
A Multi-Disciplinary Mobile Applications Project Course at the
Graduate Level

Jonathan Rose1, Braiden Brousseau1, and Alexandra Makos2
1Department of Electrical and Computer Engineering, University of Toronto, Ontario, Canada

2Ontario Institute for Studies in Education, University of Toronto, Ontario, Canada

Abstract— We describe five years of experience and learn-
ing with a graduate project course that brings together
students from many disciplines – health, education, music,
science, etc. – with graduate-level programmers from Com-
puter Engineering and Computer Science. The goal of the
course is to create a prototype of a mobile application in the
field of the non-programmer. The course provides experience
in cross-discplinary ideation, interaction and communica-
tion, and has resulted in a number of exciting ideas. This
paper describes the structure of the course as it has evolved,
with commentary on what works and does not, including
assignments, group forming, and project milestones. We then
describe a few of the specific project outcomes, give a
general sense of the remainder, and describe issues and
future directions for the course.

Keywords: Projects, Multi-Disciplinary, Mobile, Wearable

1. Introduction
In 2007, mobile technology took a revolutionary leap with

the introduction of the iPhone, and the subsequent opening

of the programmability of that phone to anyone who could

program a computer. Mobile and wearable technology bring

together a powerful internet-connected computer with novel

sensors and output devices that have enabled incredibly

creative new applications in almost every field of endeavour,

giving rise to perhaps one of the greatest surges of creativity

in human history. The ubiquity of these smart mobile devices

means that many people are inspired to conceive their own

ideas for new applications, but only those skilled in the art

of programming can create them. However, people without

programming skills do have great expertise and ideas that

could drive new applications if they were somehow enabled

to make them. Conversely, the set of ideas from those in the

programming disciplines is limited by their area of expertise,

which is often purely technical.

Our notion, begun in 2010, was to bring together students

at the graduate level in many disciplines, together with

graduate-level programmers to work collaboratively to create

prototype applications in the field of the non-programmer.

Our assumption was that students at the graduate level

in various disciplines would bring a level of expertise

understanding and insights from their field, to drive new

applications that would either aid them in their research, or

do something novel in their general field. We also assumed

that graduate-level programmers would have the skills and

drive to create a high-quality prototype in the short time

frame of a single-semester course.

We also saw the course as an experiment in inter-

disciplinary project work that would benefit students of both

types by exposing everyone to issues in inter-disciplinary

communciation and engineering project work.

The results have been delightful and inspiring, rising to

the level of pointing out new directions for research. There

have been students from many disciplines taking the course

- medicine, music, psychology, anthropology, biomedical

engineering, education and many more - together with many

students from computer engineering and computer science.

Universities have a unique ability to create experiences such

as this; one reason for writing this paper is to describe

how relatively easy it is mount this kind of course, and to

encourage others to do so.

This paper is organized as follows: the next section

describes the two fundamental natures of students taking

the course, their requirements, and the implicit bargain they

make in undertaking the project. The subsequent sections

describe the structure of the course - the project structure,

lecture content, and assignments. We then describe several

specific projects as example outcomes, and give a general

account of the larger number of projects over the five years.

Finally, we describe several issues and our plans for dealing

with them in future iterations of the course.

2. Student Types and the Bargain
The fundamental assumption of the course is that there

are two types of students: those who bring programming

skills and experience (called, quite naturally, Programmers)

and those who bring expertise and knowledge from another

discipline. The latter we call Appers, rather than the more

obvious but negatively connotated ‘non-programmers’. Early

on, by the second lecture, students must declare whether

they are a Programmer or an Apper, as they will follow two

different paths. It is also possible for a student to declare as

both, if that they possess the requirements of both.

We require that a Programmer has fairly extensive course-

based and project-based software experience. Our experience

has found that those with limited programming backgrounds

Int'l Conf. Frontiers in Education: CS and CE | FECS'15 | 141

(perhaps having taken just one or two introductory program-

ming courses) are unable to both learn the mobile program-

ming environment and make a meaningful contribution to the

project. For this reason we ask the Programmers to describe

their relevant course work and project experience as part of

their first assignment. The criteria for a Programmer are:

1) Two introductory programming courses, including one

that describes data structures and algorithms. The latter

course should not be theory-only, but include practical

programming assignments.

2) Several courses in the areas of operating systems,

graphics, databases or software engineering. These

kinds of courses often have intensive programming

experiences in which students have to work on large

amounts of code in a short amount of time - crucibles

for good programming experience.

3) Project experience in which the Programmer has per-

sonally created a relatively large amount of code

in a functional programming language - preferably

2000 lines or more. This experience can be in prior

course projects or capstone design projects, or in

internship/work experiences.

If the student’s qualifications appear to be insufficient, then

we have a conversation to establish a clearer understanding

of their background. If the background is not strong enough,

we ask the student to leave the course.

A key requirement of the Appers is that they bring

expertise from a specific discipline. An easy example would

be a medical doctor taking a graduate degree, who clearly

brings the expertise of medical practice and perhaps even

a specialty. Another example is a graduate student in an

education research program who brings expertise in the

understanding how people learn. There are many more good

examples from graduate students in music, psychology, and

civil engineering; several of these will be describe in the

examples section below. We have allowed Appers in one

graduate field to make a ‘claim’ to expertise in another

field - for example, an Electrical Engineer who had spent

a good part of his life composing music wanted to drive an

application in the music composition field. Upon discussion,

he was able to substantiate this claim with sufficient expe-

rience. On occasion, Appers arrive in the course, but are

unable to make a clear claim to a specific area of expertise.

Our experience has shown that these students will both have

trouble attracting programming partners (an important part of

the course process described below), and that if they do, that

the resulting proposal and project is weak and un-directed;

we now move to suggest that these students leave the course.

(In both cases, asking students to leave is not a pleasant

experience for them, but it is far better than the struggles

we have seen in previous years when they stay).

The expertise of the Apper is an essential element of the

course, as is the high-level programming capability of the

Programmer(s). We view the course as a bargain between

these two parties - the Apper brings multiple years of

expertise in a field providing knowledge and insight that lay

people do not have, and sometimes access to sophisticated

facilites that can aid the project. An example of the latter

is an Apper in rehabilitation sciences who has access to a

rehabilitation measurement lab and equipment that could

be used to measure the accuracy of a smartphone-based

instrument. The Programmers give, in return, their labour,

programming skill and technical insights as to what is

possible, feasible and achievable.

This gives rise to one of the key rules of the project: the

application must be within the field of the Apper, and not

something else for which they have an idea, but no expertise.

This rule is rather important, as some number of Apper

candidates arrive in the course with ideas for applications

quite outside of their field – perhaps wanting to make a game

or some kind of social networking app unrelated to their

field. While these might be good ideas, without the backing

expertise there is less likliehood of novelty and authoritative

insights.

3. Project Structure
The central goal of the course is to form an inter-

disciplinary team and to create a prototype of a novel mobile

application in the field of the Apper. The timeline of the 14

week course is given in Table 1; this section will describe

the core components of each activity.

Week(s) Project Activity

1-2 Introduction & Team forming
3 Idea Forming
4 Approval-in-Principle
5 Written Proposal/Plan Due
6 Proposal/Plan Presentations (extra lecture)
7 Reading Week - no class, work though!
8 User Experience Lecture
9-10 Spiral 2 Presentation & Demo
11-12 Spiral 4 Presentation & Demo
13-14 Final Presentation & Demo

Table 1: Project Timeline

3.1 Team Forming and Vetting of Students
Perhaps the most difficult and chaotic part of the course is

the process of forming teams. After some experimentation,

we have landed on specifying that a team should consist of

one Apper and two Programmers. It makes sense to have

one domain expert in a project; on occasion a sginle student

has served as both Apper and Programmer. We have found

that the typical amount of programming work is extensive

and likely too much for one person, and hence the two

Programmers. Two programmers also serve to help each

other learn any new material in the event that one gets stuck.

The scope of the projects involves such a large range of the

computer engineering stack that multiple programmers can

142 Int'l Conf. Frontiers in Education: CS and CE | FECS'15 |

complement each other’s specific expertise in the various

areas such as web/server, UI, optimization, and computer

vision. On the other hand group dynamics become more

difficult with three Programmers, and so we allow this only

under exceptional circumstances (typically if another group

disintegrates and a Programmer is looking for a home, we

will assign that person to a group with particularly ambitious

programming needs).

One explicit rule of the course is that a student can only

stay in the course if they successfully become part of a

team. This requires a 2:1 ratio of Programmers to Appers,

which can only be in-directly enforced by the rule; however

our experience has been that this ratio has always roughly

been present, even at the beginning of the course. Previous

research suggests that allowing students to choose their own

teams results in choices that are based on a mixture of

predictions of success (i.e. choosing people who will help

them succeed) and finding partners who are self-similar [1],

the latter limiting the former. There is one extra constraint

in our projects that influences us to allow student-led group

selection: we want everyone to be excited by the topic of

the project they are working on, and so want the team

forming to include this freedom of choice. So, a Programmer

who is keen on doing a sports-oriented application can

freely gravitate towards an Apper in Kiniesology, rather than

someone in the Education program.

For students to find out about potential partners, the very

first assignment for both Programmers and Appers requires

them to both describe themselves in writing, and to make

a video - both of which are posted on a course-accessible

website. In both, the Programmers are asked to describe

their background, their software project experience, and what

kind of project they are interested in. This is used by the

instructors and TAs to ensure that their software capability

is sufficient to withstand the stress of the course, as their part

of the ‘bargain’ described in Section 2. It is also used by

the Appers to evaluate the capabilities and communication

skills of potential partners.

In the document and video, the Appers are asked to define

their area of expertise, and to float ideas of what they have

been thinking about as potential applications. We assume

that every Apper has already pondered this question, as that

is the reason they were taking the course! The instructor

and TAs use this information to determine if there is a

clear definition of expertise (which is the Apper’s side of

the bargain).

Since a large part of the course consists of communication

that is both written and verbal, we feel that having students

displays their communication capability early on is impor-

tant.

In the 2015 year we took a new approach to forming

teams, encouraging Programmers to find a compatible pro-

gramming partner first (who they’d like to work with, and

who has similar areas of interest when seeking a topic and

Apper). After forming a pair, the team would interact with

Appers to find their third partner. We provided an extra week

for this pairing step to take place.

In previous years we have finalized the team-forming

process by having a separate class get-together, in the

evening to close on finding a team. At this event we have

the Appers give one minute summaries of their area/ideas,

verbally, and then have the Programmers informally talk to

potential partners. In the current year with the extra time

available, many of the groups were formed prior to this point

in time, and so the extra time was used to have the un-

attached Appers make 3-minute pitches to the un-attached

Programmers. This latter process was possible as there were

only a 5 un-attached Appers at that point, and three pairs of

Programmers. This did mean that two Appers were unable

to continue in the course.

In addition to the viewing of the written documents and

video (which are due within the first week of the course),

several other opportunities are given for the students to

get to know each other. The last parts of the first and

second lectures, are used for the Appers and Programmers

to introduce themselves and talk about their background and

ideas. We use these very informal statements as opportunities

for class-wide discussion of ideas, leading into the idea

creation phase, next.

3.2 Idea Creation and Approval-in-Principle
As the teams are forming, and once they are formed, there

is much informal discussion of project topics. As discussed

above, the topic must be in the field of the Apper. As this is a

graduate course, the scope can include mobile applications

that might help the Apper in their graduate-level research

(for example help collect data among patients in a novel

way) or be something that would augment their field more

generally (such as a teaching aid in education). The Apps

may well be something that could be commercialized, but

this possibility of a research/field mandate sets the scope to

be super set of those applications that are of commercial

value.

Teams are encouraged to propose ideas via email to

the instructor and TAs to get rapid feedback. The projects

proposed must be of sufficient technical depth; this is some-

times a function of the Programmers’ capabilities. This rule

prevents simple information-based apps that would be the

mobile equivalent of a document. There must be something

that has some learning/challenge/effort at the graduate level

of the Programmers. The instructor reserves the right of

approval on this basis, and it is done informally via email.

Some of the ‘ideation’ is driven by the content of the first

four lectures, which describe the capabilities of mobile and

wearable devices, and give examples using those capabilities,

as described below in Section 4. The key milestone is

to received ‘approval-in-principle’ on the topic and rough

scope, and is due in week four of the course.

Int'l Conf. Frontiers in Education: CS and CE | FECS'15 | 143

At this point (and the next) in the process, it is crucial

to spot and correct especially fuzzy thinking - it is not

uncommon for there to be an unfocused idea that is too broad

and lacking in clarity. If left uncorrected, the final project has

typically been poor. Sometimes, the act of enforcing focus

reveals an inability to do so, and it is better for the student

to leave the course at this point. Other times students given

clear feedback on the need for focus and clarity return with

far superior ideas-in-principle.

3.3 Proposal/Plan
Given approval-in-principle, the team is now asked to

write a short proposal and plan of app structure/work. A

written proposal/plan is due in week five, and is presented

in week six.

The proposal reiterates what the project is, and its motiva-

tion. The plan gives a rough design of the overall structure

of the work, and a set of milestones to be achieved of

the ensuing six weeks. For the structure, we encourage

students to present a block diagram of the entire functionality

of the App and any connected hardware or software. The

Appers are typically unfamiliar with the notion of a high-

level block diagram; it is also surprising that a subset of

the Programmers are also unfamiliar. Hence we review the

concept, and illustrate it with a discussion on what would

be involved in a hypothetical application’s block diagram.

One of the most exciting parts of the course comes in

the ideation phase: because many Apps are connected to

us as humans (being portable), we can all fairly easily

imagine ourselves using a proposed application, and to

ponder whether it will work, and what else it might do. We

call this process ‘living within’ the proposed Application.

That is, we mentally place ourselves within the context of

using the App, and see if there are new and related ideas

that could bring more capabilty/functionality. To teach this

notion, we have the class as a unit live in a particular

example; an App that measures the ability of a person to

balance, as a metric of sobriety. We then ask how this

functionality might be used - by police, bartenders, spouses,

etc. and how that might work. Over the years of the course,

some wonderful inspirations have resulted from this process,

some of which are described in Section 6.

The proposal presentation is limited to six minutes - every

presentation in the course has a similarly short time limit;

not only to allow the acommodation of up to 20 projects, but

to ensure brevity and clarity. The class as a whole along with

the TAs and instructors respond by providing feedback and

asking questions. We also provide written feedback along

with the grade for the proposal/plan. This point in time

is also key for providing projects with a lack of focus or

incorrect scope the needed guidance.

For the plan, we advocate making use of the general

engineering method known as the agile or incremental or

spiral method: the idea is to make the simplest evocative

prototype as soon as possible, and then iterate on it, adding
improvements. The weeks from the proposal/plan week are

numbered starting from week 0 in the plan. We suggest

selecting clear target of functionality for a prototype be ready

as soon as week 1 is over, and call that the ’Spiral 1’ target.

Subsequent weeks are Spiral 2, 3 and so on. As such, the

plan isn’t required to have much detail as the subsequent

goals are more readily identified as time progresses, as per

the spiral/agile method [2].

An important part of the proposal presentation is from the

Apper, who typically gives the introduction and motivation

sections; we also ask the Apper to describe what their

role will be in the project execution, and what else they

will bring. Two examples of this are the use of laboratory

facilities that can help in measurements the project/App

makes, or the application of their expertise in music analysis.

We believe that one of the key reasons for the success of

the projects in this course is the requirement that students

present, in the class, their progress and a demonstration of

the partially-working App, as of the Spiral 2 and Spiral 4

deadlines, prior to the final presentation and demo. This

forces work to happen at regular pace - hard deadlines and

a public presentation are very focusing!

Since it takes roughly four hours to do the proposal/plans

for 15-20 projects, and our lecture is only 2 hours/week,

we have added in an extra lecture for the proposal week to

launch everyone at the same time.

Finally, at the proposal stage, we ask the team to give a

name to their project/app. This name becomes the label by

which we refer to the project, and very quickly becomes the

identity of the team.

3.4 Execution and Demonstrations
The final six weeks of the course are devoted to the

work to build the prototype, and the series of interim and

then final presentations/demos. The actual work goes on

outside of class, and the students must meet regularly to

make that happen. As we typically have on the order of

15-20 projects, it takes one entire lecture to get through

ten of these presentations, including time for feedback and

questions. The Spiral 2 and 4 presentations are required to be

5 minutes long, and are similar in structure: a quick reprise

of goal, a description of the progress made, a demonstration,

and then a plan for what the next demo will bring. The

class and instructors respond with questions, feedback and

suggestions. These cover everthing from helping to solve

technical challenges (or warning of some to come), re-

directing the goals in the face of new issues or exciting

discoveries, as well as feedback and suggestions on the

quality of the presentation itself. The presentation is graded

and given additional written feedback.

The final presentation and demonstration happens in the

last two weeks. The students are given a longer presentation

time (8 minutes), and asked to make a presentation that is

144 Int'l Conf. Frontiers in Education: CS and CE | FECS'15 |

self-contained. You can view the videos of many of the final

presentations from 2013 [3], 2014 [4] and 2015 [5].

4. Lecture Content
The lecture content is confined largely to the first five

lectures. Some of the content is the project organizational

structure, described above. The key material is a description

of the capabilities of mobile technology, and examples of

their use in applications. These applications include prior

projects in the course, and interesting and innovative ap-

plications from the literature and commercial world. The

series of lectures can be found by going to the link in this

reference [6], and clicking on the ‘Content’ link.

The stunning capabilities of mobile technology arise

from the miniaturization of integrated circuit and sensor

technology - the one portable device contains a powerful

computer, a high-speed connection to the internet, a high-

resolution screen, high-quality sound output, and a series of

cheap but accurate sensors: the accelerometer, gyroscope,

magnetometer, microphone, light sensor, proximity sensor,

GPS and barometer. Remarkably, the sensors are sampled

at rates ranging from 10 to 100 samples/second, providing

very frequent measurements of acceleration, angular motion,

light, magnetic fields, air pressure and more. The processor

glues all of these sensors and outputs together with all of the

algorithms ever developed in computing. Generally speak-

ing, most people do not know about all of these different

sensors; they may have used them inadvertently without even

knowing that they exist. The details and example uses of

these sensors, described in detail in Lectures 1, 2 and 3 are

a key source of ideation.

There are also some extraordinary examples of the use

of these sensors - for example, the digital signal processing

algorithms developed in [7] are able to infer a human’s heart

rate by analyzing video of a person’s face – the invisible-to-

the-human-eye change in colour with each heartbeat can be

detected with under 20 seconds of video. This super-human
capability is inspiring, and we suspect there are many of

these that can be used in future-looking applications.

More recently there has been a surge of smaller wearable

devices that are wirelessly connected to the smartphones.

Thes have sensors in smaller, more portable/wearable pack-

ages. One low-cost example is the $29 ‘Sensor Tag’ from

Texas Instruments [8], which is a bluetooth-connected set of

buttons, accelerometer, gyroscope, magnetometer, humidity

sensor, ambient temperature sensor, and directional temper-

ature sensor. Another example is the ‘Node’ sensor from

Variable Inc., which includes the accelerometer, gyroscope

and magnetometers in the base unit, and can add two other

sensors either end - temperature, weather, colour, gas and

many others [9]. Even smaller are the bluetooth-connected

trackers that can indicate the presence or absence of anything

they are attached to – for example the TrackR device [10].

5. Assignments
The first month of the course is taken up with two key

tasks: the Programmers and Appers need to come up to speed

on the mobile programming environment, and, as described

above, form teams and generate ideas for projects. In the

following sections we describe the assignments, which can

be viewed under the Assignments link of [6].

5.1 Programmer Assignments
For the Programmers, this part of the course is like many

other programming courses in which they learn about a new

kind of programming paradigm/environment and infrastruc-

ture by doing assignments that take them from the simple

basic capabilities to the complex. The challenging part is that

they have to do this in one month, rather than 3 months for a

typical undergraduate course. We rely on the fact that these

Programmers are at the graduate level, and have experience

and sophistication and so are able to pick up the material

more quickly. The four assignments described below cover

the basics that almost every App in the course will need:

1. Development Environment & Simple Widgets. This is

the basic environment set-up, creating the first simplest pro-

gram (‘hello world’) and making a slightly more complicated

App that receives user input, and produces a few outputs.

At this point the Programmers have to have chosen which

environment they will use for the course - typically Android,

but some choose iOS. This choice is important, as they will

have to find a programming project partner who wants to

work in the same environment. For learning resources we

use both the online Android documentation and one of two

book series [11] [12]. All the assignments give sections of

the texts to read.

2. Containers, Fragments, Select, Lists and Files. This

assignment teaches the basic methods to display lists of

items - a very common attribute of many Apps - and how

to store information and retrieve it from files. It also teaches

how users provide various kinds of input,and conveys the

basics of the view hierarchy of both Android and iOS.

Students who are unfamiliar with event-driven systems will

be exposed to various aspects of that concept.

3. Location, Motion Sensors and Image Capture. This

assignment gives exposure to several of the key capabilities

of modern mobile devices - determining the geopgraphic

location of the phone, measuring its motion through the use

of the accelerometer, and capturing images from the camera.

Many applications make use of one or more sensors.

4. Threads, Databases and Network Connections The final

assignment deals with creating a local SQL database, and

spawning threads to perform tasks independent of the basic

User Interface thread. These are important as many apps

require databases, and often perform compute or network

tasks that would slow down the user interface if they were

not spawned as a separate thread.

Int'l Conf. Frontiers in Education: CS and CE | FECS'15 | 145

5.2 Apper Assignments
The goals of the assignments for the Appers is to expose

them to the capabilities of mobile technology, to explore

what has already been done in mobile in their field, to give

them experience in the user interface design, to be exposed to

language and concepts of one essential capability/discipline

of computer engineering, and to practice being creative in

the mixed milieu of technology and their field. It is worth

noting that in the first version of the course in 2011, we had

the Appers try to learn a simple form of programming, based

on a visual programming framework called Google App

inventor that itself was based on the MIT Scratch environ-

ment [13]. We found that the Appers with no programming

background were easily able to do very simple apps with a

few buttons that cause actions. However, once the concepts

of variables and loops were in play, they quickly became

lost. In subsequent years we focused the Appers towards

understanding capabilities of mobile devices, understanding

computer concepts and creativity exercises. The four current

assignments for Appers are:

1. Connecting Your Field to the Mobile Devices Field.
Here the Appers are asked to survey the landscape of

mobile applications in their own field - they are to look

at descriptions of five different applications (available on

an App Store or described in a paper) in their field and

write a 100 word summary of it. Then, they are to acquire

one of these Apps (one that they can run on their own

mobile device) and to write a more extensive review of it,

including its motivation, why it is interesting, how it works

and suggestions on how to improve it. This is important so

that the student can get a sense of the prior art, and when it

comes to inventing their own ideas, not replicate what has

been done.

2. App Design Principles, Mockingbird & Practice. One

part of the project that all Appers can participate in actively,

is the user interface look and feel. There exist a number

of different free, online tools for both drawing and linking

different screens of an App [14][15] [16] These tools are

quite easy for anyone to learn, as they are similar to regular

picture-drawing programs. The assigment asks the Appers to

first read about some basic principles of user interface design

(provided by Apple [17] and Android [18]) and to practice

building simple designs using one of the above tools. Then,

they are asked to create the complete user interface design

and flow/links between screens for a specific application.

At the same time, to get the ‘creative’ juices flowing, the

assignment asks them to invent a new application based on

a specific novel capability - in this case the ability to listen

to a conversation among multiple people and determine what

fraction of the conversation each person takes up.

3. Understanding Parts of the Canvas. The third assign-

ment makes use of the fact that the Apper will have formed a

team with two other Programmers at this point. The assign-

ment gives a set of basic technologies/capbilities present in

all modern networked computers – search, databases, signal

processing, optimization, and internet communication – and

asks the Apper to choose one of these. They must then spend

time with their programming partners to learn from them the

basics of this capability, and then to explain what they’ve

learned in their own words. After that they are asked to

do their own independent research to augment what they’ve

learned and to write that up at a later time. The goal here

is to have the Apper cross over into the technical realm to a

certain depth - to understand what is being achieved in that

realm, but not really how it is done, as that is typically too

complicated. It also sets up a pathway of dialogue between

the partners in the team. Our expectation that dialogue in

the other direction (from Apper’s field to the Programmers)

happens naturally as part of the project.

4. Creativity, Sensors and You. The goal of this assignment

is to stimulate the creation of ideas, connecting to some of

the early lectures on capabilties of smartphones. The Appers

are asked to invent ideas for interesting Apps in their field

that make use of some of the smartphone sensors - the

accelerometer, gyroscope, barometer, camera, light sensor,

proximity sensor, humidity sensor, etc. It also asks them to

consider the amount of processing that might be needed in

their idea - for example, if they use a single picture, they’d

need to count the number of pixels to be processed in an

image, or much more for a video. The second part of the

assignment suggests several new sensors that may appear

in the future (a gesture sensor, an ultrasound imager, an

emotion sensor, a blood pressure sensor, and a brain activity

sensor) and asks the student to come up with ideas in their

field making use of these.

6. Outcomes
The course has been running for five years, with the fifth

year in flight as this paper is written. In total, including this

year, there will have been 95 completed projects with 76

Appers and 187 Programmers. The projects have been in

many of the areas that the University covers in its graduate

program, including Aerospace, Anthropology, Biomedical

Engineering, Drama, Education, General Medicine, Indus-

trial Engineering, Library Science, Music, Museum Studies,

Nusring, Pharmacy, Physiotherapy, Psychology, Rehabilita-

tion Science, and Surgery. It has been thrilling to watch

the teams come together and create novel and interesting

applications in these fields. It is clear that, in the best

projects, there is a great deal of inter-disciplinary learning

as the Programmers become familiar with the basic concepts

and language of their Apper’s discipline. For many of the

Appers it is their first experience in a serious engineering

project, and their exposure to the concepts of agile/spiral

development, and the complexity of software has been

a formative experience for them. The experience in the

course will enable them to more easily collaborate with

engineering development in the future, and possibly make

146 Int'l Conf. Frontiers in Education: CS and CE | FECS'15 |

them more likely to realize their ideas in collaboration with

an engineering team. It is also clear, from the increase

in quality of the presentations over the four opportunities

in the course, that the strong emphasis on communication

engenders significant improvements in many of the student’s

ability to communicate.

To illuminate some of the outcomes, we describe three

of the projects in more detail below, and provide a table

summary of several more after that.

6.1 iAnkle
The goal of the iAnkle project [19] was to help a person

with an injured ankle (either a break or sprain) recover.

This is done by both measuring the stability of the an-

kle and prescribing exercises to progressively improve the

stability. The Apper is a licensed Physiotherapist who was

completing a Master’s degree in public health. The basic

idea, conceived by the Apper, was to use the accelerometer

in a phone (tucked in a sock) to measure how much the

patient would ‘wobble’ when doing various kinds of balance

exercises, such as standing on one foot. The prototype both

quantified the wobble through measurement, and attempted

to prescribe successively harder exercises as progress was

made. The measurement with the phone’s accelerometer was

a proxy for far more expensive force plates that are used in

experimental physiotherapists labs, and the Apper, with the

help of the Programmers, was able to bring that to a low-

cost prototype that has the potential to be used by anyone

with a smartphone. This very exciting application continues

as a research project, with the Apper heavily involved.

6.2 Baton
The Apper in the Baton project [20] is an experienced

high school teacher who was taking a Master’s degree in

Education. He sought to find a better pathway of commu-

nication between a teacher and a class of students during a

class discussion. Rather than simply putting up one’s hand to

make a contribution, the students were to use a smartphone

application to indicate both an interest in communicating,

and also the nature of the contribution - either building on a

previous comment, contradicting it, or moving to a different

topic. The teacher’s receiving application (connected through

a server) would be notified of who was involved, and how

long they had been waiting to contribute. If you watch the

video available under the link [20] you’ll see the Apper and

Programmers give an eloquent demonstration of the concept.

6.3 Mindful Me
The Apper in the Mindful Me project [21] was a Ph.D.

student in Psychology, with a focus on the treatment of

addiction (to alcohol, drugs, tobacco, etc.). A standard way

that therapists ask a patient to help themselves is to ask

them to write into a journal a description of their cravings

– when they happen and under what circumstances. This is

used in a process of reflection and understanding, part of the

process of resisting a relapse. The Apper’s idea was to make

this journal into a smartphone application, to gain ease of

use and more privacy (as no-one would ask someone typing

on a smartphone what they are doing, whereas they might

ask about writing into a journal). A phone could also more

easily record time, and location (using the GPS) and possibly

other things about the state of the patient. During the inital

proposal and spiral 2 presentations a very interesting thing

happened - it became clear that a phone could not only act as

a recorder of events, it could become an actor that actually

influenced events. Consider an alcoholic who appears to

be moving towards his favourite bar (as monitored by the

GPS) or a drug addict heading towards the place where she

purchases her favourite drug. A phone could notice this and

try to intervene! This raised the very interesting question

of what such an intervention might be – such as the phone

playing a song, speaking a mindfulness text, or calling a

friend or sponsor. This is one example of how ‘living in’ an

App brought forth an exciting idea.

6.4 Summary of Selected Projects
Table 2 gives a short list of several other projects - their

name, year, and very short description. Longer descriptions

of each of these (a final written report and a video presen-

tation) can be found by looking under each year’s website

archive, which can all be found at the bottom of the page

of reference [6].

Year Name Description

2011 BrainEX Brain exercise to combat dementia
2011 Wound Capture Record wound assessment and treatment
2011 Whimper World noise mapping project
2012 EYEdentify Game helps autistic children learn emotions
2012 DriveMod Monitor and measure car driving quality
2012 SurgicalBlackBox Surgery video & data review/annotation
2013 Mobile Stage Augmented reality interactive theatre
2013 LunchTime Helping children learn to tell time
2013 SnapNDose Proper dosing of children’s medicine
2013 NewCanuck Helping immigrants learn local culture
2014 Speech Coach Helping speakers give better talks
2014 Surgical Trainer Measuring surgeon’s movements
2014 Critter Social Connections with Virtual Pets
2014 MyAlly Helping stressed/suicidal teenager’s
2015 flapCheck Monitoring recovery from plastic surgery
2015 Peptiblocks Game to find good protein folding
2015 PUPL Pupil light reaction measurement

Table 2: Selected Projects

7. Issues and Future Offerings
We have been very pleased and excited by the various

outcomes of the course, but there are a number of issues

with this kind of course that we list below, together with

some thoughts as to how we will revise the course to deal

with them.

Int'l Conf. Frontiers in Education: CS and CE | FECS'15 | 147

One key isssue relates to the Appers in the course – they

are required to do a fair bit of work at the beginning in terms

of the assignments described in Section 5, and the ideation

and proposal phases of the project. However, after that, the

amount of work and contribution by the Apper varies widely.

In the best cases, the Appers engage fully, doing the UI

design, active testing and feedback of various versions of

the software, comparison with laboratory measurements, and

sometimes even some programming. In other cases, there is

less active involvement and the Programmers have largely

taken over even some of the specification work. It is difficult

to prevent the latter, but it can be mitigated by careful vetting

of the Appers early on in the course, to ensure that they

have sufficient expertise and capability to contribute; we

have noticed a correlation between the expertise level of the

Appers and their ability to contribute.

A second issue is the quality of the feedback that we

provide the students. While there is quite a bit of feed-

back given verbally after each presentation when urgently

needed, and some written feedback, we feel that students

could benefit from more private and individual feedback

and guidance. This arises because of the very un-directed

nature and broad nature of the work in the project – for

some students, this is one of their very few experiences of

this kind (rather real-world) work. In a sense, each project

is like a miniature master’s thesis, and there is room for far

more constructive feedback. With the scale of students in the

course it is difficult to provide this level of feedback. We are

planning to re-think methods of providing better feedbak.

A third issue is recruiting of students. The University of

Toronto is one of the largest campuses in North America,

with 65,000 students total and 16,000 graduate students, in

many different departments. In the past we have ‘marketed’

the course by speaking with Associate Chairs of Graduate

Studies in many departments and faculties, and conveying

email advertisements. We have begun to feel that there

are many more highly qualified expert Appers who would

be interested in the course, who have not heard about it.

Our plan going forward is to offer seminars in different

departments to describe the course and outcomes related to

that field.

8. Conclusions
We have described a novel graduate course that brings

together students from many disciplines to prototype mo-

bile and wearable applications in those different fields -

working collaboratively with graduate-level Programmers.

The outcome has been a very exciting experience for both

the students, the instructor and the teaching assistants, with

many novel ideas explored. We have also found that a great

deal of integrative learning takes place, along with inter-

discplinary thinking. There is also good experience in com-

munication across disciplines. This paper (and associated

web sites) describe the nature and structure of the course,

which could easily be taught in any graduate-level University

with programming and other disciplines. Our hope is that

this document could enable it to happen many times over!

9. Acknowledgements
The authors would like to thank the many students who

took this course and worked hard to get a great result. We

are also grateful to Google and Huawei for donations of

smartphones, and Arshia Tabrizi, esq., for a donation to

support the course.

References
[1] P. Hinds, K. Carley, D. Krackhardt and D. Wholey, “Choosing Work

Group Members: Balancing Similarity, Competence, and Familiarity,”
Journal of Organizational Behavior and Human Decision Processes",
Vol. 81, No. 2, pp. 226–251, 2000.

[2] B. Nejmeh and D. Weaver, “Leveraging scrum principles in collabora-
tive, inter-disciplinary service-learning project courses,” IEEE Frontiers
in Education Conference (FIE), pp.1-6, Oct. 2014.

[3] (2013) ECE 1778 Final Presentations 2013. [Online]. Available:
http://uoft.me/1778-2013

[4] (2014) ECE 1778 Final Presentations 2014. [Online]. Available:
http://uoft.me/1778-2014

[5] (2014) ECE 1778 Final Presentations 2015. [Online]. Available:
http://uoft.me/1778-2015

[6] (2015) ECE 1778 Course Website 2015. [Online]. Available:
http://uoft.me/1778-2015front

[7] M. Poh, D. McDuff, and R. Picard, “Non-contact, automated cardiac
pulse measurements using video imaging and blind source separation,”
Opt. Express 18, 10762-10774 (2010).

[8] TI Sensor Tag [Online]. Available: http://www.ti.com/sensortag
[9] Variable Node Device [Online]. Available:

http://variableinc.com/products/
[10] TrackR Device [Online]. Available: https://www.thetrackr.com
[11] M. Murphy, “The Busy Coder’s Guide to Android Development,”

[Online]. Available: https://commonsware.com/Android/
[12] J. Nutting, F. Olsson, D. Mark and J. LaMarche, “Beginning iOS 7

Development, Exploring the iOS SDK,” Apress 2014.
[13] MIT Scratch [Online]. Available: https://scratch.mit.edu
[14] Go Mockingbird UI design tool [Online]. Available:

https://gomockingbird.com
[15] Moqups UI design tool [Online]. Available: https://moqups.com
[16] Pencil UI design tool [Online]. Available:

http://pencil.evolus.vn/Stencils-Templates.html
[17] Designing for iOS [Online]. Available: http://tinyurl.com/pxxh66k
[18] App Structure [Online]. Available:

http://developer.android.com/design/patterns/app-structure.html
[19] N. Shah, L. Carvalho, and I. So, iAnkle video and report [Online].

Available: http://uoft.me/iAnkle
[20] Z. Teitel, V. Chen, F. Zhao, Baton video and report [Online].

Available: http://uoft.me/Baton
[21] E. Guy, S. Puri, and S. Chen, Mindful Me video and report [Online].

Available: http://uoft.me/MindfulMe

148 Int'l Conf. Frontiers in Education: CS and CE | FECS'15 |

