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Field programmable gate arrays (FPGA ’s) reduce the turn- 
around time of application-spec@c integrated circuits from weeks 
to minutes. However, the high complexity of their architectures 
makes manual mapping of designs time consuming and error 
prone thereby offsetting any turnaround advantage. Consequently, 
effective design automation tools are needed to reduce design 
time. Among the most important is logic synthesis. While standard 
synthesis techniques could be used for  FPGA’s, the quality of 
the synthesized designs is often unacceptable. As a result, much 
recent work has been devoted to developing logic synthesis tools 
targeted to different FPGA architectures. The paper surveys this 
work. The three most popular types of FPGA architectures are 
considered, namely those using logic blocks based on lookup- 
tables, multiplexers and wide AND/OR arrays. The emphasis is 
on tools which attempt to minimize the area of the combinational 
logic part of a design since little work has been done on optimizing 
performance or routability, or on synthesis of the sequential part of 
a design. The different tools surveyed are compared using a suite 
of benchmark designs. 

I. INTRODUCTION 
Synthesis tools that automatically map a design com- 

posed of simple gates or described with a hardware de- 
scription language (HDL) into gates from a given library 
are becoming widely used. Besides simplifying the design 
process and reducing design time, these tools have had a 
major impact on the design methodology for application- 
specific integrated circuits (ASIC’s), allowing designers to 
select easily among different implementation options, such 
as between a standard cell and a mask programmable gate 
array (MPGA) or among different ASIC vendors, based on 
accurate estimates of performance and area,. 
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The complexity of field programmable gate array (FPGA) 
architectures makes manual mapping of designs too difficult 
and time consuming. Indeed the reduction in turnaround 
time due to the user programmability of an FPGA may be 
offset by the time spent to map a design manually. As a 
result much work has been focused recently on developing 
synthesis tools targeted to different FPGA architectures. 
Such tools are now yielding good results and becoming 
commercially viable. 

The most straightforward approach to synthesis for 
FPGA’s is to adapt the synthesis tools developed for MPGA 
libraries to FPGA’s. A design is first mapped into simple 
gates (such as two input NAND gates), and groups of 
simple gates are then replaced by logic blocks of the target 
FPGA. This approach works well for FPGA’s with fine- 
grain blocks such as those from Algotronix, Concurrent 
Logic, Plessey and Toshiba, since a fine-grain block can 
only implement one or two simple gates. However, for 
the more widely used FPGA’s with coarse-grain logic 
blocks such as those from Actel, Altera, and Xilinx, this 
approach does not in general yield acceptable results. A 
more promising but challenging approach is to map the 
design directly into logic blocks. Recently developed FPGA 
synthesis tools employ both the library mapping approach 
as well as the direct mapping approach. 

In this paper we review the recently developed methods 
for FPGA synthesis. Even though there is much interest 
in sequential synthesis for FPGA’s, no paper dealing with 
this topic has been published to date (we are aware of 
some work that has been submitted for publication [36], 
[51]). Moreover, most of the developed methods optimize 
area of a design and only a few optimize performance 
explicitly. We, therefore, focus our review on combinational 
synthesis for FPGA’s where the registers in the design 
are explicitly specified by the designer and devote most 
of the discussion to synthesis methods that optimize area. 
Since fine-grain FPGA’s do not present new challenges to 
synthesis algorithms we only describe work on synthesis 
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for coarse-grain FPGA’s such as those from Actel, Altera, 
and Xilinx, 

The paper is organized as follows. Basic definitions are 
given in Section 11. In Section 111 we review the most 
effective of the known logic minimization and synthesis 
methods. In Section IV we review several approaches to 
logic synthesis for FPGA’s with “look-up table” logic 
blocks such as Xilinx’s. In Section V we present a similar 
discussion but for FPGA’s with multiplexer-based logic 
block such as Actel’s. In Section VI we briefly discuss 
synthesis for FPGA’s with PLA-based logic blocks. 

11. BASIC DEFINITIONS 
A logic or Boolean variable x takes on one of two values 

0 and 1. Denote by x’ the complement of the variable 5 .  

Both x and x’ are referred to as literals. 
A Boolean function f : { O , l } n  -+ (0, l} is a binary 

function of logic variables. It is often convenient to repre- 
sent the n-dimensional Boolean space by an n-dimensional 
Boolean hypercube. A Boolean hypercube of dimension n 
contains 2” vertices. The set of vertices of the hypercube 
where the function takes on the value 1 is referred to as 
the on-set and the set of vertices where the function takes 
on the value 0 is referred to as the off-set. At times the 
value of a logic function is not specified for a set of the 
vertices. In this case, the function is said to be incompletely 
spec$ed and the unspecified set of vertices is referred to 
as the don’t-care-set or dc-set. The rest of the vertices (i.e., 
the on-set and the off-set) constitute the care-set. The set of 
inputs on which a function is explicitly defined is referred 
to as its support. In the remainder of the paper we refer to 
an incompletely specified logic function simply as a logic 
function unless otherwise stated. 

A cube of a logic function f is a logic function given by 
the product of literals whose on-set does not have vertices 
in the off-set of f. The origin of this name rests on the 
fact that a product of IC literals corresponds to a Boolean 
hypercube of dimension n - IC in the Boolean space of 
dimension n. A minterm is a cube where all the variables 
are assigned a value 0 or 1. This cube is of dimension 0, 
and contains only one vertex. 

The Shannon cofactor or simply the cofactor of a logic 
function f with respect to a variable :E,  denoted by f x ,  is 
the logic function obtained from f by setting the variable 
z to the constant value 1. The cofactor of f with respect to 
x’, denoted by f,, , is the logic function obtained by setting 
the variable x in f to the constant value 0. 

A logic function has several representations, e.g., the 
set of its minterms (which is equivalent to the truth table 
representation), the sum-ofproduct form, the factored form 
and the Binary Decision Diagram. 

A sum-of-product expression for f is a set of cubes that 
contains all the vertices of the on-set of ,f and none of the 
off-set. 

A factored form is defined recursively as follows: 
a literal is a factored form; 
the sum of factored forms is a factored form; 
the product of factored forms is a factored form 

Thus for example, a+b, (a+b)(c+(e‘( f +g’ ) ) ) ,  where e’, g’ 
denote the complement of the variables e,g ,  are factored 
forms. 

An important characteristic of factored forms is that they 
may be thought of as representing both a function and its 
complement, since, by De Morgan’s laws, the factored form 
of the complement of a function can be simply obtained 
from the factored form of the function by interchanging the 
logic addition and the logic product operations as well as 
the phases of the variables. Note that in contrast the sum- 
of-products form of the complement of a function can be 
drastically different from the sum-of-product form of the 
function. 

A binary decision diagram (BDD) is a simple yet efficient 
representation of a completely specified logic function. 
BDD’s were proposed many years ago by Akers but their 
use in logic manipulations has only recently been made 
practical and effective by Bryant [lo]. A BDD is a directed 
acyclic graph (DAG) where a logic function is associated 
with each node. The completely specified logic function f 
represented by the BDD is associated with the root node. 
Every node has two fan-out nodes representing the function 
obtained by cofactoring the logic function represented at 
the node with respect to a variable and its complement. 
This variable indexes the node. Let x be the variable 
indexing node i and f i  the function associated with this 
node. The high-node corresponds to the cofactor f i x ,  and 
the low-node corresponds to f;,,. The leaf nodes are the 
constant functions 0 and 1. Note that this representation 
has an exponential number of nodes and is canonical in 
the sense that given a logic function and an ordering of 
the variables corresponding to the sequence of cofactoring 
operations along a path from the root to the leaf nodes, 
the representation is unique. In fact this representation is 
equivalent to the truth table representation of the function. 
As such it is not too interesting. However, if the nodes 
associated with the same logic function are merged, the 
complexity of the representation can be reduced. The re- 
sulting BDD is referred to as reduced BDD or RBDD. The 
number of nodes in an RBDD can be dramatically lower 
than for the unreduced BDD. This fact makes RBDD’s 
quite appealing for a number of applications. A further 
useful simplification of RBDD’s, proposed by Bryant, is 
to choose the ordering of the variable for all paths from the 
root to the leaf nodes to be the same. This representation 
is referred to as the reduced ordered BDD (ROBDD) and 
is canonical. Figure 1 (a) shows an ordered BDD for the 
function f = ac + a‘bd + bc‘d’ with the order c, a ,  d and b. 
The root node is indexed by c. Now, we reduce it by seeing 
that all nodes indexed by b represent the same function, 
namely b. We merge them all in one node, and get an 
ROBDD in Fig. l(b). 

Many operations on this representation are linear in the 
size of the graph. In addition, verifying whether two logic 
functions are logically equivalent, amounts to an easy iso- 
morphism check on their ROBDD’s, which can be carried 
out efficiently. Although most functions have an ROBDD 
representation that is still exponential in the number of 
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I =  if 
T= then 
E= else 

0 = mux 

Fig. 2. Realization of a function with ITE's. 

(b) 

Fig. 1. Example of a BDD and an RBDD of a function. 

variables, many functions appearing in practice have a low 
complexity ROBDD representation. The complexity of an 
ROBDD representation is, however, dependent on variable 
ordering and finding a good ordering is in general not 
tractable. 

The if-then-else DAG representation is a close relative of 
the BDD. The if-then-else DAG is a set of nodes each with 
three children: each node is a two-to-one selector where the 
first child is connected to the control input of the selector 
and the second and third children are connected to the signal 
inputs of the selector. The behavior function of the node is 
that i f  the expression that corresponds to the control input 
is TRUE then the second child is selected else the third 
child is selected. In the case of the BDD, the nodes can be 
regarded as two-to-one selectors as well but with the control 
input connected directly to the variable associated with the 
node. Thus an if-then-else DAG is more general than a BDD 
and consequently can yield more compact representations. 

An advantage of the if-then-else DAG over BDD's ap- 
pears when converting from a sum-of-products form. Select 
one variable, say q. Let the cubes of the function associated 
with a node of the Boolean network be partitioned into 
three sets C1, C2, C, with respect to q: C1 corresponding 
to the cubes that do not depend on the selected variable 
VI, C, containing all the cubes that depend on VI, and Cs 
containing all the cubes that depend on v i ,  the complement 
of V I .  The corresponding if-then-else DAG implements if C1 
then TRUE, else ( i f 111  then C2 else C,) and contains two 
nodes as shown in Fig. 2. The first node has the function 
determined by the cubes in C1 connected to its control 
input, the constant TRUE connected to its second child, 

and the output of the second node connected to its third 
child. The second node has its control input connected to the 
variable 711, its second child to the cubes in C2 and its third 
child to the cubes in Cs. Note that this may be a smaller 
representation than the BDD for the same function since 
the expressions connected to the high and low children of 
the BDD node contain duplicate cubes (the ones that are in 
Cl). In the if-then-else DAG these cubes appear only once. 

111. LOGIC SYNTHESIS 

A. Introduction 
There are several approaches to logic optimization [9]. 

The most commonly used approach is to break the synthesis 
process into two phases: a technology independent phase, 
followed by a technology mapping phase. The technology 
independent phase attempts to generate an optimal abstract 
representation of the logic circuit. The technology mapping 
phase selects a set of gates from a library' to implement 
the abstract representation while optimizing area, delay or 
a combination of the two. 

For combinational logic, the abstract representation cho- 
sen in MIS [SI and in many other university and industrial 
tools, is the Boolean network, a directed acyclic graph 
G(V, E )  where each of the nodes U E V represents an 
arbitrarily complex single-output logic function. There is 
an arc from node j to node i if the function represented by 
node i depends explicitly on the function represented by j .  
Node j is said to be a fan-in of node i and node i is said 
to be a fan-out of node j .  There are two sets of special 
nodes: input nodes with no incoming arcs which represent 
primary inputs, and output nodes with no outgoing arcs 
which represent primary outputs. An example of a Boolean 
network is shown in Fig. 3. The network has four primary 
inputs a, b,  c and d, and one primary output z .  

Each node of the network may represent an arbitrary logic 
function (general node) or a simple logic function such as 
a two-input NAND or NOR (generic node). The support 
of a node is the set of variables that the corresponding 
logic function explicitly depends on. During optimization, 
the nodes of the network may be mapped from a general 
form to a generic form as will be seen later. A general node 
can be represented in a sum-of-products form, a factored 
form, or as a BDD. 

Node representation may change from one form to an- 
other according to the operations performed. The sum-of- 

' A library can be given either explicitly as a list of gates, or implicitly 
with equations or other means of representing a class of logic functions. 
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Fig. 3. A Boolean network 

w = b c  

products form is convenient in node minimization where a 
two-level logic minimizer (e.g., Espresso [7]) is used. The 
factored form representation is useful since it corresponds 
to a possible implementation of the function in dynamic 
CMOS logic where each literal corresponds to a transistor 
[6]. Moreover, when static CMOS logic is used there is 
a correspondence between the number of literals in an 
optimized factored form and the area occupied by its 
physical implementation. As a result the total number of 
literals in an optimized factored form is the most commonly 
used cost function in logic minimization. 

The problem of finding an optimum factored form for a 
given logic function is, however, very complex and exact 
algorithms are not practical for functions of more than 
six variables. Heuristics are, therefore, used to compute an 
optimized factored form. Moreover, minimizing the number 
of literals does not explicitly consider wiring area which is 
particularly important for FPGA synthesis. This represents 
a major challenge in  adapting existing and well-proven 
synthesis approaches to FPGA’s. 

B. Technology Independent Optimization 
The operations performed in the technology independent 

phase are classified into two classes: network restructuring 
operations and node minimization. The former includes op- 
erations that modify the structure of the Boolean network by 
introducing new nodes, eliminating others, and by adding 
and removing arcs, while the latter includes operations that 
simplify the logic equations associated with nodes [9]. 

1 )  Restructuring Operations: Network restructuring op- 
erations include decomposition, extraction, factoring, re- 
substitution, and collapsing. 

Decomposition is the process of expressing a given 
logic function in terms of a number of new functions. 
For example, let 

F = ubce f + abde f + n’c’d’ + b’c‘d’ : (1) 

then a decomposition of F is 

F = X Y e f  + X’Y’ : ( 2 )  

where X = ab and Y = c + d. 
Note that while the expression representing F before 
decomposition depends explicitly on six variables, the 
one after decomposition depends explicitly on four 
variables only. Decomposition is an essential step in 
logic optimization for FPGA’s. 

I060 

Extraction is related to decomposition but operates 
on a number of given functions. With extraction, the 
given functions are expressed in terms of newly created 
intermediate functions and variables. For example, 
extraction when applied to the following functions 

F = (u’b + nb’)cd 
G = (a’b’ + ab) + e + f 

(3) 
(4) 

gives 

F = Xcd  ( 5 )  
G = X ‘ + e + f  (6) 
X = a’b + ab’ (7) 

Common subexpressions are identified and extracted 
in order to minimize the total number of literals by 
sharing expressions among logic functions. However, 
the number of arcs in the resulting Boolean network 
increases which may increase wiring area. 
Factoring transforms the sum-of-products form of a 
logic function into a factored form. For example, F of 
Eq. (1) can be factored as abPf(c+d)+(ab)’(c+d)’ .  
Substitution or resubstitution is the process of express- 
ing a given logic function F in terms of another 
given function G. For example, let G = abc then 
F = Gef + abdef + (G + nbd)’. 
Collapsing, also called elimination or jnttening, is the 
inverse operation of substitution. If G is a fan-in node 
of F ,  collapsing “pushes” G into F so that F is 
expressed only in terms of its fan-in nodes which also 
include the fan-in nodes of G. 

All these operations make use of operations analogous 
to conventional multiplication and division. In fact, de- 
composition, extraction and factoring depend on finding 
subexpressions which are “divisors” or “factors” of the 
representation of the function. The number of divisors and 
factors of a given Boolean expression, however, can be so 
large that it  is practically impossible to search the space 
to find one which is optimum with respect to the cost 
function used in the logic synthesis. As a result in most 
logic synthesis systems divisors and factors are selected 
from a restricted space so that the search is much faster 
and the quality of the result is acceptable. 

2) Algebraic Operations: The restricted space is the space 
of algebraic expressions. An algebraic expression is a set 
of cubes such that no cube contains another, i.e., no cube 
contains all of the vertices of any other cube. A Boolean 
product o f m o  cubes is the product of the literals of the 
cubes if no literal appears complemented in one cube 
and uncomplemented in the other and is zero otherwise. 
The product of two expressions is the set of products 
of the cubes of the two expressions. A product of two 
expressions is an algebraic product if they are algebraic 
expressions and if the two expressions have no input 
variables in common. The basic task in decomposition, 
extraction, factoring and resubstitution is the operation of 
division: given two functions FandP,  find Q and R such 
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that F = P Q  + R. The division is algebraic if PQ is an 
algebraic product. 

Algebraic division can be carried out very quickly. An 
algorithm exists which can compute the operation in linear 
time in the number of cubes in the expressions. To perform 
an effective restructuring of the network with decomposi- 
tion, factoring and extraction, it remains to find an effective 
procedure to determine good algebraic divisors, i.e., given 
F ,  we wish to find P so that P, Q and R can be expressed 
with the smallest number of literals. Since the number 
of divisors is very large, the optimization problem looks 
hopelessly complex. Kernels, introduced by Brayton and 
McMullen, are a subset of all algebraic divisors of an 
expression that can be computed effectively with a number 
of fast algorithms. It can be proven that optimum algebraic 
divisors and common factors must be kernels and/or kernel 
intersections. In MIS there are a number of kerneling 
operations with different speed-quality trade-offs. 

Thus the restructuring operations can be performed 
quickly and the space searched effectively, but at the 
expense of the optimality of the solution. Boolean 
operations such as node minimization can be interspersed 
with algebraic operations in an attempt to find a better 
solution. 

3)  Node Minimization: Node minimization attempts to re- 
duce the complexity of a given network by using Boolean 
minimization techniques on its nodes. The nodes of the 
network are Boolean functions that can be minimized using 
two-level techniques such as the ones used in Espresso. 
However, considering the functions at the nodes as in- 
dependent, much optimization is potentially lost. In fact, 
the inputs of the Boolean functions are related to each 
other by the nodes of the network that precede the node 
under consideration and hence are not free to take any 
combination of values. In addition, for some values of the 
primary inputs of the network, the output of the node may 
not be observable at the primary outputs of the network. 
In both cases the values of the inputs that can never occur 
at the input of the function and the values of the primary 
inputs for which the outputs of the nodes are not observable 
at the primary outputs of the network are don ’t cares for the 
two-level minimization of the node. The first kind of don’t 
cares is called Satisjability Don’t Care (SDC) set, while the 
second is called Observability Don’t Care (ODC) set. 

An example of SDC is as follows. If node i of the network 
carries the Boolean function f ( x , y ) ,  where x = a + b,  
y = ab + c and a ,  b, c are primary inputs of the network, 
then .(U + b)’ + x’(a + b )  and y ( a b  + c)’ + y’(ab + c )  are 
SDC’s. In other words, the SDCs represent combinations 
of variables of the Boolean network that can never occur 
because of the structure of the network itself. 

Unfortunately the SDC’s and the ODC’s may be very 
large and it may be impossible to compute them. Hence 
node minimization in [8] optimizes the two-level represen- 
tation of a node using a suitably chosen subset of SDC’s 
and ODC’s when they are too big. 

Another method for node minimization, [4] does not use 
two-level minimization techniques with don’t cares, but 

rather it simplifies the node function using a tautology 
checker. Tautology checking determines whether a function 
is identically equal to 1. It can also be used to determine 
if two Boolean networks are equivalent by taking the 
corresponding primary outputs and forming their exclusive 
NOR. If the two Boolean networks are equivalent, the 
output of the exclusive NOR will be always 1. In [4], 
a node is tentatively simplified by deleting either liter- 
als or cubes from the node representation. The resulting 
network is checked for equivalence against the original 
network. If equivalent, the deletion is performed and a 
simpler representation is obtained. The problem with this 
method is CPU time since many equivalence checkings 
need to be performed. On the other hand the previous 
approach suffers from problems stemming from the size 
of the SDC and ODC. In most available logic optimization 
programs, the first minimization technique is adopted using 
an approximation to the SDC and ODC. 

Node minimization has been proven to be very effective 
for a wide variety of cases. Node minimization is very 
often the only Boolean operation that is performed during 
a network optimization run. 

C. Technology Mapping 
After optimizing the network, the technology mapping 

phase begins. Here the optimized Boolean network is 
mapped into a network whose nodes are primitive logic 
functions implemented by the available library gates. In this 
phase the cost function can be more accurate since the area 
of the primitive gates is known exactly. However, wiring 
area is not used as part of the cost function in most of the 
synthesis systems in use today, even though approaches 
have been proposed that take wiring into account [l], [40], 

The algorithms that are used in technology mapping fall 

1. algorithmic approaches (e.g., [29], [8], [311); 
2. rule-based techniques (e.g., 1131, 1241). 

In the first approach, the Boolean network is mapped into 
a subject graph which is a network consisting of two-input 
NAND gates. All the gates in the library are also expressed 
as networks (called pattern graphs) in terms of two-input 
NAND gates, thus yielding a consistent representation 
between the network and the gates in the library. The 
problem is now transformed into a covering problem: find 
the minimum cost cover of the subject graph by the pattern 
graphs. Since both the subject graph and the pattern graphs 
are directed acyclic graphs (DAG’s), the problem is called 
DAG covering by DAG’s. Unfortunately the problem is NP- 
hard, and since there is no exact algorithm that yields 
practical results even for relatively small networks [44], 
heuristics are used. 

The first heuristic to be proposed [29] was inspired by 
the work on optimizing compilers by Aho et al. [2]. This 
heuristic is optimal if the network to be mapped is a tree 
and the library gates are represented by trees. However, in 

~411. 

into two main categories: 
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general, the optimized Boolean network is not a tree. For 
this reason, the network is decomposed into trees. Since 
most of the gates in widely available commercial libraries 
can be expressed in terms of trees of two-input NAND gates 
the mapping problem is transformed into a tree-covering- 
by-trees problem which is easily solved by covering each 
of the trees separately. This is an efficient heuristic since it 
is based on proven optimality properties, the running time 
of the procedure is linear in the size of the trees, and the 
quality of the results are quite good. 

An alternative approach was proposed in [31]. The two- 
input NAND-gate network is decomposed into subnetworks 
that are not necessarily trees; the only requirement in 
common with tree decomposition is that the connection to 
the rest of the circuit or to a primary output be a node 
of fanout one (the sink node). A dynamic programming 
approach is used to find the optimum matching of the 
subnetworks in terms of a given set of primitives (library 
gates). In this approach, Boolean operations are used to find 
whether a subnetwork is logically equivalent to one of the 
library functions (Boolean matching). First, a set of cluster 
functions is defined as the set of functions that correspond 
to connected subgraphs of the subnetwork rooted in the sink 
node. The leaves of these DAG’S are the support variables 
of the cluster functions. The multilevel structure of the 
subgraphs is flattened obtaining a two-level representation 
of the cluster function. The cluster function is then checked 
against all the library gates to identify those gates that are 
logically equivalent on the care set of the cluster function. 
This is done by solving a tautology problem, i.e., the 
exclusive NOR of the cluster function and of the library gate 
is taken and checked to determine whether the output of the 
exclusive NOR is identically equal to one on the care set of 
the cluster function. The minimum cost match is selected 
and the procedure is repeated for all the functions which 
are rooted in the nodes that define the support variables 
for the cluster function. This defines the basic step for the 
dynamic programming procedure. 

Among the advantages that can be claimed for this 
approach, we identify: 

the decomposition of the subject graph is not restricted 
to be a forest of trees; 
don’t cares can be naturally incorporated to obtain 
matches that could not have been obtained with a 
purely structural approach such as the tree-covering- 
by-trees approach. 

These advantages did not offer substantial improvements 
over the tree-covering approach when applied to standard 
libraries on a set of benchmarks. However, as we shall see 
in Section V-C5), better results were achieved for libraries 
containing XOR’s, multiplexers and majority functions that 
are notoriously difficult to handle with the tree approach. 

A drawback of this approach is the high computational 
requirement; each match attempt requires the solution of 
a tautology problem. In [18] and [47] clever methods 
have been proposed to minimize the number of tautology 
operations performed. 

In both approaches, the original DAG has to be mapped 
into a network of two-input NAND gates. Note that there is 
potentially a very large number of possible mappings of the 
original network in terms of two-input NAND gates. Simple 
heuristics are used to preserve as much of the structure ob- 
tained during the technology independent optimization step 
as possible, while using a small number of NAND gates. 
The library gates can also have different representations 
in terms of two-input NAND gates. However, the number 
of possible two-input NAND gate representations is rather 
small in most cases. In the tree-covering-by-trees approach, 
all possible representations of a given gate in terms of two- 
input NAND gates are enumerated, thus providing a larger 
number of matches between the covering trees and the tree 
to be covered. One limitation of this approach is that it 
can only be applied to single-output cells. No work has so 
far been done to address mapping for cells with multiple 
outputs. 

Rule-based techniques traverse the Boolean network and 
replace subnetworks with patterns representing the gates 
in the library that match the function of the subnetwork. 
Rule-based techniques are slower but could yield better 
final results since detailed information about the gates in 
the libraries can be captured, and electrical considerations 
can be taken into account easily. 

The present trend in industry is to use a mixed approach, 
where a tree covering approach is followed by a rule-based 
clean-up phase. 

Timing optimization is carried out using the same ap- 
proaches but with more difficulty. In the technology inde- 
pendent optimization phase some simple timing model of 
the network based on the number of levels and the degree 
of each node can be used to restructure the network to 
minimize the critical path [49]. In the technology mapping 
phase, gate delays are known with good approximation and 
the mapping can be guided to yield a fast implementation. 

IV. SYNTHESIS FOR LUT-BASED FPGAS 

A.  Zntroduction 
LUT-based logic blocks such as the Xilinx configurable 

logic block (CLB) can implement any logic function of no 
more than a fixed number of variables. Additional functions 
can also be implemented depending on the details of the 
block. For example, the LUT section of the Xilinx series 
3000 architecture (Fig. 4) can implement any logic function 
F with up to five inputs a;  b , c , d , e ,  or any two logic 
functions F and G with up to four inputs each and five 
overall variables. In addition, each block has two embedded 
flip-flops with outputs Q X  and &Y for use in sequential 
design.2 

All existing approaches to synthesis for LUT-based 
FPGA’s begin with a network that has been optimized using 
a technology independent method and, hence, could be 

’If the internal flip-flops and the feedback paths from them are consid- 
ered, the Xilinx 3000 architecture allows up to a total of seven different 
inputs to the two look-up tables. 
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Fig. 4. A CLB of Xilinx 3000 

classified as technology mapping even though some drastic 
restructuring of the network could result during synthesis. 

This section is organized as follows. The most straight- 
forward adaptation of technology mapping approaches to 
LUT FPGA’s is reviewed first. Special algorithms are then 
presented which take into account practical LUT-based 
FPGA architectures. Although most approaches published 
to date deal with area minimization, new techniques which 
optimize performance are surfacing. These new techniques 
are reviewed in the last sub-section. 

B. Library-Based Technology Mapping 
In the tree-covering-by-trees approach to technology map- 

ping, the gates in the library have to be expressed as trees. 
To use this approach an LUT is viewed as a collection 
of gates. For example in MIS, all the nonequivalent func- 
t i o n ~ ~  are explicitly described in terms of two-input NAND 
gates. While the nonequivalent gates are fewer than all the 
possible gates, their number still grows superexponentially. 
For k = 2 , 3  the number of nonequivalent functions is 
reasonable (10 and 78 respectively), but already for k = 4 
the number of nonequivalent functions is 9014 [19]. In 
addition some of these functions have a large number 
of possible two-input NAND gate representations (some 
have more than 700) and MIS cannot handle the resulting 
complexity in the library. Thus the* number of logic gates 
represented by the covering trees is restricted. In [ 191, only 
a relatively small subset of the functions was included in the 
library. The subset was selected based on the observation of 
the behavior of the algorithm for k = 3 and the knowledge 
of the inner operations of MIS. Note that the cost of 
mapping into any of these functions is constant since all 
of them can be implemented by a single LUT. 

Even after restricting the set of gates to be included, 
the time needed to perform the mapping is long and is 
dominated by the time needed to parse and process the 
library. In [19] it was observed that as IC increases, the 
quality of results deteriorates (not surprisingly since the 
number of basic functions eliminated from considerations 
grows quickly). Thus this approach seems inadequate. 

‘An LUT with X, inputs can implement 2 2 b  functions. A function f is 
equivalent to another g if it can be obtained from 9 by renaming inputs. 

C. Direct Approaches 
Direct approaches deal with the functionality of the logic 

block directly and do not require the explicit construction 
of a library of gates. 

Two direct approaches have been considered: 
Modification of the tree-covering-by-trees algorithm 
for technology mapping to significantly reduce the 
.CPU time required by the standard technology map- 
ping algorithms [19, 201; 
A two-step approach where: 

- Starting with a technology-independent-optim- 
ized network, the nodes of the network are 
decomposed so that each depends on no more 
than k variables. The decomposition operation 
yields a network that is feasible since each node 
can now be implemented directly using a single 
LUT. 
The number of nodes is reduced by combining 
some of them taking into account the particular 
features of the LUT’s [37], [181, [281, [381, 

- 

1501. 

1) Modifying the Tree-Covering Approach:Chortle [ 191 
and its extension Chortle-ctf [20] use the first direct ap- 
proach to the technology mapping problem for LUT’s. 
Chortle begins with an AND/OR representation of the 
optimized Boolean network. This representation is obtained 
in a straightforward way from the sum-of-products repre- 
sentation of MIS by representing each product and each sum 
as a separate node. Inversions are represented by labels on 
the edges. 

The network is first decomposed into a forest of trees by 
clipping the multiple-fan-out nodes. An optimal mapping of 
each tree into LUT’s is then performed using dynamic pro- 
gramming, and the resulting implementations are assembled 
together according to the interconnection patterns of the 
forest. These steps are essentially the same as the standard 
technology mapping algorithm implemented in DAGON 
and MIS. The main difference is in the way the optimal 
mapping is done. Note that in the case of LUT’s it is not the 
structure of the logic function that matters in the matching 
but only the number of variables that the function depends 
on: given a tree, every subtree that has at most k leaf nodes 
can be implemented by a single LUT. 
Chortle and Dynamic Programming for LUT’s: The dynamic 
programming approach to technology mapping is as fol- 
lows. The minimum cost implementation of a tree rooted 
at node i is obtained as the implementation of the subtree 
Ti rooted at i combined with the minimum cost imple- 
mentation of the subtrees rooted at the leaf nodes of Ti 
which yields the minimum overall cost among all such 
implementations. Thus the optimum technology mapping 
problem for a tree can be solved recursively starting at its 
leaf nodes and working towards its root. 

In the case of LUT’s, when the mapping extends towards 
the root of the tree, all subtrees rooted at a node that have 
a number of leaf nodes less than or equal to IC must be 
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considered to make sure that all applicable solutions are 
searched. Note that all these subtrees have the same cost 
of 1. 

In line with the technology mapping algorithms of 
DAGON and MIS, Chortle’s approach guarantees that 
an optimum solution is found for every tree but cannot 
guarantee that the technology mapping for the entire 
network is optimum. 

When i has degree significantly larger than k ,  the number 
of subtrees to examine is very large. Since all possible 
combinations of nodes connected to i of cardinality less 
than or equal to k must be considered to guarantee an 
optimal solution, Chortle would spend an inordinate amount 
of time searching the space of sub tree^.^ 

To avoid the explosion of CPU time, Chortle predecom- 
poses the nodes of the network that have degree larger than 
a limit 1 , l  > k .  This is done by splitting the nodes into 
two nodes with nearly the same degree. By doing this the 
optimality of the solution is not guaranteed any longer but 
according to [ 191 the quality of the final solution is hardly 
affected. 

Several factors limit the quality of the solution, however: 
the search for a mapping is artificially limited to the 
tree boundaries; 
possible duplication of nodes in the network is not 
considered; 
some of the special features of the LUT-based FPGA’s 
are not considered, e.g.. the fact that two functions can 
be mapped onto the same LUT in the Xilinx array. 
Chortle-crfand Bin-Packing: Chortle-crf [20] extends 

Chortle by considering node duplication and reconvergent 
fan-outs. In addition, a key contribution of this work is 
recogn’izing that the decomposition problem for an LUT- 
based FPGA could be approximated as a simple variant of 
the bin-packing problem [23]. The bin-packing problem is 
to pack a set of objects of given sizes into the minimum 
number of bins of fixed capacity. The bin-packing problem 
is NP-hard but simple and very fast heuristics have been 
used effectively for its solution [23]. Furthermore, these 
heuristics can be guaranteed to find the optimum solution 
in some special cases, and are in any case within 22% of 
the optimum. 

Bin-packing heuristics are used in Chortle when the 
best solution to the mapping problem is sought for a 
node in a tree during dynamic programming. A two-level 
representation of a logic function f is considered in this 
case. The cubes are the set of objects to be packed. The size 
of an object is given by the number of variables that appear 
in the corresponding cube. Any set of cubes whose overall 
size is less than or equal to k is packed into an LUT. In case 
a cube contains more than k variables, it is considered as a 
combination of two or more cubes each of which has less 
than k variables. Note that an LUT implements the OR of 
the cubes packed into it. Finding the minimum number of 
bins which contain all the cubes is equivalent to solving the 

4This is equivalent to considering all poss,ible decompositions of node 
i so that the resulting decomposition is implementable by an LUT. 

bin-packing problem, but does not yield a solution to the 
decomposition problem. For example, given the function 
F = abcd + e f g + ha if we pack abcd into one LUT, and 
the remaining cubes into another, we would still have to 
build the OR of the two subfunctions ubcd and e f g + hi 
to implement the original function resulting in a three LUT 
implementation. If instead we replace e f g + h i  with a single 
literal cube z and we pack z together with abcd, we obtain 
the following decomposition of F :  

F = abcd + z ;  
z = e f g  + hi 

The function can now be implemented using only two 
LUT’s; one LUT implementing z = e f g + hi feeding into 
a second LUT implementing F = z + abcd. 

Chortle uses the first fit decreasing algorithm to solve 
the resulting bin-packing problem. The algorithm selects 
the largest object, i.e., the cube with the largest number 
of variables, and finds the first bin (LUT) where it fits. If 
no existing bin (LUT) has enough capacity a new bin is 
created and the cube is placed there (recall that this can 
always be done, since all cubes have a number of variables 
that is at most I C ) .  When all the cubes have been placed in 
an LUT, the LUT with the fewest unused inputs is selected 
and closed. A new variable is created and the corresponding 
one-variable cube is placed in the first LUT where it can 
be accommodated. If none is found a new one is created. 
The procedure is repeated until only one LUT remains open. 
This last LUT is closed but no new variable is created. This 
last LUT is the one that provides the output corresponding 
to the original function. 

This algorithm has a remarkable property. It can be 
proved that if the cubes of the given function are disjoint, 
i.e., they have disjoint support, then the algorithm generates 
a tree of LUT’s of minimum size that implements the given 
function for k 5 6 [20], [38]. 

In Chortle-crf, the algorithm is applied to a tree of AND 
and OR functions. Hence all the cubes indeed have disjoint 
support and the solution to the technology mapping problem 
is optimum as in Chortle but it can be obtained much 
more quickly because of the speed of the packing algorithm 
(experimentally it has been observed to run up to 28 times 
faster than the Chortle algorithm). 

The speed of the bin-packing algorithm is the key to ad- 
dressing two shortcomings of the original Chortle approach, 
namely optimization across tree boundaries and duplication 
of logic. The results obtained by Chortle can be improved if 
local reconvergence is considered in the optimization (see 
Fig. 5). 

If the cubes are not disjoint, then the optimization prob- 
lem is no longer similar to the bin-packing problem, since 
now the capacity needed to pack a set of cubes into the 
same LUT is not the sum of the size of each cube as in 
the case of the standard bin-packing problem. In fact, if 
two cubes c1 and c2 share p variables, where c1 has p1  

variables and c2 has p2 variables, then the capacity needed 
is p l  + p2 - p and not p l  + p2. Thus we could have a 
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Fig. 5. Local reconvergence 

more effective optimization if we were to pack cubes with 
shared variables in the same LUT as shown in the following 
example. 

Suppose that the function F = ab+cd+de+ fg+hi is to 
be implemented. Using the First Fit Decreasing algorithm 
with k = 5, we could have the following decomposition: 

(10) 
(1 1) 
(12) 

If cubes cd and de are placed into the same LUT we would 
have: 

z1 = ab + cd + de; (13) 

F =  f g + h i + z l .  (14) 

z1 = ab + cd; 

zz = de + f g  + 21; 

F = hi + 2 2 .  

However, placing cubes with shared variables in the same 
LUT a priori may not always yield the optimum solution. 
Furthermore, there may be several cubes that share vari- 
ables and they may not fit in the same LUT. In this case, 
the question of which groups of cubes should be “merged” 
into a single LUT arises. Since the bin-packing algorithm 
is very fast, the solution chosen by Chortle-crf is to run 
the algorithm exhaustively on all possible cases, i.e., no 
merging (equivalent to considering all cubes as disjoint), 
and all possible mergings of cubes with shared variables. 
Note that, if the number of cubes with shared variables 
is large, this approach would be too expensive even if 
the analysis of each case could be carried out very fast. 
A heuristic has been added recently which searches for 
maximum sharing in an LUT [20]. 

A similar approach is taken to optimize across the fan- 
out points of the network. Suppose that the network to 
implement has two outputs given by: 

(15) 
(16) 

f l  = de + z :  
f 2  = f g  + z ;  z = abc. 
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In this case, the decomposition of the network into a 
forest of trees would force the implementation of z as the 
output of an LUT, and would require two more LUT’s to 
implement f l  and f z .  However, we could merge z into f l  

and fi to yield: 

f l  = de  + abc; (17) 

fz f g  + abc. (18) 

In this case, some logic is “duplicated” (the cube abc would 
appear in two LUT’s) but the number of LUT’s is reduced. 

In Chortle-crf the following approach is taken. Every path 
starting from a fan-out point has to reach either another fan- 
out point or a primary output U. The node that produces 
w as output is called a visible node. The optimization 
process considers all the visible nodes as functions to be 
implemented. Two possible implementations are then exam- 
ined, one with the fan-out variable considered as an input 
variable (corresponding to the standard tree decomposition 
approach), the other with the fan-out variable replaced by 
its expression in terms of its fan-ins. The best solution is 
then selected. If there is more than one reconvergent fan- 
out at a visible node, the process considers all the possible 
combinations of choices for each of the fan-out points that 
reconverges to the visible node. 

If there are many reconvergent paths terminating at a 
node, the optimization may take a long time because of 
the very large number of cases to be checked. A possible 
remedy to this situation is to preprocess the network using 
a decomposition step (e.g., with one of the kerneling 
algorithms of MIS). It can be shown that the number of 
reconvergent paths after preprocessing is always less than 
or at worst equal to the number of reconvergent paths in the 
network at the end of Chortle’s AND-OR decomposition. 

2) The Two-step Approach: This approach, proposed first 
in [37] and followed also in [18], [28], [50] begins as 
in the Chortle case with a network that has already been 
optimized via technology-independent transformations. The 
first step in the two step approach is to use decomposition 
to obtain a feasible network. In the second step, the 
network is manipulated to reduce the number of LUT’s 
used by exploiting the characteristics of the particular LUT 
architecture considered. 

Today, many designs are entered directly in a form 
which guarantees a feasible implementation in an LUT- 
based FPGA (for example, an XNF description of Xilinx). 
In this case, the first step is not needed. 

First step: Decomposition: All nodes of the network 
that have more than k inputs, are decomposed to yield a 
feasible network. 

MIS-pgal decomposition In the first version of MIS- 
pga, two decomposition techniques are used: 

kernel decomposition; 
the Roth-Karp decomposition [26]. 

In kernel decomposition, kernels of the logic function 
of an infeasible node no are extracted and evaluated with 
a cost function which attempts to consider not only the 
number of LUT’s but also the wiring resources that may be 
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Fig. 6. Application of Roth-Karp decomposition. 

needed in the implementation. When a kernel is extracted, a 
new node is created. Its output is then fed into the original 
node. After the kernel is extracted, input variables have 
to be provided to the corresponding node. If the original 
node shares variables with the kernel, then new edges are 
added to the network. If the two nodes are implemented in 
separate LUT's, the new edges correspond to signals to be 
routed in the FPGA. Hence, it makes sense to select for 
extraction the kernel which creates the minimum number 
of new edges. This decomposition is referred to as split 
decomposition. 

Note that, following this procedure, the kernel extracted 
and node no may have more than IC variables each. Thus the 
procedure should be applied recursively until all nodes are 
feasible. However, the recursive decomposition may fail to 
produce a feasible network if there are no kernels for an 
infeasible node except itself (e.g., abce f m or ab + c + g h p )  
and a different technique must be used. In MIS-pgal, 
an AND-OR decomposition is applied until all nodes are 
feasible. For example, abcefm is split into z = abc and 
z e f m ;  ab + c + g p h  is split in z = ab + c and z + gph .  

The Roth-Karp decomposition [26] is an efficient algo- 
rithm which implements the classical decomposition theory 
of Ashenhurst and Curtis [ 3 ] ,  [12]. 

Ashenhurst gave necessary and sufficient conditions for 
the existence of a simple disjoint decomposition of a func- 
tion f of n variables. A simple disjoint decomposition of 
f is of the form: 

Curtis [12] extended the result to a generalized decom- 
position of the form: 

S(x1,52, .  ' .  , x,,xs+1,.  . 
=g(a1(21,22,  . . . .  2 

ZS+l. . . ..x,) 

The set X = (21: ~ 2 , .  . . 
The set Y = {xSc1,. . . . E ,  

2 , )  is called the bound set. 
is called the free set. Figure 

6 shows the structure of the decomposition obtained (for 

We denote by a decomposition chart the truth-table of f 
where minterms of B'I = (0. l}" are arranged as follows. 

IC = 5 ) .  

The minterms in the space B" correspond to the columns 
of the chart and those in B"-" to the rows. The entries 
in the chart are the values that f takes for all the possible 
combinations. For example, if f ( a ,  b,  e )  = abc + a'b'c, the 
decomposition chart for f for partition ablc is 

The necessary and sufficient conditions were given in 
terms of the decomposition chart for f for the partition 
x122 . . . zs(xs+l . . . z, (also represented as :;,":::;:; ). Cur- 
tis showed that the decomposition (20) exists if and only 
if the corresponding decomposition chart has at most 2t 
distinct column patterns (or its column multiplicity is at 
most 2t). To get the functions ai, equivalence classes of 
minterms in B" are formed. Two minterms in B" are 
equivalent if they have the same column patterns. If M 
is the column multiplicity, there will be M equivalence 
classes. Each class is then assigned a binary code. The 
minimum code length is rlog2M1 = t .  Bit i of the binary 
code corresponds to the function ai. The function g can 
then be determined by considering each minterm in the on- 
set of f and replacing its bound part by the binary code for 
the corresponding equivalence class. 

We illustrate the decomposition technique using previous 
example. There are two distinct column patterns, resulting 
in the equivalence classes c1 = (00, ll} and c2 = (01, IO}. 
M = 2 =$ t = 1. Let e1 be assigned the code 1 and 
cz 0. Then a l ( a  b)  = ab + a'b'. Since f = ubc + a'b'c, 
g = a1c + Q 1 C  = a1c. 

The Roth-Karp decomposition is based on the same the- 
ory but avoids building decomposition charts, which always 
require exponential space, by using a cube representation. 

In order to make an infeasible node feasible, 1x1 should 
be at most k .  This ensures that ( ~ 1 , .  . . ,a t  are feasible. 
However if t+ (Y 1 is greater than k ,  g has to be decomposed 
further and the procedure is applied recursively, until all 
nodes involved are feasible. Since a nontrivial disjoint 
decomposition may not exist, an AND/OR decomposition 
is used as a last resort. 

The choice of the bound set affects the form of g 
and t so that different bound sets may yield different 
decompositions. Since the procedure is computationally 
expensive, attempting several choices of bound sets to 
obtain good results is out of the question. The strategy used 
in MIS-pgal, instead, is to simply pick as bound set the first 
k variables of the function. More research is needed to find 
whether a more intelligent choice of bound set would yield 
significantly better results. It is important to point out that 
for symmetric functions all bound sets of a given cardinality 
produce the same 9 and hence the simple minded heuristic 
used in MIS-pgal does not compromise the quality of the 
final result for this class of functions. 
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It is not possible to prove that the Karp-Roth decomposi- 
tion strategy is always better than the split decomp~sition.~ 
Experimental results indicate that the Roth-Karp decompo- 
sition is most effective when the node to be decomposed is 
a symmetric function. However, lacking a general theory, 
MIS-pgal uses both decompositions and selects the best 
result among the two. 

Hydra decomposition: Hydra 11 81 is a program specif- 
ically targeted to multiple output LUT’s. 

In Hydra the decomposition step to make the Boolean 
network feasible consists of two operations applied in 
sequence. The first is a simple-disjoint decomposition. The 
second is an AND-OR decomposition which is applied only 
if the nodes of the network are still infeasible after the 
application of simple-disjoint decomposition. 

Among all possible choices of variables to place in X 6 ,  
Hydra considers only the ones that can be shared with other 
functions. The rationale for this choice is best explained 
with an example. Let 

Fl = Fl ( a ,  b, c, d ,  e ,  f ) ,  (21) 
F2 = F2(c,d,e,f.g), (22) 

be the network to be implemented with a Xilinx series 3000 
FPGA. If the two functions are decomposed independently 
their implementation would require at least three single- 
output Xilinx CLB’s since F1 has support larger than five. 
However, if the following decomposition is applied, 

2 1  = hl(c,  4 e ,  f ), 
22 = b ( C ,  d, e ,  f ). 

(23)  
(24) 

then 

and two multiple-output Xilinx CLB’s would suffice since 
hl, h2, F1 and Fz have support less than or equal to four 
and the pairs (hl , h2) , (F1 , F2) have joint support less than 
or equal to five. 

In Hydra, the choice of the set X ’is guided by the con- 
struction of the shared input graph. This graph has as many 
nodes as the Boolean network and there is an arc between 
node i and node j if fi and fj, the functions associated 
with the nodes, share some inputs. A weight equal to the 
cardinality of the set of shared variables is assigned to 
each arc. The graph is traversed searching for arcs with 
largest weight. The set of variables identified by the arcs 
are tested to see whether a simple disjoint decomposition 
of both functions that share that set of variables is possible. 
Note that testing for disjoint decomposition is expensive. It 
is exponential in the cardinality of the set S. 

Given the cost of testing whether a given function has 
a simple disjoint decomposition, Hydra performs an AND- 
OR decomposition preprocessing step on the network after 

5As is often the case in many steps of logic optimization even for 

‘There is a large number of possible choices: O(I.S~!). 
standard libraries. 

a b  c a b  c 

Fig. 7. Node elimination. 

technology independent optimization so that the number of 
variables in the support of all the nodes is no larger than 
a given limit 1. In [ 181, the best results were obtained with 
1 = 9. 

Xmap decomposition: Xmap 1281 uses the if-then-else 
DAG representation discussed in Section 11. Once the 
Boolean network is converted into an if-then-else DAG, 
all the nodes are feasible if k > 2 since they have three 
 input^.^ The conversion of the Boolean network into an 
if-then-else DAG can be considered as a decomposition 
technique which makes a general network feasible. 

Second step: Node elimination: After obtaining a feasi- 
ble network, the number of nodes (and hence LUT’s) can 
be reduced substantially by combining some of them. An 
example is shown in Fig. 7. Here k = 5. Node p can be 
collapsed into f and n without making them infeasible. This 
decreases the number of nodes in the feasible network by 1. 

The following node elimination techniques which can be 
applied to any LUT-based architecture have been proposed: 

Local elimination [8], [ 181 also called partitioning 
[37], where nodes are eliminated by examining only 
node-fan-out pairs. 
Covering [37], [18], [28], [SO], where nodes are elim- 
inated by considering the overall structure of the 
network. 
A third technique referred to as Merging is implement- 
ation-dependent algorithm that exploits the particular 
LUT-based architecture 1371, 11  81, [28], [SO]. 
Local elimination: The basic idea of local elimination 

is to examine pairs ( i ,  j )  of nodes where node i is a fan-in to 
node j. If the node obtained by collapsing node i into node 
j is feasible, i.e., the new support set of j has cardinality 
less than or equal to k ,  then the new combined node can be 
implemented by a single LUT. However, creating this new 
node may substantially increase the number of connections 
among LUT’s and hence make the wiring problem more 
difficult. While Hydra accepts local eliminations as soon 
as they are found, MIS-pgal orders all possible local 
eliminations as a function of the increase in the number 
of interconnections resulting from each elimination. The 
best local eliminations are then selected greedily. 

Covering: While local elimination can be used suc- 
cessfully in reducing the number of LUT’s, its myopic 
view of the structure of the network causes it to miss better 

’For k = 2, the iffhemelse triple is converted into three nodes with 
two inputs. Let z = i f a  h e n  h else c be the triple to be converted. Then 
the three nodes can be constructed as 31 = ab,  22 = a’c and 2 = 31 + 2 2 .  
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solutions. Covering takes a global view of the network. It 
identifies clusters of nodes that could be combined into a 
single LUT. 

The most general formulation of the covering problem 
for LUT’s is given in Mis-pgal [37]. Let a supernode of a 
node i ,  Si, be a cluster of nodes consisting of i and some 
nodes in the transitive fan-in of i ,  such that the maximum 
number of inputs to Si is IC and if a node j E Si, then all 
the nodes on some path from j to i are in the supernode 
as well. Note that each supernode is a feasible node (the 
number of inputs is less than or equal to IC by definition), 
and all its nodes could be implemented by a single LUT. 

There may be several supernodes associated to a node i. 
The covering algorithm of [37] generates all of them. 

Repeating this procedure for all nodes generates a po- 
tentially large set of supernodes that can be used to cover 
the original network. The optimum covering problem is 
to find the smallest set of supemodes that covers all 
the nodes of the network. If we did not have any other 
constraints to satisfy, this problem would be a standard 
NP-hard set covering problem for which good heuristics 
as well as relatively fast exact algorithms are known [23]. 
This is not the case, however. We have to make sure that 
each input to the optimum supemode set is an output of 
some other supernode in the set or be a primary input. 
This constraint poses a limitation in the way we choose 
supernodes; choosing a particular supernode may exclude 
several others from consideration. 

This constraint makes the covering problem much harder: 
it becomes a binate covering problem [44] for which 
no generally effective heuristic or relatively fast exact 
algorithms have been found. As a result, the computation 
time for Mis-pgal, which employs both an exact algorithm 
[33] and a heuristic, is excessive. 

In [18], [50], [28] a variety of greedy heuristics are 
proposed to solve the covering problem. It is interesting 
to note that the computation time for these heuristics is 
very short and that the quality of the final solution does 
not seem to suffer too much with respect to the optimum 
solution given the same initial network. 

Hydra [ 181 examines the nodes of the network by or- 
dering them by decreasing number of inputs. The nodes 
with k inputs are assigned to an LUT (note that the node 
may have some reconvergent path terminating in it and 
that by collapsing a number of predecessors, the number of 
inputs may actually decrease and allow a number of nodes 
to be mapped into the same LUT; Hydra will miss this). An 
unassigned node with maximum number of inputs is chosen 
out of the other nodes. A second node is then chosen so 
that the two nodes can be merged into the same LUT and 
a cost function maximized. The cost function is a linear 
combination of the number of shared inputs and the total 
number of inputs. The emphasis on shared inputs is aimed 
at improving the result of the subsequent merging step, 
as described below. This greedy procedure stops when all 
unexamined nodes have been considered. 

The procedure used by Xmap [28] .traverses in a breadth 
first fashion the if-then-else DAG from inputs to outputs 

Fig. 8. Two functions in a CLB 

and keeps a log of the number of inputs that are seen in 
the paths that connect the primary inputs to the node under 
consideration. If the node has more than IC inputs some 
of its predecessors have to be placed in a different LUT. 
These predecessors are chosen according to the number 
of their inputs. The more inputs they can isolate from 
the node under consideration the better. This algorithm 
is very fast because of the lack of any backtracking in 
the search strategy. It is also in general more powerful 
than Hydra’s since it considers reconvergence. However, 
it does not consider the possibility of packing two different 
functions in one LUT while Hydra does. 

The heuristics used in VISMAP [SO] consist of three 
basic steps. In the first, the network is traversed from inputs 
to outputs and supemodes are greedily identified as they are 
encountered in the traversal. The network is then traversed 
again and all possible clusterings in the supernodes are 
examined to determine the best. This procedure identifies 
fewer supernodes as compared to MIS-pgal but solves 
the covering problem exhaustively and hence optimally. 
However, if the number of nodes to be considered is large, 
the exhaustive procedure would be too slow. The network is 
therefore partitioned into subnetworks before the covering 
procedure is carried out. 

Merging: In all approaches, except Hydra, single out- 
put functions are considered in the decomposition, local 
elimination and covering steps. However, when industrial 
FPGA’s are considered, the particular features of the ar- 
chitectures must be taken into consideration. The purpose 
of the merging step is to combine nodes that share some 
inputs. Figure 8 shows two functions f and g which can be 
put on the same CLB of a Xilinx 3000 FPGA. 

The approaches presented in [37, 28, 501 perform a post- 
processing step to merge pairs of nodes after covering. The 
problem is formulated as a maximum cardinality matching 
problem [37]: let G(X, E )  be a graph where the set of nodes 
X are nodes of the original network and where the pairs 
of nodes that can be merged in one Xilinx CLB, i.e., that 
have support size no larger than four and combined support 
no larger than five, are adjacent. The maximum reduction 
in the number of CLB’s needed to implement the network 
is achieved when the largest set of disjoint adjacent pairs 
are combined. This is the maximum cardinality matching 
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Fig. 9. Flow: MIS-pga2. 

problem in a nonbipartite graph. Even though a polynomial 
time algorithm (in fact O(n2.')) exists for the solution of 
this problem, the algorithm is fairly difficult to implement 
and its running time can be long for large networks. AS 
a result, heuristics are often used; [28], [50] use greedy 
matching algorithms which are not guaranteed to find an 
optimal solution but are very fast. 

MIS-pga2: A framework for  LUT-logic optimization: 
Since most of the algorithms used in LUT-based synthesis 
are heuristic it is very difficult, or even impossible, to 
compare them in a rigorous way. Extensive experimentation 
is therefore used. 

Acceptable results over a fairly large number of designs 
can be obtained using most of the approaches presented. 
However, no single heuristic can find the best results con- 
sistently across all designs. Hence, a system encompassing 
several different algorithms which can be run sequentially 
or independently would allow the user to customize the 
synthesis approach to any particular design or architecture. 

This is the approach of MIS-pga2. Figure 9 shows the 
flow-chart of where an initial optimization phase is followed 
by a sequence of technology mapping algorithms. 

In MIS-pga2, the technology independent phase is not 
strictly independent of the technology and uses a cost func- 
tion that is different from the one used in MIS. The reason 
is that unlike gate arrays and standard cells the number of 
literals in the factored form may not approximate well the 
actual implementation cost for FPGA's. A good estimate 
for the cost of a particular decomposition for an FPGA 
is produced by the bin-packing algorithm applied to the 
nodes that are modified during the technology independent 
optimization. This is practical given the speed of the bin- 
packing algorithm. 

In MIS, the nodes of the Boolean network are repre- 
sented both in a sum-of-products form and in a factored 
form. Starting the technology-based optimization with one 
representation or the other does make a difference in the 
final cost of the implementation. Since there is no theory 
which can predict the outcome of the choice, MIS-pga2 
optimizes both representations and selects the best result. A 
similar brute-force approach is followed in decomposition 
where no single algorithm can outperform all others in all 
benchmarks. 

El. GAMAL er U / .  SYNTHESIS METHODS FOR GATE ARRAYS 

MIS-pga2 offers four decomposition options in addition 
to the two offered in MIS-pgal [Roth-Karp and split 
decomposition described in Section IV-C2)]. These are: 

Bin-packing. The algorithm for bin-packing used in 
MIS-pga2 is the Best-Fit Decreasing heuristic that 
selects the bin which has the maximum leftover 
capacity after the cube has been assigned to it.* If 
the cubes have disjoint support then for k 5 5 an op- 
timum tree implementation is found (a similar result 
was proved independently for First-Fit Decreasing in 
[201). 
Co-factoring decomposition. This approach, applied 
only if k 2 3, is particularly effective for func- 
tions where cubes share several variables. Each node 
is decomposed by computing the Shannon cofactor 
a f a  + a'fal until the leaf nodes have support that is 
no larger than k. All nodes of the network after the de- 
composition (except possibly the leaf nodes) have at 
most three inputs. If k 2 4, a simple post-processing 
elimination step similar to the approach proposed in 
Xmap may be tried to reduce the number of nodes 
in the network. It is possible to give an upper bound 
on the number of CLB's needed to implement the 
network obtained by this simple decomposition [38]. 
However, this bound is exponential in the number 
of inputs t of the function and hence this procedure 
may not be good if t >> k. 
AND/OR decomposition. This decomposition breaks 
up the nodes of the network so that the resulting 
network has nodes that are either inverters, two-input 
AND gates or two-input OR gates which can be 
packed by the covering step. 
Disjoint decomposition. This decomposition is the 
decomp -d option in MIS. It partitions the cubes of 
the function into a set of cubes with disjoint support 
and then creates a node for each partition and a node 
that is the OR of the outputs of the partition nodes. 
Note that since the nodes of the partition have cubes 
of disjoint support, the bin-packing heuristic when 
applied to the result will provide a locally optimum 
decomposition. Thus disjoint decomposition could be 
an effective preprocessing step for bin-packing. 

MIS-pga2, local elimination is applied not only to the ._ 

nodes in a feasible network while maintaining feasibility, 
but also to nodes in an infeasible network. This algorithm, 
called partial collapse, is shown in Figure 10. It collapses 
nodes of a possibly infeasible network into their fan-outs 
and recomputes the cost of the network using the bin- 
packing algorithm. The candidate nodes for collapsing are 
chosen according to the number of inputs. The list of nodes 
that result in a gain when individually collapsed is formed 
and an integer programming problem is solved to select the 
subset that gives the best overall gain. 

8Note that MIS-pga2 doea not extract a forest of trees to perform the 
mapping as Chortle-crf does. Instead, it uses the heuristic to decompose 
infeasible nodes of the Boolean network. 
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part ial-collapse (7) 

{ 
L = list-of _candidatenodes_for_collapsing(l)) ; 

foreachnodeinl, { 

collapse node into its fanouts; 

recompute cost of fanouts; 

if 1 neu_cost(fanout) < old-cost(fanout) + cost (node) save node 

1 
select-subset _of _savednodesformax_gain() ; 

collapseselectednodeso ; 

1 

Fig. 10. Partial collapse 

The integer programming problem is computationally 
expensive to solve but provides the best set of nodes 
to collapse. If the number of nodes that yield a gain if 
collapsed is large, this approach becomes computationally 
infeasible. An alternate greedy approach to the problem 
selects at each stage the node whose collapsing would yield 
the best gain. 

In MIS-pga2, covering is performed either with the exact 
binate-covering algorithm if the network to cover is not too 
large or otherwise with heuristics. As in MIS-pgal , merging 
is carried out using the max-cardinality matching algorithm 
on the covered network. Instead of applying successive 
covering and merging which may yield suboptimal results 
a new formulation of a combined covering-merging step as 
a single, binate covering problem was suggested in [38]. 

Since MIS-pga is in the public domain, many researchers 
have been able to use the framework and some of the 
algorithms to develop their own novel approaches, thus 
adding to the library of algorithms available to the FPGA 
designer and tool developer. 

Modi’ing the optimization steps: Several attempts have 
been made to target the optimization steps to LUT-based 
FPGA architectures. 

In MIS-pga2 the cost function in kernel extraction was 
changed. 
Fujita and Matsunaga [22] modified the simplification 
step to better suit LUT-based architectures. Whereas 
in the standard simplification step, a minimal repre- 
sentation of the function at each node is sought, in 
the modified simplification step in [22], the target is 
to minimize the support of each node of the network. 
Each node 7~ is now simplified as follows. First, candi- 
date nodes are selected which may be used for fan-ins 
of n. Characteristic functions of n and of the candidate 
nodes are computed. From these, sets of minimal 
supports for 71 are computed using the algorithm of 
Halatsis and Gaintans [25]. Finally, the irredundant 
cover for R is computed using a minimal support. The 
algorithm allows use of don’t care sets. After this step, 
any LUT technology mapper may be used. 

C. Comparisons and Observations In Table 1, we present 
results of MIS-pga2, Chortle-crf, and Xmap. The starting 

Table 1 
Number of Five-Input LUT Blocks; t 

Number of Five-Input Single-Output LUT Blocks: R 
Run Time in Seconds. 

example  

z4ml 
misexl 

5xp 1 
count 
9symml 
9sym 
apex7 
rd84 
e64 
(2880 
apex2 
alu2 
duke2 
c499 
rot 
apex6 
a h 4  
apex4 
des 
sa02 
rd73 
misex2 
f51m 
clip 
bw 
h9  

vg2 

MIS-pga2 
n 
5 

11 
20 
18 
31 
7 
7 

60 
10 
80 
82 
67 

109 
110 
68 

181 
182 
55 

412l 
904 

28 
6 

28 
17 
28 
28 
39 

- - 

__ 

t 
5.0 
2.7 
7.4 

22.4 
5.8 

127.2 
339.7 

18.7 
73.7 
14.7 

546.8 
388.5 
773.8 
203.7 

1074.4 
282.1 
243.9 
887.5 
198.7 

3186.3 
41.9 
24.0 
3.4 

14.4 
58.4 
17.3 
27.6 

Chort le-  crf 
n 
7 

11 
21 
28 
31 
44 
59 
60 
35 
80 
88 
64 

116 
111 
89 

188 
198 
70 

579 
927 
27 
16 
28 
27 
31 
39 
41 

- - t 
0.1 
0.1 
0.1 
0.4 
0.3 
6.4 

12.8 
0.6 
1.3 
0.3 
2.2 
2.9 
7.1 
1.7 
2.6 
2.7 
2.9 
2.5 

98.9 
35.4 

0.5 
0.3 
0.1 
0.4 
0.7 
0.3 
0.4 

Xmar, 
n 
9 

11 
24 
31 
31 
55 
73 
65 
36 
80 

103 
81 

126 
127 
75 

212 
231 
98 

664 
1042 

37 
21 
28 
33 
38 
43 
48 

- - 
__ 

2 

0.2 
0.2 
0.2 
0.3 
0.2 
0.4 
0.5 
0.5 
0.4 
0.5 
0.8 
0.7 
0.9 
0.8 
0.5 
1.4 
1.6 
0.7 
6.4 
6.8 
0.4 
0.1 
0.2 
0.3 
0.3 
0.3 
0.4 

__ - 

‘Modified kernel extraction and partial collapse could not finish so a faster 
script was used. 

networks are the same, except that we had to run decomp 
-g on the starting network before running Chortle-crf; 
otherwise Chortle-crf does not complete on many examples 
in reasonable time. These networks were obtained by re- 
peatedly running several MIS scripts until no improvement 
was obtained and then picking the best result. MIS-pga2 and 
Chortle-crf were run on a DEC5500 (a 28 mips machine). 
Xmap was run on a SUN4/370 (a 12.5 mips machine). The 
table shows the number of jive-input single-output LUT’s 
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Table 2 Number of Two-Output Xilinx CLB’s 

example I MIS-pga2 
z4ml 4 

Chortle-crf 
4 

niisex 1 
vF3 
5xp 1 
count 
9symml 
9sym 
apex7 
rd84 
e64 
C880 
apex2 
a1112 
duke2 
c499 
rot 
apex6 
a1114 
apex4 
des 
sa02 
rd73 
misex2 
f5lm 
clip 
bw 
b9 

9 
18 
13 
30 
7 
7 

43 
9 

56 
72 
60 
96 
94 
66 

143 
165 
49 

37 1 

28 
5 

25 
15 
23 
27 
32 

2 

9 
20 
22 
31 
38 
51 
47 
28 
48 
75 
53 
94 
83 
83 

133 
161 
63 

479 
707 
26 
15 
21 
25 
25 
31 
30 

Xrriap 
7 
9 

19 
20 
22 
38 
52 
50 
28 
55 
79 
60 
89 
83 
57 

146 
182 
76 

475 
674 

28 
13 
23 
22 
24 
29 
39 

Hydra I VISMAP’ 
4 
9 

21 
22 
24 
37 
66 
44 
29 
47 
72 
69 
88 
81 
63 

145 
165 
145 
503 
70 1 

37 
13 
21 
17 
27 
29 
36 

4 
9 

20 
19 

46 
50 
46 
42 

76 

93 
49 

137 
155 

32 
14 
22 

27 

xnfopt 
5 

10 
19 
22 
25 
50 
54 
49 
36 
62 

113 
94 
85 

107 
81 

230 
159 
161 
560 
97 1 

50 
23 
24 
25 
35 
38 
29 

‘The starting networks were obtained by running the MIS script once and may differ from those used for other systems 
2Merge could not finish. 

needed to implement the benchmark and the time taken (in 
sec.) in columns n and r respectively. 

The following must be noted before comparing the 
results: 

1 )  The results are sensitive to the starting networks 
used. Hence some of the results cannot be directly 
compared. However, some systems such as MIS- 
pga2 attempt to target the optimization to LUT-based 
architectures. 

2) An implementation with smaller number of LUT’s is 
not necessarily more routable. 

Interestingly, on benchmarks Sxpl ,  9sym, rd84, C499, 
apex4, rd73, f 5 l m  and bw, MIS-pga2 performs much better 
than other systems. Part of the reason is that some of 
these circuits are symmetric and, therefore, the Roth-Karp 
decomposition works very well. Also, exact covering tech- 
niques can be applied on some of the small benchmarks to 
obtain significant improvements. However, the time taken 
by Chortle-crf and Xmap is much less than MIS-pga2. 

The results for two-output Xilinx 3000 CLB’s are pre- 
sented in Table 2. The results for MIS-pga2, Chortle-crf, 
Xmap, Hydra, VISMAP and xnfopt (the proprietary system 
from Xilinx [52] )  are compared. A “-” in the VISMAP 
column indicates that the results were not available. The 
starting networks for all systems (except VISMAP) are 

the same. For xnfopt, the number of passes for each 
example was set to 10. However, for C499, rot, des, C531.5 
and C880, an interrupt was externally generated after 8 
passes since xnfopt was taking too much time. MIS-pga2 
outperforms Chortle-crf, Xmap and Hydra by 15.6 %, 
16.9% and 16.9% respectively.’ 

Note that MIS-pga2, Chortle-crf, Xmap and VISMAP 
exploit the two-output feature in a post-processing step, 
whereas Hydra targets mapping from the very beginning 
for two outputs. 

Comparing the number of two-output LUT’s with the 
number of single output LUT’s for each system, Xmap gets 
significant improvements. One reason is that Xmap uses a 
cofactoring technique which generates nodes with at most 
three fan-ins. The possibilities for merging are much higher. 
MIS-pga2 does not do as well, because it works too hard 
on minimizing the number of single output LUT’s, which 
may not be good for merging. 
D. Synthesis for Routability The algorithms presented in 

the previous sections are primarily concerned with mini- 
mizing the number of LUT’s needed to implement a given 
logic function. In the most popular LUT-based FPGA, 
wiring resources are scarce and as a result a logic function 
requiring far fewer blocks than available on a single FPGA 

9We did not consider des in this set of results, since merge could not 
finish. 
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may not be routable." Hence routability should be carefully 
considered as a cost function in optimization. However, it is 
difficult to predict at the logic synthesis stage what routing 
resources will be needed. 

To establish a link between logic synthesis and layout, 
a correspondence between nodes in the Boolean network 
and cells in the layout is assumed [I], [40]. In this case, 
the physical implementation has a close resemblance to 
the topology of the Boolean network in that inputs to the 
nodes are signals to be routed on the final chip. If the 
signal sources are fixed (for example, if the pad positions 
are predetermined) then it makes sense to manipulate the 
network so that signals arrive to the nodes in an order that 
is consistent with their positions on the chip. This order is 
called lexicographical order in [I]. 

In [41], the nodes of the Boolean network are placed 
in the two dimensional plane with algorithms that are 
approximate versions of the ones used in actual placement. 
In this case, wiring area and length can be estimated with 
better accuracy by considering the nodes of the Boolean 
networks as physical blocks and the edges in the Boolean 
network as interconnections. 

However, the results reported in [40] for technology 
independent logic synthesis and technology mapping with 
layout considerations are not as good as one would expect. 
The average improvements are of the order of a few 
percents over the standard approach that does not take 
layout into direct consideration. Contrastingly, in [48] it is 
claimed that significantly better area is achieved after layout 
than with other approaches where the link with layout is 
not as explicit. 

In the case of LUT-based FPGA's, several algorithms 
attempt to minimize the needed wiring. For example, the 
cost functions used by MIS-pga and VISMAP take wiring 
into account by penalizing the creation of additional signals 
while operating on the network. 

Synthesis for routability is an area where more research is 
needed both for FPGA's as well as for more conventional 
ASICs. 

E. Per$ormunce Optimization Given the high performance 
requirements of system designs and the added delays due 
to the programmability of FPGA's, timing optimization is 
a very important goal of logic synthesis. It is important to 
note that minimizing area, which is the most common goal 
of today's synthesis tools, may result in slow implemen- 
tations. Much research has been done on logic synthesis 
for timing optimization and its relationship with testability 

Delay in a circuit is due to delays in gates and inter- 
connects. For mask-programmed design styles implemented 
in older technologies (above 1 micron), delay is mostly 
due to logic gates while interconnect delay is negligible. 
However, for submicron technologies, and for FPGA's, 
interconnect delays are at least as large as the delays in 

(e.g., [14l, [491, [451). 

'"Taking layout into account while performing logic synthesis is im- 
portant also in other ASIC technologies, since for large sea-of-gates and 
standard cell designs wiring area is often largerthan the area occupied by 
logic macros. 

the logic blocks. For example, for LUT-based FPGA's that 
use pass transistors as switching elements, the delay of a 
signal through general purpose interconnect could be much 
larger than that through one logic block. 

There are three basic approaches to synthesis for perfor- 
mance optimization: 

Delay optimization is equated to minimizing the depth 
in the network [21], [ I l l .  
The delay of the circuit is approximated by a com- 
bination of block delay and interconnect delay. Inter- 
connect delay is estimated as a function of number of 
levels, nodes, and edges in the network [39]. 
Critical path analysis with a (possibly simplified) delay 
model [39] is performed on a placed circuit. In this 
approach, logic optimization and actual layout are 
performed in concert. 

The first approach is certainly faster. The number of 
levels in a circuit correlates with the performance of the 
circuit particularly well when the delay is mostly due 
to block delays. The third approach is more accurate 
but is potentially computationally inefficient due to the 
complexity of the mixed layout-synthesis algorithms used. 
The second approach is a compromise between the need 
for better accuracy and compute-time requirements. 

Reducing the number of levels: The approach devel- 
oped in [21] is a variation on the basic algorithm of 
Chortle-crf. The bin-packing algorithm is still used but here 
the cost function optimized is not the number of LUT's 
but the number of levels of logic. Assuming that the delay 
is entirely due to the logic blocks, minimizing this cost 
function corresponds to minimizing the delays of all paths 
in the circuit. Unfortunately, the number of LUT's tends to 
grow large when minimizing all paths. For this reason a post 
processing step that reduces the number of LUT's without 
increasing the delay of the circuit has been proposed in [21]. 
Minimizing the delay of all paths is in general an overkill 
since the performance of the circuit depends only on the 
critical paths." The critical paths are usually not known a 
priori, however. 

The procedure starts as in Chortle-crf with a network 
that has been AND/OR decomposed and then split into 
trees. For each tree, the nodes are grouped according to 
their levels. Primary inputs are assigned level 0. A node is 
at level D if the highest level node among its fan-ins is at 
level D - 1. Nodes at the same level are grouped into a 
set called stratum. The first-fit decreasing algorithm is then 
applied to minimize the number of LUT's in each stratum. 

After all strata have been processed, the outputs of the 
LUT's at level D are connected to the available inputs of 
LUT's at level D + 1. If the number of available inputs 
is not sufficient, a new LUT is added at level D + 1. 
This algorithm is guaranteed to find the minimum depth 
implementation of the tree if k 5 6. Otherwise, it may 
produce a suboptimal solution [21]. 

" A  critical path in a directed acyclic graph (DAG) is a path from the 
primary inputs to the primary outputs of maximum length, i.e., maximum 
number of levels. 
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Reconvergent fan-outs are taken into account in the 
optimization process with a heuristic that is essentially the 
same as the one proposed in Chortle-crf. 

A postprocessor finds the critical paths of the circuit 
and the network is processed to minimize the number of 
LUT's but with the constraint that the length of the critical 
paths must remain the same. First the area minimization of 
Chortle-crf is applied to the network. The algorithm may 
change the length of the critical path. To avoid an increase 
in estimated delay, all paths that have length larger than the 
critical path in the original network are re-processed using 
the algorithm for the number of levels described above. 
The procedure is iterated until all paths meet the target 
delay constraint. 

The procedure has been observed to yield circuits that 
have 35% fewer levels than Chortle-crf but with 59% more 
LUT's. 

Another approach to timing optimization, dag-map [ 111, 
follows the clustering algorithm by Lawler et al. [30]. The 
network is first mapped into a network of two-input NAND 
gates as in MIS, but with an improved algorithm that guar- 
antees that the number of levels in the transformed circuit 
is within a constant of the number of levels in the original 
circuit. A clustering algorithm is then applied which labels 
nodes of the network beginning with the primary inputs and 
ending with the primary outputs. Primary inputs are labeled 
0. A label is assigned to a node, v, after all its inputs have 
been labeled. Let input( V )  be the set of input nodes to the 
set of nodes V .  Let Np(v) be the set of predecessors of v 
with label p .  Then if 

the node v is labeled p ,  otherwise p + 1. 
After all nodes are labeled, a backtrack phase begins 

where nodes are assigned to k-input LU's. This phase 
begins with the primary outputs which are placed in a 
queue. For each node in the queue, the node and all nodes 
that have the same label are assigned to an LUT. The node 
is then deleted from the queue and the set of nodes that are 
inputs to the nodes placed in the LUT are now added to the 
queue. The phase ends when only primary inputs remain 
in the queue. 

Dag-map operates on the network without decomposing 
it into trees. If the starting network happens to be a tree, it 
is optimal. Also it may replicate nodes in order to achieve a 
lower number of levels. However, the replication in many 
cases could be too much. 

Approximating the delay with layout information: MIS- 
pga2 [38] attempts to find an implementation that meets 
a set of timing constraints and uses the minimum number 
of LUT's. The timing constraints are given in terms of 
required arrival times at the primary outputs. Arrival times 
are provided for the primary inputs. Given delays on the 
LUT's and an estimate of interconnect delays, the network 
can be traced to determine the critical paths. The trace has 
a forward pass where the arrival times of all the signals are 
found and a backward pass where the required times of all 
signals are computed. The difference between the required 

time and the arrival time is the slack of a node. In this 
formulation of the delay optimization problem, a negative 
slack corresponds to a circuit that does not satisfy the 
timing requirements. Hence, the delay reducing operations 
are applied to the path where negative slacks are found. 
Note that if all slacks are nonnegative the circuit meets the 
timing constraints and no timing optimization is needed. If 
indeed the fastest circuit is desired, then the required times 
at the outputs can be tightened until no feasible solution is 
found. This strategy can be implemented by optimizing the 
path with minimum slack. 

The starting point for MIS-pga2 in delay mode is a 
network where technology independent timing optimization 
has been carried out using the standard MIS script. Note 
that the network is in terms of two-input gates and hence 
is feasible. 

The optimization in MIS-pga2 is divided into two basic 
approaches : 

A placement independent approach, where the opti- 
mizations are all performed at the logic level and a 
rough estimate of the interconnect delay is used; 
A placement dependent approach where synthesis 
driven placement using simulated annealing is per- 
formed. Here the interconnect delay estimate is 
accurate. 
Placement independent (PI) optimization: In this ap- 

proach, the placement and routing phase is considered to 
be a stochastic process. An LUT-based FPGA is modeled 
as a square grid where the nodes of the grid correspond to 
the LUT locations, and the classical results of Donath [ 151 
on average wiring length La, as a function of number of 
blocks to be placed on the grid and their interconnections 
can be used. Donath's theory estimated the average wiring 
length to be 

where V is the set of LUT's (nodes of the Boolean network) 
to be placed and E is the set of edges in the network. The 
empirical delay formula is then given as: 

Delay = XC + (aL2 + bL + c) (29) 

where X is the delay of a CLB, C is the number of levels 
in the network and L = log(&,). This formula has been 
derived empirically by mapping a fairly large number of 
examples with Xilinx placement and routing tools and then 
fitting the data. The parameters in the delay equation, a, b ,  
and c, are used to tune the equation. The delay equation is 
used to evaluate the performance of a circuit in place of 
the cruder estimate based on the number of logic levels. 

The overall algorithm has the following form. For each 
node in the critical path, it tries to collapse the node into 
its fan-outs. The elimination is then accepted if the node 
so obtained is feasible, or if it is not feasible, but can be 
redecomposed so that the delay estimate decreases. 

Placement driven (PD) logic resynthesis: A more accu- 
rate estimate of the delay of the circuit can be achieved 
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after placement. However, in the standard flow of synthesis- 
based design, placement is performed after logic synthesis 
is completed and hence there is no feedback from place- 
ment to logic synthesis. The placement-dependent approach 
proposed in MIS-pga2 starts from an optimized feasible 
network obtained by the previous placement-independent 
approach. 

The placement problem is formulated as assigning loca- 
tions to point modules on an n by n grid (in the Xilinx 
XC3000 series, 7~ can take values from eight to 18). This 
problem is solved using simulated annealing. The difference 
from the standard simulated annealing algorithm is in the 
resynthesis step. At the end of the iterations at each tem- 
perature below a threshold, critical sections are identified. 
Logic synthesis and force directed placement techniques 
are used to restructure and reposition these sections. The 
logic synthesis techniques used are decomposition and 
partial collapse. These techniques are local; i.e., only the 
neighborhood of a critical section is explored for a better 
solution. The algorithm is summarized by the pseudo-code 
in Fig. 1 1 .  

The cost function is also particularly tuned for the prob- 
lem at hand, 

where 1 is the total estimated net length, d is the estimated 
delay and P(T) E [0,1] is a temperature-varying parameter 
monotonically decreasing with T ,  which gives more weight 
to total net length at higher temperatures and more weight 
to delay at lower temperatures. The form of P(T) was 
determined experimentally. The delay estimate is performed 
using two models, the Elmore model [ 161 and the Penfield- 
Rubinstein model [43]. The choice of the model to use is 
left to the user. The Penfield-Rubinstein model is in general 
more accurate but more expensive to compute. In any case, 
since many moves are in general attempted by simulated 
annealing, the actual delay calculation when a move is 
evaluated is camed out with the Elmore model. The delay 
calculation is performed with the Penfield-Rubinstein model 
only if the move is accepted. 

Before entering a new simulated annealing inner loop, 
a placement of the resynthesized part of the network is 
camed out. The placement algorithm used is a simple force- 
directed algorithm that finds a good position for the blocks 
of the circuit affected by the local resynthesis procedure. 
The positions of all the other blocks of the network are not 
changed. Note that the number of blocks may increase as 
a result of the resynthesis step. However, the capacity of 
the chip is never exceeded. 

Comparisons and observations: Results on the use of 
MIS-pga2, Chortle-d and dag-map to optimize performance 
are reported in this section. First the benchmarks were 
optimized for area. Then a delay reduction script was 
used to obtain delay optimized networks in terms of two- 
input NAND gates. In Table 3, results after the placement 
independent optimization phase of MIS-pga2 (column PI) 

/* a = temp f a c t o r  ( a <  1 ) ;  T = cur ren t  temperature;  

= s t a r t i n g  temperature f o r  l o g i c  syn thes i s ;  

m = number of moves per  temperature;  */ 

{ 
T = star t - temp;  

while (T  > final-temp) { 

j = 0 ;  

while (j < m )  { 

ge t  two random l o c a t i o n s  f o r  swap; 

eva lua te  Ac, change i n  c o s t ;  

accept  swap with p r o b a b i l i t y  e - y ) ;  

i f  swap accepted,  do delay t r a c e ;  

b C  

jt+ ; 

1 
i f  ( T < Z )  do l o g i c  r e s y n t h e s i s  and 

replacement f o r  de l ay ;  

T = T * a ;  

} 

1 
Fig. 11. Simulated annealing for placement and resynthesis. 

and Chortle-d are reported, using the same starting networks 
for both programs. We set IC to 5. We are restricting 
ourselves to single output LUT’s. The results for dag- 
map are taken from [ I l l  and the starting networks are 
not the same as those for the other two systems. For each 
example, we report the number of levels, nodes, edges and 
the CPU time (in sec.) on a DEC5500 (a 28 mips machine) 
in the columns lev, nodes, edges and t respectively. Out 
of 27 benchmarks, MIS-pga2 generates fewer levels on 9 
and more on 13. On average (computed as the arithmetic 
mean of the percentage improvements for each example), 
MIS-pga2 needed 2.9% more levels. The number of blocks 
and the number of edges it needed are 58.7% and 66.2% 
respectively, of those for Chortle-d.’* As shown later, the 
number of nodes and edges may play a significant role 
in determining delay of a network. However, Chortle-d is 
much faster than MIS-pga2. 

A direct comparison with dag-map is not possible since 
it uses different starting networks. However, dag-map pro- 
duces fewer levels on many circuits, sometimes at the 
expense of higher LUT count. 

The starting networks for placement are obtained from 
the level reduction algorithms. Two sets of experiments 
were reported in [38]: 

1) map: Place and route the network using apr, the 
Xilinx placement and routing system. This is done for the 
networks obtained after MIS-pga2 PI phase and for those 
after Chortle-d. 

2) xln-p: On the networks obtained after MIS-pga2 
PI phase, perform a timing-driven placement using the 

12A more recent version of Chortle-d has a post-processing stage to 
reduce the number of blocks without increasing the number of levels in 
the circuit. 
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Table 3 
Feasible Network; edges 

Results for Level Reduction: lev Number of Levels in the Feasible Network; nodes Number of Nodes in the 
number of Edges in the Feasible Network; and t Run Time in Seconds 

0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.2 
0.2 
0.2 
0.6 
0.9 
0.2 
0.7 
0.4 
1.8 
1.0 
0.8 
0.3 
0.1 
0.1 
0.1 
0.1 
0.1 
2.6 
0.1 
9.2 
3.6 

example  

z4ml 
misexl 
vg2 
5xpl 
count 
9symml 
9sym 
apex7 
rd84 
e64 
C880 
apex2 
alu2 
duke2 
c499 
rot 
apex6 
alu4 
sa02 
rd73 
misex2 
f51m 
clip 
bw 
b9 
des 
C5315 

II 

3 
2 
3 
3 
3 
5 
5 
5 
4 
3 
8 
5 
9 
4 
5 
6 
5 

10 
- 
- 
- 
- 
- 
- 
- 

6 
- 

II 

2.1 
1.7 
1.7 
3.5 
5.1 
9.9 

15.2 
8.4 
9.8 

15.7 
39.0 
9.8 

42.6 
16.4 
58.8 
50.0 

3 
3 
3 
4 
3 
4 
5 
4 
4 
4 
7 
5 
8 
4 
6 
6 

edges 

42 
71 

165 
88 

336 
35 
35 

383 
61 

857 
1070 
481 
543 
685 
896 

1312 
1209 
648 
189 
36 

160 
100 
219 
138 
199 

6159 
2826 

2 
2 
4 
2 
4 
3 
3 
4 
3 
5 
9 
6 
6 
6 
8 
7 
5 

11 
5 
2 
3 
4 
4 
1 
3 

11 
10 

II 

10 
17 
39 
21 
81 

7 
7 

95 
13 

212 
259 
116 
122 
164 
199 
322 
274 
155 
45 
8 

37 
23 
54 
28 
47 

1397 
643 

t I1 lev 

3.7 
8.3 
2.3 

937.8 
282.2 

nodes 
20 
25 
54 
29 

102 
76 

130 
131 
69 

356 
383 
165 
316 
248 
436 
439 
36 1 
194 
58 
52 
52 
65 
83 
28 
62 

3024 
1221 

edges 

74 
99 

206 
115 
368 
273 
477 
452 
268 

1236 
1437 
578 

1189 
863 

1736 
1608 
1360 
710 
220 
183 
188 
237 
281 
138 
225 

10928 
4509 

map’ 
nodes 

17 
17 
42 
28 
87 
61 
63 
94 
48 

167 
246 
164 
199 
195 
204 
328 
284 
303 

1480 

IThe starting networks were obtained by running an MIS script and then speed-up and (may) differ from those used for the other two systems. 

placement-dependent algorithm. The logic synthesis phase 
is entered once at each temperature. The resulting 
placement is routed using apr (with its placement phase 
disabled). The routing tool is instructed to route more 
critical nets first, as determined by the slacks computed 
for each edge. 

The results of these experiments fhr placement, resynthe- 
sis and routing are shown in Table 4. The table shows the 
delay through the circuits in nanoseconds after placement 
and routing. Only benchmarks that were successfully placed 
and routed on a Xilinx FPGA are shown. The second and 
third columns give the delays for the designs synthesized 
using MIS-pga2 PI and Chortle-d respectively. The fourth 
column refers to the set of experiments x l n p  for MIS-pga2 
PI. The delay numbers in the table are computed from the 
placement and routing information generated by apr. This 
information gives the length of each net in the layout. map 
(MIS-pga2) gives lower delay than map (Chortle-d) on the 
majority of the examples. More interestingly, we can study 
the effect of the number of nodes and edges on the delay. 
For example, although the number of levels in count is 3 
for Chortle-d and 4 for MIS-pga2 (Table 3), the map delay 
through the circuit for Chortle-d is 3 ns more than MIS- 
pga2. Note that the block delay and hence delay of a level 

is 9 ns.’* Smaller numbers of nodes and edges obtained 
by MIS-pga2 (PI) help in offsetting the level advantage 
of Chortle-d by 6 ns. In fact, the x l n p  option makes the 
difference even larger. For vg2, duke2 and misex2, the map 
delays for MIS-pga2 are higher than those for Chortle-d, but 
the difference in delays is less than 9 (difference in levels). 

Experimental results involving synthesis with placement 
and routing for the Xilinx FPGA show that the delay 
optimization performed with the statistical approach gives 
good results, while surprisingly, the placement-dependent 
algorithm only occasionally improves the results and by no 
more than 10%. In addition, the results demonstrate that 
the number of levels is not an accurate measure of the 
delay of the circuit (although it is important in reducing the 
delay). In fact, at the expense of extra CPU time, MIS-pga2 
in general achieves better delay than Chortle-d with fewer 
CLB’s and edges but overall more levels. 

The disappointing results of the placement-dependent 
approach are consistent with the unexciting results obtained 
by combined synthesis and placement in more traditional 
ASIC styles [41], [40]. These results are counter-intuitive 
and leads us to believe that much work remains to be done 
to couple synthesis and layout in a more effective way. 

l 2  Speed grade -70 is used. 
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Table 4 
upr after Running Chortle-d; and x l n g  

Delays of Placed and Routed Designs: map (MIS-pga2) Using apr after Running MIS-pga2 PI Phase; map (Chortle-d) Using 
Using Just the Routing of apr after Running MIS-pga2 PI and PD phases 

z41d 
example I map (MIS-p.ga2) , -~ - -  I 

33.60 
rnisexl 
vg2 
5xp 1 
count 
9symml 
9sym 
apex7 
rd84 
apex2 
duke2 
alu4 
sa02 
rd73 
misex2 
f51m 
clip 

33.10 
82.90 
33.60 
88.40 
54.00 
53.70 
97.75 
50.70 

147.43 
125.13 
256.35 
104.00 
33.60 
53.80 
72.60 
81.10 

map (Chortle-d) 
56.00 
58.00 
76.40 
77.40 
91.88 
84.10 

110.40 
108.00 
77.80 

134.30 
114.70 
230.68 
82.30 
85.00 
47.80 

107.50 
84.10 

'Two nets could not be routed. 

v. LOGIC SYNTHESIS FOR MULTIPLEXER-BASED 
ARCHITECTURES 

A.  Introduction 
Multiplexer-based (MUX-based) FPGA architectures use 

logic blocks that are combinations of a number of mul- 
tiplexers and possibly a few additional logic gates such 
as AND's and/or ORss. Programming is achieved by pro- 
grammable switches that may connect the inputs of the 
block to signals coming from other blocks or to the con- 
stants 0- or 1, or that may bridge together some of these 
inputs. In Fig. 12, the ACT-1 and ACT-2 logic modules 
are illustrated. Note that there are three multiplexers and 
an OR gate in ACT-1 and three multiplexers, an OR gate 
and an AND gate in ACT-2. 

These logic blocks can implement a fairly large number 
of logic functions. For example, for the ACT-I module, 
shown in Fig. 12, all two-input functions, most three-input 
functions [27] and several functions with more inputs (the 
maximum number of inputs to the logic block is eight) 
can be implemented. However, some of these functions are 
equivalent in the sense that they only differ by permutation 
of their inputs. In [34], 702 unique functions for ACT-1 
and 766 for ACT-2 were counted. 

The recently introduced QuickLogic architecture uses a 
more complex logic block allowing the inputs to the first 
level multiplexers to come from AND gates with inverted 
and noninverted inputs, thereby providing programmable 
inversion for the multiplexer inputs [42]. Since this ar- 
chitecture has been only recently disclosed an analysis of 
its power in terms of the number of functions that can be 
generated is not available at this time. 

As in the case of LUT-based architectures, the number of 
blocks, the logic functions that these blocks can implement 
and the wiring resources are the main constraints. And 
similarly, the architecture-specific mapping also starts with 

x l n p  
3 1 .OO 
36.20 
76.30 
35.90 
79.02 
53.50 
53.50 
93.90 
54.30 

142.50 
151.83 

96.00 
31.00 
53.70 
76.60 
84.60 

1 

AND 

'I 
ACT- 1 ACT-2 

Fig. 12. Actel architectures 

a network that has been optimized by the technology- 
independent operations. 

We first present the most straightforward library-based 
approach and then review the more complex architecture- 
specific approaches. 

B. Library-Based Technology Mapping 
A library is created which has gates that represent all the 

functions obtained from the multiplexer-based logic block 
either by tying inputs to constants or by bridging some of 
them. Efficient algorithms that use BDD's can produce all 
nonequivalent f u n c t i o n ~ ' ~  implemented by a MUX-based 
block in a fairly short time. However, the number of library 
functions may be large, although not as large as in the 
case of LUT-based architectures (706 for the ACT-1 as 
compared with 90 14 for a four-input+ne-output LUT). 

Technology mapping algorithms based on dynamic pro- 
gramming are quite effective for libraries with one or two 
hundred gates, but are considered too slow for significantly 
larger libraries. Library reduction techniques are therefore 

several are equivalent and hence they need not be enumerated. 
13The number of functions that can be implemented is very large, but 
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applied to reduce the number of gates. The least frequently 
used gates are removed. At Texas Instruments, the 766 gates 
of ACT-2 were reduced to 115 [34]. Experimental results 
showed a certain insensitivity with respect to the size of 
the library [34]. However, we believe that such reduction 
may impede significant optimizations. 

An advantage of library-based mapping is that it is com- 
pletely insensitive to changes in the logic block architecture. 
The only change that needs to be made is the creation of 
a new library. In addition, the same tool could be used for 
other target technologies. 

C. Direct Approaches 
In direct approaches no library is generated. The mapping 

is performed directly onto the logic blocks. 
All proposed direct approaches for MUX-based archi- 

tecture are quite similar [37], [17], [27], [35] and are not 
as different from the standard library-based approach as the 
direct approaches discussed earlier for LUT-based architec- 
tures. Since a BDD is simply a network of multiplexers and 
given the wealth of existing algorithms for manipulating 
and optimizing BDD’s, BDD’s have been used as the basis 
of most proposed direct approaches. 

I )  Using BDD’s: The MIS-pgal Approach 
Overview: In MIS-pgal [37], the dynamic program- 

ming approach to technology mapping is extended to pat- 
tern graphs and subject graphs described in terms of two- 
to-one multiplexers (BDD’s) instead of two-input NAND 
gates. 

The first step in this procedure is to represent each 
node function of the network with a BDD. As in standard 
technology mapping, the BDD is reduced to a forest of trees 
and then each tree is mapped. 

If the structure of the logic block consists only of two-to- 
one multiplexers, then only a few pattern graphs are needed 
to characterize the ‘‘library’’ fully. For example only four 
patterns suffice for describing the simplified structure of 
the ACT-I logic block where the OR feeding the output 
multiplexer has been removed. For more complex blocks, 
taking into consideration the nonhomogeneous structure 
can yield a larger set of pattern graphs (though never as 
large as the ones needed for the standard library approach 
described above), some of which are unusable by the 
dynamic programming approach since they are not trees. 
Thus a reduced set of patterns is used; in MIS-pgal only 
eight patterns are considered. Covering of the subject-graph 
by patterns is done using dynamic programming. After an 
initial mapping, an iterative improvement phase is used. 
It consists of three main operations: partial collapsing, 
decomposition and phase assignment. 

Building the B D D  for the Subject Graph: It would be 
possible to build a BDD for the entire network in terms 
of its primary inputs. However, such a BDD may be very 
inefficient as a starting point for implementation since the 
structure of the initial network obtained by technology 
independent optimization would be lost. In addition, there 
may be cases for which a BDD is too large. For these 

reasons, the BDD’s are only built for the functions stored 
at each node. 

Two representations are actually used for each node: the 
reduced-ordered BDD and the BDD. It is well known that 
the size of the ROBDD for a function depends strongly on 
the ordering of the inputs. Since the problem of finding the 
optimum ordering is NP-complete, heuristics are used for 
this task. However, if a node function has only a few vari- 
ables, it is worthwhile to generate exhaustively all orderings 
and choose the best, since the size of the representation is 
directly related to the size of the implementation. 

To allow the implementation of this strategy, a decom- 
position step is performed first on the network to force 
all nodes to have at most IC inputs (in MIS-pgal, the best 
value of IC is found to be between 3 and 6). Note that this is 
similar to the LUT problem and in fact a similar sequence 
of algorithms for decomposition is tried. 

There are some drawbacks for this procedure: 
1) The limitation on the number of inputs is artificial. 
2) The input ordering constraint imposed by the ROBDD 

may be too severe and may yield a poor result. 
3) Nodes in the ROBDD may have multiple parents, and 

so the tree decomposition may yield many small trees 
thus reducing the power of the dynamic programming 
approach. 

An alternative is to use BDD’s where the sequence of 
variables in the graph is not forced to be the same for all 
vertices of the BDD. The goal in constructing these BDD’s 
is to minimize the number of nodes as well as the number of 
nodes with multiple parents. This second goal is important 
to offer the maximum degree of freedom to the dynamic 
programming approach. 

The algorithm for building the BDDs uses Shannon 
cofactoring repeatedly until all leaf functions are unate.I4 A 
minimum cover problem is then solved to find a good fac- 
tored form representation of the unate function with respect 
to the architecture. This is in tune with the general strategy 
followed in logic minimization [7] where a generic function 
is decomposed with the Shannon cofactoring operation until 
a unate function is reached. In both cases, the variables for 
the cofactoring operations are chosen so that the leaves 
become unate quickly. 

While this procedure remedies some of the drawbacks 
for ROBDD’s mentioned above, it too has drawbacks. For 
example, there may be duplications in the branches of the 
BDD that would not have appeared in the ROBDD. Since 
it is not possible to tell a priori which representation yields 
the best result, in MIS-pgal both are tried and the best 
result is selected. 

Covering is performed on the forest of trees using 
dynamic programming. If the logic block is the simplified 
version of ACT-I shown in Fig. 13, it can be proved that 
the four pattern graphs shown in Fig. 14 yield the optimum 
matching in a selected number of cases [37]. 

I4A logic function is unate in a variable .I‘ if it depends only on .r or 
its complement but not both. A function is mate if it is unate in all its 
variables. 

EL GAMAL er d.: SYNTHESIS METHODS FOR GATE ARRAYS 1077 



STRUCTI 

Fig. 13. Simplified ACT-I architecture. 

. 

Fig. 14. Pattem graphs for MIS-pgal. 

For the ACT-1 module, a set of eight pattern-graphs is 
sufficient, given that the subject-graph has no restriction on 
the number of times a variable may appear on the path from 
the root to a leaf node, and the covering procedure is exact. 
Note that if we use the cofactoring technique in constructing 
the subject-graph (which is the case with BDD’s), this set of 
pattern-graphs is not sufficient. In fact, there are functions 
which can be realized with one ACT- 1 module, but a BDD- 
based procedure will always use more than one module. 
One such function is f = (a+b)(a’c+ab)+a’b’(lcl+lc’m) 
Wl. 

Iterative improvement: Since the algorithms used in 
the dynamic programming algorithm and in building the 
BDD representation are local in nature (the subject graph 
is broken into a forest of trees), an iterative improvement 
phase is used to improve the final results. The strategy used 
.in MIS-pgal is shown in Fig. 15. 

The algorithm used in partial collapse is the same as in 
the case of LUT-based architectures in MIS-pga2 (see Fig. 
10). 

The decomposition phase selects nodes that have a fairly 
large number of fan-ins and decomposes them using the 
same approach as for LUT-based FPGA’s. Only decompo- 
sitions that reduce the cost are accepted. 

The phase assignment algorithm operates on one node 
at a time and greedily selects the least cost polarity of the 
function associated with the node. 

2 )  The Amap Approach: Karplus [27] proposed a quick 
algorithm that carries out a technology mapping into MUX- 
based architectures by mapping the network into if-then- 
else DAG’S. 

Here, the selector function at each vertex can be a 
function of inputs, rather than being only an input. When 
compared to BDDs this results in more freedom in the 
mapping phase. In addition, when this representation is built 
from a sum-of-products form by the cofactoring procedure, 
duplicate cubes are avoided. In the ITE representation, the 

iterativeimprovement(7) /* 7 is a network */ 

repeat { 

partialxollapse(7); 

decomposenodes(7) ; 

} (until satisfied or no further improvement); 

phase-assignment(0) ; 

1 

Fig. 15. Iterative improvement. 

if vertex corresponds to the select line of the multiplexer. 
The then and else children correspond to the branches taken 
when the ifchild evaluates to 1 and 0 respectively and are 
mapped to the inputs of the multiplexer. 

Amap creates the ITE DAG and then preprocesses it to 
find an initial good local form for the mapping. In particular, 
single literal inputs are commuted to bring them to the if 
part so that the OR function of the ACT-1 module is better 
utilized. A quick phase assignment is also performed. 

After this preprocessing, the final covering is carried out 
in a single pass with a greedy procedure. The procedure 
has to tradeoff the advantage of placing as much of the 
subject DAG as possible into a block and the disadvantage 
of hiding a signal that feeds several blocks. In the latter 
case, logic must be replicated and a larger implementation 
may result. In fact, if a signal that is shared by a number 
of vertices is not hidden in all the fan-outs, it has to be the 
output of a block. Thus pushing logic into a block would 
not provide any saving in this case. 

The nodes of the ITE DAG are processed in a top-down 
fashion, starting from the primary outputs. Each node is 
then mapped into the output multiplexer of the ACT-1 
architecture. In doing so. the use of the OR gate in the 
select input is made as efficient as possible. The then and 
the else children are then mapped to the input multiplexers. 
These multiplexers may not be fully utilized and may in fact 
be used merely as buffers if the variables corresponding to 
the then and the else children are already implemented or if 
they have high fan-out (in Amap a high fan-out is a fan-out 
of three or more). 

After the mapping to the input multiplexers has been 
done, the output multiplexer is revisited to see whether a 
more compact representation exists by exploiting the actual 
function implemented by the block. 

The entire procedure is recursively applied until all nodes 
are either primary inputs or they have been implemented in 
some block. 

Since only a single pass is performed on the ITE DAG 
and the mapping is carried out locally, the algorithm is fast. 
The experimental results presented in [27] show that not 
much is lost with respect to the more complex optimization 
procedures of MIS-pgal in terms of quality. 

3) The Proserpine Approach: This approach follows the 
same general structure of the technology mapping al- 
gorithms of MIS and Ceres [31]. First, the network is 
partitioned into multiple trees, and the nodes of the network 

I078 PROCEEDINGS OF THE IEEE, VOL. 81. NO. 7 ,  JULY 1993 



are decomposed into two-input AND/OR gates to maximize 
the granularity of the network and to offer more freedom 
to the dynamic programming algorithm. 

The basic difference lies in the way matching is per- 
formed. The algorithm does not require the explicit rep- 
resentation of the pattern graphs. Instead, it requires the 
representation of the “largest” logic function implementable 
by the basic block, i.e., the function computed by the struc- 
ture with each input connected to a separate variable. The 
algorithm customizes the block with the correct operation 
during the matching process. 

The set of functions that can be implemented by a MUX- 
based logic block corresponds to the set of functions that 
result from stuck-at and bridging faults. An input connected 
to a constant corresponds to a stuck-at fault and bridged 
inputs correspond to a bridging fault. 

The stuck-at inputs belong to the set S ,  the ones that 
are bridged to the set B. Then the problem to be solved 
is: Given a function F(y1, ..., ym) and the module function 
G(zl.  ... ,x,) with m 5 n, find a stuck-at set S ,  a bridging 
set B and an ordering of the variables R such that F and 
Gson are functionally equivalent, i.e., there is a match for 
F in G. 

The function F to match against the module function G is 
obtained by examining the nodes of the AND/OR network 
and collapsing them recursively. A number of different 
functions are created that are called cluster functions. 
For each cluster function matching is performed and the 
dynamic programming algorithm is used to minimize the 
block count. 

Solving the matching problem is not easy especially when 
bridging is allowed. We will not review this case and refer 
the reader to the original papers on the subject [17], [ 5 ] .  

For the stuck-at faults, an ROBDD is built for the module 
function and for the cluster function. A sufficient condition 
for a match is that the ROBDD of the cluster function 
be isomorphic to a sub-graph of the module ROBDD. 
It is obvious that the part of the module ROBDD that 
does not correspond to the cluster function representation 
can be reduced by setting an appropriate set of inputs 
to 0 andor 1 .  However, there are cases where a match 
exists but the cluster function ROBDD is not isomorphic 
to any sub-graph of the module function ROBDD. This 
is due to the fact that the orderings of the variables used 
to build the ROBDDs may not be compatible. Hence, 
to discover if a function matches, all possible variable 
orderings of the module function should be considered 
and the corresponding ROBDDs should be checked for 
isomorphism. Of course, this may be quite expensive and 
identical subgraphs in separate ROBDDs corresponding 
to different orderings may end up being checked a large 
number of times. In [ 171, a new structure called the Global 
Boolean Decision Diagram, GBDD, is proposed to make 
the matching algorithm faster. This structure is built by 
combining the BDDs corresponding to all the orderings. 
Combining the BDDs in an appropriate way removes all 
the duplications making the sub-isomorphism check much 
faster. 

Given the complication of dealing with bridging faults, 
Proserpine first attempts to find a match with the GBDD as 
described above. If no matching is found, bridging is then 
considered. In [5], new bridging algorithms are described. 

A few interesting observations were made after running 
Proserpine on a benchmark set. It was found that the bridg- 
ing contributed insignificantly to improving the mapping 
(using the Ceres framework), and at most a single bridge 
is needed in the vast majority of cases. 

The Proserpine approach is powerful in that it 
can consider any logic block where the programming 
mechanism allows the inputs to be connected to constants 
andor bridged. As such, it is useful as an architecture- 
exploration tool. 

4 )  The MIS-pga2 Approach MIS-pga2 [35] is based on 
the same general flow of MIS-pgal but with some key 
modifications, some of which are borrowed from the other 
approaches presented above. 

The overall algorithm is as follows: 

Each node of the network is first mapped. If the 
function f at the node can be implemented by one 
block (using the matching algorithm described in 
[35]), the corresponding match is saved. Otherwise, 
an ITE of f is constructed. The ITE is covered 
by the pattern graphs of Figure 16 using dynamic 
programming [29]. Both the ITE and its cover are 
saved. 
An iterative improvement phase using partial collapse 
and decomposition follows after the initial mapping. 
Partial collapse tries to collapse a node into all its 
immediate fanouts. If the sum of the new costs of the 
fanouts is less than the sum of the old cost of the 
node and the fanouts, the collapse is accepted. The 
new cost of a fanout is determined by remapping it 
using step 1. This process is repeated for all nodes of 
the network. Using decomp - g  of MIS [8] a node is 
decomposed and the decomposed nodes are mapped. 
If the cost improves, the original node is replaced by 
its decomposition. Partial collapse and decomposition 
are repeated for some number of iterations. 
Each node of the network is replaced by a set of 
nodes, each of which can be implemented using one 
basic block of the architecture. This is done by using 
the cover of the ITE at each node. 
If the number of primary inputs of the network is 
small (say less than IO), an ROBDD is constructed 
for the network. This ROBDD is then mapped using 
the method described in [37]. If this mapping is better, 
it is accepted. Construction of ROBDDs helps when 
the circuit is symmetric. 

The algorithm is applicable for both ACT-1 and ACT- 
2 modules. However, some architecture-specific changes 
have to be made. The main differences are in the matching 
algorithm and the pattern graph construction. 

5) Comparisons and Observations: We present the results 
obtained using these approaches for a set of benchmark 
examples. These examples were optimized as in Section 

EL GAMAL et al.: SYNTHESIS METHODS FOR GATE ARRAYS 1079 



0 1 2 3 

4 5 6 7 

8 

Fig. 16. Pattern graphs for MIS-pga2 

4.3.3. In Table 5, results are presented for MIS-pga2, 
MIS, Ceres, Amap and MIS-pgal with the same starting 
networks. We also present results for Proserpine, although 
we do not know if the starting points are the same.I5 
For MIS, a library containing around 90 gates was used, 
whereas for Ceres, a complete library for ACT-I was used 
and depth of the search while covering was set to S. MIS- 
pga2, MIS and MIS-pgal were run on a DECS500 (a 28 
mips machine), whereas Amap was run on a SUN4/370 
(a 12.5 mips machine). The option used for Amap was - 
an3. The options used for MIS-pgal is act-map - h3 - 
n l  - q - d4 - f3 - M4 - 1 - gO.OO1. This means that 
both an ROBDD and an unordered BDD are constructed 
for each function. An optimum ROBDD is constructed for 
any function with at most four inputs. One iteration of 
the iterative improvement phase is executed. In the partial 
collapse routine, only the nodes with fanin no greater than 
three are considered for collapsing. In the decomposition 
routine, all nodes with fanin of four or more are considered. 
The phase assignment algorithm is also executed. Finally, 
a last-gasp routine is entered at the end [37]. This routine 
builds a network q(n) from each node n of the final network 
q, where q(n) has one internal node, one primary output 
and as many primary inputs as the number of fanins of 
n. It then performs technology decomposition on q ( n )  and 
then applies mapping and the iterative improvement phase 
to get a network ~ ' ( n ) .  If the cost of q'(n) is less than 
that of n, the routine replaces n by rf(n) in 77. MIS-pga2 
used two iterations, performed a last-gasp, but did not do 
a quick phase. 

Table 5 shows the number of ACT-1 modules needed to 
implement the benchmark, and the time taken in seconds 
in columns n and t respectively. 

'5Proserpine i s  not being distributed yet and the corresponding column 
in Table 5 has been taken from [17]. 

1 = if 
T =  then 
E =  else 

0 = mux 

MIS-pga2 in general performs better than other systems. 
Some possible explanations are given below. 

The reason why MIS-pga2 outperforms the MIS tech- 
nology mapper is because the multiplexer representa- 
tion of a function used in MIS-pga2 fits nicely into 
the multiplexer-based architecture. 
Though Amap also uses ITEs, its way of construction 
is different. MIS-pga2 runs an iterative improvement 
phase and uses a matching algorithm prior to the 
construction of ITEs. 
MIS-pgal constructs BDD's and hence could repli- 
cate parts of the cubes in the 0 and 1 branches. 
However, by exhaustively generating all reduced or- 
dered BDD's for a function (if it has at most four 
inputs), MIS-pgal is able to achieve better results on 
many examples. For the same reason, it is many times 
slower. 

However, there are benchmarks (e.g., C1908, C499) 
where Amap gives better results. This is due to the different 
mapping technique it uses. 

VI. WIDE-AND/OR ARCHITECTURES 
Wide-AND/OR architectures are extensions of the stan- 

dard two level PLD architectures. The complexity of the 
logic blocks which are general PLAs with several inputs 
(from about 20 to 100) connected together by some kind 
of bus structure is high. The logic synthesis problem is 
similar to the logic optimization problems encountered in 
PLA design. Most of the proprietary systems are based on 
two-level logic optimization programs with some help for 
decomposition. 

To the best of our knowledge, the only paper that deals 
with the aspects of Wide-AND/OR arrays with a novel 
approach is [32]. 
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Table 5 number of ACT-I Blocks: Number of ACT-1 Blocks; and t Run Time in Seconds 

,ga2 
t 

9.4 

example 

z4ml 
misexl 

5xp 1 
count 
9symml 
9sym 
apex7 
Cl908 
rd84 
e64 
C880 
apex2 
a h 2  
duke2 
c499 
rot 
apex6 
alu4 
des 
sa02 
rd73 
misex2 
f51m 
clip 
bw 
b9 
C5315 

vg2 

MIS 1 1  Ceres  
n 

20 

__ 
MIS 

2.0 
1.9 
3.9 
4.4 
6.7 

10.5 
14.1 
10.6 
19.3 
6.5 
7.9 

18.2 
11.8 
24.2 
17.9 
17.8 
28.9 
34.4 
31.6 

756.6 
8.0 
2.7 
4.3 
5.2 
4.9 
7.1 
5.9 

88.0 

n 
19 
18 
35 
40 
39 
26 
26 
95 

168 
50 
94 

169 
112 
185 
165 
166 
285 
282 
121 

1351 
51 
30 
40 
44 
48 
60 
66 

59 1 

___ - 
17 
22 
42 
47 
62 

136 
106 
192 
61 
95 

177 
175 
173 
172 
166 
418 
441 
326 

1638 
86 
32 
42 
54 
62 
61 

101 
725 

3 

6.0 
3.1 

10.4 
8.6 

50.3 
55.8 
30.7 

121.5 
30.7 

7.1 
36.1 
36.7 
48.9 
29.3 
55.5 
67.2 
76.6 
19.8 

357.3 
24.4 
12.1 
3.5 

14.4 
25.1 
11.7 
19.7 

359.8 

22 
47 
51 
63 
73 
99 

113 
188 
62 
95 

175 
106 
193 
176 
174 
313 
360 
149 

1571 
52 
32 
46 
52 
57 
81 
64 

704 

AI 
n 

20 
25 
44 
42 
41 
74 

106 
104 
158 
62 

105 
190 
122 
188 
175 
136 
335 
392 
160 

1634 
56 
32 
47 
56 
60 
83 
81 

653 

- - 
Lp 

2 
0.8 
1.1 
1.5 
1.7 
1.5 
2.7 
4.1 
3.8 
7.6 
2.6 
3.3 
7.2 
5.0 
8.3 
6.9 
7.0 

11.9 
15.0 
6.1 

67.2 
2.0 
1.6 
1.5 
2.2 
2.5 
3.6 
2.7 

26.9 

- - 
MI! 

n 
16 
20 
36 
45 
46 
80 

119 
96 

175 
61 
94 

171 
124l 
208 
166 
166 
288 
289 
132 

1749l 
62 
31 
41 
48 
51 
65 
65 

656 

- 
- 

P!P l  
1 

19.6 
11.5 
18.4 
60.0 
13.2 

3123.8 
17582.8 

42.1 
646.5 
151.4 

3.9 
77.2 
8.3 

824.5 
403.5 

35.3 
1071.8 
255.5 
145.9 
762.9 
54.2 
37.2 

6.1 
36.6 
91.9 
20.1 
31.6 

673.1 

proserpine2 
n 

25 
46 
53 

121 

70 

177 
170 
465 
396 
350 

45 
63 
73 
67 

'Used "act-map-n2-h2-d4-f3-gO.001" and "act-map-h3-M4" since the default command timed out. 
*Starting networks differ from other systems. 
'Segmentation fault. 

This approach is targeted to a general architecture that has 
as a logic block an AND plane of a PLA whose outputs 
(ORs of rows of the AND plane) are fed into a set of simple 
gates and hence implements three-level logic." 

The approach was applied to the architecture offered by 
PlusLogic, where the simple gates are two-input gates that 
can implement any logic function of two inputs. 

The basic algorithm of [32] restricts the use of the two- 
input logic to AND gates. The simplified optimization 
problem solved by [32] is as follows. Given a logic function 
F ,  find two PLAs, PLAz and PLA2, so that if g1 and g2 

are the sum-of-products form of the logic implemented by 
the PLA's, then glg2 covers F and the total number of 
cubes is minimized. 

If F is incompletely specified, then g1 and g2 must satisfy 
the following conditions to be valid: 

let f be the on-set of F .  Then, f C gl, f C g2. 
Let T be the off-set of F .  Then rg lg2  = Q). 

I6There is some evidence that three-level logic has advantages over 
two-level logic from the point of view of compactness of representation 
and over multilevel logic from the point of view of speed. Sasao [46] 
argued that little is gained by going to more than three levels even though 
this view is not universally shared. 

The algorithm proposed in [32] is a heuristic that pro- 

The algorithm structure is as follows: 
1)  Choose an initial 91, gy that contains f .  
2 )  Using gy, obtain a minimal g2 so that 9yg2 satisfies 

3) Using ~ 2 ,  obtain a minimal g1 that satisfies the 

4) Iterate for several choices of gy and pick the pair that 

The key point in the algorithm is the minimization step 
for g2 given 91 (or vice versa). This minimization is carried 
out with Espresso [7] on appropriate incompletely specified 
functions that are obtained exploiting the degree of freedom 
offered by the structure of the implementation. 

To extend the result to the more powerful output logic 
offered by PlusLogic, the algorithm goes through a phase 
assignment procedure that optimizes the use of the output 
logic for all cases except for the exclusive OR and exclusive 
NOR functions that cannot be reduced to the optimal phase 
selection. 

The algorithm has been shown to produce very good 
results as compared with the implementation of the logic 
using only two-level PLA's. 

duces gl, g2 so that the conditions above are satisfied. 

the conditions. 

conditions. 

has minimum size. 
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A final remark is that here also the algorithm is able 
to cope well with structures that are simpler than those 
offered by the commercially available architectures. Logic 
synthesis algorithms are more effective if the logic is 
uniform and simple. 

VII. CONCLUSIONS 
We have reviewed logic synthesis algorithms and methosa 

for FPGA’s. The paper focused on FPGA’s with large- 
granularity logic blocks, since these yield design problems 
that are sufficiently different from the standard logic syn- 
thesis problems. 

We believe that logic synthesis is an essential step in the 
design of FPGA’s. The commercially available architec- 
tures offer difficult challenges for algorithm designers. The 
algorithms developed so far are mainly targeted towards 
the minimization of the number of logic blocks used. 
Only a few deal with the optimization of performance and 
routability . 

We expect that in the future more powerful algorithms 
will emerge that can also effectively take into consideration 
performance constraints and the scarcity of interconnect 
resources. While FPGA and tool vendors offer some limited 
logic synthesis capabilities now, they will ultimately offer 
more sophisticated logic synthesis tools for the most com- 
monly available architectures. We expect that tool vendors 
will offer logic synthesis environments where it will be 
easy to go from one FPGA architecture to another and 
from one ASIC style to another. We also expect to see 
new architectures that are designed with logic synthesis in 
mind so that optimization algorithms can be more effective. 

Much work remains to be done to deal with sequential 
logic synthesis. All architectures offer a number of sequen- 
tial elements. It is important to evaluate whether the number 
and type of sequential elements offered is good especially in 
view of the use of sequential logic synthesis. Timing and 
retiming of sequential circuits in the presence of a fixed 
(and possibly large) number of sequential elements is an 
interesting problem. 

Ultimately logic synthesis will be extended to multiple 
chip systems. The problem of partitioning logic into multi- 
ple chips is a general problem for all ASIC styles but it is 
particularly relevant for FPGA’s given the constraints on re- 
sources. While netlist partitioning algorithms are available 
not much is available to partition a design at a higher level 
of abstraction. We expect to see a number of partitioning 
approaches of this kind to appear shortly. 
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