
IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 27, NO. 3, MARCH 1992 281

The Effect of Logic Block Architecture on FPGA
Pel-formance

Satwant Singh, Member, IEEE, Jonathan Rose, Member, IEEE, Paul Chow, Member, IEEE, and
David Lewis, Member, IEEE

Abstract-This paper explores the effect of logic block archi-
tecture on the speed of a field-programmable gate array
(FPGA). Four classes of logic block architecture are investi-
gated: NAND gates, multiplexer configurations, lookup tables,
and wide-input AND-OR gates. An experimental approach is
taken, in which each of a set of benchmark logic circuits is syn-
thesized into FPGA’s that use different logic blocks. The speed
of the resulting FPGA implementations using each logic block
is measured. While the results depend on the delay of the pro-
grammable routing, experiments indicate that five- and six-in-
put lookup tables and certain multiplexer configurations pro-
duce the lowest total delay over realistic values of routing delay.
The primary reason is that these blocks can implement typical
logic using the fewest levels of logic blocks, and thus incur a
small number of stages of the slow programmable routing pres-
ent in all FPGA’s. The secondary reason is that their inherent
combinational delay is not excessive. The fine grain blocks, such
as the two-input NAND gate, exhibit poor performance because
these gates require many levels of logic block to implement the
circuits and hence require a large routing delay.

I. INTRODUCTION
HE field-programmable gate array (FPGA) is a new T ASIC medium that provides instant manufacturing

turnaround and extremely low prototype manufacturing
costs. An FPGA can be designed like a mask-pro-
grammed gate array (MPGA) but is user-programmable
like a programmable logic device (PLD). The user-pro-
grammability, however, causes an FPGA to have both
lower logic density and lower performance than an MPGA
that is made in the same process technology. These defi-
ciencies can be addressed by improving the architecture
of the FPGA, which consists of its logic block function,
interconnection structure, and I/O block design. In pre-
vious work, we have investigated the effect of logic block
functionality on the area-efficiency of FPGA’s [22], and
the effect of switching block flexibility on the routability
of an FPGA [23]. In this paper we look at the effect of
logic block architecture on FPGA performance.

The FPGA was introduced in [8]. Since then newer ver-

Manuscript received August 8, 1991; revised November 4, 1991. This
work was supported by NSERC under Operating Grants URF0043298,
A4029, and OGP0036648, a MICRONET research grant, a research grant
from Bell-Northern Research, and ITRC.
S. Singh was with the Department of Electrical Engineering, University

of Toronto, Toronto, Ont., Canada M5S 1A4. He is now with AT&T Bell
Laboratories, Allentown, PA 18103.

J. Rose, P. Chow, and D. Lewis are with the Department of Electrical
Engineering, University of Toronto, Toronto, Ont., Canada M5S 1A4.

IEEE Log Number 9105612.

sions have been introduced [141, [151 and several other
types have been implemented [1]-[5], [9], [l l] , [19]-
[2 13, [26]. An FPGA consists of an array of logic blokks
surrounded by a programmable interconnection structure.
There are many different kinds of interconnection struc-
tures, such as those articulated in these commercial ar-
chitectures and in [23]. It is universally true, however,
that the delay of the routing is significantly greater than
that of a simple metal wire in the same process technology
because programmable interconnects contain significant
resistance and capacitance. For example, in [15] connec-
tions are made with pass transistors with 1- to 2-kQ re-
sistance, and in [l] connections are made with 300- to
500-Q antifuses. As a result, connection delays often ex-
ceed the delay of the logic block, and this is one of the
fundamental limitations on FPGA speed.

The performance of an FPGA can be increased by re-
ducing the number of stages of programmable routing used
in the critical paths. One way to do this is to use logic
blocks with high functionality so that the number of logic
block levels in the critical path is minimized, as illus-
trated in Fig. 1. Fig. l(a) gives the implementation of the
logic function f = ab2 + abc + ac2 using a two-input
NAND gate as the logic block. It requires four levels of the
logic block in the critical path. Fig. l(b) shows an im-
plementation of the same function using three-input
lookup tables, which requires only two levels. Since the
latter avoids two levels of slow programmable intercon-
nect, this will likely lead to a significant decrease in de-
lay. Increasing the functionality of the logic block, how-
ever, is likely to increase its combinational delay. This
increase is only profitable if the reduction in routing delay
more than offsets the increase in total delay due to the
logic block.

In this paper, an empirical approach is taken to study
the effect of the logic block functionality on the total de-
lay of an FPGA. We seek a logic block that minimizes
the total delay in an FPGA. The experiments presented in
this paper indicate that five- and six-input lookup tables
exhibit the lowest total delay over a set of logic circuits
for the important values of routing delay, and the multi-
plexer-based block used in [113 is close behind. The NAND
gates, on the other hand, give the largest total delay, while
the delay of FPGA’s based on wide-input AND-OR gates
is between these two.

0018-9200/92$03.00 0 1992 IEEE

- -

282 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 27, NO. 3, MARCH 1992

b - I

Fig. 1 . Two implementations off = ab2 + abc + a d . (a) Using two-input N A N D block; number of blocks in critical path =
4. (b) Using three-input lookup table block; number of blocks in critical path = 2.

There is one major caveat in these experiments; the an-
swers depend heavily on the quality of the logic synthesis
tools used to generate them. In all cases the best tools
available were used; this does not preclude the possibility
that a better tool for a given logic block would improve
that block’s result.

This paper is concerned only with the speed of the
FPGA and so we ignore issues that affect the logic den-
sity. While area has an indirect effect on speed, the as-
sumption is that CAD tools can be optimized to reduce
that effect. Previous work [22] has addressed the issue of
density. An earlier version of this research appeared in
[24], and an extended version appears in [25]. A similar
.study, which focuses on lookup tables and performs in-
depth implementations to the full place-and-route level,
appears in [161.

This paper is organized as follows. Section 11 describes
the selection of logic blocks investigated, the experimen-
tal procedure, and the delay model. Section I11 presents
the experimental results, while Section IV outlines the
conclusions and the relevant future work.

11. EXPERIMENTAL CHOICES, PROCESS, AND MODEL

To compare the different logic blocks for their etfect on
the speed of an FPGA, our approach is to synthesize a set
of circuits into many FPGA’s. Each circuit is synthesized
into a number of different FPGA’s, where each FPGA
uses a different basic logic block. The delay of the re-
sulting implementation is then measured. The results,
summarized by logic block, give an indication of the ef-
fect of logic block choice on the speed of an FPGA.

By “synthesize” we mean that a circuit passes through
the logic synthesis necessary to transform a logic descrip-
tion of the circuit into an optimized network consisting of
connections between one kind of logic block. By “meas-
uring” the delay of the synthesized network, we mean the
determination of the critical path length in each FPGA
implementation and then estimating the total delay using
a model.

The following section discusses the selection of logic
blocks used in these experiments. Subsequent sections re-
late the synthesis procedure and the delay modeling.

A . Logic Block Selection
To represent a wide cross section of the possible blocks,

four classes of the logic block were selected for compar-
ison: NAND gates, multiplexers, lookup tables, and wide-
input AND-OR gates. Table I gives the name and descrip-
tion of the logic blocks chosen from each class. The four
classes are described below.

I) NAND Gates: The nand2, and nand3, and nand4
gates are two-, three- and four-input NAND gates, respec-
tively. The nand2pi, nand3pi, and nand4pi are the corre-
sponding NAND gates that have a programmable inversion
capability, which allows the inputs to be passed in true or
complement form. These were chosen because several
FPGA’s have been proposed which use NAND or AND gates
[9], [19], [20], and this is a similar level of granularity to
that used in MPGA’s.

The NAND gates were implemented using standard
CMOS techniques [25]. The programmable inversion was
performed with an inverter and a pass gate [25].

2) Multiplexers: The mux21 and mux41 logic blocks
can implement all possible logic functions of a multi-
plexer by connecting the primary inputs and the selector
inputs to either constants (0 or 1) or signals. The muxA
logic block is the one used in [1 11, which can implement
over 700 logic functions. Multiplexers are of interest be-
cause of their use in two FPGA’s [5], [l l] and because
previous work in Universal Logic Elements [29] has in-
dicated their ability to provide many logic functions.

The multiplexers were implemented as trees of trans-
mission gates [25].

3) Lookup Tables: The K2 to K9 logic blocks are
lookup tables with two to nine inputs. A K-input lookup
table is a digital memory with 2K bits, K address lines,
and one output. If the truth table of a logic function is
stored in the correct addresses of the memory, and the K
address lines are used as logic block inputs, then the
memory will implement the truth table. These blocks were
chosen because lookup tables, which were also studied in
[16] and [22], were used in one of the first FPGA’s [8],

The lookup tables are implemented as one large mul-
tiplexer with the appropriate number of inputs connected
to static memory cells [25].

~ 4 1 , WI .

- -

SINGH et al.: EFFECT OF LOGIC BLOCK ARCHITECTURE ON FPGA PERFORMANCE

Bloqk Logic
Name Function

283

Delay (ns)
1.2-pm CMOS

mux2 1
mux4 1
muxA

NAND Gates

2-to-I mux 1.08
440-1 mux 1.31
logic block from [1 I] 1.31

nand2 2-input NAND gate
nand3 3-input N A N D gate
nand4 4-input NAND gate
nand2pi 2-input NAND gate with prog inv
nand3pi 3-input NAND gate with prog inv 1.42
nand4pi 4-input NAND gate with prog inv 1.62

Multiplexers

2-input I-output lookup table
3-input I-output lookup table
4-input I-output lookup table
5-input I-output lookup table 2.03
6-input I-output lookup table 2.38
7-input I-output lookup table 2.85
8-input I-output lookup table 3.26

K9 9-input I-output lookup table 3.78

AND-OP Gates

A203pi
A403pi
A803pi
A1603pi
A3203pi
A205pi
A405pi
A805pi
A1605pi
A3205pi

OR of 3, 2-input product terms
OR of 3, 4-input product terms
OR of 3, 8-input product terms
OR of 3, 16-input product terms
OR of 3, 32-input product terms
OR of 5, 2-input product terms
OR of 5, 4-input product terms
OR of 5 , 8-input product terms
OR of 5, 16-input product terms
OR of 5, 32-input product terms

1.88
2.17
2.69
3.77
5.98
1.98
2.27
2.80
3.95
6.05

4) AND-OR Gates: These gates perform a two-level
AND-OR logic function. We use the notation AxOy pi to
describe each gate, where x is the total number of inputs
that can be selected to form y separate product terms. Each
of the y product terms is oRed together in the logic block
to generate the output. For example, A803pi has a total
of eight inputs, each of which can be selected to form
three separate product terms that are oRed together. These
gates have the programmable inversion capability. The
AND-OR gates consisting of the following values of x and
yare investigated: x = (2, 4, 8, 16, 32) and y = (3, 5) .
These gates were chosen because of their wide use in the
original PLD’s [17], and use in the large-scale PLD’s in

The AND-OR gates are implemented as cascaded pseudo-
NMOS NORs [25].

Table I also gives the worst-case delay of each logic
block determined using the SPICE 2G6 circuit simulator
[27], in a 1.2-pm CMOS process. The simulation in-
cludes a small buffer following the logic function, but no
loading or delay due to routing.

[3l, V I , WI, and 1261.

B. Logic Synthesis Procedure

Logic synthesis is required to convert each test circuit
into a network of logic blocks, while minimizing the num-
ber of logic stages between the primary inputs and the
output of the circuit. The procedure employed is de-
scribed below. Note that this procedure deals only with
combinational circuits, as we assume that the sequential
and combinational portions of the circuits have been sep-
arated.

1) Collapse the logic circuit into a two-level represen-
tation, using the MIS I1 [7] collapse command so that each
output is only a function of its primary inputs. Optimize
the two-level expression using Espresso [6].

2) Factor each output separately into a multilevel logic
expression using the mid1 decompose command [7]. This
may result in logic that is used in more than one expres-
sion, and so we say that it createsfan-out. We then re-
move this fan-out by replicating the logic expression that
is the source of the fan-out. This step is necessary because
most technology mapping approaches, including some of
those used in step 3, do a poor job across fan-out. By
removing fan-out the delay is reduced but the area is in-
creased, and as such the results presented below are op-
timistic. It is possible that better CAD tools would be able
to operate on networks with fan-out and achieve similar
results. Note also that without fan-out some circuits, such
as a parity tree, have a size that is exponential in the num-
ber of inputs. It was thus not possible to run this class of
circuits in these experiments.

3) Perform the technology mapping of the Boolean net-
work. This converts the Boolean logic expressions into a
network of logic blocks. The best available technology
mapping tool was used for each class of logic block, as
described below.

a) NAND gates and multiplexers: For these logic
blocks the technology mapping is done using the MIS 2.2
technology mapping program, which is the most recent
version of the one presented in [101. The mapper is set to
optimize the critical path delay. It requires a library to be
generated for each logic block that describes all possible
logic functions that the block can perform. In all cases, a
complete library was constructed (or obtained from other
sources), including that for the muxA [111 block, which
has over 700 logic functions [18]. Note that the MIS 2.2
technology mapper has the ability to handle blocks with
internal reconvergent fan-out, and so is able to make good
use of the multiplexers, as distinct from MIS I1 [lo].

b) Lookup tables: The technology mapping for
lookup tables is done by the Chortle-d [13] technology
mapping program. Chortle-d is tuned to optimize lookup
table networks for delay.

c) AND-OR gates: For these blocks, the logic synthe-
sis in step 2 was omitted. The two-level expressions from
step 1 are mapped into a balanced tree of gates and the
depth of the critical path is computed as follows. Consider
the general case where the logic block has p inputs to the
AND section and can OR together s product terms. This
gate would be referred to as Ap Os pi in our notation. If

284 IEEE JOURNAL OF SOLID-STATE CIRCUITS. VOL. 21, NO. 3, MARCH 1992

D R = O D R = 2
(ns) (ns)

1 1 41
10 34
12 33

14 35
13 32
15 32

the logic expression to be mapped has a product term with
v variables in it, then the number of levels in the logic
tree to implement the product term is [logp v l . Simi-
larly, if the number of product terms in the expression is
t , then the depth of the OR tree would be [log, t l . When
the two trees are combined, the total depth in logic blocks
is rlog, VI + [log, tl . Note that in some cases where
some variables are common in many product terms, it is
possible to reduce the number of levels by one less than
given by this expression. Thus, the critical path calcula-
tions are pessimistic by at most one logic level.

D R = 4 D R = 1 0
(ns) (ns)

71 163
57 128
55 120

51 121
50 106
50 103

TABLE 11
AVERAGE CRITICAL PATH LENGTH AND TOTAL DELAY-NAND GATES

711
Logic D,, - 1 r;: 1 :8

Block

nand2 0.70 15.2
nand3 0.88 11.8
nand4

nand2pi 1.3 10.8
nand3pi 1.4 9.3
nand4pi 1.6 8 .9

Std.
Dev .

5.8
4 . 0
3 .8

4 . 5
3.8
3.8

C. Model for Measuring Delay
The speed of a circuit implemented in an FPGA with a

given logic block is a function of the combinational delay
of the logic block (DLB), the number of logic blocks on
the critical path (NL), and the delay incurred in the routing
between each logic block (DR). Assuming that each stage
of logic block incurs one routing delay and one logic block
delay, then the total delay (D T O T) can be calculated as

(1)
The value of NL can be measured for each circuit after it
is mapped into a logic block using the procedure de-
scribed above. The value of DLB was determined as de-
scribed in Section II-A.

The value of D R is much more difficult to determine. It
is a function of the routing architecture, the fan-out of a
connection (which would be determined by the physical
placement), the length of the connection, the process
technology, and the programming technology. Since our
purpose is to understand general architectural principles,
it is important not to fix any of these parameters. As such,
most of the results below will be given as a function of
D R , rather than choosing a specific D R .

This assumption, however, makes the approximation
that D R is constant for each connection. This is a simpli-
fying abstraction that makes this broad set of experiments
possible, but it is inaccurate, and must be considered when
any conclusions are drawn. It is comforting to note that
in [16], where complete implementations down to the
place-and-route level were performed, results where the
experiments overlap are similar to those presented here.

DTOT = NL X (DLB + DR).

111. EXPERIMENTAL RESULTS
The experimental circuits that were used are a selection

of 15 logic synthesis benchmarks provided by the Mi-
croelectronics Center of North Carolina (MCNC) and one
standard cell-based circuit from Bell-Northern Research.
They range in size from 28 to over 700 two-input NAND
gate equivalents. Each circuit was passed through the im-
plementation procedure described in Section II-B once for
every logic block listed in Table I. Sections III-A through
-D discuss the relative performance of the logic blocks in
each of the four classes (NAND gates, multiplexers, lookup
tables, and AND-OR gates). Section III-E compares the best
logic blocks from the four classes.

The comparison of different logic blocks is done by av-
eraging the critical path delays over all the test circuits.

A. NAND Gates
Table I1 gives the summarized delay data for NAND

gates. The first column names the gate, the second col-
umn lists the combinational delay from Table I , the third
column gives the average number of logic blocks in the
critical path (G) over all 16 circuits, and the fourth col-
umn contains the standard deviation of this average. Col-
umns five through eight give the total delay (D T O T) for
different values of the routing deIay (D R) . The DToT cal-
culations use the values of 0, 2, 4, and 10 ns for D R .
These values of D R are chosen because they range from
the minimum possible to the point where the ranking of
the logic blocks based on D T o T does not change. Typical
FPGA delays, in 1.2-pm CMOS, range from 2.5 to 10 ns
[281*

Table I1 shows that the total delay for the nand3 block,
for all ranges of DR, is less than nand2. This occurs be-
cause the increase in functionality from nand2 to nand3
results in a lowering of the number of logic blocks in the
critical path (K) from 15.2 to 11.8. While the delay of
nand3 (0.88 ns) is slightly more than for the nand2 (0.70
ns), the saving in the number of levels more than com-
pensates. Interestingly, this is true for D R = 0, which
would correspond to mask-programmed routing. As the
routing becomes slower (D R > 0), the relative perfor-
mance of nand3 improves over nand2 because each rout-
ing stage costs more in delay.

The reduction in total delay from nand3 to nand4 is not
as significant as it is from nand2 to nand3. This is because
the increase in logic block delay is not offset by a reduc-
tion in the total number of logic block levels. Note that
no further improvement was achieved with the nand5 gate
or any larger NAND gates.

Table I1 also indicates that the addition of program-
mable inversion (the gates suffixed with “pi”) to the NAND
gate inputs causes a significant reduction in the number
of logic block levels. The programmable inversion, how-
ever, requires roughly 0.5-ns extra combinational delay
which makes such gates slower at DR = 0, as compared
to the pure NAND gates. As D R increases, nand;?pi,
nand3pi, and nand4pi give increasingly better delay than
nand2, nand3, and nand4, respectively. This is because
the increased combinational delay is being more than off-
set by the reduction in the routing delay due to a lower
q. For DR > 0, nand3pi and nand4pi give the best per-

. -

SINGH er al.: EFFECT OF LOGIC BLOCK ARCHlTECTURE ON FPGA PERFORMANCE

Logic
Block

mux21
mux41
muxA

formance among NAND gates. While nand3pi and nand4pi
exhibit almost the same performance, nand3pi has fewer
inputs and so it would be the best choice among the NAND

gates. This is because the number of inputs has an indirect
effect on delay, which is not considered in the delay
model: as the number of inputs to a block increases, there
are more connections to the block, and hence more para-
sitic capacitance to be driven.

D-ro-r = NL X (DIU + D R)

D,, - Std. D, = 0 D, = 2 D, = 4 D,,= 10
(ns) NL Dev. (ns) (ns) (ns) (ns)

1 . 1 9.9 4.7 1 1 30 50 110
1.3 6.1 2.3 8 20 33 69
1.3 4.4 2.0 6 15 23 50

B. Multiplexers
The total delay results for three multiplexer configura-

tions are given in Table 111, which has the same columns
as Table 11. The muxA logic block exhibits the lowest
K. This is due to the high number of logic functions that
this logic block can perform, several of which have ap-
preciable fan-in. These wider gates are capable of reduc-
ing logic depth because depth is roughly logarithmic in
the number of inputs, with the base of the logarithm equal
to the fan-in of the gate. The combinational delay of the
muxA logic block is same as that of a four-to-one multi-
plexer (mux41), and because it has lower %, it gives bet-
ter performance for all values of DR. Thus, the muxA
block would be the best choice among the multiplexer
configurations investigated.

Logic
Block

K2
K3
K4
K5
K6
K l
K8
K9

C. Lookup Tables
Table IV summarizes the total delay results for K-input

lookup tables, with K ranging from 2 to 9. As the number
of inputs to the lookup table increases, we observe that
the number of logic block levels in the critical path con-
tinues to decrease up to K = 9. Significant decreases are
obtained as far as K = 8. This occurs because lookup
tables can implement any function of K inputs, and so
they can contain many levels of logic. Notice that the
lookup table inherently has the programmable inversion
capability.

As the number of inputs to the lookup table increases,
the logic block delay (DLB) increases roughly 0.4 ns for
every added input, after K = 3. This is because each
added input causes one more transistor to be added in se-
ries in the multiplexer tree that implements the lookup
table.

For very fast routing delay (DR = 0), the fastest logic
block is strictly a function of the number of logic block
levels (%) and the delay of the logic block (DLB). As
shown in Table IV, for values of K greater than 2, the
total delay (DTOT) is almost constant. This says that re-
duction in delay due to a lower % as K increases above
3 is exactly offset by the increase in delay due to the in-
crease in DLB.

As DR increases, the cost in delay of each logic block
level increases, and so the blocks with lower values of
K achieve superior performance. For DR = 2 the six-
input lookup table achieves the best performance. For DR
= 4 the seven-input lookup table achieves the best per-
formance. Notice, however, that the five-input lookup ta-
ble achieves similar performance in both cases, and the
accuracy of these experiments makes this small spread in-

4 o - r = NI. X (D L B + D R)
Std.

D I E - Dev. D, = 0 D, = 2 D, = 4 D, = 10
(ns) NL (ns) (ns) (ns) (ns) (ns)

1.4 10.0 3.9 14 34 54 114
1.4 5.6 2.1 8 19 31 64
1.7 4.1 1.5 7 15 24 48
2.0 3.4 1.2 7 14 21 41
2.4 2.8 1.0 7 12 18 35
2.9 2.4 1.0 7 12 16 31
3.3 2.1 0.8 8 1 1 16 28
3.8 2.0 0.8 8 12 16 28

285

significant. In addition, as noted in Section 111-A, the de-
lay model does not account for the increase in delay due
to extra capacitive loading from the higher number of pins,
and so the marginal improvement shown in Table IV from
K = 5 to K = 7 may be lost. The actual choice of logic
block might be more strongly influenced by the fact that
each added input doubles the number of bits in the lookup
table, and hence the area. Thus, the five- and six-input
lookup tables are good choices for DR = 2 and DR = 4
ns, which are realistic values for routing delay.

As DR increases to 10 ns, the best value of K continues
to increase, to K = 8. It is clear that as long as increasing
K results in a decrease in K , then higher values of K will
be faster for higher values of DR.

D. AND-OR Gates
Table V gives the total delay for the wide AND-OR gates.

It is clear that for all ranges of the routing delay, the AND-
OR blocks with five product terms (Ax05pi) exhibit lower
total delay than the corresponding blocks with three prod-
uct terms (Ax03pi). There is an average of 10 to 15%
improvement in delay from three to five product terms.
This occurs because the blocks with five product terms
have smaller K than those with three product terms, while
the increase in DLB from three to five product terms is
minor.

For fast routing, with DR up to 2 ns, the A405pi block
gives the lowest delay as this logic block presents a good
balance between combinational delay and functionality-
it has 26% fewer average logic block levels than A205pi,
and only 15% more combinational delay. Blocks with
more than four inputs incur a combinational delay that
more than offsets the gain due to a reduction in NL, at the
lower values of routing delay.

. I

286

Logic
Block

A203pi
A403pi
A803pi
A1603pi
A3203pi

A205pi
A405pi
A805pi
A1605pi
A3205pi

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 27. NO. 3, MARCH 1992

D,, -
(ns) NL

1.9 7.4
2.2 5.6
2.7 5.0
3.8 4.6
6.0 4.3

2.0 6.5
2.3 4.8
2.8 4.1
4.0 3.8
6.1 3.4

TABLE V
AVERAGE CRITICAL PATH LENGTH AND TOTAL DELAY-AND-OR GATES

Std.
Dev.

1.9
1.5
1.6
1.5
1.3

1.6
1.2
1.2
1.2
1.0

DTOT = NL X (DLB + DR)

DR = 0 DR = 2 DR = 4 DR= 10
(ns) (ns) (ns) (ns)

14 29 43 88
12 24 35 69
13 23 33 63
18 27 36 64
25 34 42 68

13 26 39 78
11 20 30 58
12 20 28 53
15 22 30 52
20 27 34 54

I I

0.70
1.4
2.3
2.8
1.3

2.4
2.0-

15.2 5.8
9.3 3.8
4.8 1.2
4.1 1.2
4.4 2.0
3.4 1.2
2.8 1.0

For DR = 4 ns, the A805pi block exhibits the lowest
delay, while for DR = 10 ns, the A1605pi block is the
fastest. As the routing delay increases, the effect of
dominates the total delay since the routing delay per stage
is much greater than the combinational delay per stage.
However, as discussed in Section 111-A, the delay model
in this study gives an advantage to logic blocks with a
large number of inputs, and so marginal decreases in de-
lay resulting from a larger number of inputs should be
ignored. Thus, the A405pi and A805pi blocks provide
the best performance over the realistic values of routing
delay. These two blocks will be compared against the best
from other categories in the next subsection.

E. Overall Comparison
Fig. 2 is a plot for the total delay of the best logic blocks

from each class versus the routing delay DR. Table VI
tabulates the same data. The first clear conclusion from
these data is that the fine-grain logic blocks, such as the
two-input and three-input NAND gates (even with pro-
grammable inversion), exhibit markedly lower perform-
ance than any other class of logic block. This is a signif-
icant conclusion, given that several commercial FPGA's
use the two-input NAND gate as the basic logic block. No-
tice that the result is true even for a routing delay of zero,
which provides an interesting perspective on mask-pro-
grammed architectures-they should perhaps use a more
coarse-grain basic block, as suggested in [12].

At zero routing delay, the muxA logic block is the fast-
est because it has a very small combinational delay com-
bined with a low number of logic block levels.

For the midrange routing delays (2 ns 5 DR I 4 ns)
the five- and six-input lookup tables and the muxA logic
block exhibit similar delays, with the lookup tables
slightly faster. At this point the routing delay is mostly
greater than the logic block delay, so the number of logic
block levels begins to dominate in the comparison. These
blocks have quite low values of K . The wide AND-OR

gates, which have K close to the muxA block, exhibit
worse performance because of a significantly higher com-
binational delay.

For large delays (DR = 10 ns) the five- and six-input
lookup tables are significantly faster. This is because in

Dr (ns)

Fig. 2. DToT versus DR for the best blocks in each class.

TABLE VI
AVERAGE CRITICAL PATH LENGTH A N D TOTAL DELAY-OVERALL

COMPARISON

Logic
Block

nand2
nand3pi
A405pi
A805pi
muxA
K5
K6

% I K (t"
11
13
11
12

41
32
20
20
15
14
12

71
50
30
28
23
21
18

163
106
58
53
50
41
35

this delay range the only important factor is the number
of logic levels, and as Table VI shows, the lookup tables
have significantly lower values of K. Notice that the wide
AND-OR gates do not approach this level. It is possible,
however, that the conservative approximation described
in Section 11-B unfairly disadvantages these blocks.

F. Lizitations of Results
It should be noted that these results depend heavily on

the quality of the logic synthesis tools. We have observed
shifts in these results by moving from technology mappers
that optimize for area to those that optimize for delay. In
these experiments we have used the best mapping tools
available to us.

Another limitation is the approximation of DR as a con-
stant, as discussed in Section 11-C. While this value will
certainly vary, even within one connection, one would
expect it to change in similar ways for each block. The
conclusions presented above would likely not change in a
significant way if the variation is taken into account, as
shown by the fact that the results in [161 for lookup tables
are similar to those presented here.

IV. CONCLUSIONS AND FUTURE WORK
This paper has explored the relationship between logic

block architecture and the speed of the resulting FPGA.
There are two principal conclusions:

1) five- and six-input lookup tables and the muxA [113
logic block are all good choices for a logic block for
midrange values of programmable routing delay;

SINGH et al.: EFFECT OF LOGIC BLOCK ARCHITECTURE ON FPGA PERFORMANCE 281

2) fine-grain logic blocks, such as two-input NAND [25] S . Singh, “The effect of logic block architecture on the speed of field-

gates, result in significantly
of more than 3) than these blocks.

delay (by a factor

In addition, wide AND-OR gates do not achieve compara-
ble performance to the best blocks, but it is possible that
better logic synthesis for these blocks would improve
their performance.

In the future, we will adapt these experiments and tools

tion we will explore the performance gains possible when

programmable gate arrays,” M.A.Sc. thesis, Dept. Het. Eng., Univ.
of Toronto, Toronto, Ont., Canada, Aug. 1991.

[26] S. C. Wong, H. C. So, J . H. Ou, and J. Costello, “A 5000-gate
CMOS EPLD with multiple logic and interconnect arrays,’’ in Proc.
CICC, M~~ 1989, pp. 5.8.1-5.8.4.

[27] A. Vladimirescu, K. Zhang, A. Newton, D. 0. Pederson, and A.
Sangiovanni-Vincentelli, SPICE Version 2G, U s e r s Guide, Dept.
Elec. Eng., Univ. of Califomia, Berkeley, Aug. 1981.

[28] J.-M. Vuillamy, “Performance enhancement in field-programmable
gate arrays,” M.A.Sc. thesis, Dept. Elec. Eng., Univ. of Toronto,
Toronto, Ont., Canada, Apr. 1991.

tion,’’ IEEE Trans. Comput., vol. C-19, pp. 141-149, 1970.

to account for the area Of the gain in In addi- [29] S , Yau and C , Tang, “Universal logic modules and their applica-

hard-wired (fast) links between basic logic blocks are
used.

REFERENCES
[I] M. Ahrens et al . “An FPGA family optimized for high densities and

reduced routing delay,” in Proc. CICC, May 1990, pp. 31.5.1-
3 1 S . 4 .

Mach Devices High Density EE Programmable Logic Data Book, Ad-
vanced Micro Devices, Sunnyvale, CA, 1990.
S . Baker. “Lattice fields FPGA,” Electron. Ena. Times, no. 645 ,

121 CAL 1024 Datasheet, Algotronix Ltd., Edinburgh, Scotland, 1989.

r241

p. 1, June 10, 1991.
J . Birkner et al . , “A very high-speed field programmable gate array
using metal-to-metal anti-fuse programmable elements,” New Hard-
ware Product Introduction at CICC ’91.
R. K. Brayton et a l . , Logic Minimizarion Algorirhms for VLSI Syn-
thesis.
R. K. Brayton et al., “MIS: A multiple-level logic optimization sys-
tem,” IEEE Trans. Computer-Aided Design, vol. CAD-6, no. 6, pp.

W. Carter er a l . , “A user programmable reconfigurable gate array,”
in Proc. CICC, May 1986, pp. 233-235.
Concurrent Logic CFA6006 Field-Programmable Gate Array Data
Sheet, Concurrent Logic Inc., Sunnyvale, CA, 1991.
E. Detjens et a l . , “Technology mapping in MIS,” in Proc. ICCAD,

A. El Gamal et a l . , “An architecture for electrically configurable gate
arrays,’’ IEEE J . Solid-state Circuits, vol. 24, no. 2, pp. 394-398,
Apr. 1989.
A. El Gamal, J . Kouloheris, D. How, and M. Morf, “BiNMOS: A
basic cell for BiCMOS sea-of-gates,” in Proc. CICC, May 1989, pp.

R. J . Francis, J . Rose, and Z. Vranesic “Technology mapping of
lookup table-based FPGAs for performance,” in Proc. ICCAD ’91,

H. Hsieh er a l . , “A 9000-gate user-programmable gate array,’’ in
Proc. CICC, May 1988, pp. 15.3.1-15.3.7.
H. Hsieh et al . , “Third-generation architecture boosts speed and den-
sity of field-programmable gate arrays,’’ in Proc. CICC, May 1990,

J . Kouloheris and A. El Gamal “FPGA performance vs. cell granu-
larity,” in Proc. CICC, May 1991, pp. 6.2.1-6.2.4.
P. K. Lala, Digital System Design Using Programmable Logic De-
vices, E. J. McCluskey, Ed. Englewood Cliffs, NJ: Prentice Hall,
1990.
F. Mailhot, private communication, 1991.
H. Muroga et a l . , “A large scale FPGA with 10K core cells with
CMOS 0.8 pm 3-layered metal process,” in Proc. CICC, May 1991,

Plessey Semiconductor ERA60100 Data Sheet, Swindon, England,
1989.
Plus Logic FPGA2040 Field-Programmable Gate Array Data Sheet,
Plus Logic, San Jose, CA, 1989.
J. S . Rose, R. J. Francis, D. Lewis, and P. Chow, “Architecture of
field-programmable gate arrays: The effect of logic block function-
ality on area efficiency,” IEEE J. Solid-state Circuirs, vol. 25, no.

J. S. Rose and S. Brown, “Flexibility of interconnection structures
for field-programmable gate arrays,” IEEE J . Solid-State Circuits,
vol. 26, no. 3 , pp. 277-282, Mar. 1991.
S . Singh, J. Rose, D. Lewis, K. Chung, and P. Chow “Optimization
of field-programmable gate array logic block architecture for speed,”
in Proc. CICC, May 1991, pp. 6.1.1-6.1.6.

Nonvell, MA: Kluwer Academic, 1984.

1062-1081, NOV. 1987.

NOV. 1987, pp. 116-1 19.

8.3.1-8.3.4.

NOV. 1991, pp. 568-571.

pp. 31.2.1-31.2.7.

pp. 6.4.1-6.4.4.

5 , pp. 1217-1225, Oct. 1990.

Satwant Singh (S’89-M’91) received the B.E.
degree with honors in electronics and communi-
cations engineering from GUN Nanak Engineer-
ing College, Panjab University, India in 1987 and
the M.A.Sc. degree in electrical engineering from
the University of Toronto, Toronto, Canada, in
1991.

From 1987 to 1989 he was with Semiconductor
Complex Ltd.. Chandigarh, India, where he de-
signed custom CMOS VLSI circuits. In the sum-
mer of 1991 he was with Bell-Northem Research

Ltd., Ottawa, Canada, in the Merchant ASIC Engineering group. He is
presently employed with AT&T Bell Laboratories, Allentown, PA, as a
Member of the Technical Staff in FPGA Development Group. His research
interests include field-programmable gate array architectures and applica-
tions, VLSI systems design, circuit design, and CAD tools.

Jonathan Rose (S’79-M’86) received the B.A.Sc.
degree in engineering science in 1980, and the
M.A.Sc. and Ph.D. degrees in electrical engi-
neering in 1982 and 1986, respectively, from the
University of Toronto, Toronto, Canada.

During the summer of 1983 he was with Bell-
Northern Research Ltd., Ottawa, Canada, in the
Integrated Circuits CAD/CAM group. From 1986
to 1989 he was a Research Associate in the Com-
puter Systems Laboratory at Stanford University,
Stanford, CA. In 1989 he joined the faculty of the

University of Toronto, where he is currently an Assistant Professor of Elec-
trical Engineering. His research interests include CAD and architecture for
field-programmable gate arrays, automatic layout, and parallel CAD al-
gorithms.

Paul Chow (S’79-M’83) received the B.A.Sc.
degree with honors in engineering science, and the
M.A.Sc. and Ph.D. degrees in electrical engi-
neering from the University of Toronto, Toronto,
Ont., Canada, in 1977, 1979 and 1984, respec-
tively.

In 1984 he joined the Computer Systems Lab-
oratory at Stanford University, Stanford, CA, as
a Postdoctoral Fellow and later as a Research As-
sociate. He was a major contributor to the MIPS-
X project. Since January 1988 he has been an As-

sistant Professor in the Department of Electrical Engineering at the Uni-
versity of Toronto. His current research interests include high-performance
computer architectures, VLSI systems design, and field-programmable gate
array architectures and applications.

David Lewis (M’88) received the B.A.Sc. degree
with honors in engineering science and the Ph.D.
degree in electrical engineering from the Univer-
sity of Toronto, Toronto, Ont., Canada, in 1977
and 1985, respectively.

From 1982 to 1985 he was employed as a Re-
search Associate on the Hubnet project, and de-
veloped custom integrated circuits for a 50-Mb/s
local area network. He has been an Assistant Pro-
fessor at the University of Toronto since 1985. His
research interests include logic and circuit simu-

lation, logarithmic arithmetic, field-programmable hardware, and VLSI ar-
chitecture.

Dr. Lewis is a member of the ACM.

