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Abstract-This paper explores the effect of logic block archi- 
tecture on the speed of a field-programmable gate array 
(FPGA). Four classes of logic block architecture are investi- 
gated: NAND gates, multiplexer configurations, lookup tables, 
and wide-input AND-OR gates. An experimental approach is 
taken, in which each of a set of benchmark logic circuits is syn- 
thesized into FPGA’s that use different logic blocks. The speed 
of the resulting FPGA implementations using each logic block 
is measured. While the results depend on the delay of the pro- 
grammable routing, experiments indicate that five- and six-in- 
put lookup tables and certain multiplexer configurations pro- 
duce the lowest total delay over realistic values of routing delay. 
The primary reason is that these blocks can implement typical 
logic using the fewest levels of logic blocks, and thus incur a 
small number of stages of the slow programmable routing pres- 
ent in all FPGA’s. The secondary reason is that their inherent 
combinational delay is not excessive. The fine grain blocks, such 
as the two-input NAND gate, exhibit poor performance because 
these gates require many levels of logic block to implement the 
circuits and hence require a large routing delay. 

I. INTRODUCTION 
HE field-programmable gate array (FPGA) is a new T ASIC medium that provides instant manufacturing 

turnaround and extremely low prototype manufacturing 
costs. An FPGA can be designed like a mask-pro- 
grammed gate array (MPGA) but is user-programmable 
like a programmable logic device (PLD). The user-pro- 
grammability, however, causes an FPGA to have both 
lower logic density and lower performance than an MPGA 
that is made in the same process technology. These defi- 
ciencies can be addressed by improving the architecture 
of the FPGA, which consists of its logic block function, 
interconnection structure, and I/O block design. In pre- 
vious work, we have investigated the effect of logic block 
functionality on the area-efficiency of FPGA’s [22], and 
the effect of switching block flexibility on the routability 
of an FPGA [23]. In this paper we look at the effect of 
logic block architecture on FPGA performance. 

The FPGA was introduced in [8]. Since then newer ver- 
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sions have been introduced [ 141, [ 151 and several other 
types have been implemented [1]-[5], [9], [ l l ] ,  [19]- 
[2 13, [26]. An FPGA consists of an array of logic blokks 
surrounded by a programmable interconnection structure. 
There are many different kinds of interconnection struc- 
tures, such as those articulated in these commercial ar- 
chitectures and in [23]. It is universally true, however, 
that the delay of the routing is significantly greater than 
that of a simple metal wire in the same process technology 
because programmable interconnects contain significant 
resistance and capacitance. For example, in [15] connec- 
tions are made with pass transistors with 1- to 2-kQ re- 
sistance, and in [l] connections are made with 300- to 
500-Q antifuses. As a result, connection delays often ex- 
ceed the delay of the logic block, and this is one of the 
fundamental limitations on FPGA speed. 

The performance of an FPGA can be increased by re- 
ducing the number of stages of programmable routing used 
in the critical paths. One way to do this is to use logic 
blocks with high functionality so that the number of logic 
block levels in the critical path is minimized, as illus- 
trated in Fig. 1. Fig. l(a) gives the implementation of the 
logic function f = ab2 + abc + ac2 using a two-input 
NAND gate as the logic block. It requires four levels of the 
logic block in the critical path. Fig. l(b) shows an im- 
plementation of the same function using three-input 
lookup tables, which requires only two levels. Since the 
latter avoids two levels of slow programmable intercon- 
nect, this will likely lead to a significant decrease in de- 
lay. Increasing the functionality of the logic block, how- 
ever, is likely to increase its combinational delay. This 
increase is only profitable if the reduction in routing delay 
more than offsets the increase in total delay due to the 
logic block. 

In this paper, an empirical approach is taken to study 
the effect of the logic block functionality on the total de- 
lay of an FPGA. We seek a logic block that minimizes 
the total delay in an FPGA. The experiments presented in 
this paper indicate that five- and six-input lookup tables 
exhibit the lowest total delay over a set of logic circuits 
for the important values of routing delay, and the multi- 
plexer-based block used in [ 113 is close behind. The NAND 
gates, on the other hand, give the largest total delay, while 
the delay of FPGA’s based on wide-input AND-OR gates 
is between these two. 
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Fig. 1 .  Two implementations off = ab2 + abc + a d .  (a) Using two-input N A N D  block; number of blocks in critical path = 
4. (b) Using three-input lookup table block; number of blocks in critical path = 2. 

There is one major caveat in these experiments; the an- 
swers depend heavily on the quality of the logic synthesis 
tools used to generate them. In all cases the best tools 
available were used; this does not preclude the possibility 
that a better tool for a given logic block would improve 
that block’s result. 

This paper is concerned only with the speed of the 
FPGA and so we ignore issues that affect the logic den- 
sity. While area has an indirect effect on speed, the as- 
sumption is that CAD tools can be optimized to reduce 
that effect. Previous work [22] has addressed the issue of 
density. An earlier version of this research appeared in 
[24], and an extended version appears in [25]. A similar 
.study, which focuses on lookup tables and performs in- 
depth implementations to the full place-and-route level, 
appears in [ 161. 

This paper is organized as follows. Section 11 describes 
the selection of logic blocks investigated, the experimen- 
tal procedure, and the delay model. Section I11 presents 
the experimental results, while Section IV outlines the 
conclusions and the relevant future work. 

11. EXPERIMENTAL CHOICES, PROCESS, AND MODEL 

To compare the different logic blocks for their etfect on 
the speed of an FPGA, our approach is to synthesize a set 
of circuits into many FPGA’s. Each circuit is synthesized 
into a number of different FPGA’s, where each FPGA 
uses a different basic logic block. The delay of the re- 
sulting implementation is then measured. The results, 
summarized by logic block, give an indication of the ef- 
fect of logic block choice on the speed of an FPGA. 

By “synthesize” we mean that a circuit passes through 
the logic synthesis necessary to transform a logic descrip- 
tion of the circuit into an optimized network consisting of 
connections between one kind of logic block. By “meas- 
uring” the delay of the synthesized network, we mean the 
determination of the critical path length in each FPGA 
implementation and then estimating the total delay using 
a model. 

The following section discusses the selection of logic 
blocks used in these experiments. Subsequent sections re- 
late the synthesis procedure and the delay modeling. 

A .  Logic Block Selection 
To represent a wide cross section of the possible blocks, 

four classes of the logic block were selected for compar- 
ison: NAND gates, multiplexers, lookup tables, and wide- 
input AND-OR gates. Table I gives the name and descrip- 
tion of the logic blocks chosen from each class. The four 
classes are described below. 

I) NAND Gates: The nand2, and nand3, and nand4 
gates are two-, three- and four-input NAND gates, respec- 
tively. The nand2pi, nand3pi, and nand4pi are the corre- 
sponding NAND gates that have a programmable inversion 
capability, which allows the inputs to be passed in true or 
complement form. These were chosen because several 
FPGA’s have been proposed which use NAND or AND gates 
[9], [19], [20], and this is a similar level of granularity to 
that used in MPGA’s. 

The NAND gates were implemented using standard 
CMOS techniques [25]. The programmable inversion was 
performed with an inverter and a pass gate [25]. 

2) Multiplexers: The mux21 and mux41 logic blocks 
can implement all possible logic functions of a multi- 
plexer by connecting the primary inputs and the selector 
inputs to either constants (0 or 1) or signals. The muxA 
logic block is the one used in [ 1 11, which can implement 
over 700 logic functions. Multiplexers are of interest be- 
cause of their use in two FPGA’s [5], [ l l ]  and because 
previous work in Universal Logic Elements [29] has in- 
dicated their ability to provide many logic functions. 

The multiplexers were implemented as trees of trans- 
mission gates [25]. 

3) Lookup Tables: The K2 to K9 logic blocks are 
lookup tables with two to nine inputs. A K-input lookup 
table is a digital memory with 2K bits, K address lines, 
and one output. If the truth table of a logic function is 
stored in the correct addresses of the memory, and the K 
address lines are used as logic block inputs, then the 
memory will implement the truth table. These blocks were 
chosen because lookup tables, which were also studied in 
[16] and [22], were used in one of the first FPGA’s [8], 

The lookup tables are implemented as one large mul- 
tiplexer with the appropriate number of inputs connected 
to static memory cells [25]. 

~ 4 1 ,  WI .  
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Delay (ns) 
1.2-pm CMOS 

mux2 1 
mux4 1 
muxA 

NAND Gates 

2-to-I mux 1.08 
440-1 mux 1.31 
logic block from [ 1 I ]  1.31 

nand2 2-input NAND gate 
nand3 3-input N A N D  gate 
nand4 4-input NAND gate 
nand2pi 2-input NAND gate with prog inv 
nand3pi 3-input NAND gate with prog inv 1.42 
nand4pi 4-input NAND gate with prog inv 1.62 

Multiplexers 

2-input I-output lookup table 
3-input I-output lookup table 
4-input I-output lookup table 
5-input I-output lookup table 2.03 
6-input I-output lookup table 2.38 
7-input I-output lookup table 2.85 
8-input I-output lookup table 3.26 

K9 9-input I-output lookup table 3.78 

AND-OP Gates 

A203pi 
A403pi 
A803pi 
A1603pi 
A3203pi 
A205pi 
A405pi 
A805pi 
A1605pi 
A3205pi 

OR of 3, 2-input product terms 
OR of 3, 4-input product terms 
OR of 3, 8-input product terms 
OR of 3, 16-input product terms 
OR of 3, 32-input product terms 
OR of 5,  2-input product terms 
OR of 5,  4-input product terms 
OR of 5 ,  8-input product terms 
OR of 5,  16-input product terms 
OR of 5,  32-input product terms 

1.88 
2.17 
2.69 
3.77 
5.98 
1.98 
2.27 
2.80 
3.95 
6.05 

4) AND-OR Gates: These gates perform a two-level 
AND-OR logic function. We use the notation AxOy pi to 
describe each gate, where x is the total number of inputs 
that can be selected to form y separate product terms. Each 
of the y product terms is oRed together in the logic block 
to generate the output. For example, A803pi has a total 
of eight inputs, each of which can be selected to form 
three separate product terms that are oRed together. These 
gates have the programmable inversion capability. The 
AND-OR gates consisting of the following values of x and 
yare  investigated: x = (2, 4,  8, 16, 32) and y = (3, 5) .  
These gates were chosen because of their wide use in the 
original PLD’s [17], and use in the large-scale PLD’s in 

The AND-OR gates are implemented as cascaded pseudo- 
NMOS NORs [25]. 

Table I also gives the worst-case delay of each logic 
block determined using the SPICE 2G6 circuit simulator 
[27], in a 1.2-pm CMOS process. The simulation in- 
cludes a small buffer following the logic function, but no 
loading or delay due to routing. 

[3l, V I ,  WI, and 1261. 

B. Logic Synthesis Procedure 

Logic synthesis is required to convert each test circuit 
into a network of logic blocks, while minimizing the num- 
ber of logic stages between the primary inputs and the 
output of the circuit. The procedure employed is de- 
scribed below. Note that this procedure deals only with 
combinational circuits, as we assume that the sequential 
and combinational portions of the circuits have been sep- 
arated. 

1) Collapse the logic circuit into a two-level represen- 
tation, using the MIS I1 [7] collapse command so that each 
output is only a function of its primary inputs. Optimize 
the two-level expression using Espresso [6]. 

2) Factor each output separately into a multilevel logic 
expression using the mid1 decompose command [7]. This 
may result in logic that is used in more than one expres- 
sion, and so we say that it createsfan-out. We then re- 
move this fan-out by replicating the logic expression that 
is the source of the fan-out. This step is necessary because 
most technology mapping approaches, including some of 
those used in step 3, do a poor job across fan-out. By 
removing fan-out the delay is reduced but the area is in- 
creased, and as such the results presented below are op- 
timistic. It is possible that better CAD tools would be able 
to operate on networks with fan-out and achieve similar 
results. Note also that without fan-out some circuits, such 
as a parity tree, have a size that is exponential in the num- 
ber of inputs. It was thus not possible to run this class of 
circuits in these experiments. 

3) Perform the technology mapping of the Boolean net- 
work. This converts the Boolean logic expressions into a 
network of logic blocks. The best available technology 
mapping tool was used for each class of logic block, as 
described below. 

a) NAND gates and multiplexers: For these logic 
blocks the technology mapping is done using the MIS 2.2 
technology mapping program, which is the most recent 
version of the one presented in [ 101. The mapper is set to 
optimize the critical path delay. It requires a library to be 
generated for each logic block that describes all possible 
logic functions that the block can perform. In all cases, a 
complete library was constructed (or obtained from other 
sources), including that for the muxA [ 111 block, which 
has over 700 logic functions [18]. Note that the MIS 2.2 
technology mapper has the ability to handle blocks with 
internal reconvergent fan-out, and so is able to make good 
use of the multiplexers, as distinct from MIS I1 [lo]. 

b) Lookup tables: The technology mapping for 
lookup tables is done by the Chortle-d [13] technology 
mapping program. Chortle-d is tuned to optimize lookup 
table networks for delay. 

c) AND-OR gates: For these blocks, the logic synthe- 
sis in step 2 was omitted. The two-level expressions from 
step 1 are mapped into a balanced tree of gates and the 
depth of the critical path is computed as follows. Consider 
the general case where the logic block has p inputs to the 
AND section and can OR together s product terms. This 
gate would be referred to as Ap Os pi in our notation. If 
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D R = O  D R = 2  
(ns) (ns) 

1 1  41 
10 34 
12 33 

14 35 
13 32 
15 32 

the logic expression to be mapped has a product term with 
v variables in it, then the number of levels in the logic 
tree to implement the product term is [logp v l  . Simi- 
larly, if the number of product terms in the expression is 
t ,  then the depth of the OR tree would be [log, t l  . When 
the two trees are combined, the total depth in logic blocks 
is rlog, VI + [log, tl . Note that in some cases where 
some variables are common in many product terms, it is 
possible to reduce the number of levels by one less than 
given by this expression. Thus, the critical path calcula- 
tions are pessimistic by at most one logic level. 

D R = 4  D R = 1 0  
(ns) (ns) 

71 163 
57 128 
55 120 

51 121 
50 106 
50 103 

TABLE 11 
AVERAGE CRITICAL PATH LENGTH AND TOTAL DELAY-NAND GATES 

711 
Logic D,, - 1 r;: 1 :8 

Block 

nand2 0.70 15.2 
nand3 0.88 11.8 
nand4 

nand2pi 1.3 10.8 
nand3pi 1.4 9.3 
nand4pi 1.6 8 .9 

Std. 
Dev . 

5.8  
4 . 0  
3 .8 

4 . 5  
3.8 
3.8 

C. Model for Measuring Delay 
The speed of a circuit implemented in an FPGA with a 

given logic block is a function of the combinational delay 
of the logic block (DLB), the number of logic blocks on 
the critical path (NL),  and the delay incurred in the routing 
between each logic block (DR). Assuming that each stage 
of logic block incurs one routing delay and one logic block 
delay, then the total delay ( D T O T )  can be calculated as 

(1) 
The value of NL can be measured for each circuit after it 
is mapped into a logic block using the procedure de- 
scribed above. The value of DLB was determined as de- 
scribed in Section II-A. 

The value of D R  is much more difficult to determine. It 
is a function of the routing architecture, the fan-out of a 
connection (which would be determined by the physical 
placement), the length of the connection, the process 
technology, and the programming technology. Since our 
purpose is to understand general architectural principles, 
it is important not to fix any of these parameters. As such, 
most of the results below will be given as a function of 
D R ,  rather than choosing a specific D R .  

This assumption, however, makes the approximation 
that D R  is constant for each connection. This is a simpli- 
fying abstraction that makes this broad set of experiments 
possible, but it is inaccurate, and must be considered when 
any conclusions are drawn. It is comforting to note that 
in [16], where complete implementations down to the 
place-and-route level were performed, results where the 
experiments overlap are similar to those presented here. 

DTOT = NL X (DLB + DR). 

111. EXPERIMENTAL RESULTS 
The experimental circuits that were used are a selection 

of 15 logic synthesis benchmarks provided by the Mi- 
croelectronics Center of North Carolina (MCNC) and one 
standard cell-based circuit from Bell-Northern Research. 
They range in size from 28 to over 700 two-input NAND 
gate equivalents. Each circuit was passed through the im- 
plementation procedure described in Section II-B once for 
every logic block listed in Table I. Sections III-A through 
-D discuss the relative performance of the logic blocks in 
each of the four classes (NAND gates, multiplexers, lookup 
tables, and AND-OR gates). Section III-E compares the best 
logic blocks from the four classes. 

The comparison of different logic blocks is done by av- 
eraging the critical path delays over all the test circuits. 

A. NAND Gates 
Table I1 gives the summarized delay data for NAND 

gates. The first column names the gate, the second col- 
umn lists the combinational delay from Table I ,  the third 
column gives the average number of logic blocks in the 
critical path (G)  over all 16 circuits, and the fourth col- 
umn contains the standard deviation of this average. Col- 
umns five through eight give the total delay ( D T O T )  for 
different values of the routing deIay ( D R ) .  The DToT cal- 
culations use the values of 0, 2, 4, and 10 ns for D R .  
These values of D R  are chosen because they range from 
the minimum possible to the point where the ranking of 
the logic blocks based on D T o T  does not change. Typical 
FPGA delays, in 1.2-pm CMOS, range from 2.5 to 10 ns 
[281* 

Table I1 shows that the total delay for the nand3 block, 
for all ranges of DR, is less than nand2. This occurs be- 
cause the increase in functionality from nand2 to nand3 
results in a lowering of the number of logic blocks in the 
critical path (K) from 15.2 to 11.8. While the delay of 
nand3 (0.88 ns) is slightly more than for the nand2 (0.70 
ns), the saving in the number of levels more than com- 
pensates. Interestingly, this is true for D R  = 0, which 
would correspond to mask-programmed routing. As the 
routing becomes slower ( D R  > 0), the relative perfor- 
mance of nand3 improves over nand2 because each rout- 
ing stage costs more in delay. 

The reduction in total delay from nand3 to nand4 is not 
as significant as it is from nand2 to nand3. This is because 
the increase in logic block delay is not offset by a reduc- 
tion in the total number of logic block levels. Note that 
no further improvement was achieved with the nand5 gate 
or any larger NAND gates. 

Table I1 also indicates that the addition of program- 
mable inversion (the gates suffixed with “pi”) to the NAND 
gate inputs causes a significant reduction in the number 
of logic block levels. The programmable inversion, how- 
ever, requires roughly 0.5-ns extra combinational delay 
which makes such gates slower at DR = 0, as compared 
to the pure NAND gates. As D R  increases, nand;?pi, 
nand3pi, and nand4pi give increasingly better delay than 
nand2, nand3, and nand4, respectively. This is because 
the increased combinational delay is being more than off- 
set by the reduction in the routing delay due to a lower 
q. For DR > 0, nand3pi and nand4pi give the best per- 
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Logic 
Block 

mux21 
mux41 
muxA 

formance among NAND gates. While nand3pi and nand4pi 
exhibit almost the same performance, nand3pi has fewer 
inputs and so it would be the best choice among the NAND 

gates. This is because the number of inputs has an indirect 
effect on delay, which is not considered in the delay 
model: as the number of inputs to a block increases, there 
are more connections to the block, and hence more para- 
sitic capacitance to be driven. 

D-ro-r = NL X (DIU + D R )  

D,, - Std. D, = 0 D, = 2 D, = 4 D,,= 10 
(ns) NL Dev. (ns) (ns) (ns) (ns) 

1 . 1  9.9 4.7 1 1  30 50 110 
1.3 6.1 2.3 8 20 33 69 
1.3 4.4 2.0 6 15 23 50 

B. Multiplexers 
The total delay results for three multiplexer configura- 

tions are given in Table 111, which has the same columns 
as Table 11. The muxA logic block exhibits the lowest 
K.  This is due to the high number of logic functions that 
this logic block can perform, several of which have ap- 
preciable fan-in. These wider gates are capable of reduc- 
ing logic depth because depth is roughly logarithmic in 
the number of inputs, with the base of the logarithm equal 
to the fan-in of the gate. The combinational delay of the 
muxA logic block is same as that of a four-to-one multi- 
plexer (mux41), and because it has lower %, it gives bet- 
ter performance for all values of DR. Thus, the muxA 
block would be the best choice among the multiplexer 
configurations investigated. 

Logic 
Block 

K2 
K3 
K4 
K5 
K6 
K l  
K8 
K9 

C. Lookup Tables 
Table IV summarizes the total delay results for K-input 

lookup tables, with K ranging from 2 to 9. As the number 
of inputs to the lookup table increases, we observe that 
the number of logic block levels in the critical path con- 
tinues to decrease up to K = 9. Significant decreases are 
obtained as far as K = 8. This occurs because lookup 
tables can implement any function of K inputs, and so 
they can contain many levels of logic. Notice that the 
lookup table inherently has the programmable inversion 
capability. 

As the number of inputs to the lookup table increases, 
the logic block delay (DLB) increases roughly 0.4 ns for 
every added input, after K = 3. This is because each 
added input causes one more transistor to be added in se- 
ries in the multiplexer tree that implements the lookup 
table. 

For very fast routing delay (DR = 0), the fastest logic 
block is strictly a function of the number of logic block 
levels (%) and the delay of the logic block (DLB). As 
shown in Table IV, for values of K greater than 2, the 
total delay (DTOT) is almost constant. This says that re- 
duction in delay due to a lower % as K increases above 
3 is exactly offset by the increase in delay due to the in- 
crease in DLB. 

As DR increases, the cost in delay of each logic block 
level increases, and so the blocks with lower values of 
K achieve superior performance. For DR = 2 the six- 
input lookup table achieves the best performance. For DR 
= 4 the seven-input lookup table achieves the best per- 
formance. Notice, however, that the five-input lookup ta- 
ble achieves similar performance in both cases, and the 
accuracy of these experiments makes this small spread in- 

4 o - r  = NI. X ( D L B  + D R )  
Std. 

D I E  - Dev. D, = 0 D, = 2 D, = 4 D, = 10 
(ns) NL (ns) (ns) (ns) (ns) (ns) 

1.4 10.0 3.9 14 34 54 114 
1.4 5.6 2.1 8 19 31 64 
1.7 4.1 1.5 7 15 24 48 
2.0 3.4 1.2 7 14 21 41 
2.4 2.8 1.0 7 12 18 35 
2.9 2.4 1.0 7 12 16 31 
3.3 2.1 0.8 8 1 1  16 28 
3.8 2.0 0.8 8 12 16 28 
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significant. In addition, as noted in Section 111-A, the de- 
lay model does not account for the increase in delay due 
to extra capacitive loading from the higher number of pins, 
and so the marginal improvement shown in Table IV from 
K = 5 to K = 7 may be lost. The actual choice of logic 
block might be more strongly influenced by the fact that 
each added input doubles the number of bits in the lookup 
table, and hence the area. Thus, the five- and six-input 
lookup tables are good choices for DR = 2 and DR = 4 
ns, which are realistic values for routing delay. 

As DR increases to 10 ns, the best value of K continues 
to increase, to K = 8. It is clear that as long as increasing 
K results in a decrease in K ,  then higher values of K will 
be faster for higher values of DR. 

D.  AND-OR Gates 
Table V gives the total delay for the wide AND-OR gates. 

It is clear that for all ranges of the routing delay, the AND- 
OR blocks with five product terms (Ax05pi) exhibit lower 
total delay than the corresponding blocks with three prod- 
uct terms (Ax03pi). There is an average of 10 to 15% 
improvement in delay from three to five product terms. 
This occurs because the blocks with five product terms 
have smaller K than those with three product terms, while 
the increase in DLB from three to five product terms is 
minor. 

For fast routing, with DR up to 2 ns, the A405pi block 
gives the lowest delay as this logic block presents a good 
balance between combinational delay and functionality- 
it has 26% fewer average logic block levels than A205pi, 
and only 15% more combinational delay. Blocks with 
more than four inputs incur a combinational delay that 
more than offsets the gain due to a reduction in NL, at the 
lower values of routing delay. 
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A203pi 
A403pi 
A803pi 
A1603pi 
A3203pi 

A205pi 
A405pi 
A805pi 
A1605pi 
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D,, - 
(ns) NL 

1.9 7.4 
2.2 5.6 
2.7 5.0 
3.8 4.6 
6.0 4.3 

2.0 6.5 
2.3 4.8 
2.8 4.1 
4.0 3.8 
6.1 3.4 

TABLE V 
AVERAGE CRITICAL PATH LENGTH AND TOTAL DELAY-AND-OR GATES 

Std. 
Dev. 

1.9 
1.5 
1.6 
1.5 
1.3 

1.6 
1.2 
1.2 
1.2 
1.0 

DTOT = NL X (DLB + DR) 

DR = 0 DR = 2 DR = 4 DR= 10 
(ns) (ns) (ns) (ns) 

14 29 43 88 
12 24 35 69 
13 23 33 63 
18 27 36 64 
25 34 42 68 

13 26 39 78 
11 20 30 58 
12 20 28 53 
15 22 30 52 
20 27 34 54 

I I 

0.70 
1.4 
2.3 
2.8 
1.3 

2.4 
2.0- 

15.2 5.8 
9.3 3.8 
4.8 1.2 
4.1 1.2 
4.4 2.0 
3.4 1.2 
2.8 1.0 

For DR = 4 ns, the A805pi block exhibits the lowest 
delay, while for DR = 10 ns, the A1605pi block is the 
fastest. As the routing delay increases, the effect of 
dominates the total delay since the routing delay per stage 
is much greater than the combinational delay per stage. 
However, as discussed in Section 111-A, the delay model 
in this study gives an advantage to logic blocks with a 
large number of inputs, and so marginal decreases in de- 
lay resulting from a larger number of inputs should be 
ignored. Thus, the A405pi and A805pi blocks provide 
the best performance over the realistic values of routing 
delay. These two blocks will be compared against the best 
from other categories in the next subsection. 

E. Overall Comparison 
Fig. 2 is a plot for the total delay of the best logic blocks 

from each class versus the routing delay DR. Table VI 
tabulates the same data. The first clear conclusion from 
these data is that the fine-grain logic blocks, such as the 
two-input and three-input NAND gates (even with pro- 
grammable inversion), exhibit markedly lower perform- 
ance than any other class of logic block. This is a signif- 
icant conclusion, given that several commercial FPGA's 
use the two-input NAND gate as the basic logic block. No- 
tice that the result is true even for a routing delay of zero, 
which provides an interesting perspective on mask-pro- 
grammed architectures-they should perhaps use a more 
coarse-grain basic block, as suggested in [12]. 

At zero routing delay, the muxA logic block is the fast- 
est because it has a very small combinational delay com- 
bined with a low number of logic block levels. 

For the midrange routing delays (2 ns 5 DR I 4 ns) 
the five- and six-input lookup tables and the muxA logic 
block exhibit similar delays, with the lookup tables 
slightly faster. At this point the routing delay is mostly 
greater than the logic block delay, so the number of logic 
block levels begins to dominate in the comparison. These 
blocks have quite low values of K .  The wide AND-OR 

gates, which have K close to the muxA block, exhibit 
worse performance because of a significantly higher com- 
binational delay. 

For large delays (DR = 10 ns) the five- and six-input 
lookup tables are significantly faster. This is because in 

Dr (ns) 

Fig. 2. DToT versus DR for the best blocks in each class. 

TABLE VI 
AVERAGE CRITICAL PATH LENGTH A N D  TOTAL DELAY-OVERALL 

COMPARISON 

Logic 
Block 

nand2 
nand3pi 
A405pi 
A805pi 
muxA 
K5 
K6 

% I  K (t" 
11 
13 
11 
12 

41 
32 
20 
20 
15 
14 
12 

71 
50 
30 
28 
23 
21 
18 

163 
106 
58 
53 
50 
41 
35 

this delay range the only important factor is the number 
of logic levels, and as Table VI shows, the lookup tables 
have significantly lower values of K.  Notice that the wide 
AND-OR gates do not approach this level. It is possible, 
however, that the conservative approximation described 
in Section 11-B unfairly disadvantages these blocks. 

F. Lizitations of Results 
It should be noted that these results depend heavily on 

the quality of the logic synthesis tools. We have observed 
shifts in these results by moving from technology mappers 
that optimize for area to those that optimize for delay. In 
these experiments we have used the best mapping tools 
available to us. 

Another limitation is the approximation of DR as a con- 
stant, as discussed in Section 11-C. While this value will 
certainly vary, even within one connection, one would 
expect it to change in similar ways for each block. The 
conclusions presented above would likely not change in a 
significant way if the variation is taken into account, as 
shown by the fact that the results in [ 161 for lookup tables 
are similar to those presented here. 

IV. CONCLUSIONS AND FUTURE WORK 
This paper has explored the relationship between logic 

block architecture and the speed of the resulting FPGA. 
There are two principal conclusions: 

1) five- and six-input lookup tables and the muxA [ 113 
logic block are all good choices for a logic block for 
midrange values of programmable routing delay; 
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2) fine-grain logic blocks, such as two-input NAND [25] S .  Singh, “The effect of logic block architecture on the speed of field- 

gates, result in significantly 
of more than 3) than these blocks. 

delay (by a factor 

In addition, wide AND-OR gates do not achieve compara- 
ble performance to the best blocks, but it is possible that 
better logic synthesis for these blocks would improve 
their performance. 

In the future, we will adapt these experiments and tools 

tion we will explore the performance gains possible when 

programmable gate arrays,” M.A.Sc. thesis, Dept. Het. Eng., Univ. 
of Toronto, Toronto, Ont., Canada, Aug. 1991. 

[26] S. C. Wong, H. C. So, J .  H. Ou, and J.  Costello, “A 5000-gate 
CMOS EPLD with multiple logic and interconnect arrays,’’ in Proc. 
CICC, M~~ 1989, pp. 5.8.1-5.8.4. 

[27] A. Vladimirescu, K. Zhang, A. Newton, D. 0. Pederson, and A. 
Sangiovanni-Vincentelli, SPICE Version 2G, U s e r s  Guide, Dept. 
Elec. Eng., Univ. of Califomia, Berkeley, Aug. 1981. 

[28] J.-M. Vuillamy, “Performance enhancement in field-programmable 
gate arrays,” M.A.Sc. thesis, Dept. Elec. Eng., Univ. of Toronto, 
Toronto, Ont., Canada, Apr. 1991. 

tion,’’ IEEE Trans. Comput., vol. C-19, pp. 141-149, 1970. 

to account for the area Of the gain in In addi- [29] S ,  Yau and C ,  Tang, “Universal logic modules and their applica- 

hard-wired (fast) links between basic logic blocks are 
used. 
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