
Synthesis Methods for Field
Programmable Gate Arrays
ALBERT0 SANGIOVANNI-VINCENTELLI, FELLOW, IEEE, ABBAS EL GAMAL, SENIOR
MEMBER, IEEE, AND JONATHAN ROSE, MEMBER, IEEE

Invited Paper

Field programmable gate arrays (FPGA ’s) reduce the turn-
around time of application-spec@c integrated circuits from weeks
to minutes. However, the high complexity of their architectures
makes manual mapping of designs time consuming and error
prone thereby offsetting any turnaround advantage. Consequently,
effective design automation tools are needed to reduce design
time. Among the most important is logic synthesis. While standard
synthesis techniques could be used for FPGA’s, the quality of
the synthesized designs is often unacceptable. As a result, much
recent work has been devoted to developing logic synthesis tools
targeted to different FPGA architectures. The paper surveys this
work. The three most popular types of FPGA architectures are
considered, namely those using logic blocks based on lookup-
tables, multiplexers and wide AND/OR arrays. The emphasis is
on tools which attempt to minimize the area of the combinational
logic part of a design since little work has been done on optimizing
performance or routability, or on synthesis of the sequential part of
a design. The different tools surveyed are compared using a suite
of benchmark designs.

I. INTRODUCTION
Synthesis tools that automatically map a design com-

posed of simple gates or described with a hardware de-
scription language (HDL) into gates from a given library
are becoming widely used. Besides simplifying the design
process and reducing design time, these tools have had a
major impact on the design methodology for application-
specific integrated circuits (ASIC’s), allowing designers to
select easily among different implementation options, such
as between a standard cell and a mask programmable gate
array (MPGA) or among different ASIC vendors, based on
accurate estimates of performance and area,.

Manuscript received March 23, 1993.
A. El Gama1 is with the Depratment of Electrical Engineering, Stanford

University, Stanford, CA 94305.
J . Rose is with the Department of Electrical Engineering, University of

Toronto, I O King’s College Road, Toronto, Ontario M5S 1A4, Canada.
A. Sangiovanni-Vincentelli is with the Department of Electrical Engi-

neering and Computer Science, University of Califomia, Berkeley, CA
94720.

IEEE Log Number 9210743.

The complexity of field programmable gate array (FPGA)
architectures makes manual mapping of designs too difficult
and time consuming. Indeed the reduction in turnaround
time due to the user programmability of an FPGA may be
offset by the time spent to map a design manually. As a
result much work has been focused recently on developing
synthesis tools targeted to different FPGA architectures.
Such tools are now yielding good results and becoming
commercially viable.

The most straightforward approach to synthesis for
FPGA’s is to adapt the synthesis tools developed for MPGA
libraries to FPGA’s. A design is first mapped into simple
gates (such as two input NAND gates), and groups of
simple gates are then replaced by logic blocks of the target
FPGA. This approach works well for FPGA’s with fine-
grain blocks such as those from Algotronix, Concurrent
Logic, Plessey and Toshiba, since a fine-grain block can
only implement one or two simple gates. However, for
the more widely used FPGA’s with coarse-grain logic
blocks such as those from Actel, Altera, and Xilinx, this
approach does not in general yield acceptable results. A
more promising but challenging approach is to map the
design directly into logic blocks. Recently developed FPGA
synthesis tools employ both the library mapping approach
as well as the direct mapping approach.

In this paper we review the recently developed methods
for FPGA synthesis. Even though there is much interest
in sequential synthesis for FPGA’s, no paper dealing with
this topic has been published to date (we are aware of
some work that has been submitted for publication [36],
[51]). Moreover, most of the developed methods optimize
area of a design and only a few optimize performance
explicitly. We, therefore, focus our review on combinational
synthesis for FPGA’s where the registers in the design
are explicitly specified by the designer and devote most
of the discussion to synthesis methods that optimize area.
Since fine-grain FPGA’s do not present new challenges to
synthesis algorithms we only describe work on synthesis

0018-9219/93$03.00 0 1993 IEEE

PROCEEDINGS OF THE IEEE. VOL. 81. NO. 7. JULY 1993 1057

for coarse-grain FPGA’s such as those from Actel, Altera,
and Xilinx,

The paper is organized as follows. Basic definitions are
given in Section 11. In Section 111 we review the most
effective of the known logic minimization and synthesis
methods. In Section IV we review several approaches to
logic synthesis for FPGA’s with “look-up table” logic
blocks such as Xilinx’s. In Section V we present a similar
discussion but for FPGA’s with multiplexer-based logic
block such as Actel’s. In Section VI we briefly discuss
synthesis for FPGA’s with PLA-based logic blocks.

11. BASIC DEFINITIONS
A logic or Boolean variable x takes on one of two values

0 and 1. Denote by x’ the complement of the variable 5 .

Both x and x’ are referred to as literals.
A Boolean function f : { O , l } n -+ (0, l} is a binary

function of logic variables. It is often convenient to repre-
sent the n-dimensional Boolean space by an n-dimensional
Boolean hypercube. A Boolean hypercube of dimension n
contains 2” vertices. The set of vertices of the hypercube
where the function takes on the value 1 is referred to as
the on-set and the set of vertices where the function takes
on the value 0 is referred to as the off-set. At times the
value of a logic function is not specified for a set of the
vertices. In this case, the function is said to be incompletely
spec$ed and the unspecified set of vertices is referred to
as the don’t-care-set or dc-set. The rest of the vertices (i.e.,
the on-set and the off-set) constitute the care-set. The set of
inputs on which a function is explicitly defined is referred
to as its support. In the remainder of the paper we refer to
an incompletely specified logic function simply as a logic
function unless otherwise stated.

A cube of a logic function f is a logic function given by
the product of literals whose on-set does not have vertices
in the off-set of f. The origin of this name rests on the
fact that a product of IC literals corresponds to a Boolean
hypercube of dimension n - IC in the Boolean space of
dimension n. A minterm is a cube where all the variables
are assigned a value 0 or 1. This cube is of dimension 0,
and contains only one vertex.

The Shannon cofactor or simply the cofactor of a logic
function f with respect to a variable :E, denoted by f x , is
the logic function obtained from f by setting the variable
z to the constant value 1. The cofactor of f with respect to
x’, denoted by f,, , is the logic function obtained by setting
the variable x in f to the constant value 0.

A logic function has several representations, e.g., the
set of its minterms (which is equivalent to the truth table
representation), the sum-ofproduct form, the factored form
and the Binary Decision Diagram.

A sum-of-product expression for f is a set of cubes that
contains all the vertices of the on-set of ,f and none of the
off-set.

A factored form is defined recursively as follows:
a literal is a factored form;
the sum of factored forms is a factored form;
the product of factored forms is a factored form

Thus for example, a+b, (a+b)(c+(e‘(f +g’))) , where e’, g’
denote the complement of the variables e,g , are factored
forms.

An important characteristic of factored forms is that they
may be thought of as representing both a function and its
complement, since, by De Morgan’s laws, the factored form
of the complement of a function can be simply obtained
from the factored form of the function by interchanging the
logic addition and the logic product operations as well as
the phases of the variables. Note that in contrast the sum-
of-products form of the complement of a function can be
drastically different from the sum-of-product form of the
function.

A binary decision diagram (BDD) is a simple yet efficient
representation of a completely specified logic function.
BDD’s were proposed many years ago by Akers but their
use in logic manipulations has only recently been made
practical and effective by Bryant [lo]. A BDD is a directed
acyclic graph (DAG) where a logic function is associated
with each node. The completely specified logic function f
represented by the BDD is associated with the root node.
Every node has two fan-out nodes representing the function
obtained by cofactoring the logic function represented at
the node with respect to a variable and its complement.
This variable indexes the node. Let x be the variable
indexing node i and f i the function associated with this
node. The high-node corresponds to the cofactor f i x , and
the low-node corresponds to f;,,. The leaf nodes are the
constant functions 0 and 1. Note that this representation
has an exponential number of nodes and is canonical in
the sense that given a logic function and an ordering of
the variables corresponding to the sequence of cofactoring
operations along a path from the root to the leaf nodes,
the representation is unique. In fact this representation is
equivalent to the truth table representation of the function.
As such it is not too interesting. However, if the nodes
associated with the same logic function are merged, the
complexity of the representation can be reduced. The re-
sulting BDD is referred to as reduced BDD or RBDD. The
number of nodes in an RBDD can be dramatically lower
than for the unreduced BDD. This fact makes RBDD’s
quite appealing for a number of applications. A further
useful simplification of RBDD’s, proposed by Bryant, is
to choose the ordering of the variable for all paths from the
root to the leaf nodes to be the same. This representation
is referred to as the reduced ordered BDD (ROBDD) and
is canonical. Figure 1 (a) shows an ordered BDD for the
function f = ac + a‘bd + bc‘d’ with the order c, a , d and b.
The root node is indexed by c. Now, we reduce it by seeing
that all nodes indexed by b represent the same function,
namely b. We merge them all in one node, and get an
ROBDD in Fig. l(b).

Many operations on this representation are linear in the
size of the graph. In addition, verifying whether two logic
functions are logically equivalent, amounts to an easy iso-
morphism check on their ROBDD’s, which can be carried
out efficiently. Although most functions have an ROBDD
representation that is still exponential in the number of

1058 PROCEEDINGS OF THE IEEE, VOL. 81, NO. 7, JULY 1993

I = if
T= then
E= else

0 = mux

Fig. 2. Realization of a function with ITE's.

(b)

Fig. 1. Example of a BDD and an RBDD of a function.

variables, many functions appearing in practice have a low
complexity ROBDD representation. The complexity of an
ROBDD representation is, however, dependent on variable
ordering and finding a good ordering is in general not
tractable.

The if-then-else DAG representation is a close relative of
the BDD. The if-then-else DAG is a set of nodes each with
three children: each node is a two-to-one selector where the
first child is connected to the control input of the selector
and the second and third children are connected to the signal
inputs of the selector. The behavior function of the node is
that i f the expression that corresponds to the control input
is TRUE then the second child is selected else the third
child is selected. In the case of the BDD, the nodes can be
regarded as two-to-one selectors as well but with the control
input connected directly to the variable associated with the
node. Thus an if-then-else DAG is more general than a BDD
and consequently can yield more compact representations.

An advantage of the if-then-else DAG over BDD's ap-
pears when converting from a sum-of-products form. Select
one variable, say q. Let the cubes of the function associated
with a node of the Boolean network be partitioned into
three sets C1, C2, C, with respect to q: C1 corresponding
to the cubes that do not depend on the selected variable
VI, C, containing all the cubes that depend on VI, and Cs
containing all the cubes that depend on v i , the complement
of V I . The corresponding if-then-else DAG implements if C1
then TRUE, else (i f 111 then C2 else C,) and contains two
nodes as shown in Fig. 2. The first node has the function
determined by the cubes in C1 connected to its control
input, the constant TRUE connected to its second child,

and the output of the second node connected to its third
child. The second node has its control input connected to the
variable 711, its second child to the cubes in C2 and its third
child to the cubes in Cs. Note that this may be a smaller
representation than the BDD for the same function since
the expressions connected to the high and low children of
the BDD node contain duplicate cubes (the ones that are in
Cl). In the if-then-else DAG these cubes appear only once.

111. LOGIC SYNTHESIS

A. Introduction
There are several approaches to logic optimization [9].

The most commonly used approach is to break the synthesis
process into two phases: a technology independent phase,
followed by a technology mapping phase. The technology
independent phase attempts to generate an optimal abstract
representation of the logic circuit. The technology mapping
phase selects a set of gates from a library' to implement
the abstract representation while optimizing area, delay or
a combination of the two.

For combinational logic, the abstract representation cho-
sen in MIS [SI and in many other university and industrial
tools, is the Boolean network, a directed acyclic graph
G(V, E) where each of the nodes U E V represents an
arbitrarily complex single-output logic function. There is
an arc from node j to node i if the function represented by
node i depends explicitly on the function represented by j .
Node j is said to be a fan-in of node i and node i is said
to be a fan-out of node j . There are two sets of special
nodes: input nodes with no incoming arcs which represent
primary inputs, and output nodes with no outgoing arcs
which represent primary outputs. An example of a Boolean
network is shown in Fig. 3. The network has four primary
inputs a, b, c and d, and one primary output z .

Each node of the network may represent an arbitrary logic
function (general node) or a simple logic function such as
a two-input NAND or NOR (generic node). The support
of a node is the set of variables that the corresponding
logic function explicitly depends on. During optimization,
the nodes of the network may be mapped from a general
form to a generic form as will be seen later. A general node
can be represented in a sum-of-products form, a factored
form, or as a BDD.

Node representation may change from one form to an-
other according to the operations performed. The sum-of-

' A library can be given either explicitly as a list of gates, or implicitly
with equations or other means of representing a class of logic functions.

EL GAMAL et al.: SYNTHESIS METHODS FOR GATE ARRAYS 1059

Fig. 3. A Boolean network

w = b c

products form is convenient in node minimization where a
two-level logic minimizer (e.g., Espresso [7]) is used. The
factored form representation is useful since it corresponds
to a possible implementation of the function in dynamic
CMOS logic where each literal corresponds to a transistor
[6]. Moreover, when static CMOS logic is used there is
a correspondence between the number of literals in an
optimized factored form and the area occupied by its
physical implementation. As a result the total number of
literals in an optimized factored form is the most commonly
used cost function in logic minimization.

The problem of finding an optimum factored form for a
given logic function is, however, very complex and exact
algorithms are not practical for functions of more than
six variables. Heuristics are, therefore, used to compute an
optimized factored form. Moreover, minimizing the number
of literals does not explicitly consider wiring area which is
particularly important for FPGA synthesis. This represents
a major challenge in adapting existing and well-proven
synthesis approaches to FPGA’s.

B. Technology Independent Optimization
The operations performed in the technology independent

phase are classified into two classes: network restructuring
operations and node minimization. The former includes op-
erations that modify the structure of the Boolean network by
introducing new nodes, eliminating others, and by adding
and removing arcs, while the latter includes operations that
simplify the logic equations associated with nodes [9].

1) Restructuring Operations: Network restructuring op-
erations include decomposition, extraction, factoring, re-
substitution, and collapsing.

Decomposition is the process of expressing a given
logic function in terms of a number of new functions.
For example, let

F = ubce f + abde f + n’c’d’ + b’c‘d’ : (1)

then a decomposition of F is

F = X Y e f + X’Y’ : (2)

where X = ab and Y = c + d.
Note that while the expression representing F before
decomposition depends explicitly on six variables, the
one after decomposition depends explicitly on four
variables only. Decomposition is an essential step in
logic optimization for FPGA’s.

I060

Extraction is related to decomposition but operates
on a number of given functions. With extraction, the
given functions are expressed in terms of newly created
intermediate functions and variables. For example,
extraction when applied to the following functions

F = (u’b + nb’)cd
G = (a’b’ + ab) + e + f

(3)
(4)

gives

F = Xcd (5)
G = X ‘ + e + f (6)
X = a’b + ab’ (7)

Common subexpressions are identified and extracted
in order to minimize the total number of literals by
sharing expressions among logic functions. However,
the number of arcs in the resulting Boolean network
increases which may increase wiring area.
Factoring transforms the sum-of-products form of a
logic function into a factored form. For example, F of
Eq. (1) can be factored as abPf(c+d)+(ab)’(c+d)’ .
Substitution or resubstitution is the process of express-
ing a given logic function F in terms of another
given function G. For example, let G = abc then
F = Gef + abdef + (G + nbd)’.
Collapsing, also called elimination or jnttening, is the
inverse operation of substitution. If G is a fan-in node
of F , collapsing “pushes” G into F so that F is
expressed only in terms of its fan-in nodes which also
include the fan-in nodes of G.

All these operations make use of operations analogous
to conventional multiplication and division. In fact, de-
composition, extraction and factoring depend on finding
subexpressions which are “divisors” or “factors” of the
representation of the function. The number of divisors and
factors of a given Boolean expression, however, can be so
large that it is practically impossible to search the space
to find one which is optimum with respect to the cost
function used in the logic synthesis. As a result in most
logic synthesis systems divisors and factors are selected
from a restricted space so that the search is much faster
and the quality of the result is acceptable.

2) Algebraic Operations: The restricted space is the space
of algebraic expressions. An algebraic expression is a set
of cubes such that no cube contains another, i.e., no cube
contains all of the vertices of any other cube. A Boolean
product o f m o cubes is the product of the literals of the
cubes if no literal appears complemented in one cube
and uncomplemented in the other and is zero otherwise.
The product of two expressions is the set of products
of the cubes of the two expressions. A product of two
expressions is an algebraic product if they are algebraic
expressions and if the two expressions have no input
variables in common. The basic task in decomposition,
extraction, factoring and resubstitution is the operation of
division: given two functions FandP, find Q and R such

PROCEEDINGS OF THE IEEE, VOL. X I . NO. 7. JULY 1993

that F = P Q + R. The division is algebraic if PQ is an
algebraic product.

Algebraic division can be carried out very quickly. An
algorithm exists which can compute the operation in linear
time in the number of cubes in the expressions. To perform
an effective restructuring of the network with decomposi-
tion, factoring and extraction, it remains to find an effective
procedure to determine good algebraic divisors, i.e., given
F , we wish to find P so that P, Q and R can be expressed
with the smallest number of literals. Since the number
of divisors is very large, the optimization problem looks
hopelessly complex. Kernels, introduced by Brayton and
McMullen, are a subset of all algebraic divisors of an
expression that can be computed effectively with a number
of fast algorithms. It can be proven that optimum algebraic
divisors and common factors must be kernels and/or kernel
intersections. In MIS there are a number of kerneling
operations with different speed-quality trade-offs.

Thus the restructuring operations can be performed
quickly and the space searched effectively, but at the
expense of the optimality of the solution. Boolean
operations such as node minimization can be interspersed
with algebraic operations in an attempt to find a better
solution.

3) Node Minimization: Node minimization attempts to re-
duce the complexity of a given network by using Boolean
minimization techniques on its nodes. The nodes of the
network are Boolean functions that can be minimized using
two-level techniques such as the ones used in Espresso.
However, considering the functions at the nodes as in-
dependent, much optimization is potentially lost. In fact,
the inputs of the Boolean functions are related to each
other by the nodes of the network that precede the node
under consideration and hence are not free to take any
combination of values. In addition, for some values of the
primary inputs of the network, the output of the node may
not be observable at the primary outputs of the network.
In both cases the values of the inputs that can never occur
at the input of the function and the values of the primary
inputs for which the outputs of the nodes are not observable
at the primary outputs of the network are don ’t cares for the
two-level minimization of the node. The first kind of don’t
cares is called Satisjability Don’t Care (SDC) set, while the
second is called Observability Don’t Care (ODC) set.

An example of SDC is as follows. If node i of the network
carries the Boolean function f (x , y) , where x = a + b,
y = ab + c and a , b, c are primary inputs of the network,
then .(U + b)’ + x’(a + b) and y (a b + c)’ + y’(ab + c) are
SDC’s. In other words, the SDCs represent combinations
of variables of the Boolean network that can never occur
because of the structure of the network itself.

Unfortunately the SDC’s and the ODC’s may be very
large and it may be impossible to compute them. Hence
node minimization in [8] optimizes the two-level represen-
tation of a node using a suitably chosen subset of SDC’s
and ODC’s when they are too big.

Another method for node minimization, [4] does not use
two-level minimization techniques with don’t cares, but

rather it simplifies the node function using a tautology
checker. Tautology checking determines whether a function
is identically equal to 1. It can also be used to determine
if two Boolean networks are equivalent by taking the
corresponding primary outputs and forming their exclusive
NOR. If the two Boolean networks are equivalent, the
output of the exclusive NOR will be always 1. In [4],
a node is tentatively simplified by deleting either liter-
als or cubes from the node representation. The resulting
network is checked for equivalence against the original
network. If equivalent, the deletion is performed and a
simpler representation is obtained. The problem with this
method is CPU time since many equivalence checkings
need to be performed. On the other hand the previous
approach suffers from problems stemming from the size
of the SDC and ODC. In most available logic optimization
programs, the first minimization technique is adopted using
an approximation to the SDC and ODC.

Node minimization has been proven to be very effective
for a wide variety of cases. Node minimization is very
often the only Boolean operation that is performed during
a network optimization run.

C. Technology Mapping
After optimizing the network, the technology mapping

phase begins. Here the optimized Boolean network is
mapped into a network whose nodes are primitive logic
functions implemented by the available library gates. In this
phase the cost function can be more accurate since the area
of the primitive gates is known exactly. However, wiring
area is not used as part of the cost function in most of the
synthesis systems in use today, even though approaches
have been proposed that take wiring into account [l], [40],

The algorithms that are used in technology mapping fall

1. algorithmic approaches (e.g., [29], [8], [311);
2. rule-based techniques (e.g., 1131, 1241).

In the first approach, the Boolean network is mapped into
a subject graph which is a network consisting of two-input
NAND gates. All the gates in the library are also expressed
as networks (called pattern graphs) in terms of two-input
NAND gates, thus yielding a consistent representation
between the network and the gates in the library. The
problem is now transformed into a covering problem: find
the minimum cost cover of the subject graph by the pattern
graphs. Since both the subject graph and the pattern graphs
are directed acyclic graphs (DAG’s), the problem is called
DAG covering by DAG’s. Unfortunately the problem is NP-
hard, and since there is no exact algorithm that yields
practical results even for relatively small networks [44],
heuristics are used.

The first heuristic to be proposed [29] was inspired by
the work on optimizing compilers by Aho et al. [2]. This
heuristic is optimal if the network to be mapped is a tree
and the library gates are represented by trees. However, in

~411.

into two main categories:

EL GAMAL er ul.: SYNTHESIS METHODS FOR GATE ARRAYS 1061

general, the optimized Boolean network is not a tree. For
this reason, the network is decomposed into trees. Since
most of the gates in widely available commercial libraries
can be expressed in terms of trees of two-input NAND gates
the mapping problem is transformed into a tree-covering-
by-trees problem which is easily solved by covering each
of the trees separately. This is an efficient heuristic since it
is based on proven optimality properties, the running time
of the procedure is linear in the size of the trees, and the
quality of the results are quite good.

An alternative approach was proposed in [31]. The two-
input NAND-gate network is decomposed into subnetworks
that are not necessarily trees; the only requirement in
common with tree decomposition is that the connection to
the rest of the circuit or to a primary output be a node
of fanout one (the sink node). A dynamic programming
approach is used to find the optimum matching of the
subnetworks in terms of a given set of primitives (library
gates). In this approach, Boolean operations are used to find
whether a subnetwork is logically equivalent to one of the
library functions (Boolean matching). First, a set of cluster
functions is defined as the set of functions that correspond
to connected subgraphs of the subnetwork rooted in the sink
node. The leaves of these DAG’S are the support variables
of the cluster functions. The multilevel structure of the
subgraphs is flattened obtaining a two-level representation
of the cluster function. The cluster function is then checked
against all the library gates to identify those gates that are
logically equivalent on the care set of the cluster function.
This is done by solving a tautology problem, i.e., the
exclusive NOR of the cluster function and of the library gate
is taken and checked to determine whether the output of the
exclusive NOR is identically equal to one on the care set of
the cluster function. The minimum cost match is selected
and the procedure is repeated for all the functions which
are rooted in the nodes that define the support variables
for the cluster function. This defines the basic step for the
dynamic programming procedure.

Among the advantages that can be claimed for this
approach, we identify:

the decomposition of the subject graph is not restricted
to be a forest of trees;
don’t cares can be naturally incorporated to obtain
matches that could not have been obtained with a
purely structural approach such as the tree-covering-
by-trees approach.

These advantages did not offer substantial improvements
over the tree-covering approach when applied to standard
libraries on a set of benchmarks. However, as we shall see
in Section V-C5), better results were achieved for libraries
containing XOR’s, multiplexers and majority functions that
are notoriously difficult to handle with the tree approach.

A drawback of this approach is the high computational
requirement; each match attempt requires the solution of
a tautology problem. In [18] and [47] clever methods
have been proposed to minimize the number of tautology
operations performed.

In both approaches, the original DAG has to be mapped
into a network of two-input NAND gates. Note that there is
potentially a very large number of possible mappings of the
original network in terms of two-input NAND gates. Simple
heuristics are used to preserve as much of the structure ob-
tained during the technology independent optimization step
as possible, while using a small number of NAND gates.
The library gates can also have different representations
in terms of two-input NAND gates. However, the number
of possible two-input NAND gate representations is rather
small in most cases. In the tree-covering-by-trees approach,
all possible representations of a given gate in terms of two-
input NAND gates are enumerated, thus providing a larger
number of matches between the covering trees and the tree
to be covered. One limitation of this approach is that it
can only be applied to single-output cells. No work has so
far been done to address mapping for cells with multiple
outputs.

Rule-based techniques traverse the Boolean network and
replace subnetworks with patterns representing the gates
in the library that match the function of the subnetwork.
Rule-based techniques are slower but could yield better
final results since detailed information about the gates in
the libraries can be captured, and electrical considerations
can be taken into account easily.

The present trend in industry is to use a mixed approach,
where a tree covering approach is followed by a rule-based
clean-up phase.

Timing optimization is carried out using the same ap-
proaches but with more difficulty. In the technology inde-
pendent optimization phase some simple timing model of
the network based on the number of levels and the degree
of each node can be used to restructure the network to
minimize the critical path [49]. In the technology mapping
phase, gate delays are known with good approximation and
the mapping can be guided to yield a fast implementation.

IV. SYNTHESIS FOR LUT-BASED FPGAS

A. Zntroduction
LUT-based logic blocks such as the Xilinx configurable

logic block (CLB) can implement any logic function of no
more than a fixed number of variables. Additional functions
can also be implemented depending on the details of the
block. For example, the LUT section of the Xilinx series
3000 architecture (Fig. 4) can implement any logic function
F with up to five inputs a; b , c , d , e , or any two logic
functions F and G with up to four inputs each and five
overall variables. In addition, each block has two embedded
flip-flops with outputs Q X and &Y for use in sequential
design.2

All existing approaches to synthesis for LUT-based
FPGA’s begin with a network that has been optimized using
a technology independent method and, hence, could be

’If the internal flip-flops and the feedback paths from them are consid-
ered, the Xilinx 3000 architecture allows up to a total of seven different
inputs to the two look-up tables.

I062 PROCEEDINGS OF THE IEEE. VOL. 81. NO. 7, JULY 1993

I

DIN

I I

Fig. 4. A CLB of Xilinx 3000

classified as technology mapping even though some drastic
restructuring of the network could result during synthesis.

This section is organized as follows. The most straight-
forward adaptation of technology mapping approaches to
LUT FPGA’s is reviewed first. Special algorithms are then
presented which take into account practical LUT-based
FPGA architectures. Although most approaches published
to date deal with area minimization, new techniques which
optimize performance are surfacing. These new techniques
are reviewed in the last sub-section.

B. Library-Based Technology Mapping
In the tree-covering-by-trees approach to technology map-

ping, the gates in the library have to be expressed as trees.
To use this approach an LUT is viewed as a collection
of gates. For example in MIS, all the nonequivalent func-
t i o n ~ ~ are explicitly described in terms of two-input NAND
gates. While the nonequivalent gates are fewer than all the
possible gates, their number still grows superexponentially.
For k = 2 , 3 the number of nonequivalent functions is
reasonable (10 and 78 respectively), but already for k = 4
the number of nonequivalent functions is 9014 [19]. In
addition some of these functions have a large number
of possible two-input NAND gate representations (some
have more than 700) and MIS cannot handle the resulting
complexity in the library. Thus the* number of logic gates
represented by the covering trees is restricted. In [191, only
a relatively small subset of the functions was included in the
library. The subset was selected based on the observation of
the behavior of the algorithm for k = 3 and the knowledge
of the inner operations of MIS. Note that the cost of
mapping into any of these functions is constant since all
of them can be implemented by a single LUT.

Even after restricting the set of gates to be included,
the time needed to perform the mapping is long and is
dominated by the time needed to parse and process the
library. In [19] it was observed that as IC increases, the
quality of results deteriorates (not surprisingly since the
number of basic functions eliminated from considerations
grows quickly). Thus this approach seems inadequate.

‘An LUT with X, inputs can implement 2 2 b functions. A function f is
equivalent to another g if it can be obtained from 9 by renaming inputs.

C. Direct Approaches
Direct approaches deal with the functionality of the logic

block directly and do not require the explicit construction
of a library of gates.

Two direct approaches have been considered:
Modification of the tree-covering-by-trees algorithm
for technology mapping to significantly reduce the
.CPU time required by the standard technology map-
ping algorithms [19, 201;
A two-step approach where:

- Starting with a technology-independent-optim-
ized network, the nodes of the network are
decomposed so that each depends on no more
than k variables. The decomposition operation
yields a network that is feasible since each node
can now be implemented directly using a single
LUT.
The number of nodes is reduced by combining
some of them taking into account the particular
features of the LUT’s [37], [181, [281, [381,

-

1501.

1) Modifying the Tree-Covering Approach:Chortle [191
and its extension Chortle-ctf [20] use the first direct ap-
proach to the technology mapping problem for LUT’s.
Chortle begins with an AND/OR representation of the
optimized Boolean network. This representation is obtained
in a straightforward way from the sum-of-products repre-
sentation of MIS by representing each product and each sum
as a separate node. Inversions are represented by labels on
the edges.

The network is first decomposed into a forest of trees by
clipping the multiple-fan-out nodes. An optimal mapping of
each tree into LUT’s is then performed using dynamic pro-
gramming, and the resulting implementations are assembled
together according to the interconnection patterns of the
forest. These steps are essentially the same as the standard
technology mapping algorithm implemented in DAGON
and MIS. The main difference is in the way the optimal
mapping is done. Note that in the case of LUT’s it is not the
structure of the logic function that matters in the matching
but only the number of variables that the function depends
on: given a tree, every subtree that has at most k leaf nodes
can be implemented by a single LUT.
Chortle and Dynamic Programming for LUT’s: The dynamic
programming approach to technology mapping is as fol-
lows. The minimum cost implementation of a tree rooted
at node i is obtained as the implementation of the subtree
Ti rooted at i combined with the minimum cost imple-
mentation of the subtrees rooted at the leaf nodes of Ti
which yields the minimum overall cost among all such
implementations. Thus the optimum technology mapping
problem for a tree can be solved recursively starting at its
leaf nodes and working towards its root.

In the case of LUT’s, when the mapping extends towards
the root of the tree, all subtrees rooted at a node that have
a number of leaf nodes less than or equal to IC must be

EL GAMAL ef al.: SYNTHESIS METHODS FOR GATE ARRAYS I063

considered to make sure that all applicable solutions are
searched. Note that all these subtrees have the same cost
of 1.

In line with the technology mapping algorithms of
DAGON and MIS, Chortle’s approach guarantees that
an optimum solution is found for every tree but cannot
guarantee that the technology mapping for the entire
network is optimum.

When i has degree significantly larger than k , the number
of subtrees to examine is very large. Since all possible
combinations of nodes connected to i of cardinality less
than or equal to k must be considered to guarantee an
optimal solution, Chortle would spend an inordinate amount
of time searching the space of sub tree^.^

To avoid the explosion of CPU time, Chortle predecom-
poses the nodes of the network that have degree larger than
a limit 1 , l > k . This is done by splitting the nodes into
two nodes with nearly the same degree. By doing this the
optimality of the solution is not guaranteed any longer but
according to [191 the quality of the final solution is hardly
affected.

Several factors limit the quality of the solution, however:
the search for a mapping is artificially limited to the
tree boundaries;
possible duplication of nodes in the network is not
considered;
some of the special features of the LUT-based FPGA’s
are not considered, e.g.. the fact that two functions can
be mapped onto the same LUT in the Xilinx array.
Chortle-crfand Bin-Packing: Chortle-crf [20] extends

Chortle by considering node duplication and reconvergent
fan-outs. In addition, a key contribution of this work is
recogn’izing that the decomposition problem for an LUT-
based FPGA could be approximated as a simple variant of
the bin-packing problem [23]. The bin-packing problem is
to pack a set of objects of given sizes into the minimum
number of bins of fixed capacity. The bin-packing problem
is NP-hard but simple and very fast heuristics have been
used effectively for its solution [23]. Furthermore, these
heuristics can be guaranteed to find the optimum solution
in some special cases, and are in any case within 22% of
the optimum.

Bin-packing heuristics are used in Chortle when the
best solution to the mapping problem is sought for a
node in a tree during dynamic programming. A two-level
representation of a logic function f is considered in this
case. The cubes are the set of objects to be packed. The size
of an object is given by the number of variables that appear
in the corresponding cube. Any set of cubes whose overall
size is less than or equal to k is packed into an LUT. In case
a cube contains more than k variables, it is considered as a
combination of two or more cubes each of which has less
than k variables. Note that an LUT implements the OR of
the cubes packed into it. Finding the minimum number of
bins which contain all the cubes is equivalent to solving the

4This is equivalent to considering all poss,ible decompositions of node
i so that the resulting decomposition is implementable by an LUT.

bin-packing problem, but does not yield a solution to the
decomposition problem. For example, given the function
F = abcd + e f g + ha if we pack abcd into one LUT, and
the remaining cubes into another, we would still have to
build the OR of the two subfunctions ubcd and e f g + hi
to implement the original function resulting in a three LUT
implementation. If instead we replace e f g + h i with a single
literal cube z and we pack z together with abcd, we obtain
the following decomposition of F :

F = abcd + z ;
z = e f g + hi

The function can now be implemented using only two
LUT’s; one LUT implementing z = e f g + hi feeding into
a second LUT implementing F = z + abcd.

Chortle uses the first fit decreasing algorithm to solve
the resulting bin-packing problem. The algorithm selects
the largest object, i.e., the cube with the largest number
of variables, and finds the first bin (LUT) where it fits. If
no existing bin (LUT) has enough capacity a new bin is
created and the cube is placed there (recall that this can
always be done, since all cubes have a number of variables
that is at most I C) . When all the cubes have been placed in
an LUT, the LUT with the fewest unused inputs is selected
and closed. A new variable is created and the corresponding
one-variable cube is placed in the first LUT where it can
be accommodated. If none is found a new one is created.
The procedure is repeated until only one LUT remains open.
This last LUT is closed but no new variable is created. This
last LUT is the one that provides the output corresponding
to the original function.

This algorithm has a remarkable property. It can be
proved that if the cubes of the given function are disjoint,
i.e., they have disjoint support, then the algorithm generates
a tree of LUT’s of minimum size that implements the given
function for k 5 6 [20], [38].

In Chortle-crf, the algorithm is applied to a tree of AND
and OR functions. Hence all the cubes indeed have disjoint
support and the solution to the technology mapping problem
is optimum as in Chortle but it can be obtained much
more quickly because of the speed of the packing algorithm
(experimentally it has been observed to run up to 28 times
faster than the Chortle algorithm).

The speed of the bin-packing algorithm is the key to ad-
dressing two shortcomings of the original Chortle approach,
namely optimization across tree boundaries and duplication
of logic. The results obtained by Chortle can be improved if
local reconvergence is considered in the optimization (see
Fig. 5).

If the cubes are not disjoint, then the optimization prob-
lem is no longer similar to the bin-packing problem, since
now the capacity needed to pack a set of cubes into the
same LUT is not the sum of the size of each cube as in
the case of the standard bin-packing problem. In fact, if
two cubes c1 and c2 share p variables, where c1 has p1

variables and c2 has p2 variables, then the capacity needed
is p l + p2 - p and not p l + p2. Thus we could have a

1064

I 1

PROCEEDINGS OF THE IEEE. VOL. 81, NO. 7. JULY 1993

................. q

..................

............, 1
i :

................. j
j AND j
i :

1 1 ’ :, iq-
OR

i >

OR

f

Fig. 5. Local reconvergence

more effective optimization if we were to pack cubes with
shared variables in the same LUT as shown in the following
example.

Suppose that the function F = ab+cd+de+ fg+hi is to
be implemented. Using the First Fit Decreasing algorithm
with k = 5, we could have the following decomposition:

(10)
(1 1)
(12)

If cubes cd and de are placed into the same LUT we would
have:

z1 = ab + cd + de; (13)

F = f g + h i + z l . (14)

z1 = ab + cd;

zz = de + f g + 21;

F = hi + 2 2 .

However, placing cubes with shared variables in the same
LUT a priori may not always yield the optimum solution.
Furthermore, there may be several cubes that share vari-
ables and they may not fit in the same LUT. In this case,
the question of which groups of cubes should be “merged”
into a single LUT arises. Since the bin-packing algorithm
is very fast, the solution chosen by Chortle-crf is to run
the algorithm exhaustively on all possible cases, i.e., no
merging (equivalent to considering all cubes as disjoint),
and all possible mergings of cubes with shared variables.
Note that, if the number of cubes with shared variables
is large, this approach would be too expensive even if
the analysis of each case could be carried out very fast.
A heuristic has been added recently which searches for
maximum sharing in an LUT [20].

A similar approach is taken to optimize across the fan-
out points of the network. Suppose that the network to
implement has two outputs given by:

(15)
(16)

f l = de + z :
f 2 = f g + z ; z = abc.

EL GAMAL et al.: SYNTHESIS METHODS FOR GATE ARRAYS

In this case, the decomposition of the network into a
forest of trees would force the implementation of z as the
output of an LUT, and would require two more LUT’s to
implement f l and f z . However, we could merge z into f l

and fi to yield:

f l = de + abc; (17)

fz f g + abc. (18)

In this case, some logic is “duplicated” (the cube abc would
appear in two LUT’s) but the number of LUT’s is reduced.

In Chortle-crf the following approach is taken. Every path
starting from a fan-out point has to reach either another fan-
out point or a primary output U. The node that produces
w as output is called a visible node. The optimization
process considers all the visible nodes as functions to be
implemented. Two possible implementations are then exam-
ined, one with the fan-out variable considered as an input
variable (corresponding to the standard tree decomposition
approach), the other with the fan-out variable replaced by
its expression in terms of its fan-ins. The best solution is
then selected. If there is more than one reconvergent fan-
out at a visible node, the process considers all the possible
combinations of choices for each of the fan-out points that
reconverges to the visible node.

If there are many reconvergent paths terminating at a
node, the optimization may take a long time because of
the very large number of cases to be checked. A possible
remedy to this situation is to preprocess the network using
a decomposition step (e.g., with one of the kerneling
algorithms of MIS). It can be shown that the number of
reconvergent paths after preprocessing is always less than
or at worst equal to the number of reconvergent paths in the
network at the end of Chortle’s AND-OR decomposition.

2) The Two-step Approach: This approach, proposed first
in [37] and followed also in [18], [28], [50] begins as
in the Chortle case with a network that has already been
optimized via technology-independent transformations. The
first step in the two step approach is to use decomposition
to obtain a feasible network. In the second step, the
network is manipulated to reduce the number of LUT’s
used by exploiting the characteristics of the particular LUT
architecture considered.

Today, many designs are entered directly in a form
which guarantees a feasible implementation in an LUT-
based FPGA (for example, an XNF description of Xilinx).
In this case, the first step is not needed.

First step: Decomposition: All nodes of the network
that have more than k inputs, are decomposed to yield a
feasible network.

MIS-pgal decomposition In the first version of MIS-
pga, two decomposition techniques are used:

kernel decomposition;
the Roth-Karp decomposition [26].

In kernel decomposition, kernels of the logic function
of an infeasible node no are extracted and evaluated with
a cost function which attempts to consider not only the
number of LUT’s but also the wiring resources that may be

I065

Fig. 6. Application of Roth-Karp decomposition.

needed in the implementation. When a kernel is extracted, a
new node is created. Its output is then fed into the original
node. After the kernel is extracted, input variables have
to be provided to the corresponding node. If the original
node shares variables with the kernel, then new edges are
added to the network. If the two nodes are implemented in
separate LUT's, the new edges correspond to signals to be
routed in the FPGA. Hence, it makes sense to select for
extraction the kernel which creates the minimum number
of new edges. This decomposition is referred to as split
decomposition.

Note that, following this procedure, the kernel extracted
and node no may have more than IC variables each. Thus the
procedure should be applied recursively until all nodes are
feasible. However, the recursive decomposition may fail to
produce a feasible network if there are no kernels for an
infeasible node except itself (e.g., abce f m or ab + c + g h p)
and a different technique must be used. In MIS-pgal,
an AND-OR decomposition is applied until all nodes are
feasible. For example, abcefm is split into z = abc and
z e f m ; ab + c + g p h is split in z = ab + c and z + gph .

The Roth-Karp decomposition [26] is an efficient algo-
rithm which implements the classical decomposition theory
of Ashenhurst and Curtis [3] , [12].

Ashenhurst gave necessary and sufficient conditions for
the existence of a simple disjoint decomposition of a func-
tion f of n variables. A simple disjoint decomposition of
f is of the form:

Curtis [12] extended the result to a generalized decom-
position of the form:

S(x1,52, . ' . , x,,xs+1,. .
=g(a1(21,22, 2

ZS+l.x,)

The set X = (21: ~ 2 , . . .
The set Y = {xSc1,. . . . E ,

2 ,) is called the bound set.
is called the free set. Figure

6 shows the structure of the decomposition obtained (for

We denote by a decomposition chart the truth-table of f
where minterms of B'I = (0. l}" are arranged as follows.

IC = 5) .

The minterms in the space B" correspond to the columns
of the chart and those in B"-" to the rows. The entries
in the chart are the values that f takes for all the possible
combinations. For example, if f (a , b, e) = abc + a'b'c, the
decomposition chart for f for partition ablc is

The necessary and sufficient conditions were given in
terms of the decomposition chart for f for the partition
x122 . . . zs(xs+l . . . z, (also represented as :;,":::;:;). Cur-
tis showed that the decomposition (20) exists if and only
if the corresponding decomposition chart has at most 2t
distinct column patterns (or its column multiplicity is at
most 2t). To get the functions ai, equivalence classes of
minterms in B" are formed. Two minterms in B" are
equivalent if they have the same column patterns. If M
is the column multiplicity, there will be M equivalence
classes. Each class is then assigned a binary code. The
minimum code length is rlog2M1 = t . Bit i of the binary
code corresponds to the function ai. The function g can
then be determined by considering each minterm in the on-
set of f and replacing its bound part by the binary code for
the corresponding equivalence class.

We illustrate the decomposition technique using previous
example. There are two distinct column patterns, resulting
in the equivalence classes c1 = (00, ll} and c2 = (01, IO}.
M = 2 =$ t = 1. Let e1 be assigned the code 1 and
cz 0. Then a l (a b) = ab + a'b'. Since f = ubc + a'b'c,
g = a1c + Q 1 C = a1c.

The Roth-Karp decomposition is based on the same the-
ory but avoids building decomposition charts, which always
require exponential space, by using a cube representation.

In order to make an infeasible node feasible, 1x1 should
be at most k . This ensures that (~ 1 , . . . ,a t are feasible.
However if t+ (Y 1 is greater than k , g has to be decomposed
further and the procedure is applied recursively, until all
nodes involved are feasible. Since a nontrivial disjoint
decomposition may not exist, an AND/OR decomposition
is used as a last resort.

The choice of the bound set affects the form of g
and t so that different bound sets may yield different
decompositions. Since the procedure is computationally
expensive, attempting several choices of bound sets to
obtain good results is out of the question. The strategy used
in MIS-pgal, instead, is to simply pick as bound set the first
k variables of the function. More research is needed to find
whether a more intelligent choice of bound set would yield
significantly better results. It is important to point out that
for symmetric functions all bound sets of a given cardinality
produce the same 9 and hence the simple minded heuristic
used in MIS-pgal does not compromise the quality of the
final result for this class of functions.

I066 PROCEEDINGS OF THE IEEE. VOL. 81. NO. 7. JULY 1993

It is not possible to prove that the Karp-Roth decomposi-
tion strategy is always better than the split decomp~sition.~
Experimental results indicate that the Roth-Karp decompo-
sition is most effective when the node to be decomposed is
a symmetric function. However, lacking a general theory,
MIS-pgal uses both decompositions and selects the best
result among the two.

Hydra decomposition: Hydra 11 81 is a program specif-
ically targeted to multiple output LUT’s.

In Hydra the decomposition step to make the Boolean
network feasible consists of two operations applied in
sequence. The first is a simple-disjoint decomposition. The
second is an AND-OR decomposition which is applied only
if the nodes of the network are still infeasible after the
application of simple-disjoint decomposition.

Among all possible choices of variables to place in X 6 ,
Hydra considers only the ones that can be shared with other
functions. The rationale for this choice is best explained
with an example. Let

Fl = Fl (a , b, c, d , e , f) , (21)
F2 = F2(c,d,e,f.g), (22)

be the network to be implemented with a Xilinx series 3000
FPGA. If the two functions are decomposed independently
their implementation would require at least three single-
output Xilinx CLB’s since F1 has support larger than five.
However, if the following decomposition is applied,

2 1 = hl(c, 4 e , f),
22 = b (C , d, e , f).

(23)
(24)

then

and two multiple-output Xilinx CLB’s would suffice since
hl, h2, F1 and Fz have support less than or equal to four
and the pairs (hl , h2) , (F1 , F2) have joint support less than
or equal to five.

In Hydra, the choice of the set X ’is guided by the con-
struction of the shared input graph. This graph has as many
nodes as the Boolean network and there is an arc between
node i and node j if fi and fj, the functions associated
with the nodes, share some inputs. A weight equal to the
cardinality of the set of shared variables is assigned to
each arc. The graph is traversed searching for arcs with
largest weight. The set of variables identified by the arcs
are tested to see whether a simple disjoint decomposition
of both functions that share that set of variables is possible.
Note that testing for disjoint decomposition is expensive. It
is exponential in the cardinality of the set S.

Given the cost of testing whether a given function has
a simple disjoint decomposition, Hydra performs an AND-
OR decomposition preprocessing step on the network after

5As is often the case in many steps of logic optimization even for

‘There is a large number of possible choices: O(I.S~!).
standard libraries.

a b c a b c

Fig. 7. Node elimination.

technology independent optimization so that the number of
variables in the support of all the nodes is no larger than
a given limit 1. In [181, the best results were obtained with
1 = 9.

Xmap decomposition: Xmap 1281 uses the if-then-else
DAG representation discussed in Section 11. Once the
Boolean network is converted into an if-then-else DAG,
all the nodes are feasible if k > 2 since they have three
 input^.^ The conversion of the Boolean network into an
if-then-else DAG can be considered as a decomposition
technique which makes a general network feasible.

Second step: Node elimination: After obtaining a feasi-
ble network, the number of nodes (and hence LUT’s) can
be reduced substantially by combining some of them. An
example is shown in Fig. 7. Here k = 5. Node p can be
collapsed into f and n without making them infeasible. This
decreases the number of nodes in the feasible network by 1.

The following node elimination techniques which can be
applied to any LUT-based architecture have been proposed:

Local elimination [8], [181 also called partitioning
[37], where nodes are eliminated by examining only
node-fan-out pairs.
Covering [37], [18], [28], [SO], where nodes are elim-
inated by considering the overall structure of the
network.
A third technique referred to as Merging is implement-
ation-dependent algorithm that exploits the particular
LUT-based architecture 1371, 11 81, [28], [SO].
Local elimination: The basic idea of local elimination

is to examine pairs (i , j) of nodes where node i is a fan-in to
node j. If the node obtained by collapsing node i into node
j is feasible, i.e., the new support set of j has cardinality
less than or equal to k , then the new combined node can be
implemented by a single LUT. However, creating this new
node may substantially increase the number of connections
among LUT’s and hence make the wiring problem more
difficult. While Hydra accepts local eliminations as soon
as they are found, MIS-pgal orders all possible local
eliminations as a function of the increase in the number
of interconnections resulting from each elimination. The
best local eliminations are then selected greedily.

Covering: While local elimination can be used suc-
cessfully in reducing the number of LUT’s, its myopic
view of the structure of the network causes it to miss better

’For k = 2, the iffhemelse triple is converted into three nodes with
two inputs. Let z = i f a h e n h else c be the triple to be converted. Then
the three nodes can be constructed as 31 = ab, 22 = a’c and 2 = 31 + 2 2 .

EL GAMAL ef U / . : SYNTHESIS METHODS FOR GATE ARRAYS 1067

solutions. Covering takes a global view of the network. It
identifies clusters of nodes that could be combined into a
single LUT.

The most general formulation of the covering problem
for LUT’s is given in Mis-pgal [37]. Let a supernode of a
node i , Si, be a cluster of nodes consisting of i and some
nodes in the transitive fan-in of i , such that the maximum
number of inputs to Si is IC and if a node j E Si, then all
the nodes on some path from j to i are in the supernode
as well. Note that each supernode is a feasible node (the
number of inputs is less than or equal to IC by definition),
and all its nodes could be implemented by a single LUT.

There may be several supernodes associated to a node i.
The covering algorithm of [37] generates all of them.

Repeating this procedure for all nodes generates a po-
tentially large set of supernodes that can be used to cover
the original network. The optimum covering problem is
to find the smallest set of supemodes that covers all
the nodes of the network. If we did not have any other
constraints to satisfy, this problem would be a standard
NP-hard set covering problem for which good heuristics
as well as relatively fast exact algorithms are known [23].
This is not the case, however. We have to make sure that
each input to the optimum supemode set is an output of
some other supernode in the set or be a primary input.
This constraint poses a limitation in the way we choose
supernodes; choosing a particular supernode may exclude
several others from consideration.

This constraint makes the covering problem much harder:
it becomes a binate covering problem [44] for which
no generally effective heuristic or relatively fast exact
algorithms have been found. As a result, the computation
time for Mis-pgal, which employs both an exact algorithm
[33] and a heuristic, is excessive.

In [18], [50], [28] a variety of greedy heuristics are
proposed to solve the covering problem. It is interesting
to note that the computation time for these heuristics is
very short and that the quality of the final solution does
not seem to suffer too much with respect to the optimum
solution given the same initial network.

Hydra [181 examines the nodes of the network by or-
dering them by decreasing number of inputs. The nodes
with k inputs are assigned to an LUT (note that the node
may have some reconvergent path terminating in it and
that by collapsing a number of predecessors, the number of
inputs may actually decrease and allow a number of nodes
to be mapped into the same LUT; Hydra will miss this). An
unassigned node with maximum number of inputs is chosen
out of the other nodes. A second node is then chosen so
that the two nodes can be merged into the same LUT and
a cost function maximized. The cost function is a linear
combination of the number of shared inputs and the total
number of inputs. The emphasis on shared inputs is aimed
at improving the result of the subsequent merging step,
as described below. This greedy procedure stops when all
unexamined nodes have been considered.

The procedure used by Xmap [28] .traverses in a breadth
first fashion the if-then-else DAG from inputs to outputs

Fig. 8. Two functions in a CLB

and keeps a log of the number of inputs that are seen in
the paths that connect the primary inputs to the node under
consideration. If the node has more than IC inputs some
of its predecessors have to be placed in a different LUT.
These predecessors are chosen according to the number
of their inputs. The more inputs they can isolate from
the node under consideration the better. This algorithm
is very fast because of the lack of any backtracking in
the search strategy. It is also in general more powerful
than Hydra’s since it considers reconvergence. However,
it does not consider the possibility of packing two different
functions in one LUT while Hydra does.

The heuristics used in VISMAP [SO] consist of three
basic steps. In the first, the network is traversed from inputs
to outputs and supemodes are greedily identified as they are
encountered in the traversal. The network is then traversed
again and all possible clusterings in the supernodes are
examined to determine the best. This procedure identifies
fewer supernodes as compared to MIS-pgal but solves
the covering problem exhaustively and hence optimally.
However, if the number of nodes to be considered is large,
the exhaustive procedure would be too slow. The network is
therefore partitioned into subnetworks before the covering
procedure is carried out.

Merging: In all approaches, except Hydra, single out-
put functions are considered in the decomposition, local
elimination and covering steps. However, when industrial
FPGA’s are considered, the particular features of the ar-
chitectures must be taken into consideration. The purpose
of the merging step is to combine nodes that share some
inputs. Figure 8 shows two functions f and g which can be
put on the same CLB of a Xilinx 3000 FPGA.

The approaches presented in [37, 28, 501 perform a post-
processing step to merge pairs of nodes after covering. The
problem is formulated as a maximum cardinality matching
problem [37]: let G(X, E) be a graph where the set of nodes
X are nodes of the original network and where the pairs
of nodes that can be merged in one Xilinx CLB, i.e., that
have support size no larger than four and combined support
no larger than five, are adjacent. The maximum reduction
in the number of CLB’s needed to implement the network
is achieved when the largest set of disjoint adjacent pairs
are combined. This is the maximum cardinality matching

I068 PROCEEDINGS OF THE IEEE, VOL. 81, NO. 7, JULY 1993

moptimized network

1
O p t m m " n targeted for TLU archilectures

~ #of blocks

infeasible network

hmd mapping of each node

infeasible network

Partial Collapse

feasible network

Global Block Count Minimiraoon

1
opiimired feasible nelwork

Fig. 9. Flow: MIS-pga2.

problem in a nonbipartite graph. Even though a polynomial
time algorithm (in fact O(n2.')) exists for the solution of
this problem, the algorithm is fairly difficult to implement
and its running time can be long for large networks. AS
a result, heuristics are often used; [28], [50] use greedy
matching algorithms which are not guaranteed to find an
optimal solution but are very fast.

MIS-pga2: A framework for LUT-logic optimization:
Since most of the algorithms used in LUT-based synthesis
are heuristic it is very difficult, or even impossible, to
compare them in a rigorous way. Extensive experimentation
is therefore used.

Acceptable results over a fairly large number of designs
can be obtained using most of the approaches presented.
However, no single heuristic can find the best results con-
sistently across all designs. Hence, a system encompassing
several different algorithms which can be run sequentially
or independently would allow the user to customize the
synthesis approach to any particular design or architecture.

This is the approach of MIS-pga2. Figure 9 shows the
flow-chart of where an initial optimization phase is followed
by a sequence of technology mapping algorithms.

In MIS-pga2, the technology independent phase is not
strictly independent of the technology and uses a cost func-
tion that is different from the one used in MIS. The reason
is that unlike gate arrays and standard cells the number of
literals in the factored form may not approximate well the
actual implementation cost for FPGA's. A good estimate
for the cost of a particular decomposition for an FPGA
is produced by the bin-packing algorithm applied to the
nodes that are modified during the technology independent
optimization. This is practical given the speed of the bin-
packing algorithm.

In MIS, the nodes of the Boolean network are repre-
sented both in a sum-of-products form and in a factored
form. Starting the technology-based optimization with one
representation or the other does make a difference in the
final cost of the implementation. Since there is no theory
which can predict the outcome of the choice, MIS-pga2
optimizes both representations and selects the best result. A
similar brute-force approach is followed in decomposition
where no single algorithm can outperform all others in all
benchmarks.

El. GAMAL er U / . SYNTHESIS METHODS FOR GATE ARRAYS

MIS-pga2 offers four decomposition options in addition
to the two offered in MIS-pgal [Roth-Karp and split
decomposition described in Section IV-C2)]. These are:

Bin-packing. The algorithm for bin-packing used in
MIS-pga2 is the Best-Fit Decreasing heuristic that
selects the bin which has the maximum leftover
capacity after the cube has been assigned to it.* If
the cubes have disjoint support then for k 5 5 an op-
timum tree implementation is found (a similar result
was proved independently for First-Fit Decreasing in
[201).
Co-factoring decomposition. This approach, applied
only if k 2 3, is particularly effective for func-
tions where cubes share several variables. Each node
is decomposed by computing the Shannon cofactor
a f a + a'fal until the leaf nodes have support that is
no larger than k. All nodes of the network after the de-
composition (except possibly the leaf nodes) have at
most three inputs. If k 2 4, a simple post-processing
elimination step similar to the approach proposed in
Xmap may be tried to reduce the number of nodes
in the network. It is possible to give an upper bound
on the number of CLB's needed to implement the
network obtained by this simple decomposition [38].
However, this bound is exponential in the number
of inputs t of the function and hence this procedure
may not be good if t >> k.
AND/OR decomposition. This decomposition breaks
up the nodes of the network so that the resulting
network has nodes that are either inverters, two-input
AND gates or two-input OR gates which can be
packed by the covering step.
Disjoint decomposition. This decomposition is the
decomp -d option in MIS. It partitions the cubes of
the function into a set of cubes with disjoint support
and then creates a node for each partition and a node
that is the OR of the outputs of the partition nodes.
Note that since the nodes of the partition have cubes
of disjoint support, the bin-packing heuristic when
applied to the result will provide a locally optimum
decomposition. Thus disjoint decomposition could be
an effective preprocessing step for bin-packing.

MIS-pga2, local elimination is applied not only to the ._

nodes in a feasible network while maintaining feasibility,
but also to nodes in an infeasible network. This algorithm,
called partial collapse, is shown in Figure 10. It collapses
nodes of a possibly infeasible network into their fan-outs
and recomputes the cost of the network using the bin-
packing algorithm. The candidate nodes for collapsing are
chosen according to the number of inputs. The list of nodes
that result in a gain when individually collapsed is formed
and an integer programming problem is solved to select the
subset that gives the best overall gain.

8Note that MIS-pga2 doea not extract a forest of trees to perform the
mapping as Chortle-crf does. Instead, it uses the heuristic to decompose
infeasible nodes of the Boolean network.

1069

- - -

part ial-collapse (7)

{
L = list-of _candidatenodes_for_collapsing(l)) ;

foreachnodeinl, {

collapse node into its fanouts;

recompute cost of fanouts;

if 1 neu_cost(fanout) < old-cost(fanout) + cost (node) save node

1
select-subset _of _savednodesformax_gain() ;

collapseselectednodeso ;

1

Fig. 10. Partial collapse

The integer programming problem is computationally
expensive to solve but provides the best set of nodes
to collapse. If the number of nodes that yield a gain if
collapsed is large, this approach becomes computationally
infeasible. An alternate greedy approach to the problem
selects at each stage the node whose collapsing would yield
the best gain.

In MIS-pga2, covering is performed either with the exact
binate-covering algorithm if the network to cover is not too
large or otherwise with heuristics. As in MIS-pgal , merging
is carried out using the max-cardinality matching algorithm
on the covered network. Instead of applying successive
covering and merging which may yield suboptimal results
a new formulation of a combined covering-merging step as
a single, binate covering problem was suggested in [38].

Since MIS-pga is in the public domain, many researchers
have been able to use the framework and some of the
algorithms to develop their own novel approaches, thus
adding to the library of algorithms available to the FPGA
designer and tool developer.

Modi’ing the optimization steps: Several attempts have
been made to target the optimization steps to LUT-based
FPGA architectures.

In MIS-pga2 the cost function in kernel extraction was
changed.
Fujita and Matsunaga [22] modified the simplification
step to better suit LUT-based architectures. Whereas
in the standard simplification step, a minimal repre-
sentation of the function at each node is sought, in
the modified simplification step in [22], the target is
to minimize the support of each node of the network.
Each node 7~ is now simplified as follows. First, candi-
date nodes are selected which may be used for fan-ins
of n. Characteristic functions of n and of the candidate
nodes are computed. From these, sets of minimal
supports for 71 are computed using the algorithm of
Halatsis and Gaintans [25]. Finally, the irredundant
cover for R is computed using a minimal support. The
algorithm allows use of don’t care sets. After this step,
any LUT technology mapper may be used.

C. Comparisons and Observations In Table 1, we present
results of MIS-pga2, Chortle-crf, and Xmap. The starting

Table 1
Number of Five-Input LUT Blocks; t

Number of Five-Input Single-Output LUT Blocks: R
Run Time in Seconds.

example

z4ml
misexl

5xp 1
count
9symml
9sym
apex7
rd84
e64
(2880
apex2
alu2
duke2
c499
rot
apex6
a h 4
apex4
des
sa02
rd73
misex2
f51m
clip
bw
h9

vg2

MIS-pga2
n
5

11
20
18
31
7
7

60
10
80
82
67

109
110
68

181
182
55

412l
904

28
6

28
17
28
28
39

- -

__

t
5.0
2.7
7.4

22.4
5.8

127.2
339.7

18.7
73.7
14.7

546.8
388.5
773.8
203.7

1074.4
282.1
243.9
887.5
198.7

3186.3
41.9
24.0
3.4

14.4
58.4
17.3
27.6

Chort le- crf
n
7

11
21
28
31
44
59
60
35
80
88
64

116
111
89

188
198
70

579
927
27
16
28
27
31
39
41

- - t
0.1
0.1
0.1
0.4
0.3
6.4

12.8
0.6
1.3
0.3
2.2
2.9
7.1
1.7
2.6
2.7
2.9
2.5

98.9
35.4

0.5
0.3
0.1
0.4
0.7
0.3
0.4

Xmar,
n
9

11
24
31
31
55
73
65
36
80

103
81

126
127
75

212
231
98

664
1042

37
21
28
33
38
43
48

- -
__

2

0.2
0.2
0.2
0.3
0.2
0.4
0.5
0.5
0.4
0.5
0.8
0.7
0.9
0.8
0.5
1.4
1.6
0.7
6.4
6.8
0.4
0.1
0.2
0.3
0.3
0.3
0.4

__ -

‘Modified kernel extraction and partial collapse could not finish so a faster
script was used.

networks are the same, except that we had to run decomp
-g on the starting network before running Chortle-crf;
otherwise Chortle-crf does not complete on many examples
in reasonable time. These networks were obtained by re-
peatedly running several MIS scripts until no improvement
was obtained and then picking the best result. MIS-pga2 and
Chortle-crf were run on a DEC5500 (a 28 mips machine).
Xmap was run on a SUN4/370 (a 12.5 mips machine). The
table shows the number of jive-input single-output LUT’s

1070 PROCEEDINGS OF THE IEEE, VOL. 81, NO. 7, JULY 1993

Table 2 Number of Two-Output Xilinx CLB’s

example I MIS-pga2
z4ml 4

Chortle-crf
4

niisex 1
vF3
5xp 1
count
9symml
9sym
apex7
rd84
e64
C880
apex2
a1112
duke2
c499
rot
apex6
a1114
apex4
des
sa02
rd73
misex2
f5lm
clip
bw
b9

9
18
13
30
7
7

43
9

56
72
60
96
94
66

143
165
49

37 1

28
5

25
15
23
27
32

2

9
20
22
31
38
51
47
28
48
75
53
94
83
83

133
161
63

479
707
26
15
21
25
25
31
30

Xrriap
7
9

19
20
22
38
52
50
28
55
79
60
89
83
57

146
182
76

475
674

28
13
23
22
24
29
39

Hydra I VISMAP’
4
9

21
22
24
37
66
44
29
47
72
69
88
81
63

145
165
145
503
70 1

37
13
21
17
27
29
36

4
9

20
19

46
50
46
42

76

93
49

137
155

32
14
22

27

xnfopt
5

10
19
22
25
50
54
49
36
62

113
94
85

107
81

230
159
161
560
97 1

50
23
24
25
35
38
29

‘The starting networks were obtained by running the MIS script once and may differ from those used for other systems
2Merge could not finish.

needed to implement the benchmark and the time taken (in
sec.) in columns n and r respectively.

The following must be noted before comparing the
results:

1) The results are sensitive to the starting networks
used. Hence some of the results cannot be directly
compared. However, some systems such as MIS-
pga2 attempt to target the optimization to LUT-based
architectures.

2) An implementation with smaller number of LUT’s is
not necessarily more routable.

Interestingly, on benchmarks Sxpl , 9sym, rd84, C499,
apex4, rd73, f 5 l m and bw, MIS-pga2 performs much better
than other systems. Part of the reason is that some of
these circuits are symmetric and, therefore, the Roth-Karp
decomposition works very well. Also, exact covering tech-
niques can be applied on some of the small benchmarks to
obtain significant improvements. However, the time taken
by Chortle-crf and Xmap is much less than MIS-pga2.

The results for two-output Xilinx 3000 CLB’s are pre-
sented in Table 2. The results for MIS-pga2, Chortle-crf,
Xmap, Hydra, VISMAP and xnfopt (the proprietary system
from Xilinx [52]) are compared. A “-” in the VISMAP
column indicates that the results were not available. The
starting networks for all systems (except VISMAP) are

the same. For xnfopt, the number of passes for each
example was set to 10. However, for C499, rot, des, C531.5
and C880, an interrupt was externally generated after 8
passes since xnfopt was taking too much time. MIS-pga2
outperforms Chortle-crf, Xmap and Hydra by 15.6 %,
16.9% and 16.9% respectively.’

Note that MIS-pga2, Chortle-crf, Xmap and VISMAP
exploit the two-output feature in a post-processing step,
whereas Hydra targets mapping from the very beginning
for two outputs.

Comparing the number of two-output LUT’s with the
number of single output LUT’s for each system, Xmap gets
significant improvements. One reason is that Xmap uses a
cofactoring technique which generates nodes with at most
three fan-ins. The possibilities for merging are much higher.
MIS-pga2 does not do as well, because it works too hard
on minimizing the number of single output LUT’s, which
may not be good for merging.
D. Synthesis for Routability The algorithms presented in

the previous sections are primarily concerned with mini-
mizing the number of LUT’s needed to implement a given
logic function. In the most popular LUT-based FPGA,
wiring resources are scarce and as a result a logic function
requiring far fewer blocks than available on a single FPGA

9We did not consider des in this set of results, since merge could not
finish.

EL GAMAL er al.: SYNTHESIS METHODS FOR GATE ARRAYS 1071

may not be routable." Hence routability should be carefully
considered as a cost function in optimization. However, it is
difficult to predict at the logic synthesis stage what routing
resources will be needed.

To establish a link between logic synthesis and layout,
a correspondence between nodes in the Boolean network
and cells in the layout is assumed [I], [40]. In this case,
the physical implementation has a close resemblance to
the topology of the Boolean network in that inputs to the
nodes are signals to be routed on the final chip. If the
signal sources are fixed (for example, if the pad positions
are predetermined) then it makes sense to manipulate the
network so that signals arrive to the nodes in an order that
is consistent with their positions on the chip. This order is
called lexicographical order in [I].

In [41], the nodes of the Boolean network are placed
in the two dimensional plane with algorithms that are
approximate versions of the ones used in actual placement.
In this case, wiring area and length can be estimated with
better accuracy by considering the nodes of the Boolean
networks as physical blocks and the edges in the Boolean
network as interconnections.

However, the results reported in [40] for technology
independent logic synthesis and technology mapping with
layout considerations are not as good as one would expect.
The average improvements are of the order of a few
percents over the standard approach that does not take
layout into direct consideration. Contrastingly, in [48] it is
claimed that significantly better area is achieved after layout
than with other approaches where the link with layout is
not as explicit.

In the case of LUT-based FPGA's, several algorithms
attempt to minimize the needed wiring. For example, the
cost functions used by MIS-pga and VISMAP take wiring
into account by penalizing the creation of additional signals
while operating on the network.

Synthesis for routability is an area where more research is
needed both for FPGA's as well as for more conventional
ASICs.

E. Per$ormunce Optimization Given the high performance
requirements of system designs and the added delays due
to the programmability of FPGA's, timing optimization is
a very important goal of logic synthesis. It is important to
note that minimizing area, which is the most common goal
of today's synthesis tools, may result in slow implemen-
tations. Much research has been done on logic synthesis
for timing optimization and its relationship with testability

Delay in a circuit is due to delays in gates and inter-
connects. For mask-programmed design styles implemented
in older technologies (above 1 micron), delay is mostly
due to logic gates while interconnect delay is negligible.
However, for submicron technologies, and for FPGA's,
interconnect delays are at least as large as the delays in

(e.g., [14l, [491, [451).

'"Taking layout into account while performing logic synthesis is im-
portant also in other ASIC technologies, since for large sea-of-gates and
standard cell designs wiring area is often largerthan the area occupied by
logic macros.

the logic blocks. For example, for LUT-based FPGA's that
use pass transistors as switching elements, the delay of a
signal through general purpose interconnect could be much
larger than that through one logic block.

There are three basic approaches to synthesis for perfor-
mance optimization:

Delay optimization is equated to minimizing the depth
in the network [21], [I l l .
The delay of the circuit is approximated by a com-
bination of block delay and interconnect delay. Inter-
connect delay is estimated as a function of number of
levels, nodes, and edges in the network [39].
Critical path analysis with a (possibly simplified) delay
model [39] is performed on a placed circuit. In this
approach, logic optimization and actual layout are
performed in concert.

The first approach is certainly faster. The number of
levels in a circuit correlates with the performance of the
circuit particularly well when the delay is mostly due
to block delays. The third approach is more accurate
but is potentially computationally inefficient due to the
complexity of the mixed layout-synthesis algorithms used.
The second approach is a compromise between the need
for better accuracy and compute-time requirements.

Reducing the number of levels: The approach devel-
oped in [21] is a variation on the basic algorithm of
Chortle-crf. The bin-packing algorithm is still used but here
the cost function optimized is not the number of LUT's
but the number of levels of logic. Assuming that the delay
is entirely due to the logic blocks, minimizing this cost
function corresponds to minimizing the delays of all paths
in the circuit. Unfortunately, the number of LUT's tends to
grow large when minimizing all paths. For this reason a post
processing step that reduces the number of LUT's without
increasing the delay of the circuit has been proposed in [21].
Minimizing the delay of all paths is in general an overkill
since the performance of the circuit depends only on the
critical paths." The critical paths are usually not known a
priori, however.

The procedure starts as in Chortle-crf with a network
that has been AND/OR decomposed and then split into
trees. For each tree, the nodes are grouped according to
their levels. Primary inputs are assigned level 0. A node is
at level D if the highest level node among its fan-ins is at
level D - 1. Nodes at the same level are grouped into a
set called stratum. The first-fit decreasing algorithm is then
applied to minimize the number of LUT's in each stratum.

After all strata have been processed, the outputs of the
LUT's at level D are connected to the available inputs of
LUT's at level D + 1. If the number of available inputs
is not sufficient, a new LUT is added at level D + 1.
This algorithm is guaranteed to find the minimum depth
implementation of the tree if k 5 6. Otherwise, it may
produce a suboptimal solution [21].

" A critical path in a directed acyclic graph (DAG) is a path from the
primary inputs to the primary outputs of maximum length, i.e., maximum
number of levels.

1072 PROCEEDlNGS OF THE IEEE, VOL. 81. NO 7. JULY 1993

Reconvergent fan-outs are taken into account in the
optimization process with a heuristic that is essentially the
same as the one proposed in Chortle-crf.

A postprocessor finds the critical paths of the circuit
and the network is processed to minimize the number of
LUT's but with the constraint that the length of the critical
paths must remain the same. First the area minimization of
Chortle-crf is applied to the network. The algorithm may
change the length of the critical path. To avoid an increase
in estimated delay, all paths that have length larger than the
critical path in the original network are re-processed using
the algorithm for the number of levels described above.
The procedure is iterated until all paths meet the target
delay constraint.

The procedure has been observed to yield circuits that
have 35% fewer levels than Chortle-crf but with 59% more
LUT's.

Another approach to timing optimization, dag-map [111,
follows the clustering algorithm by Lawler et al. [30]. The
network is first mapped into a network of two-input NAND
gates as in MIS, but with an improved algorithm that guar-
antees that the number of levels in the transformed circuit
is within a constant of the number of levels in the original
circuit. A clustering algorithm is then applied which labels
nodes of the network beginning with the primary inputs and
ending with the primary outputs. Primary inputs are labeled
0. A label is assigned to a node, v, after all its inputs have
been labeled. Let input(V) be the set of input nodes to the
set of nodes V . Let Np(v) be the set of predecessors of v
with label p . Then if

the node v is labeled p , otherwise p + 1.
After all nodes are labeled, a backtrack phase begins

where nodes are assigned to k-input LU's. This phase
begins with the primary outputs which are placed in a
queue. For each node in the queue, the node and all nodes
that have the same label are assigned to an LUT. The node
is then deleted from the queue and the set of nodes that are
inputs to the nodes placed in the LUT are now added to the
queue. The phase ends when only primary inputs remain
in the queue.

Dag-map operates on the network without decomposing
it into trees. If the starting network happens to be a tree, it
is optimal. Also it may replicate nodes in order to achieve a
lower number of levels. However, the replication in many
cases could be too much.

Approximating the delay with layout information: MIS-
pga2 [38] attempts to find an implementation that meets
a set of timing constraints and uses the minimum number
of LUT's. The timing constraints are given in terms of
required arrival times at the primary outputs. Arrival times
are provided for the primary inputs. Given delays on the
LUT's and an estimate of interconnect delays, the network
can be traced to determine the critical paths. The trace has
a forward pass where the arrival times of all the signals are
found and a backward pass where the required times of all
signals are computed. The difference between the required

time and the arrival time is the slack of a node. In this
formulation of the delay optimization problem, a negative
slack corresponds to a circuit that does not satisfy the
timing requirements. Hence, the delay reducing operations
are applied to the path where negative slacks are found.
Note that if all slacks are nonnegative the circuit meets the
timing constraints and no timing optimization is needed. If
indeed the fastest circuit is desired, then the required times
at the outputs can be tightened until no feasible solution is
found. This strategy can be implemented by optimizing the
path with minimum slack.

The starting point for MIS-pga2 in delay mode is a
network where technology independent timing optimization
has been carried out using the standard MIS script. Note
that the network is in terms of two-input gates and hence
is feasible.

The optimization in MIS-pga2 is divided into two basic
approaches :

A placement independent approach, where the opti-
mizations are all performed at the logic level and a
rough estimate of the interconnect delay is used;
A placement dependent approach where synthesis
driven placement using simulated annealing is per-
formed. Here the interconnect delay estimate is
accurate.
Placement independent (PI) optimization: In this ap-

proach, the placement and routing phase is considered to
be a stochastic process. An LUT-based FPGA is modeled
as a square grid where the nodes of the grid correspond to
the LUT locations, and the classical results of Donath [151
on average wiring length La, as a function of number of
blocks to be placed on the grid and their interconnections
can be used. Donath's theory estimated the average wiring
length to be

where V is the set of LUT's (nodes of the Boolean network)
to be placed and E is the set of edges in the network. The
empirical delay formula is then given as:

Delay = XC + (aL2 + bL + c) (29)

where X is the delay of a CLB, C is the number of levels
in the network and L = log(&,). This formula has been
derived empirically by mapping a fairly large number of
examples with Xilinx placement and routing tools and then
fitting the data. The parameters in the delay equation, a, b ,
and c, are used to tune the equation. The delay equation is
used to evaluate the performance of a circuit in place of
the cruder estimate based on the number of logic levels.

The overall algorithm has the following form. For each
node in the critical path, it tries to collapse the node into
its fan-outs. The elimination is then accepted if the node
so obtained is feasible, or if it is not feasible, but can be
redecomposed so that the delay estimate decreases.

Placement driven (PD) logic resynthesis: A more accu-
rate estimate of the delay of the circuit can be achieved

EL GAMAL et al.: SYNTHESIS METHODS FOR GATE ARRAYS 1073

after placement. However, in the standard flow of synthesis-
based design, placement is performed after logic synthesis
is completed and hence there is no feedback from place-
ment to logic synthesis. The placement-dependent approach
proposed in MIS-pga2 starts from an optimized feasible
network obtained by the previous placement-independent
approach.

The placement problem is formulated as assigning loca-
tions to point modules on an n by n grid (in the Xilinx
XC3000 series, 7~ can take values from eight to 18). This
problem is solved using simulated annealing. The difference
from the standard simulated annealing algorithm is in the
resynthesis step. At the end of the iterations at each tem-
perature below a threshold, critical sections are identified.
Logic synthesis and force directed placement techniques
are used to restructure and reposition these sections. The
logic synthesis techniques used are decomposition and
partial collapse. These techniques are local; i.e., only the
neighborhood of a critical section is explored for a better
solution. The algorithm is summarized by the pseudo-code
in Fig. 1 1 .

The cost function is also particularly tuned for the prob-
lem at hand,

where 1 is the total estimated net length, d is the estimated
delay and P(T) E [0,1] is a temperature-varying parameter
monotonically decreasing with T , which gives more weight
to total net length at higher temperatures and more weight
to delay at lower temperatures. The form of P(T) was
determined experimentally. The delay estimate is performed
using two models, the Elmore model [161 and the Penfield-
Rubinstein model [43]. The choice of the model to use is
left to the user. The Penfield-Rubinstein model is in general
more accurate but more expensive to compute. In any case,
since many moves are in general attempted by simulated
annealing, the actual delay calculation when a move is
evaluated is camed out with the Elmore model. The delay
calculation is performed with the Penfield-Rubinstein model
only if the move is accepted.

Before entering a new simulated annealing inner loop,
a placement of the resynthesized part of the network is
camed out. The placement algorithm used is a simple force-
directed algorithm that finds a good position for the blocks
of the circuit affected by the local resynthesis procedure.
The positions of all the other blocks of the network are not
changed. Note that the number of blocks may increase as
a result of the resynthesis step. However, the capacity of
the chip is never exceeded.

Comparisons and observations: Results on the use of
MIS-pga2, Chortle-d and dag-map to optimize performance
are reported in this section. First the benchmarks were
optimized for area. Then a delay reduction script was
used to obtain delay optimized networks in terms of two-
input NAND gates. In Table 3, results after the placement
independent optimization phase of MIS-pga2 (column PI)

/* a = temp f a c t o r (a < 1) ; T = cur ren t temperature;

= s t a r t i n g temperature f o r l o g i c syn thes i s ;

m = number of moves per temperature; */

{
T = star t - temp;

while (T > final-temp) {

j = 0 ;

while (j < m) {

ge t two random l o c a t i o n s f o r swap;

eva lua te Ac, change i n c o s t ;

accept swap with p r o b a b i l i t y e - y) ;

i f swap accepted, do delay t r a c e ;

b C

jt+ ;

1
i f (T < Z) do l o g i c r e s y n t h e s i s and

replacement f o r de l ay ;

T = T * a ;

}

1
Fig. 11. Simulated annealing for placement and resynthesis.

and Chortle-d are reported, using the same starting networks
for both programs. We set IC to 5. We are restricting
ourselves to single output LUT’s. The results for dag-
map are taken from [I l l and the starting networks are
not the same as those for the other two systems. For each
example, we report the number of levels, nodes, edges and
the CPU time (in sec.) on a DEC5500 (a 28 mips machine)
in the columns lev, nodes, edges and t respectively. Out
of 27 benchmarks, MIS-pga2 generates fewer levels on 9
and more on 13. On average (computed as the arithmetic
mean of the percentage improvements for each example),
MIS-pga2 needed 2.9% more levels. The number of blocks
and the number of edges it needed are 58.7% and 66.2%
respectively, of those for Chortle-d.’* As shown later, the
number of nodes and edges may play a significant role
in determining delay of a network. However, Chortle-d is
much faster than MIS-pga2.

A direct comparison with dag-map is not possible since
it uses different starting networks. However, dag-map pro-
duces fewer levels on many circuits, sometimes at the
expense of higher LUT count.

The starting networks for placement are obtained from
the level reduction algorithms. Two sets of experiments
were reported in [38]:

1) map: Place and route the network using apr, the
Xilinx placement and routing system. This is done for the
networks obtained after MIS-pga2 PI phase and for those
after Chortle-d.

2) xln-p: On the networks obtained after MIS-pga2
PI phase, perform a timing-driven placement using the

12A more recent version of Chortle-d has a post-processing stage to
reduce the number of blocks without increasing the number of levels in
the circuit.

I074 PROCEEDINGS OF THE IEEE. VOL. 81. NO. 7, JULY 1993

Table 3
Feasible Network; edges

Results for Level Reduction: lev Number of Levels in the Feasible Network; nodes Number of Nodes in the
number of Edges in the Feasible Network; and t Run Time in Seconds

0.1
0.1
0.1
0.1
0.1
0.1
0.2
0.2
0.2
0.6
0.9
0.2
0.7
0.4
1.8
1.0
0.8
0.3
0.1
0.1
0.1
0.1
0.1
2.6
0.1
9.2
3.6

example

z4ml
misexl
vg2
5xpl
count
9symml
9sym
apex7
rd84
e64
C880
apex2
alu2
duke2
c499
rot
apex6
alu4
sa02
rd73
misex2
f51m
clip
bw
b9
des
C5315

II

3
2
3
3
3
5
5
5
4
3
8
5
9
4
5
6
5

10
-
-
-
-
-
-
-

6
-

II

2.1
1.7
1.7
3.5
5.1
9.9

15.2
8.4
9.8

15.7
39.0
9.8

42.6
16.4
58.8
50.0

3
3
3
4
3
4
5
4
4
4
7
5
8
4
6
6

edges

42
71

165
88

336
35
35

383
61

857
1070
481
543
685
896

1312
1209
648
189
36

160
100
219
138
199

6159
2826

2
2
4
2
4
3
3
4
3
5
9
6
6
6
8
7
5

11
5
2
3
4
4
1
3

11
10

II

10
17
39
21
81

7
7

95
13

212
259
116
122
164
199
322
274
155
45
8

37
23
54
28
47

1397
643

t I1 lev

3.7
8.3
2.3

937.8
282.2

nodes
20
25
54
29

102
76

130
131
69

356
383
165
316
248
436
439
36 1
194
58
52
52
65
83
28
62

3024
1221

edges

74
99

206
115
368
273
477
452
268

1236
1437
578

1189
863

1736
1608
1360
710
220
183
188
237
281
138
225

10928
4509

map’
nodes

17
17
42
28
87
61
63
94
48

167
246
164
199
195
204
328
284
303

1480

IThe starting networks were obtained by running an MIS script and then speed-up and (may) differ from those used for the other two systems.

placement-dependent algorithm. The logic synthesis phase
is entered once at each temperature. The resulting
placement is routed using apr (with its placement phase
disabled). The routing tool is instructed to route more
critical nets first, as determined by the slacks computed
for each edge.

The results of these experiments fhr placement, resynthe-
sis and routing are shown in Table 4. The table shows the
delay through the circuits in nanoseconds after placement
and routing. Only benchmarks that were successfully placed
and routed on a Xilinx FPGA are shown. The second and
third columns give the delays for the designs synthesized
using MIS-pga2 PI and Chortle-d respectively. The fourth
column refers to the set of experiments x l n p for MIS-pga2
PI. The delay numbers in the table are computed from the
placement and routing information generated by apr. This
information gives the length of each net in the layout. map
(MIS-pga2) gives lower delay than map (Chortle-d) on the
majority of the examples. More interestingly, we can study
the effect of the number of nodes and edges on the delay.
For example, although the number of levels in count is 3
for Chortle-d and 4 for MIS-pga2 (Table 3), the map delay
through the circuit for Chortle-d is 3 ns more than MIS-
pga2. Note that the block delay and hence delay of a level

is 9 ns.’* Smaller numbers of nodes and edges obtained
by MIS-pga2 (PI) help in offsetting the level advantage
of Chortle-d by 6 ns. In fact, the x l n p option makes the
difference even larger. For vg2, duke2 and misex2, the map
delays for MIS-pga2 are higher than those for Chortle-d, but
the difference in delays is less than 9 (difference in levels).

Experimental results involving synthesis with placement
and routing for the Xilinx FPGA show that the delay
optimization performed with the statistical approach gives
good results, while surprisingly, the placement-dependent
algorithm only occasionally improves the results and by no
more than 10%. In addition, the results demonstrate that
the number of levels is not an accurate measure of the
delay of the circuit (although it is important in reducing the
delay). In fact, at the expense of extra CPU time, MIS-pga2
in general achieves better delay than Chortle-d with fewer
CLB’s and edges but overall more levels.

The disappointing results of the placement-dependent
approach are consistent with the unexciting results obtained
by combined synthesis and placement in more traditional
ASIC styles [41], [40]. These results are counter-intuitive
and leads us to believe that much work remains to be done
to couple synthesis and layout in a more effective way.

l 2 Speed grade -70 is used.

EL CAMAL er al.: SYNTHESIS METHODS FOR GATE ARRAYS 1075

I I

Table 4
upr after Running Chortle-d; and x l n g

Delays of Placed and Routed Designs: map (MIS-pga2) Using apr after Running MIS-pga2 PI Phase; map (Chortle-d) Using
Using Just the Routing of apr after Running MIS-pga2 PI and PD phases

z41d
example I map (MIS-p.ga2) , -~ - - I

33.60
rnisexl
vg2
5xp 1
count
9symml
9sym
apex7
rd84
apex2
duke2
alu4
sa02
rd73
misex2
f51m
clip

33.10
82.90
33.60
88.40
54.00
53.70
97.75
50.70

147.43
125.13
256.35
104.00
33.60
53.80
72.60
81.10

map (Chortle-d)
56.00
58.00
76.40
77.40
91.88
84.10

110.40
108.00
77.80

134.30
114.70
230.68
82.30
85.00
47.80

107.50
84.10

'Two nets could not be routed.

v. LOGIC SYNTHESIS FOR MULTIPLEXER-BASED
ARCHITECTURES

A. Introduction
Multiplexer-based (MUX-based) FPGA architectures use

logic blocks that are combinations of a number of mul-
tiplexers and possibly a few additional logic gates such
as AND's and/or ORss. Programming is achieved by pro-
grammable switches that may connect the inputs of the
block to signals coming from other blocks or to the con-
stants 0- or 1, or that may bridge together some of these
inputs. In Fig. 12, the ACT-1 and ACT-2 logic modules
are illustrated. Note that there are three multiplexers and
an OR gate in ACT-1 and three multiplexers, an OR gate
and an AND gate in ACT-2.

These logic blocks can implement a fairly large number
of logic functions. For example, for the ACT-I module,
shown in Fig. 12, all two-input functions, most three-input
functions [27] and several functions with more inputs (the
maximum number of inputs to the logic block is eight)
can be implemented. However, some of these functions are
equivalent in the sense that they only differ by permutation
of their inputs. In [34], 702 unique functions for ACT-1
and 766 for ACT-2 were counted.

The recently introduced QuickLogic architecture uses a
more complex logic block allowing the inputs to the first
level multiplexers to come from AND gates with inverted
and noninverted inputs, thereby providing programmable
inversion for the multiplexer inputs [42]. Since this ar-
chitecture has been only recently disclosed an analysis of
its power in terms of the number of functions that can be
generated is not available at this time.

As in the case of LUT-based architectures, the number of
blocks, the logic functions that these blocks can implement
and the wiring resources are the main constraints. And
similarly, the architecture-specific mapping also starts with

x l n p
3 1 .OO
36.20
76.30
35.90
79.02
53.50
53.50
93.90
54.30

142.50
151.83

96.00
31.00
53.70
76.60
84.60

1

AND

'I
ACT- 1 ACT-2

Fig. 12. Actel architectures

a network that has been optimized by the technology-
independent operations.

We first present the most straightforward library-based
approach and then review the more complex architecture-
specific approaches.

B. Library-Based Technology Mapping
A library is created which has gates that represent all the

functions obtained from the multiplexer-based logic block
either by tying inputs to constants or by bridging some of
them. Efficient algorithms that use BDD's can produce all
nonequivalent f u n c t i o n ~ ' ~ implemented by a MUX-based
block in a fairly short time. However, the number of library
functions may be large, although not as large as in the
case of LUT-based architectures (706 for the ACT-1 as
compared with 90 14 for a four-input+ne-output LUT).

Technology mapping algorithms based on dynamic pro-
gramming are quite effective for libraries with one or two
hundred gates, but are considered too slow for significantly
larger libraries. Library reduction techniques are therefore

several are equivalent and hence they need not be enumerated.
13The number of functions that can be implemented is very large, but

1076

I r -
PROCEEDINGS OF THE IEEE. VOL. S I , NO. 7 , JULY 1993

applied to reduce the number of gates. The least frequently
used gates are removed. At Texas Instruments, the 766 gates
of ACT-2 were reduced to 115 [34]. Experimental results
showed a certain insensitivity with respect to the size of
the library [34]. However, we believe that such reduction
may impede significant optimizations.

An advantage of library-based mapping is that it is com-
pletely insensitive to changes in the logic block architecture.
The only change that needs to be made is the creation of
a new library. In addition, the same tool could be used for
other target technologies.

C. Direct Approaches
In direct approaches no library is generated. The mapping

is performed directly onto the logic blocks.
All proposed direct approaches for MUX-based archi-

tecture are quite similar [37], [17], [27], [35] and are not
as different from the standard library-based approach as the
direct approaches discussed earlier for LUT-based architec-
tures. Since a BDD is simply a network of multiplexers and
given the wealth of existing algorithms for manipulating
and optimizing BDD’s, BDD’s have been used as the basis
of most proposed direct approaches.

I) Using BDD’s: The MIS-pgal Approach
Overview: In MIS-pgal [37], the dynamic program-

ming approach to technology mapping is extended to pat-
tern graphs and subject graphs described in terms of two-
to-one multiplexers (BDD’s) instead of two-input NAND
gates.

The first step in this procedure is to represent each
node function of the network with a BDD. As in standard
technology mapping, the BDD is reduced to a forest of trees
and then each tree is mapped.

If the structure of the logic block consists only of two-to-
one multiplexers, then only a few pattern graphs are needed
to characterize the ‘‘library’’ fully. For example only four
patterns suffice for describing the simplified structure of
the ACT-I logic block where the OR feeding the output
multiplexer has been removed. For more complex blocks,
taking into consideration the nonhomogeneous structure
can yield a larger set of pattern graphs (though never as
large as the ones needed for the standard library approach
described above), some of which are unusable by the
dynamic programming approach since they are not trees.
Thus a reduced set of patterns is used; in MIS-pgal only
eight patterns are considered. Covering of the subject-graph
by patterns is done using dynamic programming. After an
initial mapping, an iterative improvement phase is used.
It consists of three main operations: partial collapsing,
decomposition and phase assignment.

Building the B D D for the Subject Graph: It would be
possible to build a BDD for the entire network in terms
of its primary inputs. However, such a BDD may be very
inefficient as a starting point for implementation since the
structure of the initial network obtained by technology
independent optimization would be lost. In addition, there
may be cases for which a BDD is too large. For these

reasons, the BDD’s are only built for the functions stored
at each node.

Two representations are actually used for each node: the
reduced-ordered BDD and the BDD. It is well known that
the size of the ROBDD for a function depends strongly on
the ordering of the inputs. Since the problem of finding the
optimum ordering is NP-complete, heuristics are used for
this task. However, if a node function has only a few vari-
ables, it is worthwhile to generate exhaustively all orderings
and choose the best, since the size of the representation is
directly related to the size of the implementation.

To allow the implementation of this strategy, a decom-
position step is performed first on the network to force
all nodes to have at most IC inputs (in MIS-pgal, the best
value of IC is found to be between 3 and 6). Note that this is
similar to the LUT problem and in fact a similar sequence
of algorithms for decomposition is tried.

There are some drawbacks for this procedure:
1) The limitation on the number of inputs is artificial.
2) The input ordering constraint imposed by the ROBDD

may be too severe and may yield a poor result.
3) Nodes in the ROBDD may have multiple parents, and

so the tree decomposition may yield many small trees
thus reducing the power of the dynamic programming
approach.

An alternative is to use BDD’s where the sequence of
variables in the graph is not forced to be the same for all
vertices of the BDD. The goal in constructing these BDD’s
is to minimize the number of nodes as well as the number of
nodes with multiple parents. This second goal is important
to offer the maximum degree of freedom to the dynamic
programming approach.

The algorithm for building the BDDs uses Shannon
cofactoring repeatedly until all leaf functions are unate.I4 A
minimum cover problem is then solved to find a good fac-
tored form representation of the unate function with respect
to the architecture. This is in tune with the general strategy
followed in logic minimization [7] where a generic function
is decomposed with the Shannon cofactoring operation until
a unate function is reached. In both cases, the variables for
the cofactoring operations are chosen so that the leaves
become unate quickly.

While this procedure remedies some of the drawbacks
for ROBDD’s mentioned above, it too has drawbacks. For
example, there may be duplications in the branches of the
BDD that would not have appeared in the ROBDD. Since
it is not possible to tell a priori which representation yields
the best result, in MIS-pgal both are tried and the best
result is selected.

Covering is performed on the forest of trees using
dynamic programming. If the logic block is the simplified
version of ACT-I shown in Fig. 13, it can be proved that
the four pattern graphs shown in Fig. 14 yield the optimum
matching in a selected number of cases [37].

I4A logic function is unate in a variable .I‘ if it depends only on .r or
its complement but not both. A function is mate if it is unate in all its
variables.

EL GAMAL er d.: SYNTHESIS METHODS FOR GATE ARRAYS 1077

STRUCTI

Fig. 13. Simplified ACT-I architecture.

.

Fig. 14. Pattem graphs for MIS-pgal.

For the ACT-1 module, a set of eight pattern-graphs is
sufficient, given that the subject-graph has no restriction on
the number of times a variable may appear on the path from
the root to a leaf node, and the covering procedure is exact.
Note that if we use the cofactoring technique in constructing
the subject-graph (which is the case with BDD’s), this set of
pattern-graphs is not sufficient. In fact, there are functions
which can be realized with one ACT- 1 module, but a BDD-
based procedure will always use more than one module.
One such function is f = (a+b)(a’c+ab)+a’b’(lcl+lc’m)
Wl.

Iterative improvement: Since the algorithms used in
the dynamic programming algorithm and in building the
BDD representation are local in nature (the subject graph
is broken into a forest of trees), an iterative improvement
phase is used to improve the final results. The strategy used
.in MIS-pgal is shown in Fig. 15.

The algorithm used in partial collapse is the same as in
the case of LUT-based architectures in MIS-pga2 (see Fig.
10).

The decomposition phase selects nodes that have a fairly
large number of fan-ins and decomposes them using the
same approach as for LUT-based FPGA’s. Only decompo-
sitions that reduce the cost are accepted.

The phase assignment algorithm operates on one node
at a time and greedily selects the least cost polarity of the
function associated with the node.

2) The Amap Approach: Karplus [27] proposed a quick
algorithm that carries out a technology mapping into MUX-
based architectures by mapping the network into if-then-
else DAG’S.

Here, the selector function at each vertex can be a
function of inputs, rather than being only an input. When
compared to BDDs this results in more freedom in the
mapping phase. In addition, when this representation is built
from a sum-of-products form by the cofactoring procedure,
duplicate cubes are avoided. In the ITE representation, the

iterativeimprovement(7) /* 7 is a network */

repeat {

partialxollapse(7);

decomposenodes(7) ;

} (until satisfied or no further improvement);

phase-assignment(0) ;

1

Fig. 15. Iterative improvement.

if vertex corresponds to the select line of the multiplexer.
The then and else children correspond to the branches taken
when the ifchild evaluates to 1 and 0 respectively and are
mapped to the inputs of the multiplexer.

Amap creates the ITE DAG and then preprocesses it to
find an initial good local form for the mapping. In particular,
single literal inputs are commuted to bring them to the if
part so that the OR function of the ACT-1 module is better
utilized. A quick phase assignment is also performed.

After this preprocessing, the final covering is carried out
in a single pass with a greedy procedure. The procedure
has to tradeoff the advantage of placing as much of the
subject DAG as possible into a block and the disadvantage
of hiding a signal that feeds several blocks. In the latter
case, logic must be replicated and a larger implementation
may result. In fact, if a signal that is shared by a number
of vertices is not hidden in all the fan-outs, it has to be the
output of a block. Thus pushing logic into a block would
not provide any saving in this case.

The nodes of the ITE DAG are processed in a top-down
fashion, starting from the primary outputs. Each node is
then mapped into the output multiplexer of the ACT-1
architecture. In doing so. the use of the OR gate in the
select input is made as efficient as possible. The then and
the else children are then mapped to the input multiplexers.
These multiplexers may not be fully utilized and may in fact
be used merely as buffers if the variables corresponding to
the then and the else children are already implemented or if
they have high fan-out (in Amap a high fan-out is a fan-out
of three or more).

After the mapping to the input multiplexers has been
done, the output multiplexer is revisited to see whether a
more compact representation exists by exploiting the actual
function implemented by the block.

The entire procedure is recursively applied until all nodes
are either primary inputs or they have been implemented in
some block.

Since only a single pass is performed on the ITE DAG
and the mapping is carried out locally, the algorithm is fast.
The experimental results presented in [27] show that not
much is lost with respect to the more complex optimization
procedures of MIS-pgal in terms of quality.

3) The Proserpine Approach: This approach follows the
same general structure of the technology mapping al-
gorithms of MIS and Ceres [31]. First, the network is
partitioned into multiple trees, and the nodes of the network

I078 PROCEEDINGS OF THE IEEE, VOL. 81. NO. 7 , JULY 1993

are decomposed into two-input AND/OR gates to maximize
the granularity of the network and to offer more freedom
to the dynamic programming algorithm.

The basic difference lies in the way matching is per-
formed. The algorithm does not require the explicit rep-
resentation of the pattern graphs. Instead, it requires the
representation of the “largest” logic function implementable
by the basic block, i.e., the function computed by the struc-
ture with each input connected to a separate variable. The
algorithm customizes the block with the correct operation
during the matching process.

The set of functions that can be implemented by a MUX-
based logic block corresponds to the set of functions that
result from stuck-at and bridging faults. An input connected
to a constant corresponds to a stuck-at fault and bridged
inputs correspond to a bridging fault.

The stuck-at inputs belong to the set S , the ones that
are bridged to the set B. Then the problem to be solved
is: Given a function F(y1, ..., ym) and the module function
G(zl. ... ,x,) with m 5 n, find a stuck-at set S , a bridging
set B and an ordering of the variables R such that F and
Gson are functionally equivalent, i.e., there is a match for
F in G.

The function F to match against the module function G is
obtained by examining the nodes of the AND/OR network
and collapsing them recursively. A number of different
functions are created that are called cluster functions.
For each cluster function matching is performed and the
dynamic programming algorithm is used to minimize the
block count.

Solving the matching problem is not easy especially when
bridging is allowed. We will not review this case and refer
the reader to the original papers on the subject [17], [5] .

For the stuck-at faults, an ROBDD is built for the module
function and for the cluster function. A sufficient condition
for a match is that the ROBDD of the cluster function
be isomorphic to a sub-graph of the module ROBDD.
It is obvious that the part of the module ROBDD that
does not correspond to the cluster function representation
can be reduced by setting an appropriate set of inputs
to 0 andor 1 . However, there are cases where a match
exists but the cluster function ROBDD is not isomorphic
to any sub-graph of the module function ROBDD. This
is due to the fact that the orderings of the variables used
to build the ROBDDs may not be compatible. Hence,
to discover if a function matches, all possible variable
orderings of the module function should be considered
and the corresponding ROBDDs should be checked for
isomorphism. Of course, this may be quite expensive and
identical subgraphs in separate ROBDDs corresponding
to different orderings may end up being checked a large
number of times. In [171, a new structure called the Global
Boolean Decision Diagram, GBDD, is proposed to make
the matching algorithm faster. This structure is built by
combining the BDDs corresponding to all the orderings.
Combining the BDDs in an appropriate way removes all
the duplications making the sub-isomorphism check much
faster.

Given the complication of dealing with bridging faults,
Proserpine first attempts to find a match with the GBDD as
described above. If no matching is found, bridging is then
considered. In [5], new bridging algorithms are described.

A few interesting observations were made after running
Proserpine on a benchmark set. It was found that the bridg-
ing contributed insignificantly to improving the mapping
(using the Ceres framework), and at most a single bridge
is needed in the vast majority of cases.

The Proserpine approach is powerful in that it
can consider any logic block where the programming
mechanism allows the inputs to be connected to constants
andor bridged. As such, it is useful as an architecture-
exploration tool.

4) The MIS-pga2 Approach MIS-pga2 [35] is based on
the same general flow of MIS-pgal but with some key
modifications, some of which are borrowed from the other
approaches presented above.

The overall algorithm is as follows:

Each node of the network is first mapped. If the
function f at the node can be implemented by one
block (using the matching algorithm described in
[35]), the corresponding match is saved. Otherwise,
an ITE of f is constructed. The ITE is covered
by the pattern graphs of Figure 16 using dynamic
programming [29]. Both the ITE and its cover are
saved.
An iterative improvement phase using partial collapse
and decomposition follows after the initial mapping.
Partial collapse tries to collapse a node into all its
immediate fanouts. If the sum of the new costs of the
fanouts is less than the sum of the old cost of the
node and the fanouts, the collapse is accepted. The
new cost of a fanout is determined by remapping it
using step 1. This process is repeated for all nodes of
the network. Using decomp - g of MIS [8] a node is
decomposed and the decomposed nodes are mapped.
If the cost improves, the original node is replaced by
its decomposition. Partial collapse and decomposition
are repeated for some number of iterations.
Each node of the network is replaced by a set of
nodes, each of which can be implemented using one
basic block of the architecture. This is done by using
the cover of the ITE at each node.
If the number of primary inputs of the network is
small (say less than IO), an ROBDD is constructed
for the network. This ROBDD is then mapped using
the method described in [37]. If this mapping is better,
it is accepted. Construction of ROBDDs helps when
the circuit is symmetric.

The algorithm is applicable for both ACT-1 and ACT-
2 modules. However, some architecture-specific changes
have to be made. The main differences are in the matching
algorithm and the pattern graph construction.

5) Comparisons and Observations: We present the results
obtained using these approaches for a set of benchmark
examples. These examples were optimized as in Section

EL GAMAL et al.: SYNTHESIS METHODS FOR GATE ARRAYS 1079

0 1 2 3

4 5 6 7

8

Fig. 16. Pattern graphs for MIS-pga2

4.3.3. In Table 5, results are presented for MIS-pga2,
MIS, Ceres, Amap and MIS-pgal with the same starting
networks. We also present results for Proserpine, although
we do not know if the starting points are the same.I5
For MIS, a library containing around 90 gates was used,
whereas for Ceres, a complete library for ACT-I was used
and depth of the search while covering was set to S. MIS-
pga2, MIS and MIS-pgal were run on a DECS500 (a 28
mips machine), whereas Amap was run on a SUN4/370
(a 12.5 mips machine). The option used for Amap was -
an3. The options used for MIS-pgal is act-map - h3 -
n l - q - d4 - f3 - M4 - 1 - gO.OO1. This means that
both an ROBDD and an unordered BDD are constructed
for each function. An optimum ROBDD is constructed for
any function with at most four inputs. One iteration of
the iterative improvement phase is executed. In the partial
collapse routine, only the nodes with fanin no greater than
three are considered for collapsing. In the decomposition
routine, all nodes with fanin of four or more are considered.
The phase assignment algorithm is also executed. Finally,
a last-gasp routine is entered at the end [37]. This routine
builds a network q(n) from each node n of the final network
q, where q(n) has one internal node, one primary output
and as many primary inputs as the number of fanins of
n. It then performs technology decomposition on q (n) and
then applies mapping and the iterative improvement phase
to get a network ~ ' (n) . If the cost of q'(n) is less than
that of n, the routine replaces n by rf(n) in 77. MIS-pga2
used two iterations, performed a last-gasp, but did not do
a quick phase.

Table 5 shows the number of ACT-1 modules needed to
implement the benchmark, and the time taken in seconds
in columns n and t respectively.

'5Proserpine i s not being distributed yet and the corresponding column
in Table 5 has been taken from [17].

1 = if
T = then
E = else

0 = mux

MIS-pga2 in general performs better than other systems.
Some possible explanations are given below.

The reason why MIS-pga2 outperforms the MIS tech-
nology mapper is because the multiplexer representa-
tion of a function used in MIS-pga2 fits nicely into
the multiplexer-based architecture.
Though Amap also uses ITEs, its way of construction
is different. MIS-pga2 runs an iterative improvement
phase and uses a matching algorithm prior to the
construction of ITEs.
MIS-pgal constructs BDD's and hence could repli-
cate parts of the cubes in the 0 and 1 branches.
However, by exhaustively generating all reduced or-
dered BDD's for a function (if it has at most four
inputs), MIS-pgal is able to achieve better results on
many examples. For the same reason, it is many times
slower.

However, there are benchmarks (e.g., C1908, C499)
where Amap gives better results. This is due to the different
mapping technique it uses.

VI. WIDE-AND/OR ARCHITECTURES
Wide-AND/OR architectures are extensions of the stan-

dard two level PLD architectures. The complexity of the
logic blocks which are general PLAs with several inputs
(from about 20 to 100) connected together by some kind
of bus structure is high. The logic synthesis problem is
similar to the logic optimization problems encountered in
PLA design. Most of the proprietary systems are based on
two-level logic optimization programs with some help for
decomposition.

To the best of our knowledge, the only paper that deals
with the aspects of Wide-AND/OR arrays with a novel
approach is [32].

1080

I I

PROCEEDINGS OF THE IEEE, VOL. 81, NO. 7. JULY 1993

Table 5 number of ACT-I Blocks: Number of ACT-1 Blocks; and t Run Time in Seconds

,ga2
t

9.4

example

z4ml
misexl

5xp 1
count
9symml
9sym
apex7
Cl908
rd84
e64
C880
apex2
a h 2
duke2
c499
rot
apex6
alu4
des
sa02
rd73
misex2
f51m
clip
bw
b9
C5315

vg2

MIS 1 1 Ceres
n

20

__
MIS

2.0
1.9
3.9
4.4
6.7

10.5
14.1
10.6
19.3
6.5
7.9

18.2
11.8
24.2
17.9
17.8
28.9
34.4
31.6

756.6
8.0
2.7
4.3
5.2
4.9
7.1
5.9

88.0

n
19
18
35
40
39
26
26
95

168
50
94

169
112
185
165
166
285
282
121

1351
51
30
40
44
48
60
66

59 1

___ -
17
22
42
47
62

136
106
192
61
95

177
175
173
172
166
418
441
326

1638
86
32
42
54
62
61

101
725

3

6.0
3.1

10.4
8.6

50.3
55.8
30.7

121.5
30.7

7.1
36.1
36.7
48.9
29.3
55.5
67.2
76.6
19.8

357.3
24.4
12.1
3.5

14.4
25.1
11.7
19.7

359.8

22
47
51
63
73
99

113
188
62
95

175
106
193
176
174
313
360
149

1571
52
32
46
52
57
81
64

704

AI
n

20
25
44
42
41
74

106
104
158
62

105
190
122
188
175
136
335
392
160

1634
56
32
47
56
60
83
81

653

- -
Lp

2
0.8
1.1
1.5
1.7
1.5
2.7
4.1
3.8
7.6
2.6
3.3
7.2
5.0
8.3
6.9
7.0

11.9
15.0
6.1

67.2
2.0
1.6
1.5
2.2
2.5
3.6
2.7

26.9

- -
MI!

n
16
20
36
45
46
80

119
96

175
61
94

171
124l
208
166
166
288
289
132

1749l
62
31
41
48
51
65
65

656

-
-

P!P l
1

19.6
11.5
18.4
60.0
13.2

3123.8
17582.8

42.1
646.5
151.4

3.9
77.2
8.3

824.5
403.5

35.3
1071.8
255.5
145.9
762.9
54.2
37.2

6.1
36.6
91.9
20.1
31.6

673.1

proserpine2
n

25
46
53

121

70

177
170
465
396
350

45
63
73
67

'Used "act-map-n2-h2-d4-f3-gO.001" and "act-map-h3-M4" since the default command timed out.
*Starting networks differ from other systems.
'Segmentation fault.

This approach is targeted to a general architecture that has
as a logic block an AND plane of a PLA whose outputs
(ORs of rows of the AND plane) are fed into a set of simple
gates and hence implements three-level logic."

The approach was applied to the architecture offered by
PlusLogic, where the simple gates are two-input gates that
can implement any logic function of two inputs.

The basic algorithm of [32] restricts the use of the two-
input logic to AND gates. The simplified optimization
problem solved by [32] is as follows. Given a logic function
F , find two PLAs, PLAz and PLA2, so that if g1 and g2

are the sum-of-products form of the logic implemented by
the PLA's, then glg2 covers F and the total number of
cubes is minimized.

If F is incompletely specified, then g1 and g2 must satisfy
the following conditions to be valid:

let f be the on-set of F . Then, f C gl, f C g2.
Let T be the off-set of F . Then rg lg2 = Q).

I6There is some evidence that three-level logic has advantages over
two-level logic from the point of view of compactness of representation
and over multilevel logic from the point of view of speed. Sasao [46]
argued that little is gained by going to more than three levels even though
this view is not universally shared.

The algorithm proposed in [32] is a heuristic that pro-

The algorithm structure is as follows:
1) Choose an initial 91, gy that contains f .
2) Using gy, obtain a minimal g2 so that 9yg2 satisfies

3) Using ~ 2 , obtain a minimal g1 that satisfies the

4) Iterate for several choices of gy and pick the pair that

The key point in the algorithm is the minimization step
for g2 given 91 (or vice versa). This minimization is carried
out with Espresso [7] on appropriate incompletely specified
functions that are obtained exploiting the degree of freedom
offered by the structure of the implementation.

To extend the result to the more powerful output logic
offered by PlusLogic, the algorithm goes through a phase
assignment procedure that optimizes the use of the output
logic for all cases except for the exclusive OR and exclusive
NOR functions that cannot be reduced to the optimal phase
selection.

The algorithm has been shown to produce very good
results as compared with the implementation of the logic
using only two-level PLA's.

duces gl, g2 so that the conditions above are satisfied.

the conditions.

conditions.

has minimum size.

EL GAMAL Cf U / . : SYNTHESIS METHODS FOR GATE ARRAYS 1081

A final remark is that here also the algorithm is able
to cope well with structures that are simpler than those
offered by the commercially available architectures. Logic
synthesis algorithms are more effective if the logic is
uniform and simple.

VII. CONCLUSIONS
We have reviewed logic synthesis algorithms and methosa

for FPGA’s. The paper focused on FPGA’s with large-
granularity logic blocks, since these yield design problems
that are sufficiently different from the standard logic syn-
thesis problems.

We believe that logic synthesis is an essential step in the
design of FPGA’s. The commercially available architec-
tures offer difficult challenges for algorithm designers. The
algorithms developed so far are mainly targeted towards
the minimization of the number of logic blocks used.
Only a few deal with the optimization of performance and
routability .

We expect that in the future more powerful algorithms
will emerge that can also effectively take into consideration
performance constraints and the scarcity of interconnect
resources. While FPGA and tool vendors offer some limited
logic synthesis capabilities now, they will ultimately offer
more sophisticated logic synthesis tools for the most com-
monly available architectures. We expect that tool vendors
will offer logic synthesis environments where it will be
easy to go from one FPGA architecture to another and
from one ASIC style to another. We also expect to see
new architectures that are designed with logic synthesis in
mind so that optimization algorithms can be more effective.

Much work remains to be done to deal with sequential
logic synthesis. All architectures offer a number of sequen-
tial elements. It is important to evaluate whether the number
and type of sequential elements offered is good especially in
view of the use of sequential logic synthesis. Timing and
retiming of sequential circuits in the presence of a fixed
(and possibly large) number of sequential elements is an
interesting problem.

Ultimately logic synthesis will be extended to multiple
chip systems. The problem of partitioning logic into multi-
ple chips is a general problem for all ASIC styles but it is
particularly relevant for FPGA’s given the constraints on re-
sources. While netlist partitioning algorithms are available
not much is available to partition a design at a higher level
of abstraction. We expect to see a number of partitioning
approaches of this kind to appear shortly.

ACKNOWLEDGMENT
The authors would like to thank R. Murgai, N. Shenoy

and Dana How for editorial help and useful comments on an
earlier version of the paper. This work is partially supported
by DARPA under contract numbers J-FBI-90-073 (for the
first author) and J-FBI-89-101 (for the second author).

REFERENCES
[I] P. Abouzeid, K. Sakoutan, G. Saucier,. and F. Poirot, “Multi-

level synthesis minimizing the routing factor,” in Proc. Design
Automution Conference, ACM-IEEE, June 1990, pp. 365-368.

[2] A. V. Aho and J . D. Ullman, Principles of Compiler Design.
NewYork: Addison-Wesley, 1977.

[3] R. L. Ashenhurst, “The decomposition of switching functions,”
in Proc. Int. Symp. Theory of Switching Functions, 1959.

[4] K. Bartlett, D. Bostick, G. Hachtel, R. Jacoby, M. Lightner,
M. Moceyunas, C. Morrison, and D. Ravenscroft, “Bold: A
multi-level logic optimization system,” in Proc. Int. Conf.
Computer-Aided Design, 1987.

[5] A. Bedarida, S. Ercolani, and G . DeMicheli, “A new technology
mapping algorithm for the design and evaluation of electrically
programmable gate arrays,” in 1st Int. ACM/SIGDA Workshop
on FPGAs, 1992.

[6] R. K. Brayton, N. Brenner, C. Chen, G. Hachtel, C. McMullen,
and R. Otten, “The Yorktown silicon compiler,” in Proc. Int.
Symp. Circ. Syst. (ISCAS-85), 1985, pp. 391-394.

[7] R. K. Brayton, C. McMullen, G. D. Hachtel, and A.
Sangiovanni-Vincentelli, Logic Minimization Algorithms for
VLSI Synthesis.

[8] R. K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A.
R. Wang, “MIS: A multiple-level logic optimization system,”
in IEEE Trans. Computer-Aided Design, pp 1062-1081, 1987.

[9] R. K. Brayton, A. Sangiovanni-Vincentelli, and G. D. Hachtel,
“Multi-level logic synthesis,” Proc. IEEE, pp. 264-300, Feb.
1990.

IO] R. Bryant, “Graph based algorithms for. Boolean function
manipulation,” in IEEE Trans. Computers, pp. 667491 , 1986.

111 J . Cong, A. Kahng, and P. Trajmar, “Graph based fpga tech-
nology mapping for delay optimization,” 1st Int. ACM/SIGDA
Workshop on FPGAs, 1992.

Kluwer Academic Publishers, 1984.

121 H. A. Curtis, “A generalized tree circuit,” J. ACM, 1961.
131 J . Darringer, W. Joyner, J. Gerbi, L. Berman, and L. Trevillyan,

“LSS: A System for Production Logic Synthesis,” IBM J. Res.
Development, pp. 537-545, 1984.

141 G. DeMicheli, “Performance oriented synthesis of large scale
domino CMOS circuits,” IEEE Trans. Computer-Aided Design,
pp. 751-765, 1987.

151 W. E. Donath, “Statistical properties of the placement of a
graph,” SIAM J., vol. 16, no. 2, pp. 439457 , Apr. 1968.

161 W. C. Elmore, “The transient response of damped linear net-
works with particular regard to wideband amplifiers,” J. Appl.
Phys., pp. 5 5 4 3 , 1948.

171 S. Ercolani and G. DeMicheli, “Technology mapping electri-
cally programmable gate arrays,’’ in Proc. Design Automation
Con$. 1991, pp. 234-239.

[I81 D. Filo, J . C. Yang, F. Mailhot, and G. D. Micheli, “Technol-
ogy mapping for a two-output ram-based field-programmable
gate arrays,” in European Design Automation Conf., 1991, pp.
534-538.

[19] R. J. Francis, J. Rose, and K. Chung, “Chortle: A technology
mapping program for lookup table-based field. programmable
gate arrays,” in Proc. Design Automation Con$, 1990, pp.
61 3 4 1 9 .

[20] R. J. Francis, J. Rose, and Z. Vranesic, “Chortle-crf: Fast
technology mapping for lookup table-based fpgas,” In Proc.
Design Automation Con$, 1991, pp. 227-233.

[21] R. J . Francis, J. Rose, and Z. Vranesic, “Technology mapping of
lookup table-based fpgas for performance,” in Proc. Int. Con$
Computer-Aided Design, 199 I , pp. 568-57 I .

[22] M. Fujita, and Y. Matsunaga, “Multi-level logic minimization
based on minimal support and its application to the min-
imization of look-up table type fpgas,” in Proc. Inr. Con$
Computer-Aided Design, 199 1.

[23] M. R. Garey and D. S. Johnson, Computers and Inrractabilify.
New York: W. H. Freeman and Co., 1979.

[24] D. Gregory, K. Bartlett, A. deGeuss, and G. Hachtel, “Socrates:
A system for automatically synthesizing and optimizing combi-
national logic,” in Proc. Design Automation Conference, 1986,

[25j C. Halatsis and N. Gaitanis, “Irredundant normal forms and
minimal dependence sets of a boolean function,” IEEE Trans.
Computers, Nov. 1978, pp. 1064- 1068,.

[26] R. M. Karp and J. P. Roth, “Minimization over Boolean
graphs,” in IBM J. Res. and Development, Apr. 1962.

[27] K. Karplus, “Amap: A technology mapper for selector-based
field-prorammable gate arrays,” Proc. Design Automation Conf.,
pp. 244-247, 1991.

[28] K. Karplus, “Xmap: A technology mapper for table-lookup
field-programmable gate arrays,” in Proc. Design Automation

pp. 79-85.

1082 PROCEEDINGS OF THE IEEE. VOL. X I , NO. 7. JULY 1993

Conference, 1991, pp. 24&243.
[29] K. Keutzer, “Dagon: Technology binding and local optimization

by DAG matching,” in Proc. Design Automation Conference,

[30] E. L. Lawler, K. N. Levitt, and J. Turner, “Clustering to
minimize delay in digital networks.” in IEEE Trans. Comput.,

1987, pp. 341-347.

pp. 47-57, Jan. 1969.
[31] F. Mailhot and G. DeMicheli, “Technology mapping using

boolean matching and don’t care sets,” in European Design
Automation Conf, 1990, pp. 2120-216.

[32] A. A. Malik, D. Harrison, and R. K. Brayton, “Three-level
decomposition with application to plds,” Proc. Int. Con$ Com-
puter Design, pp. 628433 , 1991.

[33] M. J. Mathony, “Universal logic design algorithm and its
application to the synthesis of two-level switching circuits,”
in IEE Proc., 1989.

[34] M. Mehendale, C. H. Shaw, and D. Wilmoth, “ALFA: Auto-
matic library generation for logic module based FPGA’s,” in
1st Int. ACMNGDA Workshop on FPGAs, 1992.

[35] R. Murgai, R. K. Brayton, and A. Sangiovanni-Vincentelli, “An
improved synthesis algorithm for multiplexor-based PGAs,” in
1st Inr. ACM/SIGDA Workshop on FPGAs, 1992.

[36] R. Murgai, R. K. Brayton, and A. Sangiovanni-Vincentelli,
“Sequential synthesis for table look up PGA’s,” in Euro ASIC,
1992.

[37] R. Murgai, Y. Nishizaki, N. Shenoy, R. K. Brayton, and
A.Sangiovanni-Vincentelli, “Logic synthesis for programmable
gate arrays,’’ inProc. Design Automation Conf, 1990, pp.
620-625.

[38] R. Murgai, N. Shenoy, R. K. Brayton, and A. Sangiovanni-
Vincentelli. “Improved logic synthesis algorithms for table look
up architectures,” in Proc. Int. Con$ Computer-Aided Design,

[39] R. Murgai, N. Shenoy, R. K. Brayton, and A. Sangiovanni-
Vincentelli, “Performance directed synthesis for table look up
pragrammable gate arrays,” in Proc. Int. Conf Computer-Aided
Design, 1991, pages 572-575.

[40] M. Pedram, and N. Bhat, “Layout Driven Logic Restructur-
ingDecomposition,” in Proc. Int. Conf Computer-Aided De-
sign, 1991, pp. 134-137.

[41] M. Pedram and N. Bhat, “Layout driven technology mapping,”
in Proc. Design Automation Con$, 1991, pp. 99-105.

[42] J. Rose, A. El Gamal, and A. Sangiovanni-Vincentelli, “A
classification and survey of field-programmable gate array ar-
chitectures,” in Proc. IEEE,vol. 81, no 7, July 1993.

[43] J. Rubinsein, P. Penfield, and M. A. Horowitz, “signal delay in

1991, pp. 564-567.

EL GAMAL et al.’ SYNTHESIS METHODS FOR GATE ARRAYS

1 1 -

rc tree networks,” IEEE Trans. CAD, pp. 119-127, July 1983.
[44] R. Rudell, Logic Synthesis for V U 1 Design. PhD thesis, Univ.

California, Berkeley, 1989.
[45] A. Saldanha, R. K. Brayton, and A. Sangiovanni-Vincentelli,

and C. Kwang-Ting, “Timing optimization with testability con-
siderations,” in Proc. Int. Con$ Computer-Aided Design, pp.
4 6 W 6 3 , 1990.

[46] T. Sasao, “On the complexity of Three-Level Logic Circuits,”
in Proc. MCNC Int. Workshap on Logic Synthesis, Research
Triangle Park, NC, May 1989.

[47]’ H. Savoj, M. Silva, R. K. Brayton, and A. Sangiovanni-
Vincentelli, “Boolean Matching in Logic Synthesis,” In Euro-
pean Design Automation Con$, pp. 168-174, 1992.

[48] P. Sicard, M. Crastes, K. Sakouti, and G. Saucier, “Auto-
matic synthesis of boolean functions on Xilinx. and actel
programmable devices,” in Euro ASIC, pp. 142-145, May 1991.

[49] K. J. Singh, A. Wang, R. K. Brayton, and A. Sangiovanni-
Vincentelli, “Timing optimization of combinational logic,” in
Proc. Int. Con$ Computer-Aided Design, 1988, pp. 282-285.

[50] N-S. Woo, “A heuristic method for FPGA technology mapping
based on edge visibility,” in Proc. Design Automation Con$,
ACM-IEEE, June 1991, pp. 248-251.

[51] N-S. Woo, “ATOM: Technology Mapping of Sequential Circuits
for Lookup Table-based FPGAs,” In Design Automation Conf ,
1992, submitted for publication.

[52] The Programmable Gate Array Book, Xilinx Inc., 2069, Hamil-
ton Ave., San Jose, CA-95125.

Albert0 Sangiovanni-Vincentilli (Fellow, IEEE), for a photograph and
biography please see this issue of the PROCEEDINGS.

Abbas El Gamal (Senior Member, IEEE), for photograph and biogra-
phy please see the Prolog to the Special Section in this issue of the
PROCEEDINGS.

Jonathan Rose (Member, IEEE), for a photograph and biography please
see this issue of the PROCEEDINGS.

1083

