
The Parallel Decomposition and Implementation

of an Integrated Circuit Global Router

Jonathan Rose
Computer Systems Laboratory,

The Center for Integrated Systems,
Stanford University, Stanford, CA 94305

Abstract

Better quality automatic layout of integrated circuits can
be obtained by combining the placement and routing
phases so that routing is used as the cost function for
placement optimization. Conventional routers are too
slow to make this feasible, and so this paper presents a
parallel decomposition and implementation of an
integrated circuit global router. The LocusRoute router is
divided into three orthogonal “axes” of parallelism:
routing several wires at once, routing segments of a wire
in parallel, and dividing up the potential routes of a
segment among different processors to be evaluated.
The implementation of two of these approaches achieve
significant speedup - wire-by-wire parallelism attains
speedups from 6.9 to 13.6 using sixteen processors, and
route-by-route achieves up to 4.6 using eight processors.
When combined, these approaches can potentially
provide speedups of as much as 55 times.

1 Introduction

The task of automatic layout of integrated circuits
has traditionally consisted of two parts: automatic
placement where the circuit modules are positioned and
automatic routing in which the paths of the connecting
wires are determined. The objective of both tasks is to
result in a layout with as little area as possible. The best
way to evaluate the “goodness” of a placement is to
route it and determine its final area. Up to now this has
not been feasible because routing itself is a difhcult
combinatorial optimization problem and common
heuristics have been too slow to be used in this way.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage.
the ACM copyri&t notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise. or to republish, requires a fee and/
or specific permission.

o 1988 ACM O-89791-276-4/0007/0138 $1.50

The advent of usable commercial multiprocessors, with
potentially enormous aggregate computation power may
change this view if automatic routing can be
decomposed into tasks that can be efficiently run in
parallel. The aim of the Locus Project at Stanford
University is to combine placement and routing into one
optimization process, and to do tbis by using
multiprocessing to increase the speed of the routing.

This paper presents the parallel decomposition and
implementation of the LocusRoute global router for
integrated circuits. The goal of the router is to make the
average routing time for one wire close to the time that it
takes to recalculate more conventional cost functions.
This means that the routing time must be on the order of
one to five milliseconds per wire on a VAX 1 l/780-class
machine [Sech85]. The intention is for the global router
to be invoked to rip-up and m-route wires whose end
points have changed when one or more cells are moved
in an iterative improvement placement scheme.

Prior work on parallel routing (see [Blat1841 for a
survey) has been done in isolation from the placement
problem and has generally focused on the Lee routing
algorithm -611. In most cases the algorithm has been
fixed in hardware and as such lacks the flexibility that is
always required in practical CAD software such as the
global router described in [Yama85]. A far more
versatile approach is to use general purpose parallel
processors, which allow an application to be tuned in a
manner similar to uniprocessom. Using the flexibility of
a general purpose multiprocessor, several “axes” of
parallelism can be exploited Xf these axes are
orthogonal to each other then when used together they
can provide signiticant speedup. Two approaches to
parallelizing an algorithm are said to be orthogonal if,
when used together, the resulting speedup is the product
of the speedup of the individual methods.

The basic idea of the LocusRoute algorithm is to
investigate a subset of the two-bend routes between pairs
of pins to be routed. The uniprocessor LocusRoute
program can route wires in average times from 45 ms to

138

935 ms on a DEC Micro Vax II depending on the size of
the circuit. The routing speed is increased by
parallelizing the algorithm in three ways: routing several
wires at once, routing several two-point segments
simultaneously, and evaluating possible two-bend routes
in parallel. The wire-by-wire parallel approach achieves
speedups ranging from 6.9 to 13.6 using sixteen
processors. The route-by-route approach achieves
speedups of up to 4.6 using eight processors. These two
axes of parallelism are orthogonal to each other.

This paper is organized as follows: Section 2
describes the standard cell layout methodology and
defines the associated global routing problem. Section 3
describes the uniprocessor LocusRoute algorithm.
Section 4 presents three approaches for speeding up the
router using parallel processing, and gives performance
ll%lltS.

2 Standard Cell Layout

The standard cell-style layout is a common circuit
design methodology in which all circuit modules are of
equal height aud are “butted” together to form rows as
shown in Figure 1.

Standard Cell Pin Cluster
A , To Be Routed

Standard

;:a - mJ

Routing 1
Channel -----) 1

t

Y

Figure 1 - Standard Cell Layout

Power and ground wires run horizontally through the
cells and are connected by abutment. Cells have
connection points on their top and bottom and typically
one logical pin has two physical pins on each. This
group of pins is called a pin cluster. Connections
between adjacent rows are made by routing wires in the
horizontal routing channels as shown in Figure 1. If a
connection is required between two non-adjacent rows
then either feedthrough cells are inserted in the
intervening rows to make room for vertical connections
or an uncommitted path in an existing cell (called a

“built-in feedthrough”) is used.

2.1 Problem Definition

Global routing for standard cells decides the
following for each wire: First, for each pin cluster it
decides which of the physical pins are actually to be
connected. Second, if there is no path between channels
when one is required, it must decide either which built-in
feedthrough to use or where to insert a feedthrough cell.
Lastly, it must decide which channel to use in the route
from a pad into the core cells. The objective is to
minimize the sum of the maximum widths of each
routing channel (hereafter called the total density), and
in so doing minimize the final area.

In this discussion of global routing there will be no
differentiation between feedthrough cells and built-in
feedthrougbs - they are referred to jointly as vertical
hops. The decision to insert a feedthrough cell or use a
built-in feedthrough is deferred to a post-processing step
[Roseggb].

3 A Standard Cell Global Router

This section gives a brief description of the
LocusRoute global router. A more complete discussion
can be found in [Roseggb].

3.1 Routing Model

The LocusRoute algorithm uses the following routing
model: Each possible routing position in a channel (also
called routing grid of that channel) is represented as one
element of au array as shown in Figure 2. The array,
called the Cost Array, has a vertical dimension of the
number of rows plus one, and a horizontal dimension of
the width of the placement in routing -grids. Each
element of the Cost Array contains two values: Hii and
V,. Hij contains the number of of wire routes that PCSS

horizontally through the grid at channel i in position j.
V, is the cost, assigned by parameter, of traversing a
row in travelling from channel i to channel i + 1 at grid
position j. The routing problem for a wire is
represented as a list of (i , j) pairs of locations in the
Cost Array, corresponding to the locations of pins to be
joined.

Under this model, the objective is to find a
minimum-cost path for each wire. The wire’s cost is
given by the SUITI of all of the Hij and Vij that it
traverses. After a wire is routed tbrougb location (i , j)

139

Channel 5

Channel 4

it 11-lL-l-L
Channel 3

HI]” ‘I Routing Plrl

*

Channel 2

Channel 1

Standard Cell Placement Cost Array

Figure 2 -Routing Model

its presence is recorded in the Cost Array (i.e. HQ is
incremented, as is Vij if the direction is vertical) so that
subsequent wires can take it into account. Thus the more
wires going through a particular location in a channel,
the less likely it is that area will be used.

3.2 The Global Routing Algorithm

There are five main steps in the LocusRoute global
routing algorithm for standard cells. They are:

1. A multi-point wire is decomposed into two-point
segments, by finding its minimum spanning tree
using Kruskal’s algorithm F;rus56].

2. The segments are further decomposed, if necessary,
into permutations, which ate the set of possible
routes between each pin in a pin cluster. There are
four possible routes, one between each of the two
physical pins in each pin cluster. It has been
experimentally determined that only when the
clusters are greater than a certain horizontal distance
apart (about 300 routing grids) is it necessary to
evaluate all four permutations. Less than this
distance, only the closest pin pair need be evaluated.

3. A low-cost path in the Cost Array is found for each
permutation by evaluating a subset of the two-bend
routes between each pin pair. The permutation with
the best cost is selected as the route for that segment.
This step is described in further detail below, in
Section 3.3.

4. Traceback. This is a cleanup step that provides
enough information for later detailed routing.

5. Wire lay down. The presence of the newly routed
wire is put into the Cost Array by incrementing the
array elements where the new wire resides. Once
there, other wires cau take it into account.

3.3 Route Evaluation

The LocusRoute algorithm searches for a low-cost
path for a permutation by evaluating a number of
different routes. The idea is to determine the cost of a
subset of ah two-bend routes between the two pins, and
then choose the one with the lowest cost. Figure 3
illustrates three possible two-bend (or less) routes inside
a representation of the Cost Array as a small example.

(a) W (cl

Figure 3 - Sample Two-Bend Routes

If the horizontal distance between the two pins is H
routing grids, and the vertical difference in channels
between the pins is C , then the total number of two-bend
routes is C+H. A parameter, called the two bend
percent (TBP) dictates the percentage of the total
number possible two-bend routes to be evaluated Thus
the total number of routes evaluated is given by

$$$x (C + H). When TBP is less than 100, then the

routes arc evaluated in a priority order mose88b].
ExpcrimentaIly, it was determined that a TBP of 20%
would result iu a path as good as that found by an
exhaustive maze router, as compared on the basis of total
density for the entire circuit.

The LocusRoute algorithm makes use of a general
iterative technique in the manner described in [NairU].
Briefly, this means that after the first time all wires are
routed, each is sequentially ripped up from the Cost
Array, and then i-e-routed By rou*ting each wire several
times (typically four is sufficient), the wire order-
dependency is reduced and the final answer is improved
by five to ten percent.

140

The uniprocessor LocusRoute algorithm compares
favorably with a widely used placement and global
routing package [Sech85], and with a good quality
industrial global router [Rose88b].

4 Parallel Decomposition & Implementation

In this section several ways of parallelizing the
LocusRoute router are proposed and implemented.
Figure 4 illustrates several such axes of parallelism:

1. Wire-based Parallelism. Each processor is given an
entire multi-point wire to route.

2. Segment-based Parallelism. Each two-point segment
produced by the Kruskal decomposition can be
routed in parallel.

3. Permutation-based Parallelism. Each of the four
possible permutations, as discussed in Section 3.2,
can be evaluated in parallel.

4. Route-based Parallelism. Each of the possible two-
bend routes for every permutation can be evaluated
in parallel.

1) W!re-Based Parallelism

Bl

82

L-4
. *. . . 82
. . . .
.
*. . .

A2 *----- *-*

4) Route Parallelism

Figure 4 - Parallel Decomposition of LocusRoute

Note that these are only potenriaI axes of parallelism.
It is possible to eliminate some of them as uneconomical
by using statistical run-time measurements of the
sequential router. For example, the number of two-
point segments that actually need to have all four
permutations evaluated is quite small with respect to the
total. Thus, permutation-based parallelism is not going
to provide significant speedup and isn’t worth the time it
requires to develop. On the other hand, other
measurements show that the time spent evaluating the
cost of two-bend routes ranges from 50 to 90 percent of

the total routing time, so that some amount of speedup
from route-based parallelism can be expected.

To date, we have not considered pipelining as an axis
of parallelism. A pipeline implementation would have
the same stages as the basic algorithm described in
Section 3.2. To some extent, pipelining uses the same
axis of parallelism as wire-based parallelism since it also
routes several wires at once. The best use of pipelining
would be to execute the first two stages, segment and
permutation decomposition, for all wires in parallel since
these stages have no data dependencies on the routing of
other wires, In the context of iterative improvement
placement, however, the wire positions will not be
known in advance as they are when considering the
routing problem in isolation.

Each of the following sections discusses the details
of the axes of parallelism that have been implemented.
In the case where the quality of the answer of the
parallel program is worse than the sequential program, a
quantitative measure of the amount of degradation is
given. This section is concluded by a discussion of the
combination of two of the axes of parallelism. All
decompositions assume a shared-memory
multiprocessor.

4.1 Wire-Based Parallelism

In Wire-Based parallelism, each multi-point wire is
given to a separate processor, which runs the
LocusRoute routing algorithm as described in Section 3:
prior to decomposition, if the iteration technique is used,
the wire must be “ripped up” out of the Cost Array.
Next, each wire is decomposed into two-point wires, and
possibly further into permutations. A subset of the
potential two-bend routes is generated, and then
evaluated by traversing the Cost Array. When a final
route is chosen, the Cost Array is updated to reflect the
new presence of that route.

The Cost Array is a shared data structure to which all
processors have read and write access. Other than a task
queue, the cost array is the only shared piece of data.
This is an excellent axis of parallelism: if the sharing of
the Cost Array does not cause performance degradation
due to memory contention, the speedup should simply be
the number of wires that are routed in parallel. The
resulting parallel answer, however, will not necessarily
be the same as the sequential answer. The problem is the
sequential router has complete knowledge of all wires
that have already been routed, by virtue of their presence

141

in the cost array. The parallel router has less
information because it doesn’t see the wires that are
being routed simultaneously. The more wires routed in
parallel, the less information each processor has to
choose good routes that avoid congestion and hence the
total density increases. Thus the total density will
increase as the number of processors increases. The
measured effect on total density is discussed below, in
Section 4.1.1.

4.1.1 Wire-Based Parallel Results

Figure 5 is a plot of the speedup versus number of
processors for a 3029-wire example running on an
sixteen-processor shared-memory Encore MULTIMAX.
The Encore uses National 32032 chip sets which, in our
benchrrmrks, timed out slightly faster than a DEC Micro
Vax II. The speedup for p processors, S, is calculated

Tl as -, where T 1 is the execution time on one processor
Tp

and Tp is the execution time using p processors. The
execution time measured does not include the time for
input of the circuit, only the actual routing computation
time. For this circuit the increase in total density due to
the missing “knowledge” effect described in Section 4.1
from 1 to 16 processors is 6%, and the number of
vertical hops increases 2%.

Speed
UP

16
14
12
10

8
6
4
2

2 4 6 8 10 12 14 16
Number of Processors

Figure 5 - Wire-Based Speedup for 3029-Wire Circuit

The program was run on several other circuits, which
are from several sources: The standard cell benchmark
suite (Rrimaryl, Primary2, Test06 [Pma87]), Bell-
Northern Research Ltd. (BNRA-BNRE), and the
University of Toronto Microelectronic Development
Centre (MDC). The placement for all of the circuits was
done by the ALTOR standard cell placement program
[Rose85,Rose88a]. Table 2 gives the execution time and
speedup using 1, 8 and 15 processors, for all the test
circuits. The execution time is for four iterations over all

the wires. The speedup ranges from 5.4 for a smaller
circuit to 7.6 for the largest, using 8 processors. It
ranges from 6.9 to 13.6 using 15 processors. The
speedup is less for smaller circuits because they are done
in such a short time, and the startup overhead becomes a
factor.

Table 2 - Performance of Wire-Based Parallelism

Table 3 gives the total density and vertical hop
counts using 1, 8 and 15 processors. The increase in
total density ranges between 1% to 7% for 15
processors. The increase in vertical hops is ranges from
1% to 9% but is generally less than 4%. In the
placement context this level of degradation is tolerable.
In the future, however, on machines with more
processors, it will likely become more of a problem. We
have considered three ways of reducing the effect of the
missing knowledge due to simultaneous routing of wires.
The first is to try to ensure that the different processors
only deal with wires that are in distinct physical areas, so
that the wires routed simultaneously do not interact. The
second way to reduce processor interference is not to rip
up a route until the new route is determined In this way
there is a much shorter period of time in which the cost
array does not contain the presence of the wire. This
severely degrades the new route of the wire itself,
however, since it sees the old copy of itself while
evaluating potential routes. Experimentally, the
degradation was sufficient to nullify any gain from the
approach. A third method not yet implemented is to
route the wires in a different order for each iteration,
(iteration is described in Section 3.3) so that the
knowledge missing in one iteration is different from that
in another.

142

Table 3 - Quality of Wire-Based Parallelism

4.1.2 Gain Due to Removal of Locks

An interesting issue is whether or not each processor
should lock the Cost Array as it both rips up and re-
routes wires in the Cost Array. The act of ripping up a
route is essentially a decrement, and re-routing is an
increment on a set of cells in the Cost Array. Locking
the Cost Array during these operations ensures that two
simultaneous operations on the same element does not
prevent one of the operations from being lost. It does,
however, cause a significant performance degradation.
For example, for the Primary1 circuit the speedup
decreased from 8.3 to 6.4 using 15 processors when Cost
Array locking was used For the Primary2 circuit the
speedup for 15 processors was reduced to 12.1 from 13.0
due to locking.

The final routing quality, however, does not decrease
when locking is omitted. The reason for this is that the
probability of two processors accessing the same Cost
Array element (of which there are on the order of 10000)
at the same instant is very low. Even if very few
increment or decrement operations are lost, the effect on
final quality is negligible since only a few elements
would be wrong by a small amount. This was shown
experimentally by performing ten runs with 15
processors on each of the above circuits, for both the
locking and non-locking cases. Table 1 gives for the two
circuits the average running time, and the average and
standard deviation of the total density and number of
vertical hops. From this table it can be seen that the

quality in both cases is very nearly the same. Note that
in a placement context in which many more wires wiIl
be ripped up and m-routed, the effect of these small
errors would be cumulative and so an occasional
correction step may be necessary if locks are not used.

Table 1 - Speed & Quality Using and Not Using Locks

4.2 Segment-Based Parallelism

In segment-based parallelism, each two-point
segment of a wire is given to a different processor to
route. This is the stage following the Km&al
decomposition, but prior to the evaluation of different
two-bend routes. Measurements of the sequential router
showed that about 60% of the routing time was spent on
wires with more than one segment. On the surface this
implies that a speedup of about two could be achieved
using three pmcessors. Unfortunately, this is not the
case. Even though there are many wires that provide
two or three-way parallel tasks, the size of those tasks
are not necessarily equal. The amount of time taken by
LocusRoute to route two points is proportional to the
manhattan distance between the two points. If, in a
three-point wire, two of the points are close together and
the third is far away, it will then take much longer to
route one segment than the other. Thus’ tbe processor
assigned to the short segment will be idle while the
longer one is being routed. This unequal load prevents a
reasonable speedup. On the test circuits a speedup of
about 1.1 using two processors was measured

It is fairly clear, however, that an extra processor
could be assigned to a number of processors that are
routing different wires. It is likely that at any given
time, one of them will be able to use the extra processor
to route multiple segments. Though every processor
won’t be able to use a second processor all the time,
some number of processors can be used in this way.
This technique would become essential if many
processors were used in wire-based parallelism, at the
point where the number of processors was close to the

143

number of wires. In that case the load balance would
become a problem in wire-based parallelism because
wires with many segments take much longer than wires
with few segments. Hence segment-based parallelism
could be used to speed up the routing of the larger wires.

4.3 Route-Based Parallelism

In route-based parallelism all of the two-bend routes
to be evaluated are divided among separate processors.
Each finds the lowest-cost path among the set of two-
bend routes that it is assigned. When all processors
finish, the route with the best overall cost is selected. In
this .case the processor loads will be well-balanced
because the routes are ail of the same length, and the
number of routes is evenly divided among the
processors.

Figure 6 is a plot of the speedup versus number of
processors for the circuit Test06, a large circuit. It
achieves a spcedup of 4.6 using 8 processors.

6-l - measured
. . .-

..-

1 2345678
Number of Processors

Figure 6 - Route-Based Speedup for Circuit Test06

Table 4 gives the best speedup achieved for all of the
test circuits, ranging from 1.2 using 2 processors to 4.6
using 8 processors. The number of processors given for
each circuit in the table are chosen by eye as to which
number gives reasonable efficiency. It is clear that only
the larger circuits benefit from more processors. The
principal reason for the limitation in speedup is the
sequential portion of the routing: the wire
decomposition and the post-route processing that places
the presence of the route into the Cost Array. On the
small circuits that have lesser speedup, the sequential
portion is about 50% of the total routing time, while on
the larger circuits which have better speedup the
sequential portion ranges from lo-15%. Other minor
effects which degrade performance are the imbalance of
processor task sizes due to integral numbers of routes

and the fact that some segments have only a few
potential routes.

Circuit Best Route Speedup

Name Speedup/#Proc

BNRE 1.212

MDC 1.3/z

BNRD 1.4/T!

Primary1 1.8/3

BNRC 1.6/3

BNRB 2.114

BNRA 2.014

Test06 4.6/I!

Primary2 3.315
!-

Table 4 - Performance of Route-Based Parallelism

4.4 Combining Two Axes of Parallelism

The wire-based parallel and route-based parallel
approaches are perfectly orthogonal; hence their
speedups should multiply. Assume, for a given circuit
that a speedup of S, is achieved using wire-based
parallelism on W processors, and a speedup of S, is
achieved using route-based parallelism on R processors.
Then, because the two approaches are orthogonal, the
resulting speedup when they arc used together should be
S, x S, using W x R processors. This model neglects
the effect of memory contention that may occur when
the number of processors is increased dramatically.
Table 5 shows the best predicted speedup for the test
circuits. Combined speedup ranges from 8.3 using 30
processors to 55 using 120 processors. The smaller
circuits are routed very quickly and so it is difficult to
get speedups greater than 10 due to the startup overhead.
The larger circuits benefit greatly from the combination
of the approaches.

Table 5 also contains the average routing time per
wire on one processor, A r, and what the the average
routing time per wire would be under the maximum

speedup, ARW. That is, ARW = &. The average

routing times for all circuits, uncle~thervarious speedups
range from 4.0ms to 17ms, and approaches our goal of
one to five milliseconds per wire. It is interesting to note
that even though the uniprocessor times are widely

144

Circuit
SW

m
ST swx s,

Qb

R WxR A’ ARW

BNRE
Tk -F %+

46ms 5.6ms

MDC ++ y
4c

381x1s 4.oms

BNRD 8.7 12 2
-is-

+! * .SOlllS 4.lm.s

Primary1 mns 6.0ms

Table 5 - Predicted Combined Pelformance

varying, the best combined speedup results in average
routing times that are all very close. This is because
circuits with routes that take the longest have more
parallelism.

Note that combining the two orthogonal axes of
parallelism iu the obvious way produces an obvious
scheduling strategy: Each wire is assigned a constant
number of processors to “help” in the route evaluation.
While this static scheduling strategy has low overhead, it
is clear that a dynamic approach that only assigns
processors to wires when they really need it would be
more processor-efficient. In this case wires that have
many routes to be enumerated would use more
processors, and those with less routes would use fewer
processors.

4.5 Conclusions

The parallel implementation of an integrated circuit
global routing algorithm has been presented, Two of the
three axes of parallelism that were implemented
achieved significant speedup - up to 13.6 using sixteen
processors and 4.6 using eight processors. They should
produce combined speedups of up to 55 times.

parallelism will be investigated. We are also looking at
implementing a parallel version of the LocusRoute
algorithm on a message passing architecture, such as an
N-Cube maye86], and a massively parallel SIMD
machine such as the Connection Machine lJ’hin87]. In
addition the Locus placement environment is currently
being developed, and will be combined with the
LocusRoute global router. Our aim is to achieve smaller
area by using routing as a measure of each placement.

5 References

Blan84
T. Blank,“A Survey of Hardware Accelerators Used In Computcr-
Aided Design,” IEEE Design and Test, Vol. 1 No. 3, August 1984,
pp. 21-39.

Haye
J.P. Hayes, CL al, “A Microprocessor-based Hypercube
Supercomputer,” IEEE Micro, Vol. 6, No. 5, 0% 1986, pp. 6-17.

Krus56
J.B. Kruskal, “On The Shortest Spanning Sub&cc of a graph and
the. Traveling Salesman Problem, ” Proc. Amer. Math. Sot, 7, 1956,
pp. 48-50.

L.ee61
C.Y. Lee, “An Algorithm for Path Connections and Its
Applications,” IRB Trans. on Electronic Computers, Vol EC-IO, pp
346-365, 1961.

Nan.87
R Nair,“A Simple Yet Effcctivc Tcchniquc for Global Wiring,”
IEEE Trans. on CAD, Vol CAD-6, No. 2, March 1987, pp. 165172.

Prea87
B.T. Press, “Benchmarks for Cell-Based Layout Systems,” Proc.
24rd Design Automation Conference, June 1987, pp. 319-320.

Rose85
J.S. Rose, W.M. Snclgrovc, Z.G. Vrancsic, “ALTOR: An
Automatic Standard CelI Layout Program,” Proc. Canadian Conf.
on VLSI, Nov. 1985, pp. 168-173.

RoselBa
J.S. Rose, W.M. Snclgrove, Z.G. Vrancsic, “Parallel Standard Cell
Placement Algorithms with Quality Equivalent to Simulated
Annealing,” IEEE Trans. on CAD, Vol. 7 No. 3. March 1988, pp.
387-396.

Rosc88b
J.S. Rose, “LocusRoute: A Parallel Global Router for Standard
Cells,” to appear in the 1988 Design Automation Conference.

Scch85
C. Se&en, A. Sangiovanni-Viicentelli, “The Timberwolf
Placement and Routing Package,” IEEE JSSC, Vol. SC-20, No. 2,
April 1985, pp 510-522. pp. 432439.

Thin87
Thinking Machines Carp, “Connection Machine Mo&l CM-2
Technical Summary,” Technical Report # HA87-4, April 1987.

Yama
M. Yamada, T. Hiwatashi, T, Mitsuhashi, K. Yoshida, “A Multi-
Layer Router for Standard Cell ISIS,” Proc. ISCAS 1985, 191-194.

In the future, the combined approach will
implemented with several scheduling strategies.
Methods of reducing quality degradation in wire-based

145

