
Fine-Grained Interconnect Synthesis

Alex Rodionov, David Biancolin, and Jonathan Rose
The Edward S. Rogers Sr. Department of Electrical & Computer Engineering

University of Toronto
{arod, Jonathan.Rose}@ece.utoronto.ca, biancolin@eecs.berkeley.edu

ABSTRACT
One of the key challenges for the FPGA industry going for-
ward is to make the task of designing hardware easier. A
significant portion of that design task is the creation of the
interconnect pathways between functional structures. We
present a synthesis tool that automates this process and fo-
cuses on the interconnect needs in the fine-grained (sub-IP-
block) design space. Here there are several issues that prior
research and tools do not address well: the need to have
fixed, deterministic latency between communicating units
(to enable high-performance local communication without
the area overheads of latency-insensitivity), and the ability
to avoid generating un-necessary arbitration hardware when
the application design can avoid it. Using a design example,
our tool generates interconnect that requires 72% fewer lines
of specification code than a hand-written Verilog implemen-
tation, which is a 33% overall reduction for the entire appli-
cation. The resulting system, while requiring 4% more total
functional and interconnect area, achieves the same perfor-
mance. We also show a quantitative and qualitative advan-
tages against an existing commercial interconnect synthesis
tool, over which we achieve a 25% performance advantage
and 17%/57% logic/memory area savings.

Categories and Subject Descriptors
B.5.2 [Register-Transfer-Level Implementation]: De-
sign Aids—automatic synthesis

Keywords
FPGA, interconnect, automated synthesis

1. INTRODUCTION
An important and time-consuming aspect of hardware

design is creating the interconnect that allows computa-
tion, storage, and control logic to communicate. This in-
terconnect is often non-trivial, since any need for arbitra-
tion, routing, or pipelining precludes the use of wires alone.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
FPGA’15, February 22–24, 2015, Monterey, California, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3315-3/15/02 ...$15.00.
http://dx.doi.org/10.1145/2684746.2689061.

Furthermore, an application’s communication requirements
may evolve throughout its development lifecycle, requiring
effort and time to change the interconnect.

Interconnect synthesis tools have already been developed
to automate the generation and parameterization of differ-
ent kinds of interconnect, increasing designer productivity
by avoiding the tedious and error-prone process of manu-
ally (re-)writing an RTL description[1, 15, 9, 12, 8]. Ad-
ditionally, some of these tools also perform system integra-
tion and instantiate and parameterize the designer’s func-
tional modules as well as connecting them together using
the automatically-generated interconnect, further reducing
designer effort.

In the FPGA sphere, these existing tools are primarily
focused on system-level design, connecting processors with
peripherals, hardware accelerators, and other large chunks
of IP. A key element of this design paradigm is latency-
insensitivity [3], in which some form of “valid” and “ready”
handshaking signals are used by the interface between the
designer’s modules and the interconnect to allow variable
latency and backpressure. This decouples the interconnect’s
interface from its implementation, enabling IP re-use and
drop-in replacement of interconnect (switching from a cross-
bar to an on-chip network, for example). Owing to their
processor-centric roots, other common features of these in-
terface protocols include memory-mapped addressing and
support for read and write transactions.

However, with the increasing complexity of FPGA appli-
cations, IP blocks are starting to contain their own internal
hierarchy and interconnect, which existing tools are not well
equipped to generate. This fine-grained design environment
is qualitatively characterized by the relatively small size of
the blocks being connected, as well as an increased sensi-
tivity to communication latency. Together, these factors
make the area and performance overheads of coarse-grained
interconnect prohibitive. For example, a pipelined network-
on-chip router with virtual channels and a complex rout-
ing algorithm would be excessive for connecting together a
handful of modules that are smaller than the router itself.

Additionally, coarse-grained interface paradigms such as
latency-insensitivity, memory-mapping, and read/write
transactions can incur secondary performance and area penal-
ties if conforming to such interfaces forces the designer to
insert extraneous logic. For example, supporting variable
latency and backpressure requires pipelined datapaths to
contain FIFOs or staging registers (two registers and a mux)
instead of chains of ordinary registers, in order to avoid data
loss upon deassertion of a Ready signal.

46

In this paper, we present a new interconnect synthesis
and system integration tool called GENIE (GENeric Inter-
connect Engine). Our long-term goal is to automate and op-
timize interconnect for all levels of design granularity, but in
this paper we will focus on its ability to generate fine-grained
interconnect. We will show that the generated interconnect
is comparable in area and performance to hand-crafted RTL,
and requires less effort on behalf of the designer to specify.

GENIE’s interconnect protocol lies between existing
streaming and memory-mapped protocols in its level of ab-
straction. It defines signal roles for data, flow control, back-
pressure, and multicast-capable addressing, with most roles
being optional. This allows for simple and minimal inter-
facing on the part of the designer. The tool’s generated
interconnect network is made of cascading Split and Merge
primitives, which have been shown [8] to exhibit high per-
formance and low area usage in FPGA applications.

To address the need for deterministic latency, GENIE al-
lows the designer to query the latency of generated intercon-
nect and pass it as a Verilog parameter to instantiated com-
pute modules. Combined with GENIE’s ability to pipeline
interconnect, this aids in design space exploration and the
hunt for timing closure, without the need for the designer to
manually re-parameterize their non-interconnect datapaths.
Additionally, GENIE generates smaller and faster versions
of its interconnect by completely removing arbitration logic
when the designer can guarantee the absence of competition
on shared, many-to-one connections. Other features of GE-
NIE, which are helpful and not limited to fine-grained use,
include the support for configurable network topologies and
optimized automatic clock domain crossing.

The structure of this paper is as follows: Section 2 pro-
vides relevant background on existing interconnect synthesis
tools and paradigms. Section 3 describes the GENIE tool,
its features, and interconnect microarchitecture. Section 4
describes the fine-grained design example that we will use
to evaluate the capabilities of the tool - a compute unit in a
parallel LU matrix decomposition[16] engine.

In Section 5, we generate interconnect for this design ex-
ample using GENIE, Altera Qsys[1], and hand-optimized
Verilog, and compare their area usage and achieved clock
frequencies. We also attempt to quantify the productivity
gains GENIE offers by comparing the amount of source code
required to generate each of the three versions. Finally, we
conclude our findings in Section 6.

2. BACKGROUND
In this section, we provide an overview of existing inter-

connect synthesis tools and methodologies. When study-
ing existing tools, it is important to consider two aspects
when considering applicability for fine-grained synthesis: the
designer-facing protocol(s) afforded by the tool, and the ar-
chitecture of the generated interconnect.

Altera and Xilinx include system integration tools with
their FPGA design suites. Xilinx’s Vivado IP Integrator[15]
and Altera’s Qsys[1] both provide two classes of interconnect
protocols: memory-mapped and streaming.

Memory-mapped protocols, such as AMBA AXI[2] and
Altera’s Avalon-MM, are intended for connecting processors
to peripherals and custom accelerators – what we consider
to be a coarse-grained design space. Communications must
be expressed as byte- or word-addressable reads and writes,
between masters (initiators) and slaves (responders). Con-

forming to this high level of abstraction grants a designer
a high degree of interconnect automation, with automatic
insertion of data width converters, clock domain crossers,
and the routing and arbitration logic necessary for decod-
ing addresses and sharing a slave between multiple mas-
ters, respectively. The latter two functions of routing and
sharing/arbitration are implemented with a shallow fixed-
topology network such as a crossbar or a shared bus.

Meanwhile, streaming protocols such as AXI-Stream[2]
and Avalon-ST are on the low end of the automation spec-
trum, with the intent mainly to provide a consistent IP in-
terface rather than enable automated synthesis. Streaming
protocols allow specification of only point-to-point connec-
tions, which consist of nothing more than data and flow
control (Valid and Ready) signals, in typical use. The in-
terconnect is implemented as point-to-point wiring, and the
designer must explicitly insert any IP cores for routing and
arbitration to communicate with multiple endpoints. This
allows great control over implementation, at the cost of in-
creased design effort.

Recent academic work in interconnect synthesis for FP-
GAs has focused on automatic generation of on-chip net-
works. CONNECT[12] is an interconnect architecture specif-
ically designed for the FPGA fabric, operating faster and
with less area than direct ports of ASIC-targeted architec-
tures. An online, web-based generator allows users to create
custom networks with arbitrary topologies and architectural
features such as number of virtual channels. However, CON-
NECT does not perform system integration, and the de-
signer is responsible for instantiating the interconnect and
connecting it to their functional modules.

The interconnect architecture presented in this paper is
based on Split/Merge[8], another existing FPGA Network-
on-Chip design. Instead of traditional monolithic routers,
simple Split and Merge primitives are used to implement
one-to-many and many-to-one communications respectively.
These can be chained together to form arbitrary topolo-
gies, giving a designer more implementation control than
the crossbar-based memory mapped interconnect provided
by FPGA vendor tools.

Algorithms have been developed to synthesize application-
specific network topologies from a high-level specification
consisting of connectivity and bandwidth/latency/energy re-
quirements[10, 11, 14]. In particular, the approach[6] used
by Cong et al. removes complexity from the generated net-
work if it is known a priori that certain communication
traces will never occur simultaneously. We perform a similar
optimization during our network generation flow.

3. GENIE
In this section we describe GENIE, our new system inte-

gration and interconnect synthesis tool. Its input is a logi-
cal specification of a system’s desired communication links
and its output is a synthesizable Verilog implementation
of the system which instantiates and parameterizes the de-
signer’s functional modules as well as connecting them with
an automatically-generated interconnect fabric. We begin
with the detail of GENIE’s designer-facing interface proto-
col, and then move on to the microarchitecture of the gener-
ated interconnect, and finally describe other features which
ease designer burden in fine-granularity hardware contexts.

47

Component

Interface

System
Export

LinkSignals

Figure 1: GENIE Specification

3.1 Input Specification
To use GENIE, the designer describes the functional mod-

ules to be instantiated and the logical communication links
between them. This specification follows the component-
based design paradigm used by most other system integra-
tion tools [1, 15, 9] which is essentially a higher-level rep-
resentation of structural hardware design. The designer de-
fines one or more Systems, each containing instances of Com-
ponents which represent Verilog modules.

Each Component has one or more Interfaces, which have
a direction of data flow and a type, and contain one or more
Verilog input/output signals. Each signal within an Inter-
face is assigned a communication-related role, such as trans-
mitting data, providing an address, or synchronization. In-
terfaces allow Components to communicate with other Com-
ponents and with hardware outside the System. An Inter-
face’s type specifies its communication protocol, and GENIE
defines the following types of Interfaces:

• Clock, Reset: Delivers clock (or reset) signals to the
Component.

• Routed Streaming: Serves as an endpoint for
GENIE’s Routed Streaming communications protocol,
and can include a mix of data, handshaking, address-
ing, and packetization signals, further explained in Sec-
tion 3.2. An associated Clock Interface determines the
clock domain.

• Conduit: A catch-all for signals that wish to bypass
GENIE’s interconnect synthesis flow, such as those
connecting to off-chip memory controllers. Connect-
ing together two Conduits connects together their con-
stituent signals with simple wires.

After instantiating Components within a System, the de-
signer defines Links between their Interfaces. These are log-
ical connections representing desired communication paths,
and are made between Interfaces of the same type and oppo-
site data flow direction. A System also contains one or more
Exports, which enable communication into and out of the
System. Exports are connected to Interfaces via Links, and
the Export automatically takes on the same type and oppo-
site polarity of its connected counterpart. Figure 1 provides
an overview of the objects in GENIE’s system specification.

GENIE also offers an addressing scheme that sits on top of
the Interface abstraction, that allows an Interface to choose
a subset of outgoing Links to transmit data, or allows a re-
ceiving Interface be notified of which Link is currently send-
ing it data. This is achieved through abstractions called
Linkpoints. Each Routed Streaming Interface, which is a
physical collection of signals, may have one or more named
Linkpoints defined inside of it, which are virtual connection

A a

m
ys

en
d x

y

all
B b1

m
yr

ec
vuni

bcast

C c

foobar
B b2

m
yr

ec
vuni

bcast

Figure 2: Example System

points associated with the physical Interface. A Linkpoint is
simply a name and an associated binary encoding (a Link-
point ID) chosen by the designer, used to refer to the Link-
point by the Component’s logic. At the System level, Links
are normally made between two Interfaces to indicate logi-
cal connectivity. When an Interface has Linkpoints, a Link
must terminate at one of the Linkpoints instead. During cir-
cuit operation, a Component drives (or receives) a Linkpoint
ID to differentiate amongst multiple remote destinations.

Component Interface LP Name LP ID

A mysend
x 2’b00

y 2’b01

all 2’b10

B myrecv
uni 1’b0

bcast 1’b1

C
foo - -
bar - -

Table 1: Linkpoint definitions

The example System illustrated in Figure 2 shows a GE-
NIE input specification, and the usage of Linkpoints. In
this example, components A, B, C are Verilog modules cre-
ated separately by the designer. In the system specification,
modules A and C are instantiated once (named as instances
a and c) and B is instantiated twice as instances b1 and b2.
Components A, B, and C, each have Routed Streaming In-
terfaces, named in the rectangular labels within A, B and C,
and are listed in the second column of Table 1. Associated
Clock and Reset Interfaces are omitted for clarity. Compo-
nents A and B use Interfaces that include also Linkpoints
(shown as external circles in Figure 2) while C does not need
to differentiate amongst destinations and thus does not use
the Linkpoint addressing scheme. The third column of Table
1 gives the Linkpoint names, with their associated Linkpoint
IDs (in Verilog notation) given in the fourth column.

The result is that instance a can send data to either b1,
b2 (using the x→uni or y→uni connections) or broadcast
to b1 and b2 and c simultaneously (using its all outgoing
linkpoint). Module instances b1 and b2 can differentiate
between received unicast and broadcast traffic, and take take
appropriate action if they wish.

Note that Linkpoint IDs are defined during Component
definition, effectively creating a local rather than global ad-

48

dress space, thus removing the need for the designer to
write additional address encoding/decoding logic. The abil-
ity to broadcast/multicast can have imporant application in
coarse-granularity designs, but we have also found a nat-
ural use case for it in our fine-granularity design example
described below in Section 4. There it is used to selectively
fill several block RAMs simultaneously.

All of these specifications are written by the designer pro-
gramatically, in the form of an executable script written in
Lua[13]. The script makes API calls to our underlying inter-
connect synthesis engine that create Interface, Component,
System, Link, Export, and Linkpoint definitions. In a fu-
ture version of the tool, Interface definitions and signal roles
will be extracted directly from Verilog signal definitions of
each Component’s source code, removing the current need
by GENIE to replicate this information.

3.2 Communication Protocol
An important decision in creating a useful interconnect

automation tool is the choice of the level of abstraction for
the designer-facing interface protocol, which is dependent
on the intended use of the tool. If there is insufficient ab-
straction and automation, then the designer must imple-
ment some interconnect functionality explicitly - for exam-
ple, streaming protocols are extremely lightweight, but any
arbitration or routing logic must be inserted manually, since
the protocol has no concept of an address.

On the other hand, a protocol can be too heavyweight -
for example, tools which synthesize memory-mapped inter-
connect allow masters to address different slaves and auto-
matically insert the logic to route traffic accordingly. This
includes enabling sharing and arbitration from competing
masters. The price of this automation is that it requires the
designer to express all communications as byte-addressable
reads and writes, even in situations where it is unnatural to
do so.

In the fine-granularity design space, which is the focus of
this paper, we wish to elevate the level of automation above
that of bare RTL and streaming protocols, but avoid the
overhead of memory-mapped interconnect. We landed on
using a streaming protocol, but augmenting it with the op-
tional ability to reach different destinations using the Link-
point addressing scheme described above. The tool auto-
matically inserts lightweight logic to perform the requisite
routing and arbitration. We call this a Routed Streaming
protocol.

The Routed Streaming protocol defines several roles for
the signals that constitute a Routed Streaming Interface:

• Data: The data to transmit, of arbitrary designer-
specified width. There can be several independent
Data signals within the Interface, for example, to carry
Red, Green, and Blue color data separately if one is
transmitting pixel data. This saves the designer from
having to manually pack and unpack data fields in
their Component logic. Multiple data signals must be
differentiated with a designer-provided tag.

• Valid: Indicates whether all other signals carry valid
values during the current clock cycle.

• Ready: Backwards-traveling backpressure signal that
indicates if the interconnect, or designer logic, is able
to accept data during a clock cycle.

• EOP: End-of-Packet. Used for transmitting a large
block of data over multiple cycles, and is asserted on
the last cycle. The interconnect uses this signal for
arbitration purposes.

• LPID: The Linkpoint ID, if any Linkpoints are defined
for this Interface

The direction of each signal matches the direction of the
Interface, except for Ready signals which travel in the oppo-
site direction. Most signals are optional, and GENIE avoids
the generation of unnecessary logic when signals are left un-
used. The minimal possible Interface consists of either only
a Data signal, or only a Valid signal. The latter case is use-
ful for implementing data-less messages such as go or done
commands issued by control logic. When a Valid, Ready, or
EOP signal is ommitted, the Interface behaves as if there is
a constant high value driving that signal.

3.3 Interconnect Micro-Architecture
In addition to a lightweight interface protocol, it is impor-

tant that the generated interconnect have low area overhead
and introduce minimal latency, especially in fine-granularity
systems. GENIE’s interconnect is based on two switching
primitives called Split and Merge [8]. They perform all
routing and arbitration functionality and can be cascaded
to form arbitrary topologies.

The ability to control topology is an important feature
when designing networks. GENIE allows the designer to
specify topology on a per-System level as a parameter when
declaring a System in the input script. There exist several
built-in topologies such as crossbar, ring, and shared bus.
These are topology-generating functions, which create the
correct number of split and merge nodes depending on the
System specification, and the designer can write their own
generator function in Lua to implement custom topologies.

GENIE’s interconnect employs static, table-based rout-
ing, which is generated based on the logical Links defined
by the designer in the input specification. Internally, GE-
NIE assigns a global Flow ID to each end-to-end Link that
was specified by the designer. Table-based converters are
inserted in front of Routed Streaming Interfaces of Compo-
nents in order to convert between designer-defined Linkpoint
IDs and global Flow IDs.

The conversion is expressed as a logic function, and we
found that it optimizes to wires and one or two FPGA logic
elements during back-end synthesis.

flow ID
lookup

payload in
payload out [N]

valid in

flow_id in

valid out [N]

ready in [N]

ready out

eager
fork

...

...

...

...

clock

Figure 3: Split Node architecture

Routing is performed by Split nodes (as illustrated in Fig-
ure 3), which have a single input and multiple outputs. The
data payload is broadcast to all destinations, and includes
Routed Streaming signals such as Data and EOP that the
Split node does not need to extract/examine. A split node

49

contain a table, parameterized by GENIE, which looks up
a one-hot vector of Valid outputs for each Flow ID. These
Valid signals pass through an Eager Fork[4] stage. The Ea-
ger Fork is a sub-structure that is part of the Split Node, and
is responsible for throttling Valid signals and managing state
when only a subset of currently-targeted outputs are ready
to receive the broadcasted payload. It also breaks combi-
national loops when Split nodes are cascaded with Merge
nodes[4].

last input

payload in [N]
payload out

valid out

ready in

valid in [N]

ready out[N]

round-robin
arbiter

clock

(extracted EOP)

...

...

...

Figure 4: Merge Node architecture

Merge nodes (shown in Figure 4) allow multiple input
streams to compete for one common output. A round-robin
arbiter selects which input gets forwarded to the output. If
multi-cycle packets are being sent, and the EOP signal is
being used, then the Merge Node will wait until the entire
packet is sent, and the EOP received, before switching in-
puts. This eliminates the need for the designer’s logic to
track multiple overlapping transmissions and the resulting
complexity involved. If the inputs can be guaranteed to
never simultaneously access the output, the round-robin ar-
biter can be removed (Section 3.5).

a.mysend b1.myrecv

b2.myrecv

c.barc.foo

flow
conv

split

flow
conv

flow
convmerge

Figure 5: Example System with Interconnect

Figure 5 shows a GENIE implementation of the exam-
ple system specification from Figure 2. Interfaces are shown
with rounded boxes, and the regular boxes are GENIE inter-
connect (Flow ID converters, Split nodes, and Merge nodes).
Clock and Reset connections are omitted for clarity.

3.4 Latency Introspection
In the context of high-performance functional element de-

sign (which we have labelled the “fine-grained” context) the
latency of communication paths must often be short and of
deterministic length. For example, it is common to have
highly pipelined datapaths performing some computation.
While the interconnect between individual pipeline stages is
currently outside the scope of our synthesis flow, the commu-
nication between the pipeline’s exterior with control logic or
with a pipelined block RAM does fit into the fine-granularity
realm we wish to target.

In the latter case, where data signals temporarily leave the
pipeline to access a block RAM for reading, the read data
must be reunited with associated data that stay within the

pipeline - and those signals must be delayed by the correct
amount. That amount depends on the RAM read latency
plus the delay of the interconnect. If a traditional, latency-
insensitive interface is used, the designer’s pipeline must be
able to tolerate backpressure, which introduces additional
complexity and possibly even FIFOs, thus incurring area,
performance, and design time overheads.

Instead, we’d like the interconnect, just like the block
RAM being accessed, to have a determinstic and fixed la-
tency, but one that can still be trivially modified later to ease
timing closure. GENIE solves this problem with its Latency
Introspection feature, which allows the actual interconnect
latency to be queried and reported back to Components’
Verilog code as parameter values. Queries are made during
System definition in the Lua script, and values are propa-
gated during Component instantiation.

3.5 Mutually-Exclusive Sharing
In general many-to-one communication, there must ex-

ist some method for the interconnect to allow two or more
inputs to share a common destination. When there is com-
petition, arbitration logic must choose the winner and stall
the other inputs with backpressure. This necessitates sup-
port for backpressure on all competing links and their up-
stream sources. In GENIE, sharing and arbitration are ac-
complished with the Merge node.

However, if the application is deliberately designed such
that no two inputs will ever simutaneously access their shared
destination, arbitration is no longer necessary. Such mutually-
exclusive access patterns can arise, for example, when each
competing source has explicitly-scheduled access to the des-
tination. When a designer creates a GENIE system specifi-
cation, they can also specify a constraint indicating that all
Links terminating at a shared destination will never compete
during application runtime.

This generates a simplified Merge node with the round-
robin logic in Figure 4 removed. In its place, the select input
of the multiplexer is driven directly (in a one-hot fashion)
by the incoming Valid signals, which are also ORed together
to generate the outgoing Valid signal. The Ready signal is
broadcast to all the inputs.

3.6 Automatic Clock Domain Crossing
Multiple clock domains are often used to decouple compu-

tation and communication circuitry if they have unbalanced
demands. GENIE transparently supports multiple clock do-
mains, and inserts crossing logic automatically in the form
of dual-clock FIFOs.

When a design contains multiple clock domains, there is
an interesting optimization problem that arises when cross-
ing between any two domains: where in the generated in-
terconnect network should the transition occur? GENIE
intelligently chooses the point at which the minimum total
number of signals undergo the crossing, because each signal
incurs a non-trivial cost. For example, consider that build-
ing the crossing before the input to a Split node is cheaper
than inserting multiple crossings after each output of the
Split node. When the network contains a complex topology
of Split and Merge nodes, the optimal choice may not be
obvious.

The crossing-point selection algorithm represents the Sys-
tem as a graph, with vertices representing Routed Stream-
ing Interfaces belonging to both designer-specified functional

50

modules and those of internally-generated interconnect mod-
ules. Vertices are labeled with their clock domain (which is
fixed for designer-specified Interfaces and initially unknown
for interconnect), and edges are weighted by their total pay-
load widths. A greedy multi-way cut[7] algorithm is run on
this graph to cut it into partitions representing clock do-
mains, minimizing the total cut weight. Once the cut points
are identified, clock converter FIFOs are inserted.

This feature of GENIE contributes to rapid design ex-
ploration. In addition to evaluating different topologies, a
designer can also experiment with assigning functional mod-
ules to different clock domains to try to optimize application
performance, all without modifying the application’s RTL
source code.

4. DESIGN EXAMPLE
In this section, we present a hardware design example

that, in Section 5, will be used to evaluate and compare
GENIE’s fine-grained interconnect synthesis versus manual
design and a commercial interconnect syntehsis tool. With
this example, we also hope to better illustrate the nature of
fine-grained interconnect and the challenges related to au-
tomatically synthesis.

Our application is a parallel LU Decomposition engine
[16]. LU Decomposition is an important linear algebraic op-
eration and is often used as the first step in efficiently solving
systems of linear equations or calculating matrix inverses.
It decomposes a square matrix A into lower-triangular and
upper-triangular matrices L and U such that L × U = A.
The application stores the matrix in off-chip memory so that
very large matrices can be decomposed. It is arranged in
blocked fashion (64x64) to support blocked computation,
and partitioned across M memory controllers. An array of
N Compute Elements (CEs), coordinated by a central Con-
trol Node, work in parallel to process the matrix and write
back a transformed version in-place. A diagram of the full
system is given in Figure 6.

Control
Node

CE
0

MEM
0

CE
1

CE
2

CE
N-1

MEM
1

MEM
2

MEM
M-1

interconnect

matrix
block R/W

go/done
msgs

Figure 6: LU Decomposition Engine

The CEs, Memory Nodes, and Control Node are large (us-
ing between 1000 to 10,000 logic elements) and must tolerate
variable communication latency, in part due to the nature of
external memory. It is at this level that traditional coarse-
grained interconnect synthesis is typically employed. The
long-term goals of the GENIE project are to both generate
at this level and the fine-grained level we have described so
far, and to optimize across all those levels. However, in this
paper we focus on the fine-grained system design within a
single CE.

4.1 Compute Element Design
Here we describe the structure, functionality, and internal

communication requirements of the CE, which is normally
instantiated many times within the larger LU Decomposi-
tion application, but is examined in isolation as our design
example.

The CE processes a specific column of blocks from the
matrix by reading the blocks from external memory and
writing back transformed data in their place. A simplified
block diagram of the CE is shown in Figure 7, and contains
four major components:

• A Control unit to orchestrate the fetching, processing,
and writing back of blocks within the assigned column.

• Caches, implemented as FPGA block RAMs, to store
the matrix blocks being operated on, locally within the
CE.

• A computation Pipeline, which reads from and writes
to the caches to produce the processed results.

• A data Marshaller to transfer matrix blocks to and
from the caches and external memory outside the CE.

There are five, independent, dual-ported cache blocks in
total: Top, Left0, Left1, Current0, and Current1. They are
named after the types of blocks they store during processing,
and relate to the spatial relationships between the cached
blocks within the larger matrix. The Left and Current blocks
are also double-buffered for increased performance, with the
numerical suffix indicating which buffer it belongs to. While
the caches of one buffer are being processed by the Pipeline,
the other buffer is being filled from, or written back to, main
memory by the Marshaller. The Top block is rarely written
to, and does not need a second buffer.

The CE has two clock domains in order to decouple the
performance requirements of the two tasks of processing ma-
trix blocks and transferring them to and from memory. Pro-
cessing a block takes much longer since each element in the
matrix must be accessed more than once, on average. The
Pipeline and Caches operate using “Clock A” and the rest
of the design uses “Clock B”, including the coarse-grained
interconnect linking the CE with the greater LU Decompo-
sition system.

There are two kinds of communications present within
the CE shown in Figure 7: low-throughput control mes-
sages (shown as dashed arrows), and high-throughput ma-
trix block read requests, read replies, and writes (shown
as solid arrows). The former, while being point-to-point
and not performance-demanding, can still benefit from auto-
mated interconnect synthesis rather than being implemented
by hand, either because of the need to cross clock domains
(Control to Pipeline), or the potential need to pipeline the
links to close timing later in the design cycle.

In contrast, the high-throughput communications links re-
quire high-performance and non-trivial interconnect. They
send data words (or requests for data words) every cycle,
and originate or terminate at the read or write port of one
of the five Caches – the actual connectivity between the Mar-
shaller/Pipeline and the Caches is annotated in the figure,
rather than being expanded out, for better readability. For
all but two links (Pipeline to Top Cache reads), some mix
of one-to-many or many-to-one communications is needed,

51

Marshaller

Control Pipeline

Cachesread req

read resp

write

C0/C1

C0/C1

T C0/C1 L0/L1

read req

T C0
C1

L0
L1

read respT C0
C1

L0
L1

write

T C0
C1

L0
L1

Top
Left0

Left1

Cur0

Cur1

do block

done

write

read resp

do column

done

read req

do
write

read
done

write
done

Clock B Clock A

Figure 7: Compute Element Architecture

requiring distribution or arbitration hardware within the in-
terconnect. Writes from the Pipeline also require broadcast-
ing to multiple Caches during some modes of operation.

Read requests are 12 bits wide, and specify an address
within a cache. Read replies are 256 bits wide, and carry
multiple words of data to feed the Pipeline’s SIMD datapath.
Writes contain both an address and data and are 268 bits
wide. It is important to mention the relatively large width
of these connections, since it makes the interconnect’s area
usage that much more sensitive to its architecture.

4.2 Three CE Implementations
To illustrate the power, flexibility and quality of results

of our new approach, we created three different implemen-
tation of the system and its interconnect: one generated by
our tool GENIE, a manually-written and optimized refer-
ence design, and one generated by Altera’s Qsys[1] system
integration tool. This allows us to compare GENIE against
the best possible hardware (at the expense of design time)
and against an existing automated synthesis tool (at the
expense of performance).

Each variant is a different realization of the CE system
shown in Figure 7. In the Qsys variant, two different commu-
nication protocols are used: Avalon-MM (memory-mapped),
and Avalon-ST (streaming). Connections to the Caches map
naturally to random-access reads and writes, so we imple-
ment those using Avalon-MM, using an extra address bit to
select between buffers of double-buffered Caches. The re-
maining connections, which are point-to-point and have no
memory-like semantics, are implemented using Avalon-ST.

In the GENIE variant, all connections in Figure 7 are
implemented as Links defined between Interfaces using the
Routed Streaming protocol. Interfaces with multiple fanout,
such as those to and from the Caches, have Linkpoints de-
fined for each possible combination of destinations. The
address is part of the data payload, rather than being an
official part of the designer-facing interface as with Avalon-
MM, so the purpose of Linkpoints is simply to direct traffic
to the correct cache and buffer.

The manual variant uses no synthesis tool, and contains
application-specific interconnect, designed by hand, to im-
plement functionality such as connection sharing or clock

crossing. Pipeline registers were also manually added to im-
prove timing on specific paths.

4.3 Tool-Related Issues
In this section, we highlight some important differences

between the interconnect implementations of each variant in
order to give some context to the results in Section 5. The
goal of automation is to improve designer productivity while
generating hardware with acceptable area and performance.
To that end, we also hope to provide a qualitative picture
of the design effort required to create each variant.

To avoid a detailed and exhaustive comparison, we focus
on how each variant handles the following aspects of the CE
design, since they required the greatest interconnect com-
plexity:

• Clock domain crossing

• Marshaller to Cache read path

• Pipeline to Cache read paths

4.3.1 Clock Domain Crossing
Both the Marshaller to Cache connections and the Con-

trol to Pipeline connections cross clock domain boundaries,
which is handled differently among the three variants.

In the manual variant, there exist two clock-crossing FI-
FOs for the whole design: one for connections travelling
from Clock A to Clock B and one in the other direction.
Each FIFO handles multiple links that travel in the same
direction. This is the most efficient implementation, and is
specifically tailored for the application.

Qsys performs automatic clock crossing for Avalon-MM
connections, inserting dual-clock FIFOs when a master and
slave are on different clock domains. However, it inserts
FIFOs after routing traffic to multiple destinations, caus-
ing each destination path to have its own FIFO, includ-
ing 9 FIFOs which must accommodate the cache read/write
data width (256+ bits). Finally, no automatic clock cross-
ing is performed on the Avalon-ST connections for the low-
bandwidth control messages, requiring manual instantiation
of clock crossing adapters from the Qsys component library.

The GENIE implementation has one clock-crossing FIFO
for each connection (for a total of five), rather than the two

52

used in the manual variant. All Marshaller to Cache write
paths share a single FIFO, which GENIE inserts before a
split node that broadcasts to up to five caches. The total
number of FIFO memory bits is thus identical to the manual
variant, but there is extra logic overhead since each FIFO
requires its own read/write pointer and metastability pro-
tection registers. The upside is that all Routed Streaming
connections receive automated clock crossing, with no de-
signer intervention needed.

4.3.2 Marshaller to Cache Reads
Cache reads from the Marshaller need to be able to stall if

the system outside the CE is unable to accept the outgoing
data during any given clock cycle.

The manual variant’s Caches have an explicit ’stall’ signal
as an input, which is generated by the Marshaller directly
rather than being locally derived from any kind of backpres-
sure conditions.

In the GENIE variant, the Caches have flow control and
backpressure (Valid and Ready) signals on both read re-
quest and read response ports, and are able to stall the block
RAM’s internal pipeline if the read data is not accepted by
the Marshaller.

The Avalon-MM protocol has backpressure for read re-
quests in the form of the waitrequest signal role, allowing
slaves (the Cache read ports) to stall the Master (the Mar-
shaller). There exists no signal that allows the Marshaller to
stall read data returning from the Caches. Our solution was
to add a FIFO to the Marshaller to buffer this data until
it can be sent outside the CE, and reserving space in this
FIFO before sending any read requests to the Caches. Note
that this missing functionality in Qsys requires extra effort
for the designer to mitigate, while also costing area. This
is not a general limitation of memory-mapped protocols, as,
for example, AMBA AXI[2] has backpressure support for re-
quest and reply paths, but is cumbersome to use since many
signals are mandatory.

4.3.3 Pipeline to Cache Reads
Read and write access to (some) of the cache blocks are

shared between the Pipeline and Marshaller. However, due
to double-buffering of the Caches, and careful orchestration
by the Control logic, the design of the CE guarantees no
competition between the Pipeline and Marshaller for the
same buffer. This is ideal, because in theory it allows the
Pipeline to operate as if it has sole point-to-point access to
the Caches with the benefit of deterministic latency, simpli-
fying the design.

This is the case in the hand-made variant. Sharing of
the Cache ports is done with muxes controlled directly by
the Control logic, which guarantees that the Marshaller and
Pipeline never access the same Cache buffers at the same
time. At the read data output of the Caches, a simple mux
chooses the correct buffer’s read response stream to send
back to the Pipeline.

The GENIE variant handles the read path just as effi-
ciently as the manual implementation, by virtue of allowing
the system specification to declare that the Marshaller and
Pipeline never compete for the same Cache ports. This gen-
erates Merge nodes that are nearly identical to the manual
implementations, containing a mux which is controlled by
the incoming Valid signals.

The Qsys interconnect has an arbiter block which is de-
signed for the general worst case in which inputs compete
for the output. However, even when there is no competition,
we witnessed the generation of backpressure during the first
cycle of a multi-cycle train of read requests. This required
modifying the Pipeline by a FIFO in front of the read re-
quest port for the Current Cache, and another FIFO (wide,
containing write data) in front of the write ports.

5. RESULTS
In this section, we quantitatively compare the three Com-

pute Element variants presented in Section 4 in order to
judge the efficacy (and ease of use) of GENIE in generating
fine-grained interconnect.

Automation should increase productivity and make life
easier for the designer. The implementation issues discussed
in Section 4.3 give a qualitative view of the designer effort
required. In this section we measure the amount of source
code (and tool specification code) line counts as a first-order
quantitative approximation of the difficulty of creating each
CE variant.

At the same time, automation should strive to produce
a high-quality interconnect implementation. We obtain the
area and Fmax of each variant after being synthesized, placed,
and routed on a modern FPGA.

5.1 Source Code Line Count
First, we measure the number of lines of source code (in-

cluding scripting input lines for the tools) required to create
both the functional modules and interconnect for each vari-
ant. For the interconnect part, we are interested in the size
of the specification directly written by the designer. For the
Qsys and GENIE variants, this would be the size of the TCL
and Lua scripts, respectively, that are given as input to the
tools to describe the system’s communicating components
and logical connectivity. The manual variant’s interconnect
is written in Verilog, as are the functional modules in all
three variants.

Interconnect
+ TOP FUNC TOTAL

Variant Lines ∆ Lines ∆ Lines ∆

Manual 1029 0 1323 0 2352 0
GENIE 290 -72% 1289 -3% 1579 -33%
Qsys 440 -57% 1411 +7% 1851 -21%

Table 2: Code Line Counts - Designer Effort

0

500

1000

1500

2000

2500

Manual GENIE Qsys

Li
n

e
s

o
f

So
u

rc
e

Functional Interconnect Top

Figure 8: Code Line Counts - Designer Effort

53

Line counts were obtained using the CLOC[5] tool, which
ignores comments and blank lines. Table 2 and Figure 8
give the results, with the table showing both absolute and
relative (to the manual variant) line counts.

Note that the manual variant’s 1029 lines of interconnect
source code include 440 lines solely dedicated to the top-level
Verilog module which instantiates all the other modules; this
is referred to as ’TOP’ in the table and figure. This glue
code does not specify any true functionality, yet comprises
a large portion of the source code base. Figure 8 gives it
its own category to provide a better comparison of ’real’
interconnect specification size. Nevertheless, using either
system integration tool spares the designer from having to
write the top-level instantiation code, so we include it in
the “Interconnect + Top” code savings of 72% and 57% that
GENIE and Qsys achieve, respectively.

The design of the functional modules is also affected by the
choice of interconnect synthesis tool, in order to be compat-
ible with protocols or mitigate lack of features, as described
in Section 4.3. The Qsys variant required 7% more source
code to make the changes described in Section 4.3. Mean-
while, the changes to the GENIE variant yielded a small
savings, requiring no major architectural changes.

In the end, if a designer were to create the Compute El-
ement with GENIE in mind from the very beginning, they
would need to write 33% less source code than writing with
no automation at all, with an even greater reduction if we fo-
cus on just the interconnect. It is a crude, but quantifiable,
measurement of savings in design effort.

5.2 Area and Clock Frequency
Synthesis of each variant was performed using Altera Quar-

tus II version 14.0, targeting a large Stratix V 5SGX-MBBR-
1H43-C2 device, with the expectation of low congestion and
device utilization. All external signals terminate at Virtual
IOs rather than real device pins. Both clock domains in
the design were over-constrained to 1 GHz, and results were
geometrically averaged over 6 random seeds.

Table 3: Clock Frequencies

Variant Clock A Clock B

Manual (MHz) 406 461

GENIE (MHz) 400 500

Qsys (MHz) 320 394

GENIE vs. Manual -1% +9%

GENIE vs. Qsys +25% +27%

0

100

200

300

400

500

600

Clock A Clock B

Fm
ax

 (
M

H
z)

Manual GENIE Qsys

Figure 9: Clock Frequencies

Table 3 and Figure 9 show the achieved frequency for both
clock domains for each variant, and a relative comparison of
GENIE against the other two variants.

GENIE’s interconnect achieves a Clock A frequency only
1% slower than the manual variant’s. In the Clock B do-
main, GENIE achieves a 9% frequency advantage, but at
the cost of extra registers. Since our Stratix V device’s fre-
quency is limited to 450 MHz anyway, a design choice was
made in the manual variant to use fewer register stages – a
detailed level of control we hope to include in a later revision
of GENIE.

Like the hand-made interconnect, GENIE is able to take
advantage of the application-level optimization that allows
zero competition for caches, and thus generates very similar
connection-sharing hardware. The simplified Merge nodes
are one reason why, against Qsys, GENIE performs 25%
better on average.

Table 4: Area Usage

Variant ALM M20K

Manual 6739 40

GENIE 6987 40

Qsys 8383 92

GENIE vs. Manual +4% +0%

GENIE vs. Qsys -17% -57%

0

2000

4000

6000

8000

10000

A
LM

Manual GENIE Qsys

0

20

40

60

80

100

M
2
0
K

Figure 10: Area Usage

Table 4 and Figure 10 provide the area usage of the three
variants, in terms of Stratix V Adaptive Logic Modules
(representing logic, registers, and distributed memory) and
M20K memory blocks. All variants also use 8 DSP (hard
multiplier) blocks in addition to what is shown.

The GENIE-generated system is only 4% larger than the
manually-created one, and occupies 17% fewer ALMs than
the Qsys-generated system.

The Qsys interconnect contains an over-abundance of clock-
crossing FIFOs (as discussed in Section 4.3), as well as addi-
tional FIFOs used to buffer cache read data. The increased
number of FIFOs, and the fact that the GENIE and manual
variants use distributed memory instead of M20Ks for their
FIFOs, explains the high observed M20K usage.

Using M20Ks instead of distributed memory for FIFOs
increases ALM usage, making the area gap between Qsys
and manual/GENIE narrower than it otherwise might have
been. Distributed memory uses ALMs itself, and can’t pack
as many downstream pipeline registers as M20Ks can. These
registers then go on to use additional ALMs.

Software Release
GENIE is open source software and is available for down-
load at http://www.eecg.utoronto.ca/~jayar/software/

GENIE/, complete with documentation and design examples,
including Lua input specification scripts.

54

6. CONCLUSION
We have presented a new interconnect synthesis and sys-

tem integration tool and showed its applicability in a fine-
granularity design space that has been neglected by existing
tools. We showed how to express interconnect requirements
used this tool to synthesize the interconnect for a realis-
tic fine-grained design example. This was compared with a
hand-implemented version as well as one made with comer-
cial interconnect synthesis tool.

Qualitatively, we found that the new tool, GENIE, re-
duced design effort by automating aspects of design such as
clock crossing, as well as the generation of the switching fab-
ric that allows the functional modules to communicate. All
this was done without significant changes to the functional
modules to support GENIE’s protocol. This is in contrast
with Qsys, which required changes to the functional modules
to use, mitigating a lack of features in the signal protocol.

Quantitatively, using GENIE resulted in a 33% reduction
in total source code line count compared to the hand-made
implementation, and a significant 72% reduction if one only
considers the code required to specify the interconnect. The
cost for this productivity gain was a modest 1% decrease in
achieved clock frequency (in one of the two clock domains)
and a 4% increase in area. This demonstrates that the au-
tomation and ease of use provided by the tool, our primary
goal, does not detract from the interconnect’s performance
in a frugal fine-granularity design context.

Against Qsys, GENIE achieved clock frequency gains of
25% and 27% in the Compute Element’s two clock domains,
and a 17% reduction in logic and register usage. The RAM
block count reduction was more significant, at 57%. These
gains demonstrate the efficacy of GENIE’s automatic clock
crossing insertion algorithm and lightweight Split/Merge in-
terconnect microarchitecture in a fine-granularity design.

Although this paper focused on its fine-granularity use, we
envision GENIE as a contender for interconnect synthesis
at all levels of design, including the creation of the packet-
switched networks and memory-mapped interconnect from
the efficient Split/Merge primitives already in use. By hav-
ing a single tool responsible for generating interconnect at
all levels, it will be possible to explore new techniques such
as optimizing interconnect across hierarchy boundaries.

7. REFERENCES
[1] Altera Corporation. QSys - Altera’s System

Integration Tool.
http://www.altera.com/products/software/quartus-
ii/subscription-edition/qsys/qts-qsys.html.

[2] ARM Ltd. AMBA Open Specifications.
http://www.arm.com/products/system-
ip/amba/amba-open-specifications.php.

[3] L. Carloni, K. McMillan, and
A. Sangiovanni-Vincentelli. Theory of
Latency-insensitive Design. Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions
on, 20(9):1059–1076, Sep 2001.

[4] J. Carmona, J. Cortadella, M. Kishinevsky, and
A. Taubin. Elastic Circuits. Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions
on, 28(10):1437–1455, Oct 2009.

[5] CLOC. CLOC – Count Lines of Code.
http://cloc.sourceforge.net/.

[6] J. Cong, Y. Huang, and B. Yuan. Atree-based
topology synthesis for on-chip network. In Proceedings
of the 2011 IEEE/ACM International Conference on
Computer-Aided Design, ICCAD ’11, pages 651–658,
Washington, DC, USA, 2011. IEEE Computer Society.

[7] E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou,
P. D. Seymour, and M. Yannakakis. The Complexity
of Multiway Cuts (Extended Abstract). In Proceedings
of the Twenty-fourth Annual ACM Symposium on
Theory of Computing, STOC ’92, pages 241–251, New
York, NY, USA, 1992. ACM.

[8] Y. Huan and A. DeHon. FPGA Optimized
Packet-Switched NoC using Split and Merge
Primitives. In Field-Programmable Technology (FPT),
2012 International Conference on, pages 47–52, Dec
2012.

[9] Lattice Semiconductor. LatticeMico System
Development Tools.
http://www.latticesemi.com/en/Products/
DesignSoftwareAndIP/EmbeddedDesignSoftware/
LatticeMicoSystem.aspx.

[10] A. P. Luca, L. P. Carloni, and A. L.
Sangiovanni-vincentelli. Efficient Synthesis of
Networks On Chip. In in Proc. ICCD, 2003, pages
146–150, 2003.

[11] U. Ogras and R. Marculescu. Energy- and
performance-driven NoC communication architecture
synthesis using a decomposition approach. In Design,
Automation and Test in Europe, 2005. Proceedings,
pages 352–357 Vol. 1, March 2005.

[12] M. K. Papamichael and J. C. Hoe. CONNECT:
Re-examining Conventional Wisdom for Designing
Nocs in the Context of FPGAs. In Proceedings of the
ACM/SIGDA International Symposium on Field
Programmable Gate Arrays, FPGA ’12, pages 37–46,
New York, NY, USA, 2012. ACM.

[13] PUC-Rio. The Programming Language Lua.
http://www.lua.org/.

[14] V. Todorov, D. Mueller-Gritschneder, H. Reinig, and
U. Schlichtmann. Deterministic Synthesis of Hybrid
Application-Specific Network-on-Chip Topologies.
Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, 33(10):1503–1516,
Oct 2014.

[15] Xilinx Corporation. Accelerating Integration.
http://www.xilinx.com/products/design-
tools/vivado/integration/.

[16] W. Zhang, V. Betz, and J. Rose. Portable and
Scalable FPGA-based Acceleration of a Direct Linear
System Solver. ACM Trans. Reconfigurable Technol.
Syst., 5(1):6:1–6:26, Mar. 2012.

55

