nodes must be examined,
yielding an overall quadratic computation complexity. The
estimation of the area effects of each candidate refinement is
nontrivial. GENIE must take the proposed new topology and
elaborate it further, adding additional interconnect primitives
and performing automatic register insertion (which is beyond
the scope of this paper). This is why we choose an iterative
topology refinement flow, rather than, for example, an ILP-
based one. The downside of the greedy approach is that it may
not find the optimal topology.

B. Contention Model

In this section, we define and quantify transmission con-
tention, which occurs between transmissions at Merge nodes.
GENIE’s Merge nodes use round-robin arbitration [10], so the
forward progress of any stalled transmissions is guaranteed. In
the worst case, a transmission will be forced to wait for all
other contending transmissions to finish passing through the
Merge node, being delayed for a number of clock cycles equal
to the sums of the contending transmissions’ packet lengths.
More formally, consider two transmissions tx and ty. They
contend if all the following are true:
• There exists a Merge node M with two physical inter-

connect links Px and Py as inputs, such that Px carries
transmission tx and Py carries ty .

• Any physical link Pz that carries both tx and ty is
downstream of M .

• tx and ty are not explicitly marked as mutually-exclusive
by the user.

The second condition is equivalent to saying that if tx and
ty have already been serialized before reaching M , they can
not contend at M . Next, we define the incremental contention
of transmission tx due to transmission ty as:

R(tx, ty) =

{
L(ty) if tx, ty contend
0 otherwise

(1)

where L(ty) is the user-specified packet length of ty .
Finally, the total worst-case contention experienced by

a transmission tx is obtained by summing its incremental
contention due to every other transmission in the system:

C(tx) =

ty 6=tx∑
ty

R(tx, ty) (2)

C. Refinement Step Criteria

A refinement step is only deemed acceptable if it respects the
user’s performance requirements as specified by the importance,
packet lengths, and explicit mutual exclusivity of transmissions.
Recall that the importance of a transmission t, I(t), is a value
between 0 and 1 with 1 reflecting the user’s desire for maximum
performance for t. Since a sparse crossbar ensures minimal
contention, it is used as the baseline for defining the throughput
experienced by a transmission when its importance is set to 1.

Let C0(t) be the total contention experienced by transmission
t when sent through a sparse crossbar topology. A fresh
topology x produced by a refinement step will potentially
have a different contention, Cx(t), for t. That topology x is
deemed valid if the following is true:

C0(t)

Cx(t)
≥ I(t) ∀ t (3)

The condition in Equation 3 requires that every transmission
have a total contention in the new topology that is no worse
than in the sparse crossbar topology, up to a factor equal



to the transmission’s importance. There is elegance to this
construction: in one extreme, if all transmission importances
are set to 1, then only topologies that are as good as the crossbar
will be acceptable. At the other extreme, with importances set
to 0, all possible topologies are acceptable, up to and including
ones consisting of a single Merge node. Levels of importance
moving down from 1 will give rise to more contention in
exchange for lower cost. In Section IV-B we illustrate this
trade off enabled by various values of importance.

IV. RESULTS

In this section, we evaluate the new topology optimization
flow on an example application. The goal is to show that we
can automatically exploit communication patterns to minimize
interconnect area usage, while simultaneously providing the
user an easy way to trade off performance and area by changing
the importance of specific transmissions.

The application we use is a linear algebra solver that
performs LU factorization on large matrices. It contains 16
compute elements (CEs) that process the input matrix in
parallel, and four off-chip memory controllers that store the
matrix data being operated on. Communication between the
CEs and memories consists of three types of transmissions:
read requests, write requests, and read replies. Communication
and processing occur in two phases. In Phase 1, each CE i
sends read and write requests to, and receive read replies from,
memory controller i % 4. In Phase 2, all CEs send a read
request to an Aggregation Node, which after receiving all 16
requests, forwards one copy of it to one of the four memory
controllers. This controller then broadcasts a read reply to all
16 CEs.

A. Experimental Description and Methodology

We perform two experiments to test our flow’s ability to
exploit the application’s communication patterns. In the first
experiment, we utilize the observation that traffic volume
is dominated by read replies and write requests, whose
data payload is 512 times larger than that of read requests.
Therefore, we hypothesize that the interconnect that delivers
read requests can be simplified without significant loss of
application performance. We will attempt to do this in an
automated manner with the new ability to specify an importance
for the read request transmissions, which we specify and vary
from 1 down to 0, with 1 being equivalent to the default
behaviour of GENIE prior to this work.

In the second experiment, we focus on the read reply traffic,
and observe that the Phase 2 read replies (which are broadcasted
to all CEs) never temporally overlap with each other, nor with
the Phase 1 read replies (which are only sent to one of four CEs
from each controller). We compare the interconnect that results
when this information is specified via ‘mutual exclusivity’
constraints, versus when it is not, which is the default GENIE
behaviour.

For both experiments, GENIE is used to build the system and
interconnect, with a total runtime of approximately 2 seconds on
an Intel Xeon E5-2643. The generated SystemVerilog output
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Fig. 4. Read request network topology vs. specified importance.

TABLE I
RESULTS FOR READ REQUEST NETWORK

Importance 1 0.3 0.25 0.2 0.15 0
Fmax (MHz) 279 269 271 234 278 275
Area LUT 929 793 788 739 583 452
(Est.) REG 2111 2077 2052 1200 737 650

TOTAL 3040 2870 2840 1939 1320 1102
Area LUT 683 595 566 622 472 402
(Act.) REG 1567 1551 1531 896 580 506

TOTAL 2250 2146 2097 1518 1052 908
Latency (cycles) 7 11 15 15 15 19

is simulated to obtain application runtime (in cycles), and
synthesized with Quartus Prime Pro 17.0 for an Arria 10
FPGA to obtain area utilization and clock frequency.

B. Experiment 1: Read Request Network

Six different values of importance between 1 and 0 yielded
measurable change in the topology of the read request network,
shown in Figure 4. Here the 16 CEs are omitted for clarity,
leaving only the memory controllers, aggregator node, and the
GENIE Split and Merge nodes from the generated interconnect.
At an importance of 1, the network begins as a full crossbar
with five Merge nodes. It is gradually simplified as importance
decreases, until only a single Merge node remains at importance
0. The resulting measurements of clock frequency, area, and
latency in clock cycles are given by Table I. Estimated area
(sum of LUTs and regsiters) is used internally by GENIE
to guide topology optimization, and is displayed alongside
the actual post-fitting results. An importance of 0 yields
interconnect that is 60% smaller than using an importance of
1, which is what GENIE would have generated automatically
prior to this work. The price of this area reduction is a 2.7×
increase in worst-case latency. Despite this specific increase,
the total simulated application runtime remained constant at
5.46 million clock cycles, deviating by no more than ± 0.02%
across the six different values of importance. This confirms the
initial intuition that the read request network is not the critical
communication path in the main loop of the application.

C. Experiment 2: Read Response Network

By providing information about the temporal exclusivity of
read reply transmissions, GENIE was able to generate simpler
interconnect than a full crossbar. Both scenarios are depicted
in Figure 5. The simplified topology has a single Merge node
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Fig. 5. Auto-generated read response network topologies, showing only 4
out of 16 CEs for clarity. Left: no mutual exclusivity information (default
GENIE result). Right: mutual exclusivity specified.

TABLE II
RESULTS FOR READ RESPONSE NETWORK

NO MUTEX MUTEX Change
Fmax (MHz) 273 279 +2.2%
Area LUT 4988 1340 -73%
(Est.) REG 38524 9212 -76%

TOTAL 43512 10552 -76%
Area LUT 4694 1240 -74%
(Act.) REG 37773 8835 -77%

TOTAL 42467 10075 -76%

per cluster of 4 CEs, rather than 1 per CE. Read reply links are
256 bits wide, and so the resulting area reduction is significant
– averaging 75% between LUT, Register, and total area score
(LUT+REG). The full clock frequency and area measurements
(estimated and actual) are provided in Table II. There was no
measured impact on the total application cycle count (5.46
million), due to the temporal exclusivity of the Phase 1 and
Phase 2 read reply transmissions.

D. Modeling Accuracy

In both experiments, we observed that our area model con-
sistently overestimated both LUT and register usage compared
to actual post-synthesis results. Detailed inspection revealed
this to be the result of logic synthesis optimizations removing
signals that were stuck at 0 or 1 across module boundaries.
This effect would be difficult to model without re-implementing
back-end logic synthesis itself, and highlights a challenge for
high-level hardware generation tools that target FPGAs.

The contention model described in Section III-B is meant to
estimate worst-case throughput degradation and guide topology
optimization. The latency measurements in Table I are taken
under worst-case load and reflect the throughput degradation,
showing a monotonically-increasing latency as the desired
importance decreases. The latency also includes the effect of
any registers automatically inserted by GENIE after topology
synthesis.

In summary, the area and contention estimation models
correctly tracked the relative trends in actual interconnect area
and throughput, which led the optimizer to intelligent topology
choices.

V. CONCLUSION

We have augmented the interconnect and system building
flow within the existing GENIE tool to automatically generate

network topologies that reduce area usage while respecting
application-specific communication requirements given by the
user. These requirements take the form of a per-transmission
importance value and mutual exclusivity groups. The first spec-
ifies the maximum allowable amount of worst-case throughput
degradation due to resource sharing, and the second guarantees
that two or more transmissions never contend.

The flow, and the new specifications that control it, enable
an easy and rapid design space exploration of unidirectional
tree topologies: starting from a correct and functional, but
possibly over-provisioned crossbar, the designer can reduce the
importance of transmissions that are known to not be critical
to total application runtime. Before time-intensive simulation
and FPGA back-end synthesis takes place, it is possible to
see the estimated area usage yielded by importance or mutual
exclusivity constraints.

Using the above methodology on a real application, we
demonstrated area reductions of 60% and 75% on two of the
application’s sub-networks, with no appreciable performance
penalty. Results also showed that varying importance directly
correlated with area usage and throughput, demonstrating the
efficacy of the importance specification as a knob for trading
off between the two. Since importance is a real-valued per-
transmission parameter from 0–1, not all values will necessarily
yield unique topologies. A future possible enhancement would
be the ability to automatically discover the ranges of importance
values that would yield unique topologies and report them to
the user for evaluation.

The latest release of GENIE, complete with source code and
examples, can be found at http://www.eecg.toronto.
edu/˜jayar/software/GENIE/
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