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In the search for faster and more powerful
computers, researchers have followed two

0-paths. The first concentrates on increasing
the speed of a uniprocessor. This can be
achieved by making the components faster, ' by
using pipelining,2 and by exploiting architectural
features such as a cache memory and reduced
instruction sets. 3
The second approach is directed to gaining

high performance through the use of more than
one processor. Indeed, multiprocessors have
often been considered a panacea for computing
problems. Recent developments in Very Large
Scale Integration (VLSI) technology have further
motivated this work, because integration
promises to make multiprocessing cheaper. This
is manifested in three ways:
1) Systolic architectures place many small

asynchronous processors in a regular array
that can be implemented on one chip.4
More conventional SIMD (Single Instruc-
tion stream, Multiple Data stream) architec-
tures can also be highly integrated.

2) Microprocessors become more powerful as
higher levels of integration allow the inclu-
sion of more architectural features on a
chip. Today's microprocessors are architec-

turally similar to yesterday's mainframes.
Thus a multiprocessor architecture incor-
porating general-purpose microprocessors
naturally becomes more powerful as
technology improves.

3) The MIMD (Multiple Instruction stream,
Multiple Data Stream) hardware for com-
munication between processors can be
integrated. A circuit that formerly required
many TTL chips can be realized on one
large-scale chip, limited principally by pin
count. Thus, although data paths may need
to be external to a VLSI chip, the com-
munication protocol implementation and
controlling logic can be integrated easily.

The ideal objective of multiprocessor struc-
tures in general, and MIMD architectures in par-
ticular, is to obtain linearly increasing through-
put, dependent upon the number of processors.
Rarely, however, will n processors be n times
faster than one processor unless the application
lends itself to being subdivided into many
parallel subtasks. It is true that while two pro-
cessors can be made to work almost twice as fast
as one processor, this property does not hold for
more general cases.
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Figure 1. The basic FERMTOR architecture.

The greatest degree of success in multipro-
cessor systems occurs when they are applied to a
specific purpose and the entire machine (i.e.,
hardware and software) is designed toward that
purpose. SIMD processors such as ILLIAC IV5
have been used for weather prediction, and
architectures such as the Cytocomputer6 have
been used for image processing. Associative pro-
cessors have been used in database machines.7
MIMD computers have been successful when
each processor is assigned a permanent task; for
example, in recent personal workstations one
processor handles the graphics screen, another
acts as a disk server, and a third performs the
computation.
However, it is very tedious to have to design

and optimize a new architecture and communica-
tion system every time one requires a new
MIMD system. It would be far more efficient if
there were general architectures available, with a
standard interprocessor communication scheme

and programming environment that could be
tuned to each new application. Such a system
would allow fast design and construction of a
powerful special-purpose multiprocessor. It
could take advantage of an existing family of
VLSI microprocessor chips intended for a
general-purpose architecture.

Nevertheless, there is certain to be a trade-off
between the efficiency of each implementation
and the generality of the basic architecture. The
tuned architecture must be cost-effective. If the
architecture allows cost-performance trade-offs,
it will be that much more valuable. An example
of an interesting cost-performance trade-off is
the SIMD Cytocomputer.6 Rather than imple-
ment a full array of processors, this architecture
pipelines pieces of the array through a sub-array
processor.

Finally, one of the greatest difficulties in using
the parallelism available in an MIMD system is
the task of scheduling the work of each pro-
cessor. The programming environment of a mul-
tiprocessor must address this problem directly.

In this article we present FERMTOR, an
MIMD architecture developed at the University
of Toronto with the goal of addressing the issues
raised above. 8'9' 10 The name stands for "Flexi-
ble Extendible Range Multiprocessor at TORon-
to." FERMTOR is a general MIMD architecture
that can be tuned to many applications. It is also
a practical multiprocessor whose communica-
tions hardware is much less complex than that of
an MIMD crossbar or a Banyan network. It has
packet-switched, combined-ring, and shared
common-access bus interconnection schemes.
Processors communicate directly with each other
by means of packets. Each processor can be used
for either general purposes or special purposes,
such as for high-speed numerical computation.
A simple version of FERMTOR has been con-
structed and tested.
FERMTOR has several features in common

with a number of previous architectures,
although we believe that its overall design pro-
vides certain unique characteristics. The manner
in which packets flow around the ring, and the
fact that a packet arrival actively interrupts a
processor, likens FERMTOR to data-flow
machines."' 12, 13 Farrel'4 uses a ring structure
to implement a Generalized Control Flow (GCF)
machine. The GCF architecture is a practical at-
tempt at data-flow implementation. FERMTOR

6 ~~~~~~~~~~~~~~~~~~~~~~IEEEMICRO6

Authorized licensed use limited to: The University of Toronto. Downloaded on July 19,2021 at 01:44:41 UTC from IEEE Xplore.  Restrictions apply. 



also bears some similarity to CM*15 in that pro-
cesses, rather than lower level program units
such as instructions, communicate among each
other. Indeed, CM*, if configured as a packet-
switching multiprocessor, could be used in a
manner similar to FERMTOR.

Further, FERMTOR's ring and common-access
bus structure resemble the topology of the
EMMA architecture. 16 EMMA is used as a
pattern-recognition machine for postal sorting
and is highly successful, incorporating fault
tolerance and graceful degradation under faults.
The software structure of the prototype FERM-
TOR is also similar to HM2P'7 in that it uses
Hoare's monitors and signals. 18 A great deal of
other multiprocessing work exists, but little of it
addresses the question of tuning to a specific
purpose.

This article discusses the general architecture
of FERMTOR, surveys the software structure of
the programming environment, gives some
details of the hardware implementation, and
provides some results obtained with the pro-
totype, including performance measurements.
We also discuss two potential applications of
FERMTOR and suggest avenues for future
work.

FERMTOR architecture

FERMTOR is an MIMD architecture with a
part ring, part shared common-access bus com-
munication scheme. The basic structure is shown
in Figure 1. The processors are connected to a
parallel-pipelined bus called the P-Bus. The
P-Bus is a ring-like structure of a number of bus
segments. Parallel data flows synchronously
between the latches, which delineate the bus
segments. Each latch, bus segment, and group of
processors following it is known collectively as a
station. There can be a number of processors at
each station, the number being limited by the
desired bandwidth of the shared common-access
bus. Four different types of processors are used:

1) General-purpose processors, such as con-
ventional microprocessors.

2) Special-purpose hardware for high-speed
computation, such as array processors.

3) Memory processors that contain and
manage the global memory of the system.

4) Input/Output processors that control data
flow between FERMTOR and I/O devices
such as disks, terminals, etc.

Data is exchanged within a station using a shared
common-access bus. Every processor on the
P-Bus occupies a unique address by which it can
be unambiguously referenced. The address con-
sists of two parts: a station number and a pro-
cessor number within that station. For example,
the processor marked with an asterisk in Figure 1
is at station 1, unit number 1, and so has a
P-Bus address of 11.

Basic packet structure. The "slot" of data
within a station contains a packet of informa-
tion. The packet is the basic unit of communica-
tion among all processors. A packet contains the
following fields:

Source. The P-Bus address of the transmitting
processor.
Destination. The P-Bus address of the receiv-
ing processor.
Operation. Specification of the nature of the
packet.
Operand. Data to be operated on.

In addition, when slots travel between stations,
three status bits are appended to specify the
presence or absence of a packet in the slot and
whether or not the packet has been successfully
received by the destination station.

P-Bus operation. At each station, a station
manager controls the flow of packets among
local processors and between the neighboring
stations. Figure 2 is a block diagram of one sta-
tion and the P-Bus interface of two processors.
When a processor wishes to transmit a packet, it
raises a Request signal to the station manager.
The manager arbitrates the processor requests
and sends an Enable signal to the selected pro-
cessor when the first empty packet arrives from
the previous station. The requested transfer can
be either a local transfer between processors in
the same station or a nonlocal transfer between
processors at different stations.

Local transfers. When the packet destination
is local to the station, the manager tries to trans-
mit it to that processor as soon as possible over
the shared common-access bus. If the destination
processor is unable to accept the packet (as
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1iUNABLE MULTIPROCESSOR

Figure 2.
A typical

FERMTOR
station.

determined by its Available signal output) then a
Nack signal (negative acknowledge) is sent to the
transmitting processor. If the packet is accepted,
then an Ack signal (acknowledge last transfer) is
sent to the transmitting processor. The packet
slot occupied by this transaction (whether suc-
cessful or not) is then marked Empty. This
means that the slot is immediately available for
use by succeeding stations on the ring-i.e., a
local transfer is always concluded in the time it
takes one packet to go through a station.

Nonlocal transfers. When the packet destina-
tion is not local to the station, then the packet is
transmitted to the next station along the ring.
Each station that the packet passes through
checks to see if it is the destination station.
When the destination station is reached, it tries
to transmit the packet to the destination pro-
cessor exactly as described above for local trans-
fers. If the transmission is successful, the packet
is marked Received; if not, the packet is marked
Not Received, using one of the appended flags.
When the packet returns to the source station,
the station manager sends either an Ack or a
Nack signal to the source processor, depending
on how the packet was marked.

Note that, from the processor's point of view,
there is no difference between intrastation trans-

fers and interstation transfers, other than the
time it takes to transmit the packets. For any
unsuccessful transfers, the processor simply
regenerates a Request signal until the transfer
succeeds. The P-Bus protocol allows a processor
to have only one packet active on the ring at one
time, to prevent it from dominating ring traffic.

Flexibility and extendibility of the architecture.
The flexibility of the FERMTOR architecture
facilitates the addition of stations and pro-
cessors. When a processor becomes a bottleneck
in a given computation, a second processor of
this type can be added to take on a share of
those computations, provided the problem is
divisible. This is part of the process of tuning the
FERMTOR architecture to a special-purpose
application.
The P-Bus ring structure makes the hardware

complexity of FERMTOR directly proportional
to the number of processors. If a processor is
added to an existing station, the increase in
communication hardware is minimal. When a
new station is added, the full station-manager
hardware must be included.
The exact configuration of a FERMTOR im-

plementation can be tuned to achieve sufficient
interprocessor communication speed. There is a
trade-off between having fewer processors at a
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station and thus many stations, or many pro-
cessors at a station and few stations. If there are
only a few processors at a station, then they can
communicate quickly among themselves.
However, because there are many stations, the
latency (the time required for a packet to
traverse the ring) becomes larger. Conversely,
with many processors per station and fewer
stations the latency is small. In this case the
intrastation bus contention is larger because
many processors share one bus. Thus, the
optimal number of processors per station is
application-dependent. Loucks9 found that three
or four processors per station was best for
general-purpose computation.

If the FERMTOR structure is viewed as a
hierarchy, we can put the question of the
number of processors per station in perspective.
Further levels of hierarchy can be added to the
P-Bus by using multiple rings, each com-
municating via inter-ring bridges. Thus an im-
plementation could be a tree of rings or even a
ring of rings. The farther the destination of a
packet is from its source (in terms of levels of
the hierarchy it must travel) the greater the time
the packet transportation takes.

If it is apparent from the application that two
or more processors communicate very frequent-
ly, then they should be placed at the same sta-
tion. Groups of processors that communicate
less frequently, but still at a significant rate,
should be placed on the same ring. If two
distinct groups of processors have little need to
communicate, then they should be placed on
separate rings. In this manner a FERMTOR
configuration can partition the processors as
required by the application.
The hierarchy of packet transportation is

similar to CM* 15; but, since it can be extended
indefinitely, it is cleaner and more symmetrical.

Software environment
The viability of a multiprocessor is determined

not only by its architecture, but by the software
infrastructure as well. The communication
scheme for the prototype FERMTOR allows
versatile packet level communication between
processors.

Granularity of parallelism. The use of the
packet communication structure depends upon

the choice of processor. Microprogrammed
bit-slice processors9 allow very fast interaction
with the P-Bus. General-purpose microproces-
sors using memory-mapped I/O to access the
P-Bus registers are significantly slower. Indeed,
it requires roughly 12 microprocessor instruc-
tions (at 3 to 4 microseconds each) simply to
load the P-Bus latches and request a trans-
mission. It takes a great deal more time to deter-
mine the contents of that packet.
A microprogrammed machine could access the

P-Bus on an instruction basis-i.e., every
machine-level instruction would use the P-Bus.
But this is not possible for the slower micropro-
cessor elements. In this case we must ensure that
each processor uses the P-Bus less frequently.
Thus for such microprocessors, the basic unit
of parallelism is the process and not the instruc-
tion. The process is constrained to executing
local object code and performing intraprocessor
communication at a rate compatible with the
P-Bus interface. Later in the article we discuss
how to relax these constraints by means of a
faster interface.
FERMTOR uses processes as its basic unit of

parallelism. The coarse granularity of this
parallelism increases the likelihood that a pro-
cessor is left idle for a long period of time while
waiting for another process to finish a calcula-
tion. This could happen, for example, when one
processor requests data from another that
requires significant computation-the requesting
processor would be idle during the computation.
To make use of this idle time, each processor in
FERMTOR is itself multiprocessing. That is,
every processor can have several active processes
in it so that it is busy as much as possible. While
one process awaits data from another processor,
other processes can use the microprocessor. The
implementation of multiprocessing was done
using the concurrent programming language
Concurrent Euclid. 19 It is a dialect of Pascal and
provides multiprocess synchronization using
Hoare's monitors and signals. 18 Note that the
programs are compiled individually for each pro-
cessor, not as one big program for the entire
multiprocessor.

Implementing software in a concurrent lan-
guage has another benefit: the interprocessor
communication can be run by separate processes
of which the user need have no knowledge.
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Figure 3. The communication hierarchy along the P-Bus.

Coarse granularity. The decision to choose the
process as the granularity of parallelism is a
significant one. The choice was between a fine
granularity such as instruction-wise parallelism
and a coarse granularity such as parallel
processes.

Instruction-wise parallelism occurs when a
very small amount of computation is done be-
tween interprocessor transfers. For example, this
could be the amount of computation involved in
a typical high-level-language arithmetic state-
ment. In this kind of parallelism, each processor
is explicitly told to execute such a statement by a
separate scheduling processor. The scheduler
communicates with the executing processor over
the communication bus. Many statements are
scheduled into several processors and ordered

into a "chain" of instructions to be sequentially
executed. The first processor/instruction is
activated, then executed, and that processor
activates the second instruction in the chain, and
so on.

Instruction-wise parallelism incurs a great deal
of overhead per instruction. Loucks9 investi-
gated this and found scheduling to be a signifi-
cant bottleneck. Scheduling will always be a
problem if the amount of computation per inter-
processor transfer bus is small.

Process-wise parallelism occurs when a large
amount of computation is performed between
interprocessor transfers, such as would be needed
to solve a large system of linear equations, for
example. Typically, one processor acts as a
scheduler, assigning these large pieces of the
overall task to slave processors.

Parallel processes greatly reduce the P-Bus
traffic because the processors spend much more
time calculating between bus transfers than they
do with instruction-wise parallelism. In addition,
process-wise parallelism makes it relatively more
easy to schedule large chunks of processor time.

In FERMTOR, we chose process-wise parallel-
ism. The issue of scheduling is discussed further
below.

Note that parallelism granularity is a con-
tinuum rather than a discrete choice between
coarse and fine. It is an open problem to
discover exactly how much computation should
be done between interprocessor transfers. The
answer is most likely both application- and
situation-dependent .

Communication hierarchy. Processes can com-
municate at many levels. They can simply send a
byte of data or transfer an entire file. They can
also send messages which control program flow
directly. To support these levels of communica-
tion there must exist a coherent substructure of
software. This idea is not unlike the protocol
levels described in the ISO model for Open Sys-
tem Interconnection,20 commonly used in local-
area networks. In FERMTOR, the coupling
between processors is much greater than with a
LAN, but similar ideas still apply. Figure 3 is a
block diagram of the communication hierarchy.

Low-level packet communication. At the
lowest level in the hierarchy is the actual hard-
ware that performs the physical data transfer
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and handles signalling between the processor and
station manager. Here a packet is the basic unit
of transaction. The first level of software inter-
face is the concurrency kernel. The kernel, which
is part of the Concurrent Euclid programming
language, implements concurrency within the
microprocessor. This includes handling hardware
interrupts from the processor's P-Bus interface.
The kernel polls the station manager after an
interrupt to determine the cause, and then dis-
patches the associated Euclid process.
The Ack (acknowledge)~signal from the station

manlager, shown in Figure 3, indicates that the
previously requested P-Bus transfer has been
completed. This interrupt is handled by the
kernel, which invokes the acknowledge process.
The acknowledge process senlds a software
signal'18 to the packet sender, which is then free
to initiate another transmission. The packet
sender raises the hardware request signal to
transmit a packet.
The Clock In signal from the station manager

indicates that a new packet has arrived for the
processor. Again, this interrupt is handled by the
kernel, which then invokes the incoming-data
router process. Any process that expects to
receive a packet must inform the incoming-data
router of the type of packet it expects.
The incoming-data router keeps a table of all

the packet types in the processor, along with the
associated processes. When the router receives a
packet, it signals the associated process anld gives
it the packet's contents.

High-level packet communication. In addition
to low-level communication, Figure 3, described
above, also depicts three kinds of medium- to
high-level communication:

1) Data input/output. One or more processors
are usually designated as the I/O pro-
cessors, and are dedicated to that purpose.
All other processors transmit data (for out-
put) and request data (for input) from the
I/O processors.

2) Global memory. One or more processors
are designated to act as global memory. The
memory processor performs four functions:
* Allocate a block of storage.
* Deallocate a block of storage.
* Write to global memory.

* Read from global memory. The
read/write functions are similar to the
I/O functions.

3) Activations. A process in the processor can
be dormant waiting for another calculation
to finish. An activation packet will wake
that process and tell it where to find the
data that it is waiting for; often such data is
stored inl global memory. Note that this
feature has overtones of the data-flow con-
cept.

Scheduling. Scheduling the processing re-
sources of a multiprocessor is a crucial and dif-
ficult task. In the prototype FERMTOR, the
process itself must be scheduled. This is the task
of deciding which process goes to which pro-
cessor. The schedule is currently static, but could
be made dynamic if an efficient method of trans-
porting code were developed (see our discussion
of enhancements below). In the present version
of FERMTOR, there is no automatic scheduling.
The user partitions the processes, attempting to
get maximum performance from the processors.

Using Concurrent Euclid, it is a simple matter
to determine how much time each processor is
idle. This knowledge can help the user to parti-
tion a multiprocessor program. Note that the
work required to produce a good partition is only
justified if the application is going to be used
over a long period of time. This style of schedul-
ing is applicable to special-purpose machines that
have processors dedicated to permanent tasks.

Implementation

We have constructed a prototype FERM-
TOR that is sufficiently large to contain all the
salient features of the architecture. It has pro-
vided a test vehicle to assess the viability of the
architecture.
The prototype consists of three stations that

are capable of supporting four processors each.
We currently have six processors, which can be
distributed arbitrarily among stations. Five of
the processors are Motorola 6809 general-
purpose microprocessors with their own local
memory and P-Bus interface hardware. The
sixth processor is a PDP-1l1/34 running the
UNIX operating system. A special P-Bus inter-
face to the PDP-l11 was constructed, using a
standard parallel port on the UNIBUS.
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Figure 4.
A detailed view

of a station
manager.

Station manager. A block diagram of the pro-
totype station manager is shown in Figure 4. It
consists of four principal parts. The station latch
holds the data packets transmitted between the
stations. The arbitration unit decides, every cycle,
which packet is enabled onto the local bus. If the
incoming ring packet is full, then it takes
precedence. If it is empty, then the arbitration
unit arbitrates processor requests for the bus.
The receive data control unit transmits any
packets destined for this station to the addressed
processor by clocking the bus data into the pro-
cessor's buffer. It also sends the Clock In inter-
rupt signal to the processor. The transmit data
control unit determines the success or failure of
transmissions from this station and informs the
sending processor with an Ack interrupt or a
Nack signal.
The P-Bus is synchronously clocked. The max-

imum speed is determined by the arbitration unit
and is roughly 2.5 MHz. A two-phase clock is
generated centrally and is distributed to all the
station managers. Other timing signals are
generated local to each station from this clock.

Processors. Figure 5 is a block diagram of the
6809 processor and its P-Bus interface. The

P-Bus interface has two parts: the buffers that
contain incoming and outgoing data from the
station bus, and the control circuit that handles
the following control signals.

* Request: an output request to the station
manager, indicating that there is data in
the output buffer to be transmitted.

* Processor Available: an output-status
flag indicating that the processor is able
to receive another packet. This circuit is
made difficult because the processor can
be either much slower or much faster
than the station manager.

* Processor Enable: an input from the sta-
tion manager that causes the processor to
place a requested transmission onto the
P-Bus.

* Clock In: an input from the station
manager that sends a packet from the
P-Bus to the processor. This signal inter-
rupts the processor.

* Acknowledge: an input from the station
manager indicating that the last request
was successful. It is wired to cause an in-
terrupt to the processor.

* No Acknowledge: an input from the sta-
tion manager indicating that the last re-

12 ~~~~~~~~~~~~~~~~~~~~~IEEEMICRO12

Authorized licensed use limited to: The University of Toronto. Downloaded on July 19,2021 at 01:44:41 UTC from IEEE Xplore.  Restrictions apply. 



quest was not successful. Currently, this
signal is wired to generate a new request.
It could also be wired to input directly
into the processor so that multiple trans-
mission failures could be detected, and
ring faults deduced.

Results and performance

The prototype FERMTOR consists of three
stations and six processors. Each station
Manager fits on one wire-wrapped board. One
6809 processor is a wire-wrapped prototype, and
the other four are implemented as printed circuit
boards. There is also an interface board that
connects a PDP-11/34 with the P-Bus.
The P-Bus and associated processors have

worked error-free in all tests. We have exercised
the multiprocessor in a number of ways, testing
communication speed alone as well as its
multiprocessing capabilities.

P-Bus speed test program. The station
manager clock on the prototype FERMTOR is
set at 1 MHz. The effective bit-transfer rate of
the P-Bus, which carries 24 bits of data, is 24M
bits per second. The hardware is capable of sup-
porting a 2.5 MHz clock, and so the maximum
P-Bus transfer rate is 60M bits per second. This
is the maximum amount of data that can be
transmitted around the ring by all of the pro-
cessors. A higher transfer rate can be achieved if
there is a significant amount of intrastation
transfers. Loucks 9 gives an analysis of the
effective P-Bus transfer rates.
Standard microprocessors that use memory

mapped I/O require only a small fraction of this
bandwidth, as discussed immediately below.
Therefore, the P-Bus is capable of supporting a
very large number of such processors, in the
range of several hundred per ring.

Transfer rates per microprocessor. P-Bus in-
put/output by the microprocessor is done using
latches that are mapped into processor memory.
Every P-Bus transfer requires the loading and
unloading of these latches, at the same rate as a
load/store memory access.
We measured the maximum number of trans-

fers that the microprocessor can perform. For

Figure 5. A detailed processor diagram.

both transmission and reception, the maximum
rate is roughly 4000 packets per second. Since
the P-Bus can support 2.5 million transfers per
second, this suggests that several hundred pro-
cessors can be supported on a one ring P-Bus.

If a higher per-processor transfer rate is re-
quired, the enhancements discussed further
below could be implemented.

A simple test. To test the basic multiprocess-
ing capability of FERMTOR, we wrote a simple
application program. The program tests a range
of integers for primeness. In each slave pro-
cessor, a program waits for two packets specify-
ing a number range to be tested. It uses the sim-
ple algorithm of dividing the number under test
by all the odd numbers up to one third of that
number and checking for a remainder. This inef-
ficient algorithm makes the calculation highly
CPU-intensive. The master (or scheduling) pro-
cessor sends out the number ranges to the slaves.
When a slave determines that a certain number is
prime, it transmits that number to the master.
The large amount of calculation required by

the test makes P-Bus transfers very infrequent.
As a result, FERMTOR exhibits an ideal multi-
processing property: the computation speed is
linear with respect to the number of processors.
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Figure 6.
Normalized

calculation speed
versus number of
slave processors.
The linear arc of

the curve
indicates ideal
multiprocessor

operation at up to
four slave

processors.

That is, if for two processors (one master and
one slave) the time taken is t, then for three,
four or five processors it is t/2, t/3 and t/4,
respectively. This performance is due entirely to
the fact that the processors are loosely coupled.

A closely coupled multiprocessing test. It is
generally true that the more closely coupled a
multiprocessor architecture allows its processors
to be, the more applicable that multiprocessor
structure will be. Thus we wished to test FERM-
TOR with a multiprocessor program that fre-
quently uses the P-Bus.
We again chose the prime number example

but adapted the algorithm for more cooperation
between processors. We wished to determine all
the primes between 1 and some number X. As
the system discovers these primes, at first using
the same algorithm as above, the master pro-
cessor records them and distributes them back to
the slave processors. Thus the slaves need only
divide the number under test by the prime num-
bers less than one third of the number. Note that
if there are not sufficient prime numbers com-
puted to that point, this algorithm again reverts
to the former one. The transmission of primes to
the master and their subsequent rebroadcast

places a much heavier load on the P-Bus than
does the simple test.
The size of the number range that each pro-

cessor tests at a time becomes a factor in this
algorithm. The smaller the range, the more fre-
quently the master must present a new range,
but the larger the range, the longer it takes to
transmit discovered primes to all the slaves.
The results obtained with this closely coupled

example are shown in Figure 6. The figure is a
plot of normalized calculation speed versus the
number of slave processors. The normalized
calculation speed for n slave processors is found
by dividing the calculation time of one slave pro-
cessor (for the entire task) by the time required
for n processors to do the entire task. Ideally,
the normalized calculation speed increases linear-
ly with the number of processors. The curve in
Figure 6, which is indeed linear, demonstrates
that we achieved the ideal multiprocessor result
for up to four processors. The difference be-
tween this example and the less closely coupled
example above is that the slope of the line is
less than 1. For this example the slope is 0.64.
This is due to the interprocessor communication
overhead. There is increased interprocessor
communication when more than one slave pro-
cessor is calculating. This overhead is constant
per processor, as indicated by the linear curve
in Figure 6.

It is interesting to note how the interprocessor
communication was optimized in this example.
By measuring how much each processor was
idle, and determining why it was idle, it was
possible for us to discover bottlenecks in the
multiprocessor program. For example, we found
that the packet transmission by the scheduler
was a bottleneck. Instead of having the scheduler
transmit discovered primes to all the slaves, we
altered it to transmit to only one slave. That
slave then forwards the number to the next slave
and so on until all slaves receive the prime num-
ber. Thus in the four-slave case, the scheduler
need only send out one packet per prime instead
of four. This eliminates the packet transmission
bottleneck in the scheduler.

This kind of optimization produces a constant
interprocessor-communication overhead per pro-
cessor. The technique of idle-time measurement
tells not only how idle each processor is, but ex-
actly why it is idle. Provided a task can be divided
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into many pats, then this idle-time anlalysis per-
mits fine tuning to get good utilization of the
multiprocessor.

Applications

We propose FERMTOR as a multiprocessor
architecture tunable to other special-purpose
applications. We are investigating three such
applications: simulation, VLSI layout, and
signal processing.

Simulation. Computer simulation is a task
well-suited to the application of parallelism.
Many physical systems that are simulated by
computer are inherently parallel. At the same
time, simulation may require many computation
hours to complete, so that parallelism can reduce
this considerably. Intuitively, it appears that
FERMTOR would lend itself to implementing a
language like SIMULA.2' Some work has
already been done on using MIMD systems and
SIMULA.22 In FERMTOR, the flow of data
(such as packets around a ring) and control (such
as activations) is very similar to the communica-
tion between SIMULA classes.
We are developing a few simple constructs to

add to Concurrent Euclid to aid in simulation.
Processes are activated by packets containing
data, upon which the process operates. There are
two kinds of processes:

* Nonqueuedprocesses, in which any number
of activations can be active at a given time
(using reentrant code); and

* Queued processes (representing a single
shared resource), in which only one activa-
tion is active at a given time. Subsequent
activations are placed in a FIFO queue.

Perhaps the most difficult problem in parallel
simulation is that of simulation-time syn-
chronization. Every processor must agree that a
certain piece of data or state is associated with
the same simulation time. This may mean that
all processors must wait for the slowest process
to be completed before the next time period
begins. An alternative is the use of time
stamps. 23' 2A Here any message of data or activa-
tion contains a stamp indicating the time at
which the sending processor is operating. The
receiving processor cannot use the message until

it reaches that time. Some synchronization prob-
lems remain; these are discussed by Reynolds.U4
The work on parallel simulation is in its infancy
and requires a great deal of work on compiler
generation and the issue of synchronization.

VLSI layout. The automatic layout of VLSI
circuits, already a time-consuming task, promises
to grow evermore compute-bound as the density
of VLSI circuits increases. The partitioning,
placement, and routing of VLSI circuits is a
prime candidate for the application of multipro-
cessing. Much of the existing work concentrates
on the use of SLMD structures for placement and
routinlg.25,2627 We intend to use MIMD struc-
tures for dealing with layout problems. MIMD
structures can make better use of existing layout
algorithms than SIMD architectures because of
the greater similarity between MIMD
multiprocessors and uniprocessors. For example,
the natural hierarchy of VLSI circuits can be
used as a technique for partitioning the circuit,
so that individual processors can do traditional
placement on a small section of the circulit. We
are also investigating the implementation of an
algorithm like Soukup's Global Router.28 Here
one processor would be responsible for one
interconnection net, giving the potential of a
large amount of parallelism.

Signal processing and synthesis. The prototype
P-B3us is currently being used to connect a num-
ber of Motorola 6809 and TMS 320 processor
boards for the purposes of both signal process-
ing and signal synthesis.29 The TMS 320 is a
high-speed, limited-memory processor. Several
TMS 320s are being used with the P-Bus to
cascade high-speed calculations for good-quality
digital filters and for music synthesis. The
versatility and tunability of the P-Bus permits
easy addition of the TMS 320 processors.

Enhancements

We are currently working on several aspects
of FERMTOR. It is clear that, using process-
wise parallelism, faster individual processors will
speed up the multiprocessor in a cost-effective
way. We are nlOW implementing a FERMTOR
with National 32016 system microprocessors.30
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TUNABLE MULTIPROCESSOR

To speed up the interprocessor communica- 5.
tion, we are using DMA to implement two
features:

* Implicit shared memory. Part of the local 6.
processor's memory will be mapped to
another processor's memory, and any ac-
cess to that memory will automatically use 7
the P-Bus to get the remote data. This will
eliminate explicit processor transfer re-
quests.

* Block transfer requests. Hardware will use 8.
DMA to transfer large blocks of data and
code between processors very quickly. Here
the processor will explicitly initiate the re-
quest but will not be involved in each in- 9.
dividual packet transfer. This is similar to
DMA transfer between magnetic disks and 10.
processors.

These new features will be added to the
32016-based processors through the MULTIBUS 11.
on each processor.

Future application development work will con-
centrate on the VLSI layout machine. This pro- 12.
mises to be an extremely useful application of
FERMTOR.

13.

Wx r e have presented a multiprocessor
architecture that can be easily tuned to 14.
fit many applications. Through our

experiments on the prototype, we found the
potential for achieving a great degree of
parallelism, provided a task is well partitioned. is.
We are continuing to develop applications such
as simulation and VLSI layout. The FERMTOR
architecture provides a viable structure for devel- 16.
oping powerful machines using standard micro-
processor components. I±,

17.
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