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Abstract 
Several commercial FPGA architectures provide fast 
connections between adjacent logic blocks that decrease the 
best-case delay between circuit elements with the goal of 
increasing overall performance.  This paper explores the 
architecture of these Nearest Neighbour (NN) interconnects 
to determine topologies, quantities and distances that are best 
for performance and area.  We show that certain architectures 
can achieve a 7.4% performance improvement at the cost of a 
6.3% increase in total FPGA area when fully populated.  We 
also show that a 6.4% improvement can be achieved for a 
more modest cost of 3.8% increase in area. 
 
1 Introduction 
Performance is a key issue in the design and use of FPGAs.  
Depending on the architecture, 60% to 80% of the FPGA 
critical path delay is due to the routing between logic blocks 
[1][7], thus motivating our research into new and faster 
routing architectures. 
 
NN interconnects are direct connections between a BLE 
(Basic Logic Element) output and the input multiplexer of 
another logic block, bypassing all the intermediate routing 
switches as illustrated in Figure 1. 
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Figure 1 – Nearest Neighbour Interconnect 

 
Although several commercial architectures [11-13] have 
employed NN interconnects, there are no published studies 
that investigate NN interconnect quantity or patterns and their 

speed and area tradeoffs.  We are interested in the following 
properties of NN interconnect architectures: 
 
1. Topology: This describes the pattern which dictates 

which neighbouring logic blocks a given block can 
connect to. 

2. Distance/Radius: This describes the distance of the 
neighbouring logic blocks to which NN interconnects 
from a given block can extend to. 

3. Quantity: This is the number of NN interconnects present 
in a given topology at a given radius. 

 
NN interconnects have been used in several commercial 
programmable logic architectures.  The Algotronix CAL1024 
[11] used NN interconnects as the entire routing fabric.  
Function units could only connect to their immediate North, 
South, East and West (which we refer to as Manhattan 
directional) neighbours.  The Xilinx 3000 [13], Xilinx 
XC6200 [13] and Atmel AT6000 [12] use heterogeneous 
routing schemes in which NN connections are used in tandem 
with other types of routing resources.  The NN interconnects 
in these FPGAs employ a pattern similar to the CAL1024, 
connecting only to their immediate Manhattan neighbours.  
The more recent Atmel AT40K [12] and Xilinx Virtex II 
architectures [13], employ a slightly different pattern where 
they connect to the immediate diagonal logic blocks as well 
as the Manhattan.  This paper explores a range of these 
architectures, including those used in present-day FPGAs. 
 
This paper is organized as follows: Section 2 outlines the 
basic FPGA architecture and parameterizes the NN 
interconnect architectural space that we seek to explore.  
Section 3 presents the experimental procedure and results of 
our experiments.  Section 4 gives our conclusions. 
 
2 Architecture 
Here we describe the basic FPGA architecture that we 
explore and how it is modified to include NN interconnects. 
 
The basic FPGA uses a symmetric island-style architecture 
[1]. Each logic block or logic cluster is made up of 4 basic 
logic elements (BLEs) and is fed by 10 cluster inputs.  Each 
BLE consists of a 4-input lookup table (LUT) and a register.  
A 2-input mux is used to provide either a registered or 
unregistered BLE output.  Figure 2 shows the general 
schematic for a logic cluster and BLE.  We further assume 
that the cluster is “fully connected”, which means that all 10 



cluster inputs and 4 BLE outputs can connect to each of the 4 
inputs on every LUT.  Each of the cluster inputs can connect 
to 60% of the tracks in the channel adjacent to it and each of 
the 4 cluster outputs connects to 25% of the tracks in the 
channel adjacent to them. 
 
The routing channel uses metal wires that span 4 clusters 
(length 4 tracks).  Of these tracks, 50% are buffered and 50% 
are switched by pass transistors.  The routing channel switch 
block uses a disjoint topology, meaning that once signals are 
routed onto pass-transistor-switched tracks, they can connect 
only to other pass-transistor-switched tracks.  The same 
topology is used for switching buffered tracks.  Finally, at a 
switch-block, each track can be switched onto 3 other tracks. 
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Figure 2 - Logic Cluster & BLE 

 
The architecture is modelled in a 0.18um CMOS process.  
Further architectural details can be found in [2]. 
 
2.1 Circuit Design of NN Connects 
Figure 1 illustrates the circuit design of an NN interconnect.  
These are faster than connections made through the usual 
routing fabric for 3 reasons: 
 
1. The buffer driving an NN interconnect is smaller than the 

driver for the output pin since it drives roughly half the 
fan-out.  The output pin driver is sized as a 4x buffer 
since it must drive four LUTs with 4 inputs each for a 
total of 16 LUT inputs (feedback to the cluster’s local 
routing).  This has been shown to produce good area and 
delay results [1].  In the NN interconnect architectures 
we explore, the maximum fan-out of an NN interconnect 
is 8, and so its buffer only needs to be ½ the size.  
Furthermore, since NN interconnects travel only a short 
distance, a track driver is not needed.   These two 
differences account for a significant portion of the delay 
improvement of an NN interconnect.  The detailed circuit 
showing buffer sizing is shown in Figure 1. 

2. The conventional routing fabric has a higher capacitive 
load than an NN interconnect wire because there are 
many routing switches connected to each general routing 
track. 

3. The NN buffer is also smaller since a track buffer must 
fan out to any mux that connects that track to an input 

pin (which can be up to 4 in this basic architecture), 
whereas the NN buffer is dedicated as shown in Figure 1. 

 
2.2 Parameterization of NN Architecture 
The NN Topology describes the fan-out pattern of the NN 
interconnects.  In a Manhattan topology, NN interconnects go 
to neighbours that are North, South, East and West of a given 
logic cluster.  In a Cross topology, they go to neighbours that 
are NE, SE, SW and NW of a given cluster.  In a Full 
topology, they go to all of these surrounding neighbours.  
Figure 3 illustrates these 3 basic topologies. 
 
The NN Radius parameter dictates the distance to the 
neighbour that the NN interconnect connects to.  Figure 3 
illustrates Radius 1 connections for the three basic topologies 
since they connect only to immediate neighbours.  Notice that 
neighbours in the NE, SE, SW and NW directions are still 
considered radius 1. The same principle is applied when 
extending to larger radii. 
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Figure 3 – Various NN Topologies 
 
Finally, we must also specify the quantity of NN 
interconnects that exist in a specified topology at a given 
radius.  Note that each topology, at a given radius, will have a 
limit to the number of NN interconnects that can be present.  
For example, since our architecture has only 4 output pins per 
logic cluster, a Manhattan Radius 1 topology can have at 
most 16 NN interconnects (4 outputs each fanning out in 4 
directions).  The same is true for the Cross topology.  Note 
also that the Manhattan and Cross topologies will have the 
same maximum number of NN interconnects for each radius.  
In a Full Radius 1 topology however, we have 4 outputs each 
fanning out in 8 directions for a total of 32 possible NN 
interconnects.  For a Full radius 2, we have 4 outputs each 
fanning out in 16 directions = 64 possible NN interconnects. 
 
These 3 parameters, Topology, Radius and Quantity define 
the architectural space that we explore in this research. 
 
3 Results 
To evaluate new FPGA architectures, we synthesize real 
circuits, using the CAD flow described in [1][7], into the 
architecture and then measure the resulting area and delay.  
The flow consists of logic synthesis [8], packing [5][9] and 
placement and routing using VPR [1].  In our experiments we 



use the 20 largest MCNC [10] circuits and 8 new circuits 
created at the University of Toronto.  These circuits range in 
sizes from 800 BLEs to 10,000 BLEs. 
 
In this section we present experimental results obtained using 
the flow described above.  The area metric is the sum of the 
total logic area plus the routing area for the smallest possible 
FPGA required to fit the circuit.  It is measured in equivalent 
number of minimum-width transistor areas required to 
implement all elements of the FPGA in a 0.18um CMOS 
process. 
 
The speed of an FPGA architecture is measured by first 
placing and routing the circuit to find the smallest possible 
FPGA required, then re-routing with an FPGA which has 
20% more tracks.  This models a real-life scenario since 
designers rarely push the limits of an FPGA but rather choose 
ones that are slightly larger than the design requires in order 
to create a low-stress routing environment [1].  Note that we 
present the average of five different runs for each circuit to 
reduce the experimental noise in the results. 
 
For each architecture when the number of NN interconnects 
is greater than zero, we use a placement that is aware of their 
presence.  This was shown to increase NN interconnect 
utilization and produces better results than placements that 
had no knowledge of the presence of NN interconnects [2].   
  
3.1 Performance Results 
In this section we show the effect of the various NN 
interconnect parameters on delay.  Figure 4a shows how the 
average critical path delay across the 28 circuits varies as we 
increase the number of NN interconnects present in 
Manhattan and Cross Radius 1 architectures.  Observe that 
increasing the number of NN interconnects decreases delay.  
For Manhattan and Cross architectures with 16 NN 
interconnects, the critical path delay is reduced by 5.3% and 
4.8% respectively compared to an architecture with no NN 
interconnects.  The increase in total area cost for these two 
architectures is 3.5% and 3.3% respectively (see [2] for more 
information on area). 
 
Figure 4b shows results for the larger Manhattan and Cross 
Radius 1 & 2 and Full Radius 1 architectures.  The fully 
populated versions of these architectures, (in which the 
number of NNs = 32), decreases the average critical path 
delay by 6.9%, 6.4% and 7.4% at the expense of a 6.8%, 
6.4% and 6.8% increase in total area respectively.  Table 1 
summarizes the results. 
 
Observing Figures 4a and 4b, we see that the majority of the 
delay reductions can be achieved without the expense of a 
fully populated architecture. Using fewer NN interconnects 
reduces the area penalty.  For example, Figure 4a shows that, 
for the Manhattan Radius 1 architecture, most of the gain is 
achieved using only 10 of the maximum 16 NN connects.  

Figure 4b shows that using 20 NN interconnects for the 
Manhattan Radius 1 & 2 architecture and 18 NN 
interconnects for the Full Radius 1 architecture nets the 
majority of the delay reduction.  Table 2 presents a selection 
of good delay and area results obtained by depopulating the 
NN interconnects of all architectures. 

 
Figure 4a - Delay vs. # of NN Interconnects for Manhattan/Cross Radius 1 

 
Figure 4b - Delay vs. # of NN Interconnects for Manhattan/Cross Radius 1 & 

2 and Full Radius 1 
 

Topology (Radius) # of 
NNs 

Avg. Delay  
(ns) 

Change 
In Delay 

Change In 
Total Area 

Manhattan (1) 16 17.8 - 5.3 % + 3.5 % 
Cross (1) 16 17.9 - 4.8 % + 3.3 % 
Manhattan (1 & 2) 32 17.5 - 6.9 % + 6.8 % 
Cross (1 & 2) 32 17.6 - 6.4 % + 6.4 % 
Full (1) 32 17.4 - 7.4 % + 6.8 % 

Table 1 – Delay and Area Results for Fully Populated Architectures 

Topology (Radius) # of 
NNs 

Avg. Delay 
(ns) 

Change 
In Delay 

Change In 
Total Area 

Manhattan (1) 10 17.9 - 4.8 % + 2.1 % 
Cross (1) 9 18.0 - 4.3 % + 1.8 % 
Manhattan (1 & 2) 20 17.6 - 6.4 % + 4.3 % 
Cross (1 & 2) 26 17.6 - 6.4 % + 5.3 % 
Full (1) 18 17.6 - 6.4 % + 3.8 % 

Table 2 - Area & Delay Results for Partially Populated Architectures 



3.2 Area vs. NN Interconnects 
In the previous section’s experiments, the number of tracks 
was held constant while the number of NN interconnects was 
increased. It is interesting to determine if NN interconnects 
can be used to reduce total area by permitting a reduction in 
the number of tracks required to route circuits.  To determine 
this, we measured the minimum number of routing tracks per 
channel required to achieve routability while varying the 
number of NN interconnects. Note that this is a different 
scenario from the one above in Section 3.1, where all 
experiments are run using 20% more than the minimum track 
count required without NN interconnects.   
 
Figure 5a shows how the area varies as we increase the 
number of NN interconnects for 3 architectures.  Observe that 
the curves are flat for the first 9 to 12 NN interconnects.  
Here the area required to add NN interconnects is being 
balanced by the area saved in reducing track count.  Figure 5b 
shows how the track count varies as we increase the number 
of NN interconnects in the various architectures. 
 

 
Figure 5a - Average Area vs # of NN Interconnects 

 

 
Figure 5b - Track Count vs # of NN Interconnects 

 

It can be seen from Figure 5a that, for each architecture, a 
particular number of NN interconnects can be added for zero 
change in total area.  Table 3 lists the number of NN 
interconnects that can be added for no change in total area 
and also shows the track-count reduction at that point.   
 

Topology # NNs That Achieve 
Same Area 

Track Count 
Reduction 

Manhattan Radius 1 & 2 12 5.0 % 
Cross Radius 1 & 2 9 3.3 % 
Full Radius 1 9 3.5 % 

Table 3 – Area-Neutral Architectures that Contain NN Interconnects 

 
4 Conclusions 
We have introduced a set of Nearest Neighbour architectures 
and shown that they are able to achieve useful performance 
benefits for little cost in area.  The best result was a Full 
Radius 1 architecture that achieved a 6.4% reduction in 
critical path delay at a cost of 3.8% increase in area. 
 
We also showed that NN interconnects can be included in an 
architecture at zero total area cost.  The best result shows that 
12 NN interconnects can be included in a Manhattan 
topology in this manner. 
 
Overall, we conclude that the Full Radius 1 architecture is 
best in terms of delay while the Manhattan Radius 1 & 2 
architecture is best in terms of area. 
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