
Nearest Neighbour Interconnect Architecture in Deep Submicron FPGAs

Ajay Roopchansingh and Jonathan Rose

Edward S. Rogers Sr. Dept. of Electrical & Computer Engineering, University of Toronto
Toronto, Ontario, Canada, M5S 3G4

{ajaytr, jayar}@eecg.utoronto.ca

Abstract
Several commercial FPGA architectures provide fast
connections between adjacent logic blocks that decrease the
best-case delay between circuit elements with the goal of
increasing overall performance. This paper explores the
architecture of these Nearest Neighbour (NN) interconnects
to determine topologies, quantities and distances that are best
for performance and area. We show that certain architectures
can achieve a 7.4% performance improvement at the cost of a
6.3% increase in total FPGA area when fully populated. We
also show that a 6.4% improvement can be achieved for a
more modest cost of 3.8% increase in area.

1 Introduction
Performance is a key issue in the design and use of FPGAs.
Depending on the architecture, 60% to 80% of the FPGA
critical path delay is due to the routing between logic blocks
[1][7], thus motivating our research into new and faster
routing architectures.

NN interconnects are direct connections between a BLE
(Basic Logic Element) output and the input multiplexer of
another logic block, bypassing all the intermediate routing
switches as illustrated in Figure 1.

Nearest Neighbour Connect

Routing Tracks

Track Buffers

Input Pin
Output Pin

SRAM

SRAM

Input Connection
Block Multiplexer

Track Driver

LOGIC
BLOCK

LOGIC
BLOCK

4x

4x

1x

Input Pin

4x

2x

BLE

To Local
Routing

5x/
10x

NN Buffer
(not shared)

Figure 1 – Nearest Neighbour Interconnect

Although several commercial architectures [11-13] have
employed NN interconnects, there are no published studies
that investigate NN interconnect quantity or patterns and their

speed and area tradeoffs. We are interested in the following
properties of NN interconnect architectures:

1. Topology: This describes the pattern which dictates

which neighbouring logic blocks a given block can
connect to.

2. Distance/Radius: This describes the distance of the
neighbouring logic blocks to which NN interconnects
from a given block can extend to.

3. Quantity: This is the number of NN interconnects present
in a given topology at a given radius.

NN interconnects have been used in several commercial
programmable logic architectures. The Algotronix CAL1024
[11] used NN interconnects as the entire routing fabric.
Function units could only connect to their immediate North,
South, East and West (which we refer to as Manhattan
directional) neighbours. The Xilinx 3000 [13], Xilinx
XC6200 [13] and Atmel AT6000 [12] use heterogeneous
routing schemes in which NN connections are used in tandem
with other types of routing resources. The NN interconnects
in these FPGAs employ a pattern similar to the CAL1024,
connecting only to their immediate Manhattan neighbours.
The more recent Atmel AT40K [12] and Xilinx Virtex II
architectures [13], employ a slightly different pattern where
they connect to the immediate diagonal logic blocks as well
as the Manhattan. This paper explores a range of these
architectures, including those used in present-day FPGAs.

This paper is organized as follows: Section 2 outlines the
basic FPGA architecture and parameterizes the NN
interconnect architectural space that we seek to explore.
Section 3 presents the experimental procedure and results of
our experiments. Section 4 gives our conclusions.

2 Architecture
Here we describe the basic FPGA architecture that we
explore and how it is modified to include NN interconnects.

The basic FPGA uses a symmetric island-style architecture
[1]. Each logic block or logic cluster is made up of 4 basic
logic elements (BLEs) and is fed by 10 cluster inputs. Each
BLE consists of a 4-input lookup table (LUT) and a register.
A 2-input mux is used to provide either a registered or
unregistered BLE output. Figure 2 shows the general
schematic for a logic cluster and BLE. We further assume
that the cluster is “fully connected”, which means that all 10

cluster inputs and 4 BLE outputs can connect to each of the 4
inputs on every LUT. Each of the cluster inputs can connect
to 60% of the tracks in the channel adjacent to it and each of
the 4 cluster outputs connects to 25% of the tracks in the
channel adjacent to them.

The routing channel uses metal wires that span 4 clusters
(length 4 tracks). Of these tracks, 50% are buffered and 50%
are switched by pass transistors. The routing channel switch
block uses a disjoint topology, meaning that once signals are
routed onto pass-transistor-switched tracks, they can connect
only to other pass-transistor-switched tracks. The same
topology is used for switching buffered tracks. Finally, at a
switch-block, each track can be switched onto 3 other tracks.

BLE
#1

BLE
#4

.

.

.

.

.

.
N = 4
BLEs

N = 4

I = 10

N = 4
Outputs

Clock

I = 10
Inputs

4-input
LUT D FF

Clock

Inputs
Output

Figure 2 - Logic Cluster & BLE

The architecture is modelled in a 0.18um CMOS process.
Further architectural details can be found in [2].

2.1 Circuit Design of NN Connects
Figure 1 illustrates the circuit design of an NN interconnect.
These are faster than connections made through the usual
routing fabric for 3 reasons:

1. The buffer driving an NN interconnect is smaller than the

driver for the output pin since it drives roughly half the
fan-out. The output pin driver is sized as a 4x buffer
since it must drive four LUTs with 4 inputs each for a
total of 16 LUT inputs (feedback to the cluster’s local
routing). This has been shown to produce good area and
delay results [1]. In the NN interconnect architectures
we explore, the maximum fan-out of an NN interconnect
is 8, and so its buffer only needs to be ½ the size.
Furthermore, since NN interconnects travel only a short
distance, a track driver is not needed. These two
differences account for a significant portion of the delay
improvement of an NN interconnect. The detailed circuit
showing buffer sizing is shown in Figure 1.

2. The conventional routing fabric has a higher capacitive
load than an NN interconnect wire because there are
many routing switches connected to each general routing
track.

3. The NN buffer is also smaller since a track buffer must
fan out to any mux that connects that track to an input

pin (which can be up to 4 in this basic architecture),
whereas the NN buffer is dedicated as shown in Figure 1.

2.2 Parameterization of NN Architecture
The NN Topology describes the fan-out pattern of the NN
interconnects. In a Manhattan topology, NN interconnects go
to neighbours that are North, South, East and West of a given
logic cluster. In a Cross topology, they go to neighbours that
are NE, SE, SW and NW of a given cluster. In a Full
topology, they go to all of these surrounding neighbours.
Figure 3 illustrates these 3 basic topologies.

The NN Radius parameter dictates the distance to the
neighbour that the NN interconnect connects to. Figure 3
illustrates Radius 1 connections for the three basic topologies
since they connect only to immediate neighbours. Notice that
neighbours in the NE, SE, SW and NW directions are still
considered radius 1. The same principle is applied when
extending to larger radii.

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

��

���
��

���

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

CLB

CLB CLB CLB

CLB CLB

CLB CLB CLB

Routing Tracks Logic Block

Nearest Neighbour
Interconnect

Manhattan Topology

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

���

���
��

���

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

CLB

CLB CLB CLB

CLB CLB

CLB CLB CLB

Routing Tracks
Logic Block

Nearest Neighbour
Interconnect

Cross Topology

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

���

���
��

���

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

CLB

CLB CLB CLB

CLB CLB

CLB CLB CLB

Routing Tracks
Logic Block

Nearest Neighbour
Interconnect

Full Topology

Figure 3 – Various NN Topologies

Finally, we must also specify the quantity of NN
interconnects that exist in a specified topology at a given
radius. Note that each topology, at a given radius, will have a
limit to the number of NN interconnects that can be present.
For example, since our architecture has only 4 output pins per
logic cluster, a Manhattan Radius 1 topology can have at
most 16 NN interconnects (4 outputs each fanning out in 4
directions). The same is true for the Cross topology. Note
also that the Manhattan and Cross topologies will have the
same maximum number of NN interconnects for each radius.
In a Full Radius 1 topology however, we have 4 outputs each
fanning out in 8 directions for a total of 32 possible NN
interconnects. For a Full radius 2, we have 4 outputs each
fanning out in 16 directions = 64 possible NN interconnects.

These 3 parameters, Topology, Radius and Quantity define
the architectural space that we explore in this research.

3 Results
To evaluate new FPGA architectures, we synthesize real
circuits, using the CAD flow described in [1][7], into the
architecture and then measure the resulting area and delay.
The flow consists of logic synthesis [8], packing [5][9] and
placement and routing using VPR [1]. In our experiments we

use the 20 largest MCNC [10] circuits and 8 new circuits
created at the University of Toronto. These circuits range in
sizes from 800 BLEs to 10,000 BLEs.

In this section we present experimental results obtained using
the flow described above. The area metric is the sum of the
total logic area plus the routing area for the smallest possible
FPGA required to fit the circuit. It is measured in equivalent
number of minimum-width transistor areas required to
implement all elements of the FPGA in a 0.18um CMOS
process.

The speed of an FPGA architecture is measured by first
placing and routing the circuit to find the smallest possible
FPGA required, then re-routing with an FPGA which has
20% more tracks. This models a real-life scenario since
designers rarely push the limits of an FPGA but rather choose
ones that are slightly larger than the design requires in order
to create a low-stress routing environment [1]. Note that we
present the average of five different runs for each circuit to
reduce the experimental noise in the results.

For each architecture when the number of NN interconnects
is greater than zero, we use a placement that is aware of their
presence. This was shown to increase NN interconnect
utilization and produces better results than placements that
had no knowledge of the presence of NN interconnects [2].

3.1 Performance Results
In this section we show the effect of the various NN
interconnect parameters on delay. Figure 4a shows how the
average critical path delay across the 28 circuits varies as we
increase the number of NN interconnects present in
Manhattan and Cross Radius 1 architectures. Observe that
increasing the number of NN interconnects decreases delay.
For Manhattan and Cross architectures with 16 NN
interconnects, the critical path delay is reduced by 5.3% and
4.8% respectively compared to an architecture with no NN
interconnects. The increase in total area cost for these two
architectures is 3.5% and 3.3% respectively (see [2] for more
information on area).

Figure 4b shows results for the larger Manhattan and Cross
Radius 1 & 2 and Full Radius 1 architectures. The fully
populated versions of these architectures, (in which the
number of NNs = 32), decreases the average critical path
delay by 6.9%, 6.4% and 7.4% at the expense of a 6.8%,
6.4% and 6.8% increase in total area respectively. Table 1
summarizes the results.

Observing Figures 4a and 4b, we see that the majority of the
delay reductions can be achieved without the expense of a
fully populated architecture. Using fewer NN interconnects
reduces the area penalty. For example, Figure 4a shows that,
for the Manhattan Radius 1 architecture, most of the gain is
achieved using only 10 of the maximum 16 NN connects.

Figure 4b shows that using 20 NN interconnects for the
Manhattan Radius 1 & 2 architecture and 18 NN
interconnects for the Full Radius 1 architecture nets the
majority of the delay reduction. Table 2 presents a selection
of good delay and area results obtained by depopulating the
NN interconnects of all architectures.

Figure 4a - Delay vs. # of NN Interconnects for Manhattan/Cross Radius 1

Figure 4b - Delay vs. # of NN Interconnects for Manhattan/Cross Radius 1 &

2 and Full Radius 1

Topology (Radius) # of
NNs

Avg. Delay
(ns)

Change
In Delay

Change In
Total Area

Manhattan (1) 16 17.8 - 5.3 % + 3.5 %
Cross (1) 16 17.9 - 4.8 % + 3.3 %
Manhattan (1 & 2) 32 17.5 - 6.9 % + 6.8 %
Cross (1 & 2) 32 17.6 - 6.4 % + 6.4 %
Full (1) 32 17.4 - 7.4 % + 6.8 %

Table 1 – Delay and Area Results for Fully Populated Architectures

Topology (Radius) # of
NNs

Avg. Delay
(ns)

Change
In Delay

Change In
Total Area

Manhattan (1) 10 17.9 - 4.8 % + 2.1 %
Cross (1) 9 18.0 - 4.3 % + 1.8 %
Manhattan (1 & 2) 20 17.6 - 6.4 % + 4.3 %
Cross (1 & 2) 26 17.6 - 6.4 % + 5.3 %
Full (1) 18 17.6 - 6.4 % + 3.8 %

Table 2 - Area & Delay Results for Partially Populated Architectures

3.2 Area vs. NN Interconnects
In the previous section’s experiments, the number of tracks
was held constant while the number of NN interconnects was
increased. It is interesting to determine if NN interconnects
can be used to reduce total area by permitting a reduction in
the number of tracks required to route circuits. To determine
this, we measured the minimum number of routing tracks per
channel required to achieve routability while varying the
number of NN interconnects. Note that this is a different
scenario from the one above in Section 3.1, where all
experiments are run using 20% more than the minimum track
count required without NN interconnects.

Figure 5a shows how the area varies as we increase the
number of NN interconnects for 3 architectures. Observe that
the curves are flat for the first 9 to 12 NN interconnects.
Here the area required to add NN interconnects is being
balanced by the area saved in reducing track count. Figure 5b
shows how the track count varies as we increase the number
of NN interconnects in the various architectures.

Figure 5a - Average Area vs # of NN Interconnects

Figure 5b - Track Count vs # of NN Interconnects

It can be seen from Figure 5a that, for each architecture, a
particular number of NN interconnects can be added for zero
change in total area. Table 3 lists the number of NN
interconnects that can be added for no change in total area
and also shows the track-count reduction at that point.

Topology # NNs That Achieve
Same Area

Track Count
Reduction

Manhattan Radius 1 & 2 12 5.0 %
Cross Radius 1 & 2 9 3.3 %
Full Radius 1 9 3.5 %

Table 3 – Area-Neutral Architectures that Contain NN Interconnects

4 Conclusions
We have introduced a set of Nearest Neighbour architectures
and shown that they are able to achieve useful performance
benefits for little cost in area. The best result was a Full
Radius 1 architecture that achieved a 6.4% reduction in
critical path delay at a cost of 3.8% increase in area.

We also showed that NN interconnects can be included in an
architecture at zero total area cost. The best result shows that
12 NN interconnects can be included in a Manhattan
topology in this manner.

Overall, we conclude that the Full Radius 1 architecture is
best in terms of delay while the Manhattan Radius 1 & 2
architecture is best in terms of area.

References
(1) V. Betz, J. Rose, A. Marquardt, “Architecture & CAD For Deep-

Submicron FPGAs”, Kluwer Academic Publishers, 1999.
(2) A. Roopchansingh, “M.A.Sc. Thesis in progress: Nearest Neighbour

Interconnect Architecture in Deep Submicron FPGAs”, University of
Toronto, 2002.

(3) J. Gray, T. Kean, “Configurable Hardware: A New Paradigm for
Computation”, March 1989.

(4) A. Marquardt, V. Betz, J. Rose, “Timing Driven Placement for
FPGAs”, Right Track CAD, 1999.

(5) A. Marquardt, “M.A.Sc. Thesis: Cluster-Based Architecture, Timing
Driven Packing and Timing Driven Placement for FPGAs”, University
of Toronto, 1999.

(6) A. Marquardt, V.Betz, J.Rose, “Using Cluster-Based Logic Blocks and
Timing-Driven Packing to Improve FPGA Speed and Density”,
ACM/SIGDA FPGA 99, 1999.

(7) M. Sheng, J.Rose, “Mixing Buffers and Pass Transistor in FPGA
Routing Architectures”, 2000

(8) E.M. Sentovich et al, “SIS: A System for Sequential Circuit Analysis”,
Tech. Report No. UCB/ERL M92/41, University of California,
Berkeley, 1990.

(9) J. Cong and Y. Ding, “FlowMap: An Optimal Technology Mapping
Algorithm for Delay Optimization in Lookup-Table Based FPGA
Designs”, IEEE Trans. on CAD, Jan. 1994, pp.1-12.

(10) S. Yang, “Logic Synthesis and Optimization Benchmarks, Version
3.0,” Tech. Report, Microelectronics Centre of North Carolina, 1991

(11) Algotronix Ltd., “CAL1024 Datasheet”, 1988.
(12) Atmel Datasheets, http://www.atmel.com/atmel/products/prod99.htm
(13) Xilinx Datasheets, http://www.xilinx.com/partinfo/databook.htm

	Abstract
	1Introduction
	2Architecture
	3Results
	4Conclusions
	References

