
IEEE TRANSACTIONS ON C O M P U T E R AIDED DESIGN, VOL 7, N O 3. MARCH I Y X X 387

Parallel Standard Cell Placement Algorithms with
Quality Equivalent to Simulated Annealing

JONATHAN S . ROSE, MEMBER, IEEE, W. MARTIN SNELGROVE, MEMBER, I E B E ,
AND ZVONKO G. VRANESIC, SENIOR MEMBER, IEEE

Abstract-Parallel algorithms with quality equivalent to the simu-
lated annealing placement algorithm for standard cells [23] are pre-
sented. The first, called heuristic spanning, creates parallelism by
simultaneously investigating different areas of the plausible combina-
torial search space. It is used to replace the high temperature portion
of simulated annealing. The low temperature portion of Simulated An-
nealing is sped up by a technique called section annealing, in which
placement is geographically divided and the pieces are assigned to sep-
arate processors. Each processor generates Simulated Annealing-style
moves for the cells in its area, and communicates the moves to other
processors as necessary. Heuristic spanning and section annealing are
shown, experimentally, to converge to the same final cost function as
regular simulated annealing. These approaches achieve significant
speed-up over uniprocessor simulated annealing, giving high quality
VLSI placement of standard cells in a short period of time.

I. INTRODUCTION
S DESIGNERS have come to rely on automatic lay- A out tools, it has become necessary that those tools

have the ability to do a good job minimizing the final area
and other performance-critical factors. Recent work on
automatic placement for standard cells [23], [24] has
shown that a simulated annealing [151 placement algo-
rithm can achieve higher quality results (lower final area)
than more conventional algorithms. The better quality
comes at the price of much longer computation time, on
the order of weeks on a VAX 111780 machine [24].

This paper presents techniques for achieving the same
final quality as Simulated Annealing, suitable for imple-
mentation on an MIMD (Multiple Instruction Stream
Multiple Data Stream) multiprocessor and resulting in
much faster run times [19], [20]. Two different ap-
proaches are taken, one to replace the high temperature
portion of simulated annealing, and the other to speed up
the low temperature portion. The high temperature ap-
proach, heuristic spanning, achieves parallelism by hav-
ing different processors investigate plausible but indepen-
dent areas of the combinatorial search space.

The low temperature approach, section annealing, di-
vides the interim placement into geographic areas and as-

Manuscript received January 5, 1987; reviscd June 16, 1987. This work
was supported by Bell Northern Research, Lid., and by the NSERC CRD
Grant 8438. The review of this paper was arranged by Editor A. J . Strojwas.

J . S. Rose is with the Computer Systems Laboratory, Stanford Univer-
sity, Stanford. CA 94305.

W . M. Snelgrove and %. G. Vraneaic are with the Department of Elec-
trical Engineering, University of Toronto, Ont. , Canada.

IEEE Log Number 8718398.

signs these areas and the cells contained in them to sep-
arate processors. Each processor generates simulated
annealing-style moves for its assigned cells, communi-
cating accepted moves to other processors when neces-
sary. This approach has been implemented on a five-pro-
cessor prototype, and expected results are given for ten
processors.

There has been a great deal of interest in speeding up
the simulated annealing placement algorithm. Kravitz and
Rutenbar [16], [17], [22] have provided two approaches
to the problem: one that uses pipelining and direct paral-
lelism to speed up the original simulated annealing algo-
rithm, achieving a speed-up of about two using three pro-
cessors. They also attempt a parallel moves strategy on a
shared-memory machine multiprocessor, gaining a speed-
up of about three using four processors. Banerjee and
Jones [I] discuss using a distributed memory Hypercube
architecture for the standard cell placement problem.
Casotto et al. [4] worked on speeding up simulated an-
nealing for placement of macrocells, and have achieved a
speed-up of six using eight processors.

Our contribution is in several areas: replacing the high
temperature portion of simulated annealing with heuristic
spanning is a whole new way of approaching the problem
and of obtaining parallelism. The scheme succeeds by
making intelligent use of a limited number of processors.

The idea of generating and evaluating simulated an-
nealing moves in parallel is common to [l] , [4], (161,
[20]. We are able to concentrate on the low temperature
phase for this approach, since Heuristic Spanning ade-
quately replaces the high temperature phase. Our section
annealing approach uses distributed local memories rather
than the shared memory used in [16], and thus does not
suffer from the central bottleneck of a shared memory. As
opposed to [161, we allow simultaneous move acceptance
to occur, and present some new results on the effect of
this error on the convergence of the section annealing pro-
cess. The implementation of section annealing has estab-
lished the existence and solution of several problems that
were not foreseen in [I] . We also introduce a technique
to reduce the synchronization cost between processors, by
taking note of the fact that every processor does not need
to know about every move that is accepted by other pro-
cessors. Our results are based on experiments with large,
industrial circuits, ranging in size from 446 cells to 1795
cells.

0278-0070/88/0300-0387$01 .OO O 1988 IEEE

I 1

388 IEEE TRANSACTIONS ON C O M P U T E R - A I D E D D E S I G N . VOL. 7. NO 3. M A R C H 1988

The experimental work in this paper was performed on
a multiprocessor consisting of six National Semiconduc-
tor 32016 processors, each with 1 Mbyte of local mem-
ory. They communicate through a MULTIBUS back-
plane, also making use of 1 Mbyte of global memory. The
operating system of the multiprocessor is master/slave
TUNIS 121, a UNIX-like multiprocessor operating system
research project at the University of Toronto. The system
was programmed with the Concurrent Euclid language 161,
a descendant of Pascal that uses Hoare’s monitors [111 for
interprocessor synchronization.

This paper is organized as follows. Section I1 discusses
the general task of parallelizing an application, and then
the specifics of doing so for simulated annealing. Section
111 presents heuristic spanning, an approach for replacing
the high-temperature portion of Simulated Annealing.
Section IV presents Section Annealing, a technique for
speeding up low-temperature Simulated Annealing.

11. PARALLELISM CONSIDERATIONS
In exploring ways to speed up an application through

parallelism, the choices of multiprocessor architecture and
programming approach are crucial. The multiprocessor
architecture must be flexible enough so that both the al-
gorithm and its data structures can be changed easily,
since any production application software must be contin-
uously adjusted and corrected throughout its useful life.
Previous special-purpose hardware for placement [131,
1251 used algorithms that were fixed in hardware, and suf-
fered from the inability to change, or tune their algo-
rithms. In addition, a given architecture is more economic
if it is general enough to be used in a range of applica-
tions. For these reasons, all approaches discussed in this
paper assume a general purpose MIMD multiprocessor.

2.1. Parallelization of Algorithms
In attempting to speed up an application that focuses on

a specific uniprocessor algorithm using a parallel proces-
sor there are two possible approaches:

1) Speed up the serial code for the application, by find-
ing places where it can be pipelined or directly ex-
ecuted in parallel, always maintaining the exact be-
havior of the algorithm.

2) Try to reproduce the behavior and results of the ex-
isting algorithm, but use a different, more parallel
approach.

The first approach was used by Kravitz and Rutenbar in
their StaticFunction implementation [161. It can achieve
some speed-up but, as they found, it restricts the parallel
programmer’s freedom greatly. In general, the total speed-
up is not likely to be more than 4 or 5 unless the algorithm
has obvious independent parallelism.

The second approach allows much more freedom. The
algorithm can be adjusted slightly or changed completely
to gain parallelism. It is important that an implementation
of the original algorithm is available so the final results
of the new approach can be measured against that stan-

dard. In this work, we apply the second approach, with
the aim of obtaining a greater degree of parallelism.

2.2. Uniprocessor Simulated Annealing
Our work is baseh on that of Sechen and Sangiovanni-

Vincentelli [23]. We have implemented a version of their
standard cell placement algorithm, which is called SAL-
TOR for Simulated Annealing Layout at TORonto [191.
It begins using a random layout, and a high temperature
(T) where the acceptance ratio is over 60 percent. Con-
tinuous placement perturbations called moves are gener-
ated, and the change in cost function that each move
would cause (AC) is calculated. The move is accepted if
AC 5 0 (i.e., it improves the cost function) or with prob-
ability if AC > 0. The temperature is decreased
by a constant factor (we typically used 0.85) after a con-
stant number of moves per cell were attempted (typically
100). There are two kinds of moves: the displacement of
single cells over a random distance, and the exchange of
two randomly chosen cells. Moves are range-limited: a
range window, which decreases logarithmically in size
with the temperature, gives the maximum displacement
of one cell, and the maximum distance over which two
cells can be exchanged. We did not implement the cell
orientation move type or the low-temperature intra-row
exchange step of 1231, because the basic properties of
Simulated Annealing are captured by the displacement and
exchange moves.

2.3. Relevant Characteristics of Simulated Annealing
The Simulated Annealing algorithm exhibits markedly

different characteristics at different temperatures. The
early stages, at high temperatures, are characterized by
high acceptance ratios, and the moves involve large dis-
tances across the entire circuit. The later stages, at low
temperatures, exhibit low acceptance ratios and the moves
cover small distances with respect to circuit size 1191.

The acceptance ratio and average size of move made
are the key factors in parallelizing Simulated Annealing.
The acceptance ratio dictates how often the data structures
that contain cell positions and wire lengths must be
changed. If the ratio is high then any parallel approach
that needs to access a single database containing that in-
formation will suffer from severe bottlenecks. The aver-
age size of move dictates, to some extent, the locality of
the work in the database, and thus will affect multipro-
cessor implementations with distributed caches or local
memories. Also, since we have decided to reproduce the
behavior (and not the identical algorithm) of Simulated
Annealing, we note that the behavior of the algorithm is
entirely different for high and low acceptance ratios. For
these reasons, different approaches to parallelizing Sim-
ulated Annealing must be used for the high and low tem-
perature ranges.

111. HIGH TEMPERATURE: HEURISTIC SPANNING
In the regular Simulated Annealing algorithm at high

temperatures, the general area of the search space being

ROSE et a l . : PARALLEL CELL PLACEMENT ALGORITHMS 3 89

investigated changes rapidly due to the high acceptance
ratio and large scale of moves (by regular Simulated An-
nealing we refer to the uniprocessor method over the full
temperature range, as described in Section 11-2.2). The
result of the high temperature phase is a coarse placement
that assigns each cell to a general area.

An alternative to sequentially traversing a number of
coarse placements is to generate and investigate different
coarse placements in parallel. This is the basic notion of
Heuristic Spanning. Essentially, a heuristic algorithm is
used to generate a number of grossly different but plau-
sible placements at the same time on different processors.
These are evaluated by another heuristic procedure to pro-
duce an interim “goodness” measure with which the dif-
ferent interim placements can be compared. One of the
interim placements is chosen to be annealed further at
lower temperatures to complete the full process. Fig. 1
depicts the basic process of Heuristic Spanning.

A key point is that the heuristic algorithm that runs in
parallel must be much faster than Simulated Annealing,
so that a reasonable speed-up can be achieved. The re-
mainder of this section presents one Heuristic Spanning
technique.

3.1. Spanning the Search Space
The first step of the Heuristic Spanning approach is to

divide up the search space. The Min-Cut placement al-
gorithm [3], [7], [8] used in ALTOR [18] (a standard cell
placement and routing package developed at the Univer-
sity of Toronto) provides a convenient basis for a search
space division approach. ALTOR has been measured to
be about twenty times faster than SALTOR, our Simu-
lated Annealing-based uniprocessor placement program.

The Min-Cut placement algorithm recursively subdi-
vides a placement while minimizing the number of wire
crossings at each division line. Typically, an iterative im-
provement partitioning algorithm such as Kernighan-Lin
[14] or Fiduccia Matheyses [9] is used to do the minimi-
zation. In ALTOR, a constructive initial partitioning step
was introduced to aid the Fiduccia-Matheyses [9] itera-
tive improvement, for the jirst division step. The con-
structive algorithm builds one of the subdivisions of the
circuit by sequentially adding the cells that are most con-
nected to those that have already been chosen, starting
with a seed cell. Experience using different seeds has
shown that they have a marked effect on the quality of the
final placement, yet there appears not to be a way, short
of exhaustive searching, to choose the seed that will result
in the best final placement. One way to solve this com-
binatorially difficult problem is to run the entire algorithm
several times with difTerent seeds and choose the best final
placement. This is similar to the idea of using multiple
random starts for an iterative improvement algorithm [21],
but it is better because the seeds are chosen in an intelli-
gent manner in such a way as to make the initial partitions
as “different” as possible. This means that different parts
of the search space will be investigated, which is the fun-
damental premise of Heuristic Spanning.

Search Space

Divided

Heuristically

Total Search Space

I 1

PmcBsSOrs
Apply Fast
HouriHm to
Evaluate
Area of
Search Space

Low Temperature Annealing

Fig. I . The basic process of heuristic spanning.

In this context, to have diferent seeds means that the
seed cells are as far apart from each other as possible. For
cells to be ‘far’ from each other, we must define what is
meant by distance. Assume that there is a set of N cells,
numbered from 1 to N . Define the distance D,, between
two cells i a n d j to be the minimum number of nets in the
circuit that must be traversed to get from cell i to cellj.

Assume that s seed cells are required. The problem of
finding different seeds is then to choose s distinct cells
from the set of N such that:

J F

is maximized. Unfortunately, there are (r) possible com-
binations of cells, which is a prohibitive number to in-
vestigate exhaustively. Previous to even that large com-
putation there are N 2 / 2 of the D, to be calculated, which
is excessive computation in itself. For this reason the
Max-Span algorithm was developed, which has O (sN)
running time. It is a greedy algorithm that works well in
practice [19], and is described in Fig. 2 . It begins with an
arbitrarily chosen first seed, and then selects the second
seed as the one farthest away from the first. The next seed
is chosen as the one with the greatest distance from either
of the first two seeds. Subsequent seeds are selected to be
as far away as possible from the seeds already chosen.

Thus, choosing a set of seed cells that are far from each
other, and using initial partitions “grown” from these
seeds, multiple runs of the Min-cut algorithm will inves-
tigate different areas of the plausible search space.

3.2. Choosing the Best Interim Placement
The second step of the Heuristic Spanning approach is

to choose one of the interim placements to be annealed
hrther at low temperatures. The simplest and most ob-
vious way is to chose the interim placement with the low-
est cost function. Experiments have shown (see Section

T

390 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 7. NO 3. MARCH 1988

Fig. 2. The max-span algorithm

3.4) that there is a direct correlation between the interim
and final cost functions, although the interim placement
with the lowest cost function is not necessarily the one
with the lowest final cost function. Empirically, however,
the placement with the lowest interim cost function is al-
ways among the placements with the lower final cost
Function. Practically, this means that there must be a suf-
ficient number of seeds processed by ALTOR to guaran-
tee that the interim placement with the lowest cost func-
tion will achieve a final cost function as good as what
would have been achieved by regular Simulated Anneal-
ing. No method has yet been developed to ensure that this
occurs, but in practice ten seeds have been observed to be
sufficient, as will be shown in Section 3.4.

3.3. Low Temperature Annealing
The third step of Heuristic Spanning is to anneal the

interim placements at low temperatures. The crucial ques-
tion here is to decide the best temperature at which to
begin the annealing. If the temperature is too high then
unnecessary work is done. If it is too low then the final
cost function will not be as low as that for regular Simu-
lated Annealing. The following method has been used to
determine the starting temperature:

1) Determine the cost of the interim placement.
2) In a regular Simulated Annealing run, obtain a table

of cost function versus temperature.
3) Determine which temperature of the full Simulated

Annealing run has the closest cost function to the
interim cost function. Choose that temperature as the
starting temperature.

It is of course infeasible to do this matching within the
approach itself, since that would mean doing a regular
Simulated Annealing run every time-defeating the pur-
pose of speeding up the process in the first place. How-
ever, the resulting temperature has been found to be con-
stant with respect to circuit size. For all the test circuits,
using the above method, the starting temperature was
found to be 39 degrees, where degrees in this case have
cost function units. This number is a function of the par-
ticular constants chosen in our cost function. In the reg-
ular Simulated Annealing process we used, there were 27
temperatures, and 39 was the 12th temperature, with an

acceptance ratio of about 6 percent. Lower temperatures
were tried, but they produced progressively higher final
cost functions.

Another possibility, which we have not yet imple-
mented, is to determine the starting temperature dynami-
cally with every run, making use of the equilibrium char-
acteristics of Simulated Annealing. To measure the
temperature of a given placement, simply start at any tem-
perature and generate several hundred moves (depending
on circuit size) on the circuit, something which can be
done in several seconds. The moves should not actually
be accepted, but the total net change of the cost function
should be recorded. If the net change is negative then the
temperature should be higher, and if positive, the tem-
perature should be lower. Using this approach a binary
search can be done to quickly converge to the correct
starting temperature.

3.4. Results
The Max-Span algorithm was implemented and used to

produce ten seeds and subsequently ten interim place-
ments (using the min-cut placement program, ALTOR)
for each of six test circuits. Five of these circuits were
industrial circuits provided by Bell Northern Research
Ltd. The other circuit was taken from a gate array de-
signed by the University of Toronto Microelectronic De-
velopment Centre. Each of these placements was further
annealed beginning at temperature 39. In all cases, more
than one of the interim placements achieved a cost func-
tion close to that of the regular Simulated Annealing pro-
cess (a definition of “close” is given below). Table I
shows the interim and final cost function for an 1 188-cell
circuit and the percentage difference between the final cost
function and the average final cost of five regular Simu-
lated Annealing runs. It also shows that the rank (i.e., the
position in sorted order) of the interim and final cost are
closely correlated, an empirical justification for using the
interim cost function as a basis for choosing which place-
ment is selected for low temperature annealing. Choosing
the first seed for further annealing (as the one with the
lowest interim cost) results in a placement with a cost
within 0.6 percent of that achieved by the regular Simu-
lated Annealing process.

Table I1 summarizes the results for all the sample cir-
cuits. It gives the lowest cost function achieved by the ten
interim placements after the Min-Cut algorithm, the final
cost function after annealing of the placement with the
lowest interim cost function, the average and standard de-
viation of the final cost function of five regular Simulated
Annealing runs, and the number of interim placements that
were within one standard deviation of the average. This
criterion was chosen because one standard deviation en-
compasses a significant percentage of all samples of the
distribution. This last column is our method of comparing
the quality of Heuristic Spanning with that of regular Sim-
ulated Annealing. Note that no fewer than two of the final
placements were within one standard deviation of the
average. In addition, the interim placement that would

I

ROSE et al. : P A R A L L E L C E L L P L A C E M E N T ALGORITHMS 39 1

TABLE I
LOW TEMPERATURE ANNEALING FOR 1 1 8 8 - C E L L CIRCUIT

TABLE I1
HEURISTIC SPANNING RESULTS FOR ALL CIRCUITS

have been chosen in the Heuristic Spanning process is
close to or better than the average of five regular Simu-
lated Annealing runs. From these results, it is clear that
Heuristic Spanning works well, and achieves quality
equivalent to that of regular Simulated Annealing.

3.5. Performance
The performance improvement of Heuristic Spanning

over regular Simulated Annealing come from two sources:

1) The algorithm itself is faster than the high-temper-
ature portion of Simulated Annealing when run on a
uniprocessor.

2) Heuristic Spanning can be easily sped up using mul-
tiple processors.

The number of interim placements that is produced in
Heuristic Spanning must be sufficient to guarantee that the
interim placement with the lowest cost function will have
a final cost function as good as regular Simulated An-
nealing. Empirically, 10 interim placements have been
shown to be sufficient for the 6 test circuits.

Table I11 gives the performance improvement of Heu-
ristic Spanning over regular Simulated Annealing. For
each circuit it gives the time for ALTOR to produce one
placement, the time to execute a full Simulated Annealing
run and the portion of that time which corresponds to the
high temperature phase. The last column gives the speed-
up of Heuristic Spanning run on one processor (i.e., one
processor generates all ten interim placements) compared
with the high temperature portion of regular Simulated
Annealing. It is between 1.5 and 2.5 times faster for all
the test circuits.

If Heuristic Spanning were run using 10 processors
(each generating an interim placement), the speed-up over
the one processor Heuristic Spanning time would be al-

TABLE 111
SPEED-UP OF HEURISTIC SPANNING OVER SIMULATED ANNEALING

most exactly 10. This is because the Max-Span algorithm
takes negligible time to compute and there is no other se-
rial component in the calculation. Thus the speedup of 10-
processor Heuristic Spanning over uniprocessor Simu-
lated Annealing at high temperature is simply a factor of
10 better than the figure given in the last column of Table
111. This results in factors of improvement from 15 to 25
times, using only 10 processors.

This marked increase in speed of the multiprocessor al-
gorithm over uniprocessor Simulated Annealing is due to
the combination of a faster algorithm and the use of mul-
tiple processors. It is possible that when the parameters
of Simulated Annealing such as the cooling rate and the
number of acceptances per temperature are better known,
these figures will not be quite so dramatic. At present,
since the properties of Simulated Annealing are not well
understood (though some recent work [121 has shed some
light on the subject), it is reasonable that a more intelli-
gent heuristic will be more efficient.

IV. Low Temperature: Section Annealing
The low temperature phase of Simulated Annealing has

several appealing factors that argue in favor of using it
directly in a parallel implementation:

The low acceptance ratio affords a direct parallelism
since data is changed infrequently.
The small move size at low temperature provides
locality that is useful in creating independent par-
allel tasks.
Intuitively, the random “hunting” for good moves
that goes on at low temperature makes sense, espe-
cially in the context of a multiprocessor environ-
ment where it is easy and cheap to add more pro-
cessors.

Section Annealing begins with an interim placement for
which the high temperature placement or equivalent has
already been performed. This placement is divided up
geographically, with the geographic areas and the cells
contained in those areas assigned to separate processors.
Each processor then generates Simulated Annealing-style
moves, in parallel, for the cells which it is assigned, and
tests those moves for acceptance. If a move is not ac-
cepted then no further work is done. If a move is ac-
cepted, then the accepting processor transmits the move
tc the other processors so they can maintain a consistent
view of cell positions. Fig. 3 depicts the basic process of
Section Annealing.

392 IEEE TRANSACTIONS ON C O M P U T E R - A I D E D D E S I G N , VOL. 7, N O . 3, MARCH 1988

Interim Placemen database can also be a bottleneck because it is accessed
by every processor for every move. Local caches may al-
leviate this, however, at the price of requiring some form
of cache consistency.

Having separate databases in each processor means that
global communication is required only when a processor
makes a move (changing the database) rather than at every
move. This is good because Section Annealing is done at
temperatures that have low acceptance ratios, and thus
global accesses are infrequent. However, since there are
multiple copies of the same information, there will always
be times when different copies are inconsistent-causing
erroneous moves to be made.

We chose the separate database implementation, so as
to avoid the central bottleneck, keeping in mind that the
misinformation would have to be dealt with at some point.

t 1 8
IntefpmcslilOr Communication Neiwa~k

Divide Placement
Geographically

Assign Areas and
Cells Io Pmcessors

P M S S O R
Generate Mows
andTestfor
Acceptance

I
Accepted Moves
are Sent lo
P m c 8 ~ ~ 0 n that
Need to Know

Fig. 3. The basic process of Section Annealing.

4.1. Multiprocessor Algorithm Design

Section Annealing.
There are a number of design trade-offs involved in

Asynchronous versus Synchronous Moves:
There are two choices concerning the synchronization

of the processors as they generate moves: each processor
can either stop after every move and wait for the others
to finish their moves (the synchronous case) or continu-
ously generate moves without regard to the state of the
other processors (the asynchronous case). The synchro-
nous case allows a central database of cell positions to be
maintained in a consistent fashion and thus permits Sim-
ulated Annealing to be reproduced exactly [16]. Unfor-
tunately, since different moves require different amounts
of time to be evaluated (i.e., determine the change in cost
function), synchronization means that processors will sit
idle waiting for the slowest to finish, which can be a se-
vere performance penalty. Also, the task of keeping the
database consistent when several moves are accepted at
once (if this consistency is desired) takes a great deal of
time.

The asynchronous case allows the processors to run
faster, unhindered by synchronization, but introduces an
error in the process because the cell position database(s)
as seen by the processors will not be consistent. This oc-
curs when one processor changes the position of a cell
while another is doing a cost function calculation using
it.

Since we require the greatest speed possible, we chose
the asynchronous case. The effects of the error induced
are discussed further, in Section 4.2.

Central versus Separate Databases:
The database containing the cell locations can either be

in one central location (which all processors read and up-
date directly) or each processor could have its own copy
of the data. In the case of a central database, it is easier
to make changes to the cell positions because the changes
are only made once. During such changes, however, the
database may be in a dramatically inconsistent state (bro-
ken linked lists and other data structures) so some kind of
locking of data structures would be necessary. A central

This choice was also influenced by the architecture of our
prototype multiprocessor, which has large local memo-
ries.

Move Generation:
The types of moves used in Section Annealing are ba-

sically a subset of those in [23]: single-cell displacements
and two-cell exchanges, with range-limiting. If a dis-
placement causes a cell to move beyond its processor’s
geographically assigned area, then responsibility for gen-
erating moves for that cell is transmitted to the processor
assigned to the new area. This is called a displacement-
responsibility transfer.

The only difference from [23] is that exchange-type
moves are only generated among the cells assigned to a
particular processor. Exchanges of cells between two pro-
cessors would necessitate interlocking to ensure that an
exchanged cell had not already been moved by the remote
processor, and would be difficult to do. The intra-proces-
sor exchange restriction of the search space is not signif-
icant since cells are allowed to displace across processor
boundaries and displacements outnumber exchanges by a
ratio of 5 : 1 [23]. Empirically, this restriction has resulted
in no loss of convergence.

Geographic Division:
The task of assigning geographic areas and the cells in

those areas to processors is non-trivial. The division tech-
nique must allow the assignment of arbitrary numbers of
cells to processors for workload balancing (see Section
4.4) and ensure that the areas are as square as possible to
reduce the number of displacement-responsibility trans-
fers: if the boundaries are allowed to be an arbitrary rec-
tilinear shape, more perimeter will be exposed to other
processors’ areas, increasing the likelihood that they will
have to be informed of the local processor’s moves. Di-
vision is accomplished by “sweeping” out manually des-
ignated areas (i.e., areas defined by the CAD programmer
in a table, rather than by some automatic technique) until
the right number of cells is collected [191.

4.2. Misinformation
The principle drawback of using separate cell databases

is that they can be in inconsistent states. This occurs be-

-
I

ROSE et al. : P A R A L L E L C E L L P L A C E M E N T A L G O R I T H M S

BNRC I 783M

393

80332 I 77885 I 78403 77393

tween the time that one processor moves a cell and when
it informs the other processors of that move. If another
processor makes a move based on the cell’s location dur-
ing that time, we call this a misinformed move, and say
that placement then contains some error. Total error is
defined as the difference between the sum of the changes
in cost function as viewed by the processors and the actual
change in cost function when the data are made consis-
tent. We need to know what the effect of the misinfor-
mation is, and how much error the process can withstand.
Grover [lo] claims that the most error that can be with-
stood is about half of the current temperature.

In our first simple implementation of Section Anneal-
ing, we were able to do some experiments that gave val-
uable insight into the effect of the error. In this imple-
mentation, the separate databases were updated only after
some fixed number (X) of moves were generated by each
processor. By changing X , we were able to observe the
convergence properties of Section Annealing with varying
amounts of error. With a 552-cell circuit, we found that
if the average number of moves accepted without being
broadcast to all processors was less than roughly 10, then
the Section Annealing process converged to the same final
cost function as regular Simulated Annealing. If more than
10 moves were accepted (by all of the processors) then
the cost function became unstable and was observed to
increase monotonically, rather than decrease. These basic
observations on the effect of misinformation on conver-
gence bode well for the implementations described below,
because we anticipate far fewer than 10 moves will be
accepted without every processor being informed.

We note that this was a limited experiment that pro-
vided a rough idea of Section Annealing’s tolerance for
error. Further experimentation and analysis is required to
determine these properties for varying sizes of circuits and
under different temperature conditions.

One further effect of misinformation is discussed below
in Section 4.4.

4.3. Implementation of Section Annealing
The first full implementation takes the obvious ap-

proach to maintaining consistent databases in each of the

TABLE IV
CONVERGENCE OF SECTION ANNEALING USING 1-5 PROCESSORS

BNRA 1 181485 1 183577 184327 1 183072 I 180554

cast Section Annealing for one to five processors, for each
of the five test circuits. There is no significant difference
between the uniprocessor cost function and the 2-5 pro-
cessor cost functions.

In the Full-Broadcast approach, the principle perfor-
mance degradation is due to each of the processors spend-
ing time updating their local databases (not the time to
transmit the move) when informed of extra-processor
moves. In fact, every processor does not really need to
know about every move made elsewhere. A processor only
needs to know about the motion of a cell when:

1) It contains a cell connected to the moved cell (to
calculate wire length correctly), or

2) It contains at least one cell less than the range win-
dow distance away from either the old or new po-
sition of the cell (to calculate overlap penalties cor-
rectly), or

3) It contains a row whose total width has changed due
to the move (so it can calculate row width penalties
correctly).

Rather than broadcast every move, in the need-to-know
approach only the processors that are in one or more of
these categories for a given move are informed. There is
computation required, however, to determine which pro-
cessors are in these categories. For this method to be use-
ful, the time spent in that calculation must be less than
the total amount of computation saved.

Measured results indicate that, at the higher tempera-
tures in the early phase, this is not true-basically all of
the processors “need to know” about every move. At the
lower temperatures, however, the number of moves sent
to other processors is reduced by as much as 50 percent,
a significant saving. Define f N as

Moves sent to other processors in Need-To-Know scheme
fN = # Moves sent to other processors in Full-Broadcast scheme

processors: as soon as any processor accepts a move, it
immediately broadcasts it to all of the processors. This is
called the Full-Broadcast mode. Since Section Annealing
will deal with no more than P = 20 processors, and will
be used at acceptance ratios of no more than A = 0.06,
then on average no more than P X A = 1.2 moves will
be accepted during one move period. Since this number
is much less than 10, we expect to get convergence equiv-
alent to that of regular Simulated Annealing, and indeed
this has been observed experimentally, as shown in Table
IV. This table gives the final cost function of Full-Broad-

Fig. 4 is a plot offN versus temperature stage, using 5
processors. (A temperature stage is the work done at each
unique temperature. There are 27 temperature stages in
our version of regular Simulated Annealing; Section An-
nealing begins at stage number 13.) It is clear that at some
point, depending on the overhead involved, it is worth-
while switching to the need-to-know approach.

4.4. Observations and Dificulties

ties encountered in implementing Section Annealing.
There are several interesting observations and difficul-

1 1 1

393 IkEE TKA ,NSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 7. NO. 3. MARCH 19x8

Ternperam

0.6

0.4 O I b 14 16 I8 20 22 24 26

Tern- Smgc

Fig. 4. fy versus temperature 5tag.e. for 590-cell circuit using 5 processors.

Acceptance Ratio:
In running Section Annealing, the acceptance ratio was

observed to be an increasing function of the number of
processors. This is due to the fact that the amount of mis-
information, or error, increases as the number of proces-
sors increases. If a move is made based on misinformation
then it is likely the move is bad (i .e . , increases the cost
function) since most moves are bad. This move would not
have taken place in regular Simulated Annealing. Fur-
thermore, since we have observed convergence of Section
Annealing to the same final cost function as regular Sim-
ulated Annealing, then further good moves have to be
made to make up for the bad move. Thus the acceptance
ratio increases in the presence of misinformation, which
is an increasing function of the number of processors.

Cell Balance:
On occasion, all of the cells assigned to one processor

were observed to vacate that processor and the geographic
area it was assigned. This is clearly an effect of the mul-
tiprocessor algorithm, since it never happens in unipro-
cessor Simulated Annealing. The effect can be explained
as follows. The number of moves made by a processor is
directly proportional to the number of cells it is originally
assigned. (This keeps the multiprocessor algorithm com-
parable to the uniprocessor version.) Due to the random
nature of Simulated Annealing it is possible that the num-
ber of cells in a processor will dip below some critical
amount resulting from displacement-responsibility trans-
fers. Here, more moves are generated per cell for the cells
remaining in that processor, making it more likely a move
will be accepted for each cell. Since more of each cell’s
circuit neighbors have already left the processor, it be-
comes more likely that remaining cells will also move out.
Thus a kind of positive feedback occurs and soon all cells
leave the processor.

Fortunately. the effect is easy to cure: simply rebalance
the cells among processors whenever the number in any
procesor dips below 75 percent of the original assign-
ment. This has been observed to solve the problem and
happens infrequentiy enough to have a negligible effect
on performance.

Workload B ~ I ~ i i c e :
Since cel!s in circuits are different from each other, i t

takes varying amounts of time to calculate a change in
cost function for different cells. If a set of “slow” cells
are grouped together in one processor, then it will take a

longer time for that processor to complete the same num-
ber of moves as another processor. This means that pro-
cessors will be idle waiting for the slowest processor to
finish, decreasing performance.

To correct this problem, the speed at which each pro-
cessor is executing moves is measured at each synchro-
nization point (after about every 2000-3000 moves is
made in each processor). The number of cells and area of
geographic responsibility in each “slow” processor are
reduced and the number in each “fast” processor in-
creased in a time-balancing algorithm [191. This approach
corrects the time imbalance that occurs when one proces-
sor is more than 10 percent slower than the fastest pro-
cessor.

To completely correct the remaining 10 percent imbal-
ance, all processors terminate when the first processor fin-
ishes, and the moves that are missed are evenly distrib-
uted over all processors at the end of the temperature
stage.

4.5. Performance
Section Annealing has been successfully implemented

on a six-processor prototype. One of the processors is
dedicated to operating system functions, so we have five
usable processors.

As mentioned above, Section Annealing converges to
the same final cost function as regular Simulated Anneal-
ing. The timing and speed-up results for the Full-Broad-
cast case is given in Table V, for an 856-cell circuit. It
achieves a speed-up of 4.3 using 5 processors, where
speed-up for n processors is given by S, = TI / T I , and TI,
is the execution time using n processors. Table VI sum-
marizes the results for all of the test circuits, ranging in
size from 552 cells to 1795 cells. Similar speed-up results
were obtained for all circuits. Circuit BNR Chad a worse
speed-up because it exhibited a higher acceptance ratio at
the lower temperatures. The reason for this is not known.

The timing and speed-up results for need-to-know sec-
tion annealing are given for one to five processors on an
856-cell circuit in Table VII. The speedup is given rela-
tive to the uniprocessor Full-Broadcast case. As discussed
above, the overhead incurred in determining which pro-
cessors need to know more about a move is greater than
the work saved at the higher temperatures. Thus, the
speed-up is only 4.1 using 5 processors; less than that of
the Full-Broadcast case for the same circuit. However,
since need-to-know is worthwhile at lower temperatures,
an adaptive approach which switches from Full-Broadcast
to need-to-know will provide a performance improve-
ment.

Fig. 5 is a plot of the speed-up versus the number of
processors for both the Full-Broadcast and Need-To-Know
approaches, for the 856-cell circuit.

A model developed in [191 takes into account all of the
properties of Full-Broadcast Section Annealing discussed
here, and allows the prediction of performance for up to
10 processors. Table VI11 gives the predicted 10-proces-
sor results for all the test circuits. We expect a speed-up

I

ROSE et ul. : P A R A L L E L C E L L P L A C E M E N T A L G O R I T H M S 395

5-

4-

speed-up 3 -

2-

1

ldtal

- Full-Bropdwt

..

I I I

TABLE V
FULL-BROADCAST TIMING AND SPEED-UP FOR AN 8 5 6 - C E L L CIRCUIT

m1
47 4.3

TABLE VI

PROCESSORS
FULL-BROADCAST SPEED-UP RESULTS FOR ALL CIRCUITS, USING 5

1 Circuit I Number of I S d - u o I

BNRD 856 -1
BNRA 1795

TABLE VI1
NEED-TO-KNOW TIMING AND SPEED-UP FOR AN 8 5 6 - C E L L CIRCUIT

N u m b o f fiecution Spocd-up
W s o m T i m s W u u r)

3.5

40 4 1

TABLE VI11
PREDICTED 10 PROCESSOR FULL-BROADCAST SPEED-UP FOR ALL CIRCUITS

BNRA 1 1795 1 7.1

of roughly 7 using 10 processors, which represents an ef-
ficient use of the multiprocessor.

4.6. Section Annealing Conclusions
Section Annealing takes good advantage of the paral-

lelism available at low temperature Simulated Annealing.
If Section Annealing were combined with the Heuristic
Spanning approach of Section 111, then we expect that,
when compared with the Simulated Annealing program
using parameters suggested in [23], for our test circuits

the combined approach would achieve speed-ups ranging
from 10 to 13 using 10 processors.

V. CONCLUSIONS
We have presented two parallel algorithms for the stan-

dard cell placement problem that together provide the
same quality as the Simulated Annealing placement al-
gorithm, yet are faster on a parallel processor. They
achieve an aggregate speed-up of from 10 to 13 times the
uniprocessor algorithm of [23] using only 10 processors.
This total speed-up is due to the use of both multiple pro-
cessors and, for the high temperature portion, a faster
basic algorithm. The Heuristic Spanning approach has
shown that an intelligent heuristic, given a few well-cho-
sen attempts, will produce quality equivalent to the high
temperature portion of Simulated Annealing and a total
speed-up of 15-25 using I O processors. The Section An-
nealing approach takes advantage of the abundant paral-
lelism available in the low temperature phase of Simu-
lated Annealing, and having measured a speed-up of about
4 using 5 processors. We expect to get about 7 using 10
processors.

Future work in this area will go in a number of direc-
tions: our experience with the Simulated Annealing place-
ment algorithm for standard cells has shown that the cost
function does not map all that closely to the final area.
We are thus working on better cost functions, keeping in
mind that we should be allowed to use more computation
if it can be done in parallel.

We believe that another Heuristic Spanning technique
could be derived directly from the basic idea of spanning
the search space, rather than using an existing algorithm.
This has the aim of achieving even better quality and thus
a lower low-temperature annealing starting temperature.

The Section Annealing approach could easily be com-
bined with the direct pipelining and parallelizing of the
Simulated Annealing algorithm such as that done by
Kravitz and Rutenbar [161. Since the two kinds of paral-
lelism are orthogonal, we expect the speedups to simply
multiply. This would mean that speedups of 7 using 10
processors (obtained in this work) and 2 using 3 proces-
sors (as reported in [171) should give a speedup of 14 using
30 processors. Further research on tuning both of these
algorithms could significantly increase the performance
and presents an opportunity to make efficient use of a large
number of processors.

ACKNOWLEDGMENT
David Blythe spent a great deal of time getting the

TUMS operating system in a state that could be used. Pe-
ter Pereira and Fred Aulich helped put and keep the hard-
ware together. The authors are especially grateful to Grant
Martin and Gary Sakauye of Bell Northern Research, Inc.
for supplying industrial-quality circuits to test this work.
Adrian Hartog of the University of Toronto Microelec-
tronics Development Centre also supplied production cir-

I 1

396

cuits for use in this work. Tom Blank provided a helpful
review of this paper.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 7, NO. 3, MARCH 1988

REFERENCES
[I] P. Banerjee and M. Jones, “A parallel simulated annealing algorithm

for standard cell placement on a hypercube computer,” in Proc. IC-

[2] D. R. Blythe, “Masterislave TUNIS: A multiprocessor operating sys-
tem,” M.Sc. thesis, Dep. Computer Science, University of Toronto,
1986.

[3] M. A. Breuer, “Min-cut placement,” J . Design Automation Fault-
Tolerant Computing, pp. 343-362, Oct. 1977.

[4] A. Casotto, F. Romeo, and A. Sangiovanni-Vincentelli, “A parallel
simulated annealing algorithm for the placement of macro-cells,” in
Proc. ICCAD 86, pp. 30-33, Nov. 1986.

[5] D-J. Chyaa and M. A. Breuer, “A placement algorithm for array
processors,” in Proc. 20th Design Automation Con$, pp. 182-188,
June 1983.

[6] J . R. Cordy and R. C. Holt, “Specification of concurrent Euclid,”
Computer Systems Res. Group Tech. Rep. CSRG-133, University of
Toronto, Aug. 1981.

[7] L. I . Corrigan, “A placement capability based on partitioning,” in
Proc. 16th Design Automution Conf., pp. 406-413, June 1979.

[8] A. E. Dunlop, and B . W. Kernighan, “A procedure for placement of
standard-cell VLSI circuits,” IEEE Trans. Computer-Aided Design,
vol. CAD-4, pp. 92-98, Jan. 1985.

[9] C . M. Figuccia and R. M. Matheyses, “A linear time heuristic for
improving network partitions,” in Proc. 19th Design Automation
Conf., pp. 175-181, June 1982.

[IO] L. K. Grover, “A new simulated annealing algorithm for standard
cell placement,” in Proc. ICCAD 86, pp. 378-380, Nov. 1986.

[I l l C. A. R. Hoare, “Monitors: An operating system structuring con-
cept,” Commun. ACM, vol. 17, no. 16, pp. 547-557, Oct. 1974.

(121 M. D. Huang, F. Romeo and A. Sangiovanni-Vincentelli, “An e%-
cient general cooling schedule for simulated annealing,’’ in Proc. IC-

CAD 86, pp, 34-37, NOV. 1986.

CAD 8 6 , pp. 381-384, Nov. 1986.
A. Iosupovicz, C . King, and M. A. Breuer, “A module interchange
placement machine,” in 20th Design Automation Conf., pp. 171-174,
June 1982.
B. W. Kernighan and S . Lin, “An efficient heuristic procedure for
partitioning network graphs,” Bell Syst. Tech. J . , pp. 291-307, Feb.
1970.
S . Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi, “Optimization
by simulated annealing,” Science, vol. 220, no. 4598, pp. 671-680,
May 1983.
S . A. Kravitz, “Multiprocessor-based placement by simulated an-
nealing,” SRC-CMU Centre for Computer Computer-Aided Design,
Research Rep. CMUCAD-86-6, 1986.
S . A. Kravitz and R. A. Rutenbar, “Multiprocessor-based placement
by simulated annealing,” in Proc. 23rd Design Automation Conf. ,
pp. 567-573, June 1986.
1. S . Rose, W . M. Snelgrove, and Z. G. Vranesic, “ALTOR: An
automatic standard cell layout program,” in Froc. Canadian Con$

J . S . Rose, “Fast, high quality VLSI placement on a MIMD multi-
processor,” Ph.D. dissertation, Dep. of Electrical Engineering, Uni-
versity of Toronto, 1986; also Computer Systems Res. Inst. Tech.
Rep. # 189.
J . S . Rose, D. R. Blythe, W. M. Snelgrove, and Z. G. Vranesic,
“Fast, high quality VLSI placement on an MIMD Multiprocessor.”
in Proc. lCCAD 86, pp. 42-45, Nov. 1986.
C . Rowen and J . J . Hennessy, “SWAMI: A flexible logic implemen-
tation system,” in Proc. 22nd Design Automation Conf., pp. 169-
175, June 1985.
R. A. Rutenbar and S . A. Kravitz, “Layout by annealing in a parallel
environment,” in Proc. Inr. Con$ Computer Design: VLSI in Com-
puters (ICCD), pp. 434-437, Oct. 1986.

VLSI, pp. 168-173, NOV. 1985.

1231 C. Sechen and A. Sangiovanni-Vincentelli, “The Timberwolf place-
ment and routing package,” IEEE 1. Solid-State Circuits, vol. SC-
20, pp. 510-522, Apr. 1985.

1241 C. Sechen and A. Sangiovanni-Vincentelli, “TimberWolf3.2: A new
standard cell placement and global routing package,” in Proc. 23rd
Design Automation Con$, pp. 432-439, June 1986.

1251 K. Ueda, T. Komatsubara, and T. Hosaka, “A parallel processing
approach for logic module placement,” IEEE Trans. Computer-Aided
Design, vol. CAD-2, pp. 39-47, Jan. 1983.

*

Jonathan Rose (S’79-M’86) received the B.A.Sc.
degree in Engineering Science in 1980, and the
M.A.Sc. and Ph.D. degrees in electrical engi-
neering in 1982 and 1986, respectively, from the
University of Toronto.

During the summer of 1983, Rose was with the
Bell-Northern Research Ltd., Ottawa, in the In-
tegrated Circuits CAD/CAM group. He is a vis-
iting Post-Doctoral Scholar in the Computer Sys-
tem Laboratory, Stanford University, CA. His
research interests include CAD for ulacement and

routing, parallel processor architectures and applications, and combina-
tions of the two

*

W. Martin Snelgrove (S’75-M’81) was born in
Kitwe, Zambia, in October 1954. He received the
B.A.Sc., degree in chemical engineering in 1975,
and the M.A.Sc. and Ph.D. degrees in electrical
engineering from the University of Toronto, To-
ronto, Ont., Canada, in 1977 and 1982, respec-
tively.

In 1982 he worked at the Instituto Nacional de
Astrofisica, Optica y Electronics, Tonantzintla,
Mexico, as a visiting investigator. Since then he
has been at the University of Toronto as an Assis-

tant Professor. He is involved in research projects in the University’s Com-
puter Systems Research Institute and its VLSI Research Group, primarily
in the areas of CAD on multiprocessors and high-frequency integrated fil-
ters. A 1986 paper co-authored with A. Sedra was the winner of the 1986
IEEE Circuits and Systems Society Guillemin-Cauer Award.

*

Zvonko G. Vranesic (S’67-M’68-SM’84) re-
ceived the B.A.Sc., M.A.Sc. and Ph.D. degrees
in electrical engineering from the University of
Toronto, Toronto, Canada, in 1963, 1966 and
1968, respectively.

From 1963 to 1965 he was with the Northern
Electric Company Ltd., Bramalea, Ont., Canada.
In 1968 he joined the Faculty of the Departments
of Electrical Engineering and Computer Science
at the University of Toronto, where he is now a
Professor. During 1977 to 1978 and 1984 to 1985

he was a Senior visitor in the ComputerLaboratory at the University of
Cambridge, England, and in the Institut de Programmation at the Univer-
sity of Paris 6 , France. His research interests include computer architec-
ture, fault tolerant computing, local area networks and many-valued
switching systems. He was the Chairman of the 1973 International Sym-
posium on Multiple-valued Logic and the Technical Program Chairman of
the 6th International Symposium on Multiple-Valued Logic.

1

