
The Effect of Logic Block Complexity on

Area of Programmable Gate Arrays

Jonathan Rose
Computer Systems Laboratory, Stanford University, Stanford, CA 94305

Robert J. Francis, Paul Chow, David Lewis
Dept. of Electrical Engineering, University of Toronto, Ontario, Canada M5S 1A4

Abstract
This paper explores the tradeoff between the area of a
Programmable Gate Array (PGA) and the functionality of its
logic block. A set of industrial circuits are implemented as
PGAs using tools for technology mapping, placement and
routing. A simple model allows the exploration of a range of
programming technologies, and accounts for the area required
by wiring. Experiments indicate that for combinational logic
blocks implemented using lookup tables, the best number of
inputs to use is between three and four, and that a D flip-flop
should always be included in the logic block. These results are
independent of the programming technology.

The logic block design is an important factor in the PGA
architecture. If it has insufficient functionality then too much
area must be devoted to the interconnection. If the block has
excess functionality then it may suffer from under-utilization
and wasted active area. We address two questions concerning
the logic block design: First, should the basic logic block
contain a D flip-flop? Our experiments indicate that the presence
of a D flip-flop in the logic block is always desirable, regardless
of the programming technology. Second, if the logic block
contains an arbitrary K to 1 combinational function, what is the
best number (K) of inputs to use? Our results show that the best
number of inputs remains nearly constant over a wide range of
programming technologies and was almost the same whether or
not the block contained a D fip-flop.

1 Introduction
2 Experimental Procedure

The Programmable Gate Array is an exciting new idea in
semi-custom integrated circuits that reduces the IC
manufacnuing time from months to minutes and prototype cost
fkom tens of kilodollan to under $100. The PGA was
introduced in [Cart861 and newer versions have been presented
in [Hsie87,Hsie88,ElGa88,ElAy88]. It is similar to a gate array
in structure, but can be field-programmed to specify the function
of the basic logic blocks and their interconnection. The
architecture of a PGA consists of its logic block function,
interconnection scheme, and U0 block design. In this paper we
focus on the logic block design, and study the effect of logic
block complexity on PGA area. We ignore speed considerations,
even though they are very important, because we need first to
determine the plausible architectures from an area perspective.

The architectural choices that affect the area of a PGA
depend on the programming rechnology, which is the underlying
method by which the logic function is configured and
connections are made. For example, the programming
technology used in Ijdsie881 creates logic functions using static
RAM lookup tables, and performs routing using pass transistors
and multiplexors. The PGA described in [ElGa88] uses an
anti-fuse for both logic and interconnection that, when blown,
causes two metal tracks to be electrically joined

This work was supported by DARPA Contract #N00014-87-K-Q828, and

NSERC Operating Grants #A4029 and #OGFQO36648.

To answer these questions, our approach is to implement a
set of circuits in a variety of logic blocks and programming
technologies, and determine the area required for each.

.. . -

Figure 1 - General Model of Logic Block

Figure 1 depicts the general architectural model used for the
logic block. It consists of a K-input arbitrary combinational
logic function (referred to as "Arb-K), connected to a D flip-
flop followed by a multiplexor that selects either the flip-flop
output or the Arb-K output. The multiplexor output is passed to
a tristate driver that can be enabled by another input or set
permanently on. To determine if the D flip-flop is beneficial,
two versions of this basic model will be considered: one that
contains the D flip-flop, and one that does not.

5.3.1
IEEE 1989 CUSTOM IN'IXGRA'IXD CIRCUITS CONFERENCE CH2671-6/89/0000-0015 $1 .OO 0 1989 IEEE

--

Authorized licensed use limited to: The University of Toronto. Downloaded on July 20,2021 at 01:04:50 UTC from IEEE Xplore. Restrictions apply.

The global architecture of the PGA under consideration is
shown in Figure 2. It is a regular array of identical logic blocks,
separated by horizontal and vertical routing channels. The
number of tracks in all of the routing channels, W, is the same.

The aim of the implementation procedure is to determine the
area of the PGA required to implement each original circuit. A
crucial notion in this method is that the number of logic blocks
required for each circuit in the realized PGA is determined by
the logic partitioning (step 1 below), rather than being pre-
specified as is normally the case with any gate array. Also, W is
determined by the placement and routing steps. With this
approach, we learn the kind of logic block that most naturally
fits each circuit.

W trulu pmr C h m m l

Logls Block

contain many combinational logic functions. The Chortle
program was developed to do this mapping. It uses a greedy
algorithm that tries to collapse as many of the origiual logic
cells as it can into each logic block. The result of this step is
a new netlist that interconnects only logic blocks. It is
functionally equivalent to the original circuit.

Perform the placement of the resulting netlist. This is done
using the Altor placement program [Rose85], which is based
on the min-cut placement algorithm Preu771. Altor makes
the array as square as possible.

Perform the global routing of the circuit. Global routing
determines the path of channels that each wire is to take, and
then determines the maximum number of tracks required in
each channel, W . The approach used is similar to the
LOCusRoute standard cell global routing algorithm described
in [Rose88], but is changed to fit the model in Figure 2.

Using W, the placement dimensions, and the model for logic
block area and routing pitch described in Section 3, the area
of the PGA required to implement the original circuit is
calculated.

Figure 2 -Routing Model of PGA

The procedure described below transforms each circuit
(originally in standard cell form) into a Programmable Gate
Array. It takes as input the following:

1. A logic circuit, in the form of a netlist of interconnected
CellS.

2. A description of the logic block of the form described in
Figure 1 - a value of K indicating how many inputs to the
Arb-K block, and whether or not it has a D flip-flop.

3. A programming technology, parameterized by the area it
requires, as described in Section 3.

The output of the procedure is the axea required to implement
the circuit for the specified logic block and programming
technology.

Procedure: For each logic block type and programming
technology:

1. Partition the original circuit into the current logic block.
This is sometimes called fechnoIogy mapping [Detj87], and
is a more difficult problem for PGA logic blocks with table-
lookup logic functions. This is because each logic block can

The above procedure makes the approximation that the
global routing track count determines the number of tracks
required in a channel. This is generally accepted as true for
unconstrained channel routers, but may not be true for more
constrained switch-based interconnection schemes. The work of
[E1Ga88] points out that the error in this assumption is only a
few tracks.

3 Architecture Model

The area calculation in step 4 above requires a model that
gives the logic block area and routing wire width as a function
of programming technology. To create a simple model of these
quantities, the programming technology is represented by one
parameter: the area required to store one bit, or the Bit Area
(BA). For example, in the Xilinx PGA [Hsie88], the Bit Area is
the area of a static RAM bit. In the Actel PGA [ElGa88] the bit
area is much smaller, the size of an anti-fuse, which is the
minimum square area of a metal wire FlAy881.

The area of a logic block of the form shown in Figure 1 is
also a function of the number of its inputs, and the amount of
fixed hardware it contains. An Arb-K block, because it can
implement any K to 1 logic function, requires 2K bits of
information to be stored in a lookup table, and so must have area
proportional to 2K. The routing and circuitry required to access
the Arb-K block, the area required by the D flip-flop (if it is

5.3.2

Authorized licensed use limited to: The University of Toronto. Downloaded on July 20,2021 at 01:04:50 UTC from IEEE Xplore. Restrictions apply.

present) and all other interconnection hardware is represented by
a second parameter, called the Fixed Area (FA). Using BA and
FA, we have the following expression for logic block area:

Logic Block Area = BA x 2K + FA (1)

In a 1 . 2 5 ~ CMOS process technology, FA has been estimated
to be 2100pmz for logic blocks without a D flipflop and
5100p2 for logic blocks that contain a D flip-flop. The Bit
Area for an S U M programming technology is about 4 o O p 2
and for an anti-fuse technology is roughly 40pm2. In our
experiments, we will vary the Bit Area between and above these
two values, to represent programming technologies based on
EPROM or Ferroelectric cells Fvan881, as well as potentially
faster technologies that may take much more area

An estimate of the area required by wiring is important in
determining the logic block because routing area can take up
from 50% to over 90% of the total area, depending on the
programming technology. To determine routing area the pitch
of the routing track as a function of programming technology is
required. Each routing track will need at least one bit of
information in it, and probably several - to determine if a set of
switches or fuses is open or closed. Since it is difficult to
physically design a bit with highly non-square aspect ratios, the
pitch of a routing track is approximated as the square root of the
area required by a bit, i.e. Routing Pitch = a.
4 Experimental Results

corresponds to an SRAM-based approach [Hsie88]. Using
similar data for all of the circuits, with a range of programming
technology sizes, the questions raised in the introduction were
addressed.

4.1 Number of Inputs to Logic Block

1. Logic Block Contains D FlipFlop. Figure 4 is a plot
of the sum of the normalized area of all the circuits versus K,
where normalized area is defined as follows: Let the area
required to implement original circuit number i in a PGA using
a logic block with k inputs to the combinational block be &.
The normalized area for that circuit, Ni, is given by:

The s u m of the normalized areas over all five circuits for a given
5

k is given by ZNi.

2o 1
-BA = 1 6CQpmn2 ' BA - -*2

Sum of =% BA 415m**2
Normalized Areas

.- . I //'-BA= . 1,-

The circuits used in these experiments are five standard-cell
circuits obtained from Bell-Northern Research. They range in
size from 420 to 1681 standard cells, and consist of a mix of
random logic and data path circuits.

Without DFF

Absolute Area
p * * 2 x 10-7

40

I I I I I I I I
2 3 4 5 6 7 8 9

K

Figure 4 - Sum of Normalized Areas versus K Using DFF

The data in Figure 4 are for PGAs with logic blocks that
contain a D flip-flop. The figure gives several curves for
different bit areas (programming technologies). It is clear, from
the dip at K = 4, that a Cinput arbitrary logic block consistently
achieves the lowest area. This minimum can be explained by
the separate effect of K on active area and routing area, as
follows:

U
2 3 4 5 6 7 8 9

K

Figure 3 -Area versus Kfor 1073-Cell Circuit

Figure 3 gives example results for a 1073cell circuit. It is a plot
of the absolute area required to implement a PGA versus the
number of inputs to its arbitrary combinational logic block, K.
There are two curves - one for a logic block with a D flip-flop,
and one without. The programming technology, BA = 4 1 5 p z,

Active area is the product of the number of logic blocks and
the area of each logic block. Figure 5 is a plot of the number of
logic blocks and block size versus K using experimental and
model data for a 1073cell circuit. The product of these two
curves gives the total active area as a function of K. The
number of logic blocks is a decreasing function of K because
with larger K, a logic block can consume more standard cells,
reducing the total number of blocks. The logic block area
increases exponentially in K, as modeled by equation 1 in
Section 3.

5.3.3

. .

Authorized licensed use limited to: The University of Toronto. Downloaded on July 20,2021 at 01:04:50 UTC from IEEE Xplore. Restrictions apply.

Since the two curves are monotonically increasing and
decreasing in K, their product exhibits a clear minimum. This
minimum is a function of the Bit Area. As BA increases the
dotted curve in Figure 5 rises according to equation 1. This
causes logic blocks with larger K to become more expensive in
terms of area, and reduces the active-area minimum K. For all
the experimental circuits, the active-area minimum K was 2, 3
and 4 as the Bit Area was varied from 16OOcyn to 415 cyn to
40 p n respectively.

-50 . ..-- 500 -
.............. .
l l l l l l l l
2 3 4 5 6 7 8 9

K

Figure 5 - #Blocks and Block Area vs. K

Routing area is the product of the number of logic blocks
and the routing area per logic block. The routing area per block
is the space taken by the routing tracks on two of the four sides
of the logic block. Figure 6 is a plot of number of logic blocks
and the routing area per logic block versus K, for the 1073-cell
circuit. The routing area per block was observed to be an
increasing function of K, as W was an increasing function of K.
This effect occurs because as the number of pins in each logic
block goes up, congestion (which is measured by W) increases
because more wiring has to occur in a smaller area.

l l l l l l l l
2 3 4 5 6 7 8 9

K

Figure 6 - #Blocks and Route Area per Block vs. K

The routing area surrounding each logic block is a function
of W , the number of tracks per channel, the programming
technology size (BA) and the size of the logic block itself. It can
be derived by inspection of Figure 2 and is given by:

Route Area Per Block = W2BA + 2 x W S G

where S=dLogic Block Area. Note that the routing-area
minimum K is highly dependent on the accuracy of W - because
the routing area is dominated by a term proportional to W 2 . The
routing-area minimum K also varies due to programming
technology, but the number tracks per channel, W , is the
stronger influence. Because the global router is not accurate to
an exact number of tracks, we can only extract general trends
from the data. The trend is clear, however - the K that gives the
minimum routing area ranges between three and four, and on
average for the data in Figure 4, the minimum K is closer to 4.

The total-area minimum K is a combination of the minimum
K for the active and routing areas. However, because the routing
area takes up from about 70% of the total area (for small bit
areas) to over 95% (for large bit areas), it is the routing area that
dominates. Hence, the total-area minimum K is near four, and
varies little with programming technology.

II. Logic Block Without D FlipFlop. Figure 7 is a plot
of the sum of the normalized area over all circuits, using a logic
block that does not contain a D flip-flop. This figure indicates
that the best choice for K is in the same range (three to four), as
for PGAs with logic blocks that contain a D flip-flop. The
minimum-area K s for active area and routing area exhibit the
same behavior as described above.

I I I I I I I I
2 3 4 5 6 7 8 9

K

Figure 7 - Sum of Normalized Areas versus K Without DFF

4.2 Utility of the D Flip-Flop

We also sought to determine if having a D flip-flop in the
logic block was beneficial. A PGA implemented using logic
blocks without flip-flops requires more blocks than the same
PGA implemented using logic blocks that have flip-flops. When
there is no flip-flop each memory element must be implemented
by a combination of several logic blocks. The technology
mapping program, Chortle, showed that the number of logic
blocks needed to implement each circuit increased between 1.9
and 2.5 times when the flip-flop was removed from the logic
block. The logic block size without a D flip-flop, however, is

5.3.4

Authorized licensed use limited to: The University of Toronto. Downloaded on July 20,2021 at 01:04:50 UTC from IEEE Xplore. Restrictions apply.

about 2.1 to 2.5 times smaller depending on the programming
technology. This means that the active area without using a D
flip-flop is about the same, but because there are about twice as
many blocks, the routing area will roughly double. Since
routing area dominates the overall area, this indicates that i t is
always better to include a D flip-flop.

versus Bit figure is a plot of Area Without Flip-Flop
Area With Flip-Flop - -

Area for each of the five circuits. It indicates when it is
advantageous to use a flip-flop - if this quantity is greater than
one, then it is better to use a flip-flop in terms of total area. The
numbers at the end of each line in the figure are the number of
standard cells in the original circuit. For all of the circuits, in
varying degrees depending on what proportion of flip-flops they
contain, it is clearly advantageous to include a flip-flop. The
ratio remains nearly constant over the range of programming
technologies. This occurs because the routing area dominates the
total area, and routing area is predominantly a linear function of
the bit area. Thus, the change in programming technology
cancels out in the ratio calculation.

Ratio of Area
Without DFF to With DFF

1073 244i 1 ...*....

100 415 800 1600
Bit Area

Figure 8 - Without DFF:With DFF versus Bit Area

5 Concluslons and Future Work

We have presented a procedure and a model for evaluating
the effect of the complexity and functionality of the logic block
on the area of Programmable Gate Arrays. The approach allows
the investigation of a range of programming technologies, and
takes the routing area requirements into account. Using this
method, we have demonstrated that a good number of inputs to
use for the arbitrary combinational logic block is between three
and four, independent of programming technology. In addition,
we have demonstrated that it is always advantageous to include
a D flip-flop as part of the logic block, regardless of the
programming technology.

In the future, we will examine logic blocks that do not use
lookup tables, such as AND-OR structures, to determine if more
functionality per unit area can be obtained. We will also explore
interconnection architectures with the aim of improving the
density and speed of Programmable Gate Arrays. These projects
will also require research in CAD tools for technology mapping,
placement and routing.

6 Acknowledgements

The authors are grateful to Grant Martin of Bell-Northern
Research for supplying the circuits and cell functional
descriptions.

7 References

[Brcu77]
M.A. Breucr, “Min-Cut Placement,” Journal of Design Automation
and Fault-Tolerant Computing, pp. 343-362, Oct 1977.

L-61
W. Carter et. al, “A User Programmable Reconfigurablc Gate
Array,” Proc. 1986 CICC, May 1986, pp. 233-235.

E.Dctjens et. al, “Tcchnology Mapping in MIS”, Proc. ICCAD 87,
Nov 1987,pp. 116-119.

[Dctj871

[E ~ A Y ~ ~ I
K. El-AyaL
Array,” Proc. 1988 ISSCC, pp. 76-77.

A. El Gama e t al. “An Architccturc for Electrically Configurablc
GatcArrays.”Proc. 1988 CICC, May 1988,pp. 15.4.1 - 15.4.4.

et. al. “A CMOS Electrically Configurable Gate

[EIGa88]

[Evan881
“An Expcrimcntal 512-bit Nonvolatile Memory with Fcrroclcctnc
Storage Cell,” J.T. Evans, R. Womack, IEEE JSSC. Vol 23, No. 5,
Oct. 1 9 8 8 , ~ ~ . 1171-1175.

[Hsie87l
H. Hsieh et. al. “A Second Generation User Programmable Gate
Array,’’ Proc. 1987 CICC, May 1987, pp. 515-521.

[Hsie88]
H. Hsich, et. a1 “A 9OOO-Gate User-Programmable Gate Array,”
Roc. 1988 CICC, May 1988, pp. 15.3.1 - 15.3.7.

[Rosc85]
J. Rose, Z. Vranesic, W. M. Snclgrove, “ALTOR An Automatic
Standard Cc11 Layout Program,” Roc. Can. Cod. on VLSI, Nov.

1985, pp. 168-173.
[Rosc88]

J. Rose, “LocusRoutc: A Parallel Global Router for Standard Cells,”
Proc. 25th DAC, June 1988, pp. 189-195.

5.3.5

Authorized licensed use limited to: The University of Toronto. Downloaded on July 20,2021 at 01:04:50 UTC from IEEE Xplore. Restrictions apply.

