
The Parallel Decomposition and Implementation 

of an Integrated Circuit Global Router 

Jonathan Rose 
Computer Systems Laboratory, 

The Center for Integrated Systems, 
Stanford University, Stanford, CA 94305 

Abstract 

Better quality automatic layout of integrated circuits can 
be obtained by combining the placement and routing 
phases so that routing is used as the cost function for 
placement optimization. Conventional routers are too 
slow to make this feasible, and so this paper presents a 
parallel decomposition and implementation of an 
integrated circuit global router. The LocusRoute router is 
divided into three orthogonal “axes” of parallelism: 
routing several wires at once, routing segments of a wire 
in parallel, and dividing up the potential routes of a 
segment among different processors to be evaluated. 
The implementation of two of these approaches achieve 
significant speedup - wire-by-wire parallelism attains 
speedups from 6.9 to 13.6 using sixteen processors, and 
route-by-route achieves up to 4.6 using eight processors. 
When combined, these approaches can potentially 
provide speedups of as much as 55 times. 

1 Introduction 

The task of automatic layout of integrated circuits 
has traditionally consisted of two parts: automatic 
placement where the circuit modules are positioned and 
automatic routing in which the paths of the connecting 
wires are determined. The objective of both tasks is to 
result in a layout with as little area as possible. The best 
way to evaluate the “goodness” of a placement is to 
route it and determine its final area. Up to now this has 
not been feasible because routing itself is a difhcult 
combinatorial optimization problem and common 
heuristics have been too slow to be used in this way. 
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The advent of usable commercial multiprocessors, with 
potentially enormous aggregate computation power may 
change this view if automatic routing can be 
decomposed into tasks that can be efficiently run in 
parallel. The aim of the Locus Project at Stanford 
University is to combine placement and routing into one 
optimization process, and to do tbis by using 
multiprocessing to increase the speed of the routing. 

This paper presents the parallel decomposition and 
implementation of the LocusRoute global router for 
integrated circuits. The goal of the router is to make the 
average routing time for one wire close to the time that it 
takes to recalculate more conventional cost functions. 
This means that the routing time must be on the order of 
one to five milliseconds per wire on a VAX 1 l/780-class 
machine [Sech85]. The intention is for the global router 
to be invoked to rip-up and m-route wires whose end 
points have changed when one or more cells are moved 
in an iterative improvement placement scheme. 

Prior work on parallel routing (see [Blat1841 for a 
survey) has been done in isolation from the placement 
problem and has generally focused on the Lee routing 
algorithm -611. In most cases the algorithm has been 
fixed in hardware and as such lacks the flexibility that is 
always required in practical CAD software such as the 
global router described in [Yama85]. A far more 
versatile approach is to use general purpose parallel 
processors, which allow an application to be tuned in a 
manner similar to uniprocessom. Using the flexibility of 
a general purpose multiprocessor, several “axes” of 
parallelism can be exploited Xf these axes are 
orthogonal to each other then when used together they 
can provide signiticant speedup. Two approaches to 
parallelizing an algorithm are said to be orthogonal if, 
when used together, the resulting speedup is the product 
of the speedup of the individual methods. 

The basic idea of the LocusRoute algorithm is to 
investigate a subset of the two-bend routes between pairs 
of pins to be routed. The uniprocessor LocusRoute 
program can route wires in average times from 45 ms to 
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935 ms on a DEC Micro Vax II depending on the size of 
the circuit. The routing speed is increased by 
parallelizing the algorithm in three ways: routing several 
wires at once, routing several two-point segments 
simultaneously, and evaluating possible two-bend routes 
in parallel. The wire-by-wire parallel approach achieves 
speedups ranging from 6.9 to 13.6 using sixteen 
processors. The route-by-route approach achieves 
speedups of up to 4.6 using eight processors. These two 
axes of parallelism are orthogonal to each other. 

This paper is organized as follows: Section 2 
describes the standard cell layout methodology and 
defines the associated global routing problem. Section 3 
describes the uniprocessor LocusRoute algorithm. 
Section 4 presents three approaches for speeding up the 
router using parallel processing, and gives performance 
ll%lltS. 

2 Standard Cell Layout 

The standard cell-style layout is a common circuit 
design methodology in which all circuit modules are of 
equal height aud are “butted” together to form rows as 
shown in Figure 1. 
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Figure 1 - Standard Cell Layout 

Power and ground wires run horizontally through the 
cells and are connected by abutment. Cells have 
connection points on their top and bottom and typically 
one logical pin has two physical pins on each. This 
group of pins is called a pin cluster. Connections 
between adjacent rows are made by routing wires in the 
horizontal routing channels as shown in Figure 1. If a 
connection is required between two non-adjacent rows 
then either feedthrough cells are inserted in the 
intervening rows to make room for vertical connections 
or an uncommitted path in an existing cell (called a 

“built-in feedthrough”) is used. 

2.1 Problem Definition 

Global routing for standard cells decides the 
following for each wire: First, for each pin cluster it 
decides which of the physical pins are actually to be 
connected. Second, if there is no path between channels 
when one is required, it must decide either which built-in 
feedthrough to use or where to insert a feedthrough cell. 
Lastly, it must decide which channel to use in the route 
from a pad into the core cells. The objective is to 
minimize the sum of the maximum widths of each 
routing channel (hereafter called the total density), and 
in so doing minimize the final area. 

In this discussion of global routing there will be no 
differentiation between feedthrough cells and built-in 
feedthrougbs - they are referred to jointly as vertical 
hops. The decision to insert a feedthrough cell or use a 
built-in feedthrough is deferred to a post-processing step 
[Roseggb]. 

3 A Standard Cell Global Router 

This section gives a brief description of the 
LocusRoute global router. A more complete discussion 
can be found in [Roseggb]. 

3.1 Routing Model 

The LocusRoute algorithm uses the following routing 
model: Each possible routing position in a channel (also 
called routing grid of that channel) is represented as one 
element of au array as shown in Figure 2. The array, 
called the Cost Array, has a vertical dimension of the 
number of rows plus one, and a horizontal dimension of 
the width of the placement in routing -grids. Each 
element of the Cost Array contains two values: Hii and 
V,. Hij contains the number of of wire routes that PCSS 

horizontally through the grid at channel i in position j. 
V, is the cost, assigned by parameter, of traversing a 
row in travelling from channel i to channel i + 1 at grid 
position j. The routing problem for a wire is 
represented as a list of ( i , j ) pairs of locations in the 
Cost Array, corresponding to the locations of pins to be 
joined. 

Under this model, the objective is to find a 
minimum-cost path for each wire. The wire’s cost is 
given by the SUITI of all of the Hij and Vij that it 
traverses. After a wire is routed tbrougb location ( i , j ) 

139 



Channel 5 

Channel 4 

it 11-lL-l-L 
Channel 3 

HI]” ‘I Routing Plrl 

* 

Channel 2 

Channel 1 

Standard Cell Placement Cost Array 

Figure 2 -Routing Model 

its presence is recorded in the Cost Array (i.e. HQ is 
incremented, as is Vij if the direction is vertical) so that 
subsequent wires can take it into account. Thus the more 
wires going through a particular location in a channel, 
the less likely it is that area will be used. 

3.2 The Global Routing Algorithm 

There are five main steps in the LocusRoute global 
routing algorithm for standard cells. They are: 

1. A multi-point wire is decomposed into two-point 
segments, by finding its minimum spanning tree 
using Kruskal’s algorithm F;rus56]. 

2. The segments are further decomposed, if necessary, 
into permutations, which ate the set of possible 
routes between each pin in a pin cluster. There are 
four possible routes, one between each of the two 
physical pins in each pin cluster. It has been 
experimentally determined that only when the 
clusters are greater than a certain horizontal distance 
apart (about 300 routing grids) is it necessary to 
evaluate all four permutations. Less than this 
distance, only the closest pin pair need be evaluated. 

3. A low-cost path in the Cost Array is found for each 
permutation by evaluating a subset of the two-bend 
routes between each pin pair. The permutation with 
the best cost is selected as the route for that segment. 
This step is described in further detail below, in 
Section 3.3. 

4. Traceback. This is a cleanup step that provides 
enough information for later detailed routing. 

5. Wire lay down. The presence of the newly routed 
wire is put into the Cost Array by incrementing the 
array elements where the new wire resides. Once 
there, other wires cau take it into account. 

3.3 Route Evaluation 

The LocusRoute algorithm searches for a low-cost 
path for a permutation by evaluating a number of 
different routes. The idea is to determine the cost of a 
subset of ah two-bend routes between the two pins, and 
then choose the one with the lowest cost. Figure 3 
illustrates three possible two-bend (or less) routes inside 
a representation of the Cost Array as a small example. 

(a) W (cl 

Figure 3 - Sample Two-Bend Routes 

If the horizontal distance between the two pins is H 
routing grids, and the vertical difference in channels 
between the pins is C , then the total number of two-bend 
routes is C+H. A parameter, called the two bend 
percent (TBP) dictates the percentage of the total 
number possible two-bend routes to be evaluated Thus 
the total number of routes evaluated is given by 

$$$x (C + H). When TBP is less than 100, then the 

routes arc evaluated in a priority order mose88b]. 
ExpcrimentaIly, it was determined that a TBP of 20% 
would result iu a path as good as that found by an 
exhaustive maze router, as compared on the basis of total 
density for the entire circuit. 

The LocusRoute algorithm makes use of a general 
iterative technique in the manner described in [NairU]. 
Briefly, this means that after the first time all wires are 
routed, each is sequentially ripped up from the Cost 
Array, and then i-e-routed By rou*ting each wire several 
times (typically four is sufficient), the wire order- 
dependency is reduced and the final answer is improved 
by five to ten percent. 
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The uniprocessor LocusRoute algorithm compares 
favorably with a widely used placement and global 
routing package [Sech85], and with a good quality 
industrial global router [Rose88b]. 

4 Parallel Decomposition & Implementation 

In this section several ways of parallelizing the 
LocusRoute router are proposed and implemented. 
Figure 4 illustrates several such axes of parallelism: 

1. Wire-based Parallelism. Each processor is given an 
entire multi-point wire to route. 

2. Segment-based Parallelism. Each two-point segment 
produced by the Kruskal decomposition can be 
routed in parallel. 

3. Permutation-based Parallelism. Each of the four 
possible permutations, as discussed in Section 3.2, 
can be evaluated in parallel. 

4. Route-based Parallelism. Each of the possible two- 
bend routes for every permutation can be evaluated 
in parallel. 

1) W!re-Based Parallelism 
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Figure 4 - Parallel Decomposition of LocusRoute 

Note that these are only potenriaI axes of parallelism. 
It is possible to eliminate some of them as uneconomical 
by using statistical run-time measurements of the 
sequential router. For example, the number of two- 
point segments that actually need to have all four 
permutations evaluated is quite small with respect to the 
total. Thus, permutation-based parallelism is not going 
to provide significant speedup and isn’t worth the time it 
requires to develop. On the other hand, other 
measurements show that the time spent evaluating the 
cost of two-bend routes ranges from 50 to 90 percent of 

the total routing time, so that some amount of speedup 
from route-based parallelism can be expected. 

To date, we have not considered pipelining as an axis 
of parallelism. A pipeline implementation would have 
the same stages as the basic algorithm described in 
Section 3.2. To some extent, pipelining uses the same 
axis of parallelism as wire-based parallelism since it also 
routes several wires at once. The best use of pipelining 
would be to execute the first two stages, segment and 
permutation decomposition, for all wires in parallel since 
these stages have no data dependencies on the routing of 
other wires, In the context of iterative improvement 
placement, however, the wire positions will not be 
known in advance as they are when considering the 
routing problem in isolation. 

Each of the following sections discusses the details 
of the axes of parallelism that have been implemented. 
In the case where the quality of the answer of the 
parallel program is worse than the sequential program, a 
quantitative measure of the amount of degradation is 
given. This section is concluded by a discussion of the 
combination of two of the axes of parallelism. All 
decompositions assume a shared-memory 
multiprocessor. 

4.1 Wire-Based Parallelism 

In Wire-Based parallelism, each multi-point wire is 
given to a separate processor, which runs the 
LocusRoute routing algorithm as described in Section 3: 
prior to decomposition, if the iteration technique is used, 
the wire must be “ripped up” out of the Cost Array. 
Next, each wire is decomposed into two-point wires, and 
possibly further into permutations. A subset of the 
potential two-bend routes is generated, and then 
evaluated by traversing the Cost Array. When a final 
route is chosen, the Cost Array is updated to reflect the 
new presence of that route. 

The Cost Array is a shared data structure to which all 
processors have read and write access. Other than a task 
queue, the cost array is the only shared piece of data. 
This is an excellent axis of parallelism: if the sharing of 
the Cost Array does not cause performance degradation 
due to memory contention, the speedup should simply be 
the number of wires that are routed in parallel. The 
resulting parallel answer, however, will not necessarily 
be the same as the sequential answer. The problem is the 
sequential router has complete knowledge of all wires 
that have already been routed, by virtue of their presence 
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in the cost array. The parallel router has less 
information because it doesn’t see the wires that are 
being routed simultaneously. The more wires routed in 
parallel, the less information each processor has to 
choose good routes that avoid congestion and hence the 
total density increases. Thus the total density will 
increase as the number of processors increases. The 
measured effect on total density is discussed below, in 
Section 4.1.1. 

4.1.1 Wire-Based Parallel Results 

Figure 5 is a plot of the speedup versus number of 
processors for a 3029-wire example running on an 
sixteen-processor shared-memory Encore MULTIMAX. 
The Encore uses National 32032 chip sets which, in our 
benchrrmrks, timed out slightly faster than a DEC Micro 
Vax II. The speedup for p processors, S, is calculated 

Tl as -, where T 1 is the execution time on one processor 
Tp 

and Tp is the execution time using p processors. The 
execution time measured does not include the time for 
input of the circuit, only the actual routing computation 
time. For this circuit the increase in total density due to 
the missing “knowledge” effect described in Section 4.1 
from 1 to 16 processors is 6%, and the number of 
vertical hops increases 2%. 

Speed 
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Figure 5 - Wire-Based Speedup for 3029-Wire Circuit 

The program was run on several other circuits, which 
are from several sources: The standard cell benchmark 
suite (Rrimaryl, Primary2, Test06 [Pma87]), Bell- 
Northern Research Ltd. (BNRA-BNRE), and the 
University of Toronto Microelectronic Development 
Centre (MDC). The placement for all of the circuits was 
done by the ALTOR standard cell placement program 
[Rose85,Rose88a]. Table 2 gives the execution time and 
speedup using 1, 8 and 15 processors, for all the test 
circuits. The execution time is for four iterations over all 

the wires. The speedup ranges from 5.4 for a smaller 
circuit to 7.6 for the largest, using 8 processors. It 
ranges from 6.9 to 13.6 using 15 processors. The 
speedup is less for smaller circuits because they are done 
in such a short time, and the startup overhead becomes a 
factor. 

Table 2 - Performance of Wire-Based Parallelism 

Table 3 gives the total density and vertical hop 
counts using 1, 8 and 15 processors. The increase in 
total density ranges between 1% to 7% for 15 
processors. The increase in vertical hops is ranges from 
1% to 9% but is generally less than 4%. In the 
placement context this level of degradation is tolerable. 
In the future, however, on machines with more 
processors, it will likely become more of a problem. We 
have considered three ways of reducing the effect of the 
missing knowledge due to simultaneous routing of wires. 
The first is to try to ensure that the different processors 
only deal with wires that are in distinct physical areas, so 
that the wires routed simultaneously do not interact. The 
second way to reduce processor interference is not to rip 
up a route until the new route is determined In this way 
there is a much shorter period of time in which the cost 
array does not contain the presence of the wire. This 
severely degrades the new route of the wire itself, 
however, since it sees the old copy of itself while 
evaluating potential routes. Experimentally, the 
degradation was sufficient to nullify any gain from the 
approach. A third method not yet implemented is to 
route the wires in a different order for each iteration, 
(iteration is described in Section 3.3) so that the 
knowledge missing in one iteration is different from that 
in another. 
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Table 3 - Quality of Wire-Based Parallelism 

4.1.2 Gain Due to Removal of Locks 

An interesting issue is whether or not each processor 
should lock the Cost Array as it both rips up and re- 
routes wires in the Cost Array. The act of ripping up a 
route is essentially a decrement, and re-routing is an 
increment on a set of cells in the Cost Array. Locking 
the Cost Array during these operations ensures that two 
simultaneous operations on the same element does not 
prevent one of the operations from being lost. It does, 
however, cause a significant performance degradation. 
For example, for the Primary1 circuit the speedup 
decreased from 8.3 to 6.4 using 15 processors when Cost 
Array locking was used For the Primary2 circuit the 
speedup for 15 processors was reduced to 12.1 from 13.0 
due to locking. 

The final routing quality, however, does not decrease 
when locking is omitted. The reason for this is that the 
probability of two processors accessing the same Cost 
Array element (of which there are on the order of 10000) 
at the same instant is very low. Even if very few 
increment or decrement operations are lost, the effect on 
final quality is negligible since only a few elements 
would be wrong by a small amount. This was shown 
experimentally by performing ten runs with 15 
processors on each of the above circuits, for both the 
locking and non-locking cases. Table 1 gives for the two 
circuits the average running time, and the average and 
standard deviation of the total density and number of 
vertical hops. From this table it can be seen that the 

quality in both cases is very nearly the same. Note that 
in a placement context in which many more wires wiIl 
be ripped up and m-routed, the effect of these small 
errors would be cumulative and so an occasional 
correction step may be necessary if locks are not used. 

Table 1 - Speed & Quality Using and Not Using Locks 

4.2 Segment-Based Parallelism 

In segment-based parallelism, each two-point 
segment of a wire is given to a different processor to 
route. This is the stage following the Km&al 
decomposition, but prior to the evaluation of different 
two-bend routes. Measurements of the sequential router 
showed that about 60% of the routing time was spent on 
wires with more than one segment. On the surface this 
implies that a speedup of about two could be achieved 
using three pmcessors. Unfortunately, this is not the 
case. Even though there are many wires that provide 
two or three-way parallel tasks, the size of those tasks 
are not necessarily equal. The amount of time taken by 
LocusRoute to route two points is proportional to the 
manhattan distance between the two points. If, in a 
three-point wire, two of the points are close together and 
the third is far away, it will then take much longer to 
route one segment than the other. Thus’ tbe processor 
assigned to the short segment will be idle while the 
longer one is being routed. This unequal load prevents a 
reasonable speedup. On the test circuits a speedup of 
about 1.1 using two processors was measured 

It is fairly clear, however, that an extra processor 
could be assigned to a number of processors that are 
routing different wires. It is likely that at any given 
time, one of them will be able to use the extra processor 
to route multiple segments. Though every processor 
won’t be able to use a second processor all the time, 
some number of processors can be used in this way. 
This technique would become essential if many 
processors were used in wire-based parallelism, at the 
point where the number of processors was close to the 
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number of wires. In that case the load balance would 
become a problem in wire-based parallelism because 
wires with many segments take much longer than wires 
with few segments. Hence segment-based parallelism 
could be used to speed up the routing of the larger wires. 

4.3 Route-Based Parallelism 

In route-based parallelism all of the two-bend routes 
to be evaluated are divided among separate processors. 
Each finds the lowest-cost path among the set of two- 
bend routes that it is assigned. When all processors 
finish, the route with the best overall cost is selected. In 
this .case the processor loads will be well-balanced 
because the routes are ail of the same length, and the 
number of routes is evenly divided among the 
processors. 

Figure 6 is a plot of the speedup versus number of 
processors for the circuit Test06, a large circuit. It 
achieves a spcedup of 4.6 using 8 processors. 

6-l - measured 
. . .- 

..- 

1 2345678 
Number of Processors 

Figure 6 - Route-Based Speedup for Circuit Test06 

Table 4 gives the best speedup achieved for all of the 
test circuits, ranging from 1.2 using 2 processors to 4.6 
using 8 processors. The number of processors given for 
each circuit in the table are chosen by eye as to which 
number gives reasonable efficiency. It is clear that only 
the larger circuits benefit from more processors. The 
principal reason for the limitation in speedup is the 
sequential portion of the routing: the wire 
decomposition and the post-route processing that places 
the presence of the route into the Cost Array. On the 
small circuits that have lesser speedup, the sequential 
portion is about 50% of the total routing time, while on 
the larger circuits which have better speedup the 
sequential portion ranges from lo-15%. Other minor 
effects which degrade performance are the imbalance of 
processor task sizes due to integral numbers of routes 

and the fact that some segments have only a few 
potential routes. 

Circuit Best Route Speedup 

Name Speedup/#Proc 

BNRE 1.212 

MDC 1.3/z 

BNRD 1.4/T! 

Primary1 1.8/3 

BNRC 1.6/3 

BNRB 2.114 

BNRA 2.014 

Test06 4.6/I! 

Primary2 3.315 
!- 

Table 4 - Performance of Route-Based Parallelism 

4.4 Combining Two Axes of Parallelism 

The wire-based parallel and route-based parallel 
approaches are perfectly orthogonal; hence their 
speedups should multiply. Assume, for a given circuit 
that a speedup of S, is achieved using wire-based 
parallelism on W processors, and a speedup of S, is 
achieved using route-based parallelism on R processors. 
Then, because the two approaches are orthogonal, the 
resulting speedup when they arc used together should be 
S, x S, using W x R processors. This model neglects 
the effect of memory contention that may occur when 
the number of processors is increased dramatically. 
Table 5 shows the best predicted speedup for the test 
circuits. Combined speedup ranges from 8.3 using 30 
processors to 55 using 120 processors. The smaller 
circuits are routed very quickly and so it is difficult to 
get speedups greater than 10 due to the startup overhead. 
The larger circuits benefit greatly from the combination 
of the approaches. 

Table 5 also contains the average routing time per 
wire on one processor, A r, and what the the average 
routing time per wire would be under the maximum 

speedup, ARW. That is, ARW = &. The average 

routing times for all circuits, uncle~thervarious speedups 
range from 4.0ms to 17ms, and approaches our goal of 
one to five milliseconds per wire. It is interesting to note 
that even though the uniprocessor times are widely 
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Circuit 
SW 

m 
ST swx s, 

Qb 

R WxR A’ ARW 

BNRE 
Tk -F %+ 

46ms 5.6ms 

MDC ++ y 
4c 

381x1s 4.oms 

BNRD 8.7 12 2 
-is- 

+! * .SOlllS 4.lm.s 

Primary1 mns 6.0ms 

Table 5 - Predicted Combined Pelformance 

varying, the best combined speedup results in average 
routing times that are all very close. This is because 
circuits with routes that take the longest have more 
parallelism. 

Note that combining the two orthogonal axes of 
parallelism iu the obvious way produces an obvious 
scheduling strategy: Each wire is assigned a constant 
number of processors to “help” in the route evaluation. 
While this static scheduling strategy has low overhead, it 
is clear that a dynamic approach that only assigns 
processors to wires when they really need it would be 
more processor-efficient. In this case wires that have 
many routes to be enumerated would use more 
processors, and those with less routes would use fewer 
processors. 

4.5 Conclusions 

The parallel implementation of an integrated circuit 
global routing algorithm has been presented, Two of the 
three axes of parallelism that were implemented 
achieved significant speedup - up to 13.6 using sixteen 
processors and 4.6 using eight processors. They should 
produce combined speedups of up to 55 times. 

parallelism will be investigated. We are also looking at 
implementing a parallel version of the LocusRoute 
algorithm on a message passing architecture, such as an 
N-Cube maye86], and a massively parallel SIMD 
machine such as the Connection Machine lJ’hin87]. In 
addition the Locus placement environment is currently 
being developed, and will be combined with the 
LocusRoute global router. Our aim is to achieve smaller 
area by using routing as a measure of each placement. 
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