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Abstract 
This paper explores the tradeoff between the area of a 
Programmable Gate Array (PGA) and the functionality of its 
logic block. A set of industrial circuits are implemented as 
PGAs using tools for technology mapping, placement and 
routing. A simple model allows the exploration of a range of 
programming technologies, and accounts for the area required 
by wiring. Experiments indicate that for combinational logic 
blocks implemented using lookup tables, the best number of 
inputs to use is between three and four, and that a D flip-flop 
should always be included in the logic block. These results are 
independent of the programming technology. 

The logic block design is an important factor in the PGA 
architecture. If it has insufficient functionality then too much 
area must be devoted to the interconnection. If the block has 
excess functionality then it may suffer from under-utilization 
and wasted active area. We address two questions concerning 
the logic block design: First, should the basic logic block 
contain a D flip-flop? Our experiments indicate that the presence 
of a D flip-flop in the logic block is always desirable, regardless 
of the programming technology. Second, if the logic block 
contains an arbitrary K to 1 combinational function, what is the 
best number (K) of inputs to use? Our results show that the best 
number of inputs remains nearly constant over a wide range of 
programming technologies and was almost the same whether or 
not the block contained a D fip-flop. 

1 Introduction 
2 Experimental Procedure 

The Programmable Gate Array is an exciting new idea in 
semi-custom integrated circuits that reduces the IC 
manufacnuing time from months to minutes and prototype cost 
fkom tens of kilodollan to under $100. The PGA was 
introduced in [Cart861 and newer versions have been presented 
in [Hsie87,Hsie88,ElGa88,ElAy88]. It is similar to a gate array 
in structure, but can be field-programmed to specify the function 
of the basic logic blocks and their interconnection. The 
architecture of a PGA consists of its logic block function, 
interconnection scheme, and U0 block design. In this paper we 
focus on the logic block design, and study the effect of logic 
block complexity on PGA area. We ignore speed considerations, 
even though they are very important, because we need first to 
determine the plausible architectures from an area perspective. 

The architectural choices that affect the area of a PGA 
depend on the programming rechnology, which is the underlying 
method by which the logic function is configured and 
connections are made. For example, the programming 
technology used in Ijdsie881 creates logic functions using static 
RAM lookup tables, and performs routing using pass transistors 
and multiplexors. The PGA described in [ElGa88] uses an 
anti-fuse for both logic and interconnection that, when blown, 
causes two metal tracks to be electrically joined 

This work was supported by DARPA Contract #N00014-87-K-Q828, and 

NSERC Operating Grants #A4029 and #OGFQO36648. 

To answer these questions, our approach is to implement a 
set of circuits in a variety of logic blocks and programming 
technologies, and determine the area required for each. 

............................................................................ . -  

Figure 1 - General Model of Logic Block 

Figure 1 depicts the general architectural model used for the 
logic block. It consists of a K-input arbitrary combinational 
logic function (referred to as "Arb-K), connected to a D flip- 
flop followed by a multiplexor that selects either the flip-flop 
output or the Arb-K output. The multiplexor output is passed to 
a tristate driver that can be enabled by another input or set 
permanently on. To determine if the D flip-flop is beneficial, 
two versions of this basic model will be considered: one that 
contains the D flip-flop, and one that does not. 
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The global architecture of the PGA under consideration is 
shown in Figure 2. It is a regular array of identical logic blocks, 
separated by horizontal and vertical routing channels. The 
number of tracks in all of the routing channels, W, is the same. 

The aim of the implementation procedure is to determine the 
area of the PGA required to implement each original circuit. A 
crucial notion in this method is that the number of logic blocks 
required for each circuit in the realized PGA is determined by 
the logic partitioning (step 1 below), rather than being pre- 
specified as is normally the case with any gate array. Also, W is 
determined by the placement and routing steps. With this 
approach, we learn the kind of logic block that most naturally 
fits each circuit. 

W trulu pmr C h m m l  

Logls Block 

contain many combinational logic functions. The Chortle 
program was developed to do this mapping. It uses a greedy 
algorithm that tries to collapse as many of the origiual logic 
cells as it can into each logic block. The result of this step is 
a new netlist that interconnects only logic blocks. It is 
functionally equivalent to the original circuit. 

Perform the placement of the resulting netlist. This is done 
using the Altor placement program [Rose85], which is based 
on the min-cut placement algorithm Preu771. Altor makes 
the array as square as possible. 

Perform the global routing of the circuit. Global routing 
determines the path of channels that each wire is to take, and 
then determines the maximum number of tracks required in 
each channel, W .  The approach used is similar to the 
LOCusRoute standard cell global routing algorithm described 
in [Rose88], but is changed to fit the model in Figure 2. 

Using W, the placement dimensions, and the model for logic 
block area and routing pitch described in Section 3, the area 
of the PGA required to implement the original circuit is 
calculated. 

Figure 2 -Routing Model of PGA 

The procedure described below transforms each circuit 
(originally in standard cell form) into a Programmable Gate 
Array. It takes as input the following: 

1. A logic circuit, in the form of a netlist of interconnected 
CellS. 

2. A description of the logic block of the form described in 
Figure 1 - a value of K indicating how many inputs to the 
Arb-K block, and whether or not it has a D flip-flop. 

3. A programming technology, parameterized by the area it 
requires, as described in Section 3. 

The output of the procedure is the axea required to implement 
the circuit for the specified logic block and programming 
technology. 

Procedure: For each logic block type and programming 
technology: 

1. Partition the original circuit into the current logic block. 
This is sometimes called fechnoIogy mapping [Detj87], and 
is a more difficult problem for PGA logic blocks with table- 
lookup logic functions. This is because each logic block can 

The above procedure makes the approximation that the 
global routing track count determines the number of tracks 
required in a channel. This is generally accepted as true for 
unconstrained channel routers, but may not be true for more 
constrained switch-based interconnection schemes. The work of 
[E1Ga88] points out that the error in this assumption is only a 
few tracks. 

3 Architecture Model 

The area calculation in step 4 above requires a model that 
gives the logic block area and routing wire width as a function 
of programming technology. To create a simple model of these 
quantities, the programming technology is represented by one 
parameter: the area required to store one bit, or the Bit Area 
(BA). For example, in the Xilinx PGA [Hsie88], the Bit Area is 
the area of a static RAM bit. In the Actel PGA [ElGa88] the bit 
area is much smaller, the size of an anti-fuse, which is the 
minimum square area of a metal wire FlAy881. 

The area of a logic block of the form shown in Figure 1 is 
also a function of the number of its inputs, and the amount of 
fixed hardware it contains. An Arb-K block, because it can 
implement any K to 1 logic function, requires 2K bits of 
information to be stored in a lookup table, and so must have area 
proportional to 2K. The routing and circuitry required to access 
the Arb-K block, the area required by the D flip-flop (if it is 
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present) and all other interconnection hardware is represented by 
a second parameter, called the Fixed Area (FA). Using BA and 
FA, we have the following expression for logic block area: 

Logic Block Area = BA x 2K + FA (1) 

In a 1 . 2 5 ~  CMOS process technology, FA has been estimated 
to be 2100pmz for logic blocks without a D flipflop and 
5100p2 for logic blocks that contain a D flip-flop. The Bit 
Area for an S U M  programming technology is about 4 o O p 2  
and for an anti-fuse technology is roughly 40pm2. In our 
experiments, we will vary the Bit Area between and above these 
two values, to represent programming technologies based on 
EPROM or Ferroelectric cells Fvan881, as well as potentially 
faster technologies that may take much more area 

An estimate of the area required by wiring is important in 
determining the logic block because routing area can take up 
from 50% to over 90% of the total area, depending on the 
programming technology. To determine routing area the pitch 
of the routing track as a function of programming technology is 
required. Each routing track will need at least one bit of 
information in it, and probably several - to determine if a set of 
switches or fuses is open or closed. Since it is difficult to 
physically design a bit with highly non-square aspect ratios, the 
pitch of a routing track is approximated as the square root of the 
area required by a bit, i.e. Routing Pitch = a. 
4 Experimental Results 

corresponds to an SRAM-based approach [Hsie88]. Using 
similar data for all of the circuits, with a range of programming 
technology sizes, the questions raised in the introduction were 
addressed. 

4.1 Number of Inputs to Logic Block 

1. Logic Block Contains D FlipFlop. Figure 4 is a plot 
of the sum of the normalized area of all the circuits versus K, 
where normalized area is defined as follows: Let the area 
required to implement original circuit number i in a PGA using 
a logic block with k inputs to the combinational block be &. 
The normalized area for that circuit, Ni, is given by: 

The s u m  of the normalized areas over all five circuits for a given 
5 

k is given by ZNi. 

2o 1 
-BA = 1 6CQpmn2 ' BA - -*2 

Sum of =% BA 415m**2 
Normalized Areas 

.- . I  //'-BA= . 1,- 

The circuits used in these experiments are five standard-cell 
circuits obtained from Bell-Northern Research. They range in 
size from 420 to 1681 standard cells, and consist of a mix of 
random logic and data path circuits. 

Without DFF 

Absolute Area 
p * * 2  x 10-7 

40 

I I I I I I I I  
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K 

Figure 4 - Sum of Normalized Areas versus K Using DFF 

The data in Figure 4 are for PGAs with logic blocks that 
contain a D flip-flop. The figure gives several curves for 
different bit areas (programming technologies). It is clear, from 
the dip at K = 4, that a Cinput arbitrary logic block consistently 
achieves the lowest area. This minimum can be explained by 
the separate effect of K on active area and routing area, as 
follows: 

U 
2 3 4 5 6 7 8 9  

K 

Figure 3 -Area versus Kfor 1073-Cell Circuit 

Figure 3 gives example results for a 1073cell circuit. It is a plot 
of the absolute area required to implement a PGA versus the 
number of inputs to its arbitrary combinational logic block, K. 
There are two curves - one for a logic block with a D flip-flop, 
and one without. The programming technology, BA = 4 1 5 p  z, 

Active area is the product of the number of logic blocks and 
the area of each logic block. Figure 5 is a plot of the number of 
logic blocks and block size versus K using experimental and 
model data for a 1073cell circuit. The product of these two 
curves gives the total active area as a function of K. The 
number of logic blocks is a decreasing function of K because 
with larger K, a logic block can consume more standard cells, 
reducing the total number of blocks. The logic block area 
increases exponentially in K, as modeled by equation 1 in 
Section 3. 
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Since the two curves are monotonically increasing and 
decreasing in K, their product exhibits a clear minimum. This 
minimum is a function of the Bit Area. As BA increases the 
dotted curve in Figure 5 rises according to equation 1. This 
causes logic blocks with larger K to become more expensive in 
terms of area, and reduces the active-area minimum K. For all 
the experimental circuits, the active-area minimum K was 2, 3 
and 4 as the Bit Area was varied from 16OOcyn to 415 cyn to 
40 p n  respectively. 

-50 . ..-- 500 - 
.............. . 
l l l l l l l l  
2 3 4 5 6 7 8 9  

K 

Figure 5 - #Blocks and Block Area vs. K 

Routing area is the product of the number of logic blocks 
and the routing area per logic block. The routing area per block 
is the space taken by the routing tracks on two of the four sides 
of the logic block. Figure 6 is a plot of number of logic blocks 
and the routing area per logic block versus K, for the 1073-cell 
circuit. The routing area per block was observed to be an 
increasing function of K, as W was an increasing function of K. 
This effect occurs because as the number of pins in each logic 
block goes up, congestion (which is measured by W )  increases 
because more wiring has to occur in a smaller area. 

l l l l l l l l  
2 3 4 5 6 7 8 9  

K 

Figure 6 - #Blocks and Route Area per Block vs. K 

The routing area surrounding each logic block is a function 
of W ,  the number of tracks per channel, the programming 
technology size (BA ) and the size of the logic block itself. It can 
be derived by inspection of Figure 2 and is given by: 

Route Area Per Block = W2BA + 2 x W S G  

where S=dLogic Block Area. Note that the routing-area 
minimum K is highly dependent on the accuracy of W - because 
the routing area is dominated by a term proportional to W 2 .  The 
routing-area minimum K also varies due to programming 
technology, but the number tracks per channel, W ,  is the 
stronger influence. Because the global router is not accurate to 
an exact number of tracks, we can only extract general trends 
from the data. The trend is clear, however - the K that gives the 
minimum routing area ranges between three and four, and on 
average for the data in Figure 4, the minimum K is closer to 4. 

The total-area minimum K is a combination of the minimum 
K for the active and routing areas. However, because the routing 
area takes up from about 70% of the total area (for small bit 
areas) to over 95% (for large bit areas), it is the routing area that 
dominates. Hence, the total-area minimum K is near four, and 
varies little with programming technology. 

II. Logic Block Without D FlipFlop. Figure 7 is a plot 
of the sum of the normalized area over all circuits, using a logic 
block that does not contain a D flip-flop. This figure indicates 
that the best choice for K is in the same range (three to four), as 
for PGAs with logic blocks that contain a D flip-flop. The 
minimum-area K s  for active area and routing area exhibit the 
same behavior as described above. 

I I I I I I I I  
2 3 4 5 6 7 8 9  

K 

Figure 7 - Sum of Normalized Areas versus K Without DFF 

4.2 Utility of the D Flip-Flop 

We also sought to determine if having a D flip-flop in the 
logic block was beneficial. A PGA implemented using logic 
blocks without flip-flops requires more blocks than the same 
PGA implemented using logic blocks that have flip-flops. When 
there is no flip-flop each memory element must be implemented 
by a combination of several logic blocks. The technology 
mapping program, Chortle, showed that the number of logic 
blocks needed to implement each circuit increased between 1.9 
and 2.5 times when the flip-flop was removed from the logic 
block. The logic block size without a D flip-flop, however, is 
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about 2.1 to 2.5 times smaller depending on the programming 
technology. This means that the active area without using a D 
flip-flop is about the same, but because there are about twice as 
many blocks, the routing area will roughly double. Since 
routing area dominates the overall area, this indicates that i t  is 
always better to include a D flip-flop. 

versus Bit figure is a plot of Area Without Flip-Flop 
Area With Flip-Flop - -  

Area for each of the five circuits. It indicates when it is 
advantageous to use a flip-flop - if this quantity is greater than 
one, then it is better to use a flip-flop in terms of total area. The 
numbers at the end of each line in the figure are the number of 
standard cells in the original circuit. For all of the circuits, in 
varying degrees depending on what proportion of flip-flops they 
contain, it is clearly advantageous to include a flip-flop. The 
ratio remains nearly constant over the range of programming 
technologies. This occurs because the routing area dominates the 
total area, and routing area is predominantly a linear function of 
the bit area. Thus, the change in programming technology 
cancels out in the ratio calculation. 

Ratio of Area 
Without DFF to With DFF 

1073 244i 1 .........................................*.... 

100 415 800 1600 
Bit Area 

Figure 8 - Without DFF:With DFF versus Bit Area 

5 Concluslons and Future Work 

We have presented a procedure and a model for evaluating 
the effect of the complexity and functionality of the logic block 
on the area of Programmable Gate Arrays. The approach allows 
the investigation of a range of programming technologies, and 
takes the routing area requirements into account. Using this 
method, we have demonstrated that a good number of inputs to 
use for the arbitrary combinational logic block is between three 
and four, independent of programming technology. In addition, 
we have demonstrated that it is always advantageous to include 
a D flip-flop as part of the logic block, regardless of the 
programming technology. 

In the future, we will examine logic blocks that do not use 
lookup tables, such as AND-OR structures, to determine if more 
functionality per unit area can be obtained. We will also explore 
interconnection architectures with the aim of improving the 
density and speed of Programmable Gate Arrays. These projects 
will also require research in CAD tools for technology mapping, 
placement and routing. 
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