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Architecture of Field-Programmable Gate 
Arrays: The Effect of Logic Block 
Functionality on Area Efficiency 

Abstract -This paper examines the relationship between the function- 
ality of a field-programmable gate array (FPGA) logic block and the 
area required to implement digital circuits using that logic block. This 
investigation is done experimentally by implementing a set of industrial 
circuits as FPGA’s using CAD tools for technology mapping, placement, 
and routing. Using a simple model of the interconnection and logic 
block area, a range of programming technologies (the method of FPGA 
customization) is explored. The experiments are based on logic blocks 
that use lookup tables for implementing combinational logic. Results 
indicate that the best number of inputs to use (a measure of the block’s 
functionality) is between three and four, and that a D flip-flop should 
be included in the logic block. These results are largely independent of 
the programming technology. 

More generally, it was observed that the area efficiency of a logic 
block depends not only on its functionality but on the average number 
of pins connected per logic block. It is shown that as the number of 
connected pins per block increases, the number of wiring tracks re- 
quired to route those blocks also increases. Since adding functionality to 
a block will lead to an increase in the number of connected pins, it 
follows that an increase in functionality of the block is only beneficial if 
the total number of blocks is reduced to more than compensate for the 
increased wiring area. This notion leads to the conclusion that the most 
area-efficient logic blocks are those with a high amount of functionality 
per pin. 

I. INTRODUCTION 

HE field-programmable gate array (FPGA) is a revo- T lutionary idea in semicustom integrated circuits that 
reduces the IC manufacturing time from months to min- 
utes and prototype cost more than three decades. The 
FPGA was introduced in [1] and newer versions have 
been presented in [2]-[9]. It is similar to a gate array in 
structure, but can be field-programmed to specify the 
function of the logic blocks and their interconnection. As 
a result of the programmability, the architecture of an 
FPGA is more complex than that of a conventional gate 
array. 
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In this paper we focus on the logic block architecture, 
and study the effect of logic block functionality on FPGA 
area. We ignore speed considerations, even though they 
are very important, because we need first to determine 
the plausible architectures from an area perspective. In 
later studies we can use this information to know the cost, 
in area, of obtaining an FPGA with a particular perfor- 
mance. An associated study investigates the effect of 
routing structure flexibility on routability of FPGA’s [lo]. 

The logic block functionality is an important factor in 
the FPGA architecture. It can be loosely defined as the 
number of logic blocks required to implement an (un- 
specified) set of circuits. A precise and usable definition 
of functionality remains an open question. If the block 
has insufficient functionality then too much area must be 
devoted to the interconnection. If the block has excess 
functionality then it may suffer from underutilization and 
wasted active area. 

In this paper we focus on a simple logic block architec- 
ture that contains a K-input lookup table to implement 
combinational logic and a D flip-flop. We address two 
questions concerning this block with the following results: 

1) What is the best number of inputs, K ,  to use for the 
combinational function? Note that K is direct mea- 
sure of functionality. Our results show that the best 
number of inputs is consistently between three and 
four, and is almost the same whether or not the 
block contains a D flip-flop. 

2) Should the logic block contain a D flip-flop? Experi- 
ments indicate that the presence of a D flip-flop in 
the logic block always reduces chip area. 

The explanation of these results lead to an important 
insight into the functionality-area trade-off of FPGAs. 
First, we find that interconnection area completely domi- 
nates active area so that the trade-off between routing 
area and logic block functionality is the key one. Second, 
as intuition suggests, when the functionality of the logic 
block increases, the total number of logic blocks required 
to implement a circuit decreases. However, when func- 
tionality increases, so does the number of pins on the 
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logic block. We have found that the total routing area is a 
direct function of the number of connected pins on the 
logic block: as the number of pins increases, the routing 
area increases significantly. Therefore, a beneficial in- 
crease in functionality of the logic must reduce the total 
number of blocks to more than compensate for the in- 
creased routing area. This point further implies that a 
good choice for an area-efficient block is one that has 
high functionality per connected pin. 

The architectural choices that affect the area of an 
FPGA depend on the programming technology, which is 
the underlying method by which logic functions are con- 
figured and routing connections are made. For example, 
the programming technology used in [3] creates logic 
functions using static RAM lookup tables, and performs 
routing using pass transistors and multiplexors. The FPGA 
described in [4] uses an antifuse for both logic configura- 
tion and interconnection that, when blown, causes two 
metal tracks to be electrically joined. The FPGA de- 
scribed in [7] uses an EPROM programming technology. 
The experiments described in this paper account for the 
area requirements of differing programming technologies. 

Previous work on FPGAs has taken the form of de- 
scriptions of a specific architecture and implementation. 
The first device that can be considered a FPGA was 
introduced in 1986 [l], and subsequent devices are de- 
scribed in [21 and [3]. The programming technology is 
based on static RAM bits that are loaded into the chip 
when the system is turned on. The most recent logic block 
architecture consists of a combinational block followed by 
two resettable D flip-flops. The combinational block is a 
static RAM lookup table that can be configured to realize 
any five-input one-output logic function, or any two four- 
input one-output logic functions in which the inputs must 
be selected from the same set of signals. 

The global routing architecture is similar to a chan- 
neled gate array. Connections are made from the logic 
block to the channel via multiplexors controlled by static 
RAM. At the intersection of horizontal and vertical chan- 
nels (the switchbox), connections are made by transistors 
that are turned on or off using static RAM bits. There are 
dedicated local interconnects between neighboring blocks 
that are not switched, as well as ‘‘long’’ lines that traverse 
entire channels. Dedicated lines for global clock distribu- 
tion are also present. 

An FPGA based on antifuse programming technology 
[ l l ]  was introduced in [4]-[6]. The logic block consists of 
three multiplexors and a logic OR gate, which can be 
connected in various ways using the antifuse to perform a 
wide range of combinational and sequential logic func- 
tions. The interconnection architecture consists of hori- 
zontal channels with staggered segments of wires that can 
be joined by antifuses, and vertical connections across the 
logic blocks. A global clock distribution scheme is also 
included. 

A third FPGA architecture, based on an EPROM 
programming technology, was introduced in [7]. The logic 
block architecture is very similar to that in a single PLD: 

two-level AND-OR logic followed by a single D flip-flop. 
An additional level of logic is provided by an expander 
product-term array associated with a group of logic blocks. 
Inputs are wired-oR selected from a bus using pro- 
grammed transistors. The interconnection scheme is a 
two-level hierarchy. A bus structure connects logic blocks 
within one level of the hierarchy and between groups of 
logic blocks at the second level of the hierarchy. 

Two more FPGA architectures were recently intro- 
duced. The first, based on a static RAM programming 
technology [8], has a logic block consisting of a two-input 
NAND gate, a multiplexor, and a latch. Routing is per- 
formed using the same logic element so that routing and 
logic are directly traded off. The second recent FPGA [9] 
uses an EPROM programming technology and a logic 
block based on AND-OR gates similar to a PLD. Intercon- 
nection is done with a two-level hierarchy of buses. 

Gray and Kean have also proposed an FPGA-like 
structure [12]. It uses a static RAM programming technol- 
ogy and a logic block based on interconnections of five 
multiplexors. The interconnection scheme is two connec- 
tions to each nearest neighbor, one in each of the four 
orthogonal directions. This chip has been used to design 
an encryption algorithm and a fluid flow simulator. 

In this paper we explore a range of FPGA logic block 
architectures rather than defining a single complete archi- 
tecture as above. This provides insight into the trade-offs 
involved in choosing a logic block, rather than a “point” 
experience. To make this first exploration plausible, we 
investigate only the effect of architectural decisions on 
the area efficiency. To our knowledge, this is the first 
such study. An early version of this work appeared in [13]. 

This paper is organized as follows. Section I1 details 
our experimental approach to answering the questions 
raised above, and gives the architectural model used in 
the experiments. Section 111 presents the results of the 
experiments and the detailed reasoning, both theoretical 
and experimental, for these results. Section IV draws 
more general conclusions from the specific results of the 
experiments. 

11. GENERAL APPROACH AND 

EXPERIMENTAL PROCEDURE 

Our purpose is to determine the area efficiency of a 
range of logic blocks and to find a logic block that results 
in a FPGA with the most functionality per unit area. This 
will include both the active and routing area. The ap- 
proach is to implement a set of circuits using different 
logic blocks and programming technologies, and to deter- 
mine the area required for each. 

The global interconnection architecture of the FPGA 
used in these experiments is shown in Fig. 1. It is a 
regular array of identical logic blocks, separated by hori- 
zontal and vertical routing channels. The number of tracks 
in all of the routing channels, W ,  is the same. This model 
does not cover such general approaches such as nonho- 
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quired to implement the circuit using the given logic block 
and programming technology is calculated. f Logic 

W tracks per Channel 

A 

Channel 
A. Fixed Versus Floating Array Size and Channel Width 

In this section we discuss the assumption, implied in 
the implementation procedure, that the realized FPGA 
can take on any number of tracks per channel W and any 
number of logic blocks N .  A n  FPGA, however, has fixed 
dimensions, i.e., W and N are set at fabrication. For an 

Fig. 1. Global interconnection model of the FPGA. 

mogeneous logic blocks or hierarchical routing structures 
nor can it account for detailed techniques such as over- 
the-cell routing. It is general enough that most conceiv- 
able architectures can map into it and thus benefit from 
conclusions that are derived. 

The implementation procedure described below trans- 
forms each circuit into an FPGA. The input to the proce- 
dure is a logic circuit, the functional description of the 
logic block (the general form of the logic blocks we 
consider is given in Section 11-B), and a programming 
technology, characterized by the area it requires, as de- 
scribed in Section II-C. The output of the procedure is 
the area required to implement the circuit for the given 
logic block and programming technology. 

The implementation procedure for each circuit, logic 
block, and programming technology is as follows. 

1) Partition the circuit into the current logic block, in a 
step called technology mapping [14], [15]. This determines 
N ,  the number of logic blocks required to implement the 
input circuit. This is a difficult problem for FPGA blocks 
with table-lookup logic functions because each block may 
be able to implement tens of thousands of combinational 
functions, and conventional mappers can only handle on 
the order of hundreds of library elements. The Chortle 
program was developed to do this mapping. It uses a 
greedy algorithm that tries to coIlapse as many of the 
original logic cells as it can into each logic block. The 
result of this step is a new netlist that interconnects only 
logic blocks and is functionally equivalent to the original 
circuit. 

2) Perform the placement of the resulting netlist. This 
is done using the Altor placement program [16], which is 
based on the min-cut placement algorithm [17]. Altor 
makes the array as square as possible. 

3) Perform the global routing of the circuit. Global 
routing determines the path of channels that each wire is 
to take. This determines W ,  the largest number of tracks 
required in all of the channels. The approach used is 
similar to the LocusRoute standard cell global routing 
algorithm described in [181, but is changed to fit the 
model in Fig. 1. Note that W and the number of logic 
blocks are determined by the implementation procedure 
(and the circuit itself) and are not fixed beforehand. The 
effect of this approach is discussed in Section II-A below. 

4) Using W ,  the placement dimensions, and the model 
for logic block area and routing pitch described in Section 
II-C, the area of the field-programmable gate array re- 

exact determination of area efficiency, each circuit should 
be implemented in an FPGA with a fixed N and W ,  
giving the area of the circuit implemented using each 
logic block as a function of these two variables. The best 
block is the one that minimizes area for all W and N .  If 
the circuit does not fit into W tracks or N blocks, then its 
“area” would be infinity. 

Unfortunately, to explore the space of possible logic 
blocks in this manner would require many experiments 
and sophisticated CAD tools. To reduce the number of 
experiments and the complexity of the CAD tools, we 
allow the number of blocks and the number of tracks per 
channel to “float,” that is, to be a function of the circuit, 
and not prespecified (or “fixed”) in every experiment. 

The floating number of blocks can be justified because 
area efficiency is only an issue when the circuit just fits 
into the gate array. There is an error, however, in allow- 
ing the number of tracks to float. Suppose that two 
circuits (of the same size) achieve a minimum area using 
the same logic block, but using different values of W. 
When one value of W has to be chosen (presumably 
between the two) it is possible that a different logic block 
would achieve better total area over the two circuits. Our 
experimental data, however, show that circuits of the 
same size tend to exhibit about the same W when imple- 
mented using the same logic block. This is due to the fact 
that the circuits used are generally similar in type-ran- 
dom logic with only small amount of data path. Thus we 
are confident that conclusions drawn from data using the 
floating W routing model are close to those that would be 
drawn from the more exact method of experimentation 
using the fixed W model. 

B. General Logic Block Architecture 

FPGAs have lower density and speed than conven- 
tional gate arrays because connections are made through 
large switches that have higher resistance and capacitance 
than regular metal wiring. FPGA speed can be increased 
by grouping together greater amounts of logic in one 
block to reduce the amount of slower wiring. Area effi- 
ciency can also be improved by grouping more logic into a 
single block and reducing the number of programmable 
connections. Thus the logic block contains many more 
transistors than the basic unit of a conventional gate 
array, typically between 100 and 1000 transistors, and so 
there are many choices of logic block architecture. 
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Fig. 2. General model of logic block. 

For this initial study, we chose a general architecture 
that contains only the essential parts of a logic block, and 
includes the ability to vary the amount of functionality in 
the block. Fig. 2 depicts the architectural model of the 
logic block. It consists of a K-input combinational logic 
function (referred to as “Arb-K”), which can implement 
any K to 1 combinational logic function. The lookup- 
table style of logic block was chosen because it is easy to 
vary the functionality of the logic block by changing the 
number of inputs to the lookup table. Note that we can 
consider implementation of a lookup table using any kind 
of programming technology, including the antifuse and 
EPROM. 

The Arb-K is connected to a D flip-flop, which is 
included because sequential logic is a fundamental com- 
ponent of digital logic. To determine if the D flip-flop is 
beneficial, two versions of this basic model will be consid- 
ered: one that contains the D flip-flop, and one that does 
not. 

The flip-flop is followed by a multiplexor that selects 
either the flip-flop output or the Arb-K output. The 
multiplexor output is passed to a tristate driver that can 
be enabled by another input or set permanently on. The 
tristate is included because many of the test circuits 
contain tristate logic, and the circuits would have to be 
redesigned in fundamental ways if there were no tristate 
mechanism. 

C. Area Models 

The area calculation in step 4 of the implementation 
procedure requires a model that gives the logic block area 
and routing wire width as a function of programming 
technology. To create a simple model of these quantities, 
the programming technology is represented by one pa- 
rameter: the area required to store one bit, called the bit 
area BA. For example, in the FPGA of [3], the bit area is 
the area of a static RAM bit. In the FPGA of [4] the bit 
area is much smaller-the size of an antifuse-which is 
the area of a via [ll]. 

The area of a logic block of the form shown in Fig. 2 is 
a function of the number of its inputs, and the amount of 
fixed hardware it contains. An Arb-K block, because it 
can implement any K to 1 logic function, requires 2K bits 
of information to be stored in a lookup table, and so must 
have area proportional to 2K.  The routing and circuitry 
required to access the Arb-K block, the area required by 
the D flip-flop (if it is present), and all other interconnec- 

I ”’* 1 1 I I 1 I Routing Area Per Block 

Fig. 3. Area models 

tion hardware are represented by a second parameter, 
called the fixed area, FA. Using BA and FA, we have the 
following expression for logic block area: 

logic block area = BA X 2 K  + FA (1) 

In a 1.25-pm CMOS technology, FA is estimated as 2100 
p m 2  for logic blocks without a D flip-flop and 5100 p m 2  
for logic blocks that contain a D flip-flop. The bit area 
for a SRAM programming technology is about 400 p m 2  
and for an antifuse technology it is roughly 40 pm2. In 
our experiments, we will vary the bit area both in and 
outside this range of values, to represent programming 
technologies based on EPROM [7] or ferroelectric cells 
[19], as well as other potential technologies that may 
require more area. 

An estimate of the area required by wiring is important 
in determining the logic block because routing area can 
take up from 50% to over 90% of the total area, depend- 
ing on the programming technology. To determine rout- 
ing area the pitch of the routing track as a function of 
programming technology is required. Each routing track 
will need at least one bit of information in it, and proba- 
bly several, to determine if a set of switches or fuses is 
open or closed. Since it is difficult to physically design a 
bit with highly non-square aspect ratios, the pitch of a 
routing track is approximated as the square root of the 
area required by a bit, i.e., routing pitch = m. Fig. 3 
summarizes the area models. 

111. EXPERIMENTAL RESULTS 

Twelve circuits were used in these experiments: five 
standard-cell circuits from Manufacturer A, four standard 
cell circuits from Manufacturer B, one standard cell cir- 
cuit designed at the University of Toronto, and two PAL- 
based circuits designed at the University of Toronto. 
Table I gives a description of each circuit including its 
size, source, and type. 

In these experiments we considered 16 different logic 
blocks of the type shown in Fig. 2: eight blocks with the 
number of inputs to the lookup table ( K )  ranging from 
two to nine including a D flip-flop, and another eight 
with the same range of K excluding the D flip-flop. We 
consider five different programming technologies, with 
the bit area ranging over 40, 100,415, 800, and 1600 pm2. 
This gives a total of 12 circuitsX16 logic blocksX5 pro- 
gramming technologies = 960 different implementations. 



ROSE et al.: ARCHITECTURE OF FIELD-PROGKAMMARI L GATF ARRAYS 

Circuit 

BNRA 

#Standard Cells Source Type 

1681 BNR Random/SomeDP 

BNRB 

BNRC 

1339 BNR RandomiSaneDP 

1073 BNR Random/SomeDP 

BNRD 

BNRE 

142 BNR Random/SomeDP 

420 BNR Randan/SomeDP 

202 

203 

*These numbers are approximate equiva- 
lents, since the source circuits are PAL-based, 
not standard cells. 

3501 Zymos Controller 

560 Zymos 8-bitMultiplier 

Wl(h0ut DFF 

u)l 

DMA 

Absolute x pn"2 lO"7 Area 40 "1 2; 
_..... .... 20 

,......... _____.. . . . . . . . . '  

2 3 4 5 6 7 8 9  
K 

Fig. 4. Area versus K for 1073-cell circuit; bit area = 415 pm2. 

768 Zymos RandomLogic 

429 UTSC DMAController 

For each circuit we obtain the area of implementation 
required for each logic block and each programming 
technology. Fig. 4 gives sample results for one 1073-stan- 
dard-cell circuit. It is a plot of the absolute area required 
to implement an FPGA versus the number of inputs to its 
arbitrary combinational logic block K .  There are two 
curves, one for a logic block with a D flip-flop, and one 
without. The programming technology, BA = 415 pm2, 
corresponds to a SRAM-based approach [3]. Using simi- 
lar data for all of the circuits, with a range of program- 
ming technology sizes, the questions raised in the intro- 
duction were addressed. 

BUSC 

DFSM 

A. Number of Inputs to Logic Block 

220' UTF'AL BusControUer 

710. UTPAL DRAMStateMach. 

Fig. 5 is a plot of the average normalized area over all 
the circuits versus K for logic blocks that contain a D 
flip-flop. Normalized area is defined as follows. Let the 
area required to implement original circuit number i in 
an FPGA using a logic block with K inputs to the 
combinational block be A;. The normalized area for that 
circuit, Nk, is given by 

min { A t ]  
all s 

2.5 

'1 Average 
Normalized 

Area 
1.5- 

'i 

1221 

BA = 16Wpm"Z 

BA i 40pm"Z 

mlnimum possible 
normallzed area 

. . .  ...................... . . . .................... 

I 
I I I I I 

2 3 4 5 6 7  
K 

Fig. 5. Average normalized area versus K, including D flip-flop. 

This normalized metric is used so that each circuit is 
given equal weight in the average. 

Fig. 5 gives several curves for different bit areas (pro- 
gramming technologies). It indicates that logic blocks with 
K between three and four consistently achieve the lowest 
total area. Surprisingly, this minimum occurs with very 
little dependence on the programming technology. Fig. 6 
is a plot of the average (over all of the circuits) of the 
lowest area K achieved for each circuit versus the pro- 
gramming technology size. The plot includes standard 
deviation bars of plus and minus one standard deviation. 
It shows the minor dependence on programming tech- 
nology. 

In the following sections we explain the reasons for this 
minimum and the minor dependence on programming 
technology by using empirical data bolstered with theoret- 
ical results. These explanations lead to insights into good 
choices for area-efficient logic blocks. 

We first show the relationship between K and the total 
number of logic blocks. The logic block that minimizes 
the total active area (excluding routing area) is dependent 
on the programming technology. However, because the 
routing area dominates the total active area it is the 
trade-off between routing area and logic block functional- 
ity that is the key one. We then show the relationship 
between the routing area per block and K ,  and this 
reveals that the logic block which minimizes total routing 
area is technology-independent. This behavior is due to 
fundamental properties of circuit connectivity, and we 
review the relevant theoretical results in this area. 

1) Actiue-Area Minimum K: In this section we explain 
the behavior of the active-area minimum K :  that is, the K 
which minimizes the total active area. Total active area is 
the product of the number of logic blocks and the area of 
the logic block. Fig. 7 is a plot of the number of logic 
blocks and block area versus K using experimental and 
model data for circuit A3,  a typical circuit. The product 
of these two curves gives the total active area as a func- 
tion of K.  The number of logic blocks is a decreasing 
function of K because a more functional logic block can 
implement more of the original circuit. The logic block 
area increases exponentially in K ,  as modeled by (1). 
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K 

Fig. 7. Number of blocks and block area versus K .  

From the shape of the two curves and the positions of 
their asymptotes, it is clear that their product will exhibit 
a minimum. This minimum is a function of the program- 
ming technology size (BA). As BA increases the dotted 
curve in Fig. 7 rises according to (1). If BA is larger then 
this causes logic blocks with larger K to become more 
expensive in terms of area, and reduces the active-area 
minimum K.  For all the experimental circuits, the active- 
area minimum K was 2, 3, and 4 as the bit area was 
varied from 1600 pm2 to 415 pm2 to 40 pm2,  respec- 
tively. However, because the active area takes up a small 
amount of the total area, this technology dependence is 
almost completely masked by the routing area, as dis- 
cussed below. 

2) Relative Size of Routing Versus Active Area: For the 
values of K surrounding the minimum total-area K ( K  
ranging from 2 to 61, the experimental results show that 
the routing area dominates the active area. Table I1 gives 
the absolute active and routing areas and their ratio for 
the 1073-cell circuit A3. The given data are for the 
smallest and midsize programming technologies. The data 
are typical of all the circuits, and show that the routing 
area is at least a factor of 3 greater than active area for 
the small technology, and as much as 15 times greater for 
the midsize technology. The ratio increases with program- 
ming technology size. 

3) Routing-Area Minimum K: Routing area is the prod- 
uct of the number of logic blocks and the routing area per 
logic block. The routing area per block is defined to be 

TABLE I1 
RELATIVE SIZE OF ACTIVE AND ROUTING AREA 

FOR CIRCUIT A 3  

I 
I I I I I I  
2 3 4 5 6 7  

K 
Fig. 8. Number of blocks and route area per block versus K.  

the space taken by the routing tracks on two of the four 
sides of the logic block, as shown in Fig. 3. Fig. 8 is a plot 
of the number of logic blocks and the routing area per 
block versus K ,  for circuit A3. Note that the routing area 
per block curve is from experimental data; the "jog" in 
that curve is due to experimental variation. The solid 
curve is the same as in Fig. 7. The routing area per block 
was observed to be an increasing function of K ,  as W was 
an increasing function of K .  This effect, which is not 
intuitively obvious, is observed consistently in all of the 
experiments and has been derived theoretically by 
El Gama1 [20]. It is the underlying effect that causes most 
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K X R  $ W q W  

3.8 4.1 7.8 9 13 

3.7 3.1 6.8 9 14 

of the results presented in this paper, and so we explore it 
in greater detail in Section 111-A-4. 

As in the case of the active area, the shape of the two 
curves indicates a minimum of their product-the rout- 
ing-area minimum K .  The technology dependence, how- 
ever, is much less than for the active-area minimum K .  
This can be explained by analyzing the routing area 
surrounding each logic block. It is a function of W ,  the 
programming technology size ( B A )  and the size of the 
logic block, and can be derived by inspection of Fig. 1: 

2 

3 

route area per block = W *BA + 2 W S m  (2) 

K X R  $ W q W  

3.8 4.1 7.8 9 13 

3.7 3.1 6.8 9 14 

where S = \/logic block area.  The dominant term of the 
above equation is W’BA, and it is proportional to BA. 
Hence the dotted curve in Fig. 8 rises proportionally to 
the programming technology. The minimum of the prod- 
uct of the two curves will not change due to BA because 
the minimum of any function f ( X )  is the same when 
multiplied by a constant term, C X f ( X ) .  Hence the rout- 
ing-area minimum K is largely independent of the pro- 
gramming technology. This is different from the active- 
area minimum K in which the term proportional to BA 
in (1) is of the same order as the term not proportional to 
BA. The K that gives the minimum routing area ranges 
between three and four, and on average for the data in 
Fig. 5, the minimum K is closest to 4. 

The total-area minimum K is a function of the mini- 
mum K for the active and routing areas. Since the 
routing area dominates the active area as shown in Sec- 
tion 111-A-1, it is the routing-area minimum K that domi- 
nates. Hence, the total-area minimum K is near four, and 
varies little with programming technology. 

4) Effect of Number of Pins and Average Wire Length on 
W: The routing-area minimum K occurs because of the 
shape of the curves in Fig. 8: the number of logic blocks is 
a decreasing function of K ,  while the routing area per 
block is an increasing function of K .  The relationship 
between the routing area per block and K (the dotted 
curve in Fig. 8) is not intuitively apparent. Since most of 
the results in this paper are derived from this fact, it is 
worth exploring in greater detail. In this section we review 
a relevant theoretical result that explains this relation- 
ship. 

El Gamal [20] derives an expression for the expected 
value of the number of tracks in a gate-array channel 
under the following assumptions: 

9 

1) The average number of wires (connected pins) ema- 
nating from a block is A. 

2) The average wire length of point-to-point connec- 
tions is E ,  where distance is measured in the man- 
hattan number of logic blocks the wire must tra- 
verse. No assumption is made about the wire length 
distribution. 

6.0 2.9 8.7 15 21 

TABLE I11 
CIRCUITA 3 STATISTICS: THEORETICAL 

AND OBSERVED CHANNEL 
WIDTHS 

I Observed I Calculated 1 Obsewed I 

5.3 3.1 8.2 

8 1 5.5 1 2.9 I 8.0 I 13 I 17 I 

3 )  Wires emanating from a block are uniformly “spread 
out” from the logic block (see [20] for a precise 
definition of the wire trajectories). 

Using these assumptions El Gamal shows that the ex- 
pected value of the width of any channel, Wavg, is given by 

( 3 )  

The expected maximum channel width W will certainly be 
at least this value and most probably larger. 

In the context of the experiments presented in this 
paper, (3)  says that if the number of connected pins A 
increases faster than the average wire length R decreases, 
then the channel width will increase. We observe this to 
be the case for our implementations for all K greater 
than 2. While does decrease as K increases, it does so 
more slowly than the average number of used pins in- 
creases. Note that A is a function of K .  Table 111 gives 
sample data for the 1073-cell circuit A3,  and is typical of 
all of the circuits. For each K ,  Table 111 gives the mea- 
sured A ,  the measured average wire length R, the theo- 
retical expected average channel width AR/2, the ob- 
served average channel width Wavg, and the observed 
maximum channel width W. While the calculated AR/2 
and the observed Wavg are somewhat different (and this is 
probably due to assumption 3 above and the properties of 
the router), there is a correspondence between the trends 
of the two columns. Note that between K = 2 and K = 3, 

does decrease faster than A increases, and a drop in 
average channel width is predicted by the theory. The 
measured value, however, stays the same but does not 
decrease. From these calculations we are confident that 
the observed increase in W is not an experimental aberra- 
tion but a consistent property of gate array-style circuits. 
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Average normalized area versus K ,  without D flip-flop. 
K 

Fig. 9. 
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B. Logic Block Without D Flip-Flop 

2.1 7% 

1.8 6% 

The same experiments as described in Section 111-A 
were run using logic blocks that do not contain a flip-flop. 
Flip-flops were implemented using combinations of sev- 
eral logic blocks. Fig. 9 is a plot of the average normalized 
area over all the circuits versus K ,  using a logic block that 
does not contain a D flip-flop. This figure indicates that 
the best choice for K is in the same range (three to four) 
when a D flip-flop is included, but is slightly lower. This 
slight lowering can be explained by the theory described 
in Section 111-A-4: the total number of logic blocks re- 
quired to implement a circuit without a D flip-flop in the 
logic block is greater than the number required if there is 
a D flip-flop. This causes the average wire length R to 
increase because there are more blocks for each wire to 
traverse. From (3) ,  and from the fact that experimental 
data indicate that the average number of pins emerging 
from a logic block ( A )  is only slightly changed by the 
presence of a D flip-flop, we find that the number of 
tracks per channel increases: W$oL) > WL,, where W,vou is 
the number of tracks per channel for a circuit imple- 
mented with logic blocks without a D flip-flop and W, is 
the number when the flip-flop is included. Experimental 
data confirm this. From (2) the routing area per block 
increases as W 2 .  The cost, then, in routing area per block 
of increasing K (i.e., A in (3)) for blocks without a D 
flip-flop is more than for blocks with a D flip-flop. 
Therefore, the K that minimizes total routing area is 
lower when the logic block docs not include a D flip-flop. 

203 

C. Utility of the D Flip-Flop 

We sought to determine if having a D flip-flop in the 
logic block was beneficial. An FPGA implemented using 
logic blocks without an embedded flip-flip requires more 
blocks than if there is an embedded flip-flop because each 
flip-flop must be implemented using several logic blocks. 
Experimental results show that the number of logic blocks 
needed to implement each circuit increased between 1.4 
and 2.3 times (for the test circuits) when the flip-flop was 
removed from the logic block, depending on the number 

0.7 0% 

I B- I 1.4 I 18% I 

I DFSM I 1.9 I 6% I 

of flip-flops in the original circuit. The logic block size 
without a D flip-flop, however, is about 2.1 to 2.5 times 
smaller depending on the programming technology for K 
in the range of 3 to 4. This means that the active area 
without using a D flip-flop is roughly the same, but 
because there are about twice as many blocks, the routing 
area will at least double. Furthermore, as discussed above, 
the channels are wider because of the larger average wire 
length. Hence the routing area more than doubles. Since 
routing area dominates the overall area, this indicates 
that it is always better to include a D flip-flop. 

Table IV gives the ratio of area without flip-flop to 
area with flip-flop for all of the circuits. Since all of these 
numbers are greater than 1 (except for 203, which is 
purely combinational), we see experimental confirmation 
of the above argument. The table also gives the percent- 
age of standard cells that contain flip-flops. The ratios in 
Table IV are for the smallest possible programming tech- 
nology. The ratio remains nearly constant over the range 
of programming technologies. This occurs because the 
routing area dominates the total area, and routing area is 
predominantly a linear function of the bit area. Thus, the 
change in programming technology cancels out in the 
rat io calculation. 

IV. CONCLSJSIONS AND FUTURE WORK 

This paper has explored the trade-off between the 
functionality of a field-programmable gate array logic 
block and the area required to implement circuits using 
that block. Our key observation is that while increasing 
the functionality of the logic block reduces the total 
number of logic blocks, this can be more than offset by an 
increase in routing area due to a larger number of pin 
connections per block. We have presented both experi- 
mental and theoretical confirmation of this effect. Since 
the routing area dominates the active area even for small 
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programming technologies, this consideration is of funda- [17] M. A. Breuer, “Min-cut placement,” J .  Design Automation Fault- 
Tolerant Computing, pp. 343-362, Oct. 1977. 

importance’ It imp1ies that logic which 1181 J. Rose. “LocusRoute: A Darallel global router for standard cells.” - .  
provide the most amount of functionality per connected 
pin will result in the best area efficiency. A lookup-table- 
based logic block is one good choice because each pin can 
be “connected,, to any logic function, giving high func- 

in Proc: 25th Design AutGmation eonf., June 1988, pp. 189-195.’ 
[19] J. T. Evans and R. Womack, “ A n  experimental 512-bit nonvolatile 

memory with ferroelectric storage cell,” IEEE J .  Solids-State Cir- 
cuits, vol. 23, no. 5, pp. 1171-1175, Oct. 1988. 

[201 A. El Gamal, “Two-dimensional stochastic model for interconnec- 
tions in master slice inteerated circuits.” IEEE Trans. Circuits 

tionality per pin. Syst., vol. CAS-28, no. 2, p’). 127-138, Feb. 1981. 
For the specific logic block architecture that was con- - 

sidered we have shown that the best number of inputs to 
the lookup-table combinational logic block is between 
three and four, and that it is always beneficial to include a 
D flip-flop in the logic block. These results have little 
dependence on the programming technology. 

In the future, we will examine other classes of logic 
blocks to determine their area efficiency. We will also 
explore interconnection architectures with the aim of 
improving the density and speed of field-program- 
mable gate arrays. These projects will also require research 
on CAD tools for technology mapping, placement, and 
routing. 
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