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Parallel Standard Cell Placement Algorithms with 
Quality Equivalent to Simulated Annealing 
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AND ZVONKO G. VRANESIC, SENIOR MEMBER, IEEE 

Abstract-Parallel algorithms with quality equivalent to the simu- 
lated annealing placement algorithm for standard cells [23] are pre- 
sented. The first, called heuristic spanning, creates parallelism by 
simultaneously investigating different areas of the plausible combina- 
torial search space. It is used to replace the high temperature portion 
of simulated annealing. The low temperature portion of Simulated An- 
nealing is sped up by a technique called section annealing, in which 
placement is geographically divided and the pieces are assigned to sep- 
arate processors. Each processor generates Simulated Annealing-style 
moves for the cells in its area, and communicates the moves to other 
processors as necessary. Heuristic spanning and section annealing are 
shown, experimentally, to converge to the same final cost function as 
regular simulated annealing. These approaches achieve significant 
speed-up over uniprocessor simulated annealing, giving high quality 
VLSI placement of standard cells in a short period of time. 

I. INTRODUCTION 
S DESIGNERS have come to rely on automatic lay- A out tools, it has become necessary that those tools 

have the ability to do a good job minimizing the final area 
and other performance-critical factors. Recent work on 
automatic placement for standard cells [23], [24] has 
shown that a simulated annealing [ 151 placement algo- 
rithm can achieve higher quality results (lower final area) 
than more conventional algorithms. The better quality 
comes at the price of much longer computation time, on 
the order of weeks on a VAX 111780 machine [24]. 

This paper presents techniques for achieving the same 
final quality as Simulated Annealing, suitable for imple- 
mentation on an MIMD (Multiple Instruction Stream 
Multiple Data Stream) multiprocessor and resulting in 
much faster run times [19], [20]. Two different ap- 
proaches are taken, one to replace the high temperature 
portion of simulated annealing, and the other to speed up 
the low temperature portion. The high temperature ap- 
proach, heuristic spanning, achieves parallelism by hav- 
ing different processors investigate plausible but indepen- 
dent areas of the combinatorial search space. 

The low temperature approach, section annealing, di- 
vides the interim placement into geographic areas and as- 
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signs these areas and the cells contained in them to sep- 
arate processors. Each processor generates simulated 
annealing-style moves for its assigned cells, communi- 
cating accepted moves to other processors when neces- 
sary. This approach has been implemented on a five-pro- 
cessor prototype, and expected results are given for ten 
processors. 

There has been a great deal of interest in speeding up 
the simulated annealing placement algorithm. Kravitz and 
Rutenbar [16], [17], [22] have provided two approaches 
to the problem: one that uses pipelining and direct paral- 
lelism to speed up the original simulated annealing algo- 
rithm, achieving a speed-up of about two using three pro- 
cessors. They also attempt a parallel moves strategy on a 
shared-memory machine multiprocessor, gaining a speed- 
up of about three using four processors. Banerjee and 
Jones [I]  discuss using a distributed memory Hypercube 
architecture for the standard cell placement problem. 
Casotto et al. [4] worked on speeding up simulated an- 
nealing for placement of macrocells, and have achieved a 
speed-up of six using eight processors. 

Our contribution is in several areas: replacing the high 
temperature portion of simulated annealing with heuristic 
spanning is a whole new way of approaching the problem 
and of obtaining parallelism. The scheme succeeds by 
making intelligent use of a limited number of processors. 

The idea of generating and evaluating simulated an- 
nealing moves in parallel is common to [ l ] ,  [4], (161, 
[20]. We are able to concentrate on the low temperature 
phase for this approach, since Heuristic Spanning ade- 
quately replaces the high temperature phase. Our section 
annealing approach uses distributed local memories rather 
than the shared memory used in [16], and thus does not 
suffer from the central bottleneck of a shared memory. As 
opposed to [ 161, we allow simultaneous move acceptance 
to occur, and present some new results on the effect of 
this error on the convergence of the section annealing pro- 
cess. The implementation of section annealing has estab- 
lished the existence and solution of several problems that 
were not foreseen in [ I ] .  We also introduce a technique 
to reduce the synchronization cost between processors, by 
taking note of the fact that every processor does not need 
to know about every move that is accepted by other pro- 
cessors. Our results are based on experiments with large, 
industrial circuits, ranging in size from 446 cells to 1795 
cells. 
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The experimental work in this paper was performed on 
a multiprocessor consisting of six National Semiconduc- 
tor 32016 processors, each with 1 Mbyte of local mem- 
ory. They communicate through a MULTIBUS back- 
plane, also making use of 1 Mbyte of global memory. The 
operating system of the multiprocessor is master/slave 
TUNIS 121, a UNIX-like multiprocessor operating system 
research project at the University of Toronto. The system 
was programmed with the Concurrent Euclid language 161, 
a descendant of Pascal that uses Hoare’s monitors [ 111 for 
interprocessor synchronization. 

This paper is organized as follows. Section I1 discusses 
the general task of parallelizing an application, and then 
the specifics of doing so for simulated annealing. Section 
111 presents heuristic spanning, an approach for replacing 
the high-temperature portion of Simulated Annealing. 
Section IV presents Section Annealing, a technique for 
speeding up low-temperature Simulated Annealing. 

11. PARALLELISM CONSIDERATIONS 
In exploring ways to speed up an application through 

parallelism, the choices of multiprocessor architecture and 
programming approach are crucial. The multiprocessor 
architecture must be flexible enough so that both the al- 
gorithm and its data structures can be changed easily, 
since any production application software must be contin- 
uously adjusted and corrected throughout its useful life. 
Previous special-purpose hardware for placement [ 131, 
1251 used algorithms that were fixed in hardware, and suf- 
fered from the inability to change, or tune their algo- 
rithms. In addition, a given architecture is more economic 
if it is general enough to be used in a range of applica- 
tions. For these reasons, all approaches discussed in this 
paper assume a general purpose MIMD multiprocessor. 

2.1. Parallelization of Algorithms 
In attempting to speed up an application that focuses on 

a specific uniprocessor algorithm using a parallel proces- 
sor there are two possible approaches: 

1) Speed up the serial code for the application, by find- 
ing places where it can be pipelined or directly ex- 
ecuted in parallel, always maintaining the exact be- 
havior of the algorithm. 

2) Try to reproduce the behavior and results of the ex- 
isting algorithm, but use a different, more parallel 
approach. 

The first approach was used by Kravitz and Rutenbar in 
their StaticFunction implementation [ 161. It can achieve 
some speed-up but, as they found, it restricts the parallel 
programmer’s freedom greatly. In general, the total speed- 
up is not likely to be more than 4 or 5 unless the algorithm 
has obvious independent parallelism. 

The second approach allows much more freedom. The 
algorithm can be adjusted slightly or changed completely 
to gain parallelism. It is important that an implementation 
of the original algorithm is available so the final results 
of the new approach can be measured against that stan- 

dard. In this work, we apply the second approach, with 
the aim of obtaining a greater degree of parallelism. 

2.2. Uniprocessor Simulated Annealing 
Our work is baseh on that of Sechen and Sangiovanni- 

Vincentelli [23]. We have implemented a version of their 
standard cell placement algorithm, which is called SAL- 
TOR for Simulated Annealing Layout at TORonto [ 191. 
It begins using a random layout, and a high temperature 
( T )  where the acceptance ratio is over 60 percent. Con- 
tinuous placement perturbations called moves are gener- 
ated, and the change in cost function that each move 
would cause ( AC ) is calculated. The move is accepted if 
AC 5 0 (i.e., it improves the cost function) or with prob- 
ability if AC > 0. The temperature is decreased 
by a constant factor (we typically used 0.85) after a con- 
stant number of moves per cell were attempted (typically 
100). There are two kinds of moves: the displacement of 
single cells over a random distance, and the exchange of 
two randomly chosen cells. Moves are range-limited: a 
range window, which decreases logarithmically in size 
with the temperature, gives the maximum displacement 
of one cell, and the maximum distance over which two 
cells can be exchanged. We did not implement the cell 
orientation move type or the low-temperature intra-row 
exchange step of 1231, because the basic properties of 
Simulated Annealing are captured by the displacement and 
exchange moves. 

2.3. Relevant Characteristics of Simulated Annealing 
The Simulated Annealing algorithm exhibits markedly 

different characteristics at different temperatures. The 
early stages, at high temperatures, are characterized by 
high acceptance ratios, and the moves involve large dis- 
tances across the entire circuit. The later stages, at low 
temperatures, exhibit low acceptance ratios and the moves 
cover small distances with respect to circuit size 1191. 

The acceptance ratio and average size of move made 
are the key factors in parallelizing Simulated Annealing. 
The acceptance ratio dictates how often the data structures 
that contain cell positions and wire lengths must be 
changed. If the ratio is high then any parallel approach 
that needs to access a single database containing that in- 
formation will suffer from severe bottlenecks. The aver- 
age size of move dictates, to some extent, the locality of 
the work in the database, and thus will affect multipro- 
cessor implementations with distributed caches or local 
memories. Also, since we have decided to reproduce the 
behavior (and not the identical algorithm) of Simulated 
Annealing, we note that the behavior of the algorithm is 
entirely different for high and low acceptance ratios. For 
these reasons, different approaches to parallelizing Sim- 
ulated Annealing must be used for the high and low tem- 
perature ranges. 

111. HIGH TEMPERATURE: HEURISTIC SPANNING 
In the regular Simulated Annealing algorithm at high 

temperatures, the general area of the search space being 
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investigated changes rapidly due to the high acceptance 
ratio and large scale of moves (by regular Simulated An- 
nealing we refer to the uniprocessor method over the full 
temperature range, as described in Section 11-2.2). The 
result of the high temperature phase is a coarse placement 
that assigns each cell to a general area. 

An alternative to sequentially traversing a number of 
coarse placements is to generate and investigate different 
coarse placements in parallel. This is the basic notion of 
Heuristic Spanning. Essentially, a heuristic algorithm is 
used to generate a number of grossly different but plau- 
sible placements at the same time on different processors. 
These are evaluated by another heuristic procedure to pro- 
duce an interim “goodness” measure with which the dif- 
ferent interim placements can be compared. One of the 
interim placements is chosen to be annealed further at 
lower temperatures to complete the full process. Fig. 1 
depicts the basic process of Heuristic Spanning. 

A key point is that the heuristic algorithm that runs in 
parallel must be much faster than Simulated Annealing, 
so that a reasonable speed-up can be achieved. The re- 
mainder of this section presents one Heuristic Spanning 
technique. 

3.1. Spanning the Search Space 
The first step of the Heuristic Spanning approach is to 

divide up the search space. The Min-Cut placement al- 
gorithm [3], [7], [8] used in ALTOR [18] (a standard cell 
placement and routing package developed at the Univer- 
sity of Toronto) provides a convenient basis for a search 
space division approach. ALTOR has been measured to 
be about twenty times faster than SALTOR, our Simu- 
lated Annealing-based uniprocessor placement program. 

The Min-Cut placement algorithm recursively subdi- 
vides a placement while minimizing the number of wire 
crossings at each division line. Typically, an iterative im- 
provement partitioning algorithm such as Kernighan-Lin 
[14] or Fiduccia Matheyses [9] is used to do the minimi- 
zation. In ALTOR, a constructive initial partitioning step 
was introduced to aid the Fiduccia-Matheyses [9] itera- 
tive improvement, for the jirst division step. The con- 
structive algorithm builds one of the subdivisions of the 
circuit by sequentially adding the cells that are most con- 
nected to those that have already been chosen, starting 
with a seed cell. Experience using different seeds has 
shown that they have a marked effect on the quality of the 
final placement, yet there appears not to be a way, short 
of exhaustive searching, to choose the seed that will result 
in the best final placement. One way to solve this com- 
binatorially difficult problem is to run the entire algorithm 
several times with difTerent seeds and choose the best final 
placement. This is similar to the idea of using multiple 
random starts for an iterative improvement algorithm [21], 
but it is better because the seeds are chosen in an intelli- 
gent manner in such a way as to make the initial partitions 
as “different” as possible. This means that different parts 
of the search space will be investigated, which is the fun- 
damental premise of Heuristic Spanning. 

Search Space 

Divided 

Heuristically 

Total Search Space 

I 1 

PmcBsSOrs 
Apply Fast 
HouriHm to 
Evaluate 
Area of 
Search Space 

Low Temperature Annealing 

Fig. I .  The basic process of heuristic spanning. 

In this context, to have diferent seeds means that the 
seed cells are as far apart from each other as possible. For 
cells to be ‘far’ from each other, we must define what is 
meant by distance. Assume that there is a set of N cells, 
numbered from 1 to N .  Define the distance D,, between 
two cells i a n d j  to be the minimum number of nets in the 
circuit that must be traversed to get from cell i to cellj.  

Assume that s seed cells are required. The problem of 
finding different seeds is then to choose s distinct cells 
from the set of N such that: 

J F  

is maximized. Unfortunately, there are (r ) possible com- 
binations of cells, which is a prohibitive number to in- 
vestigate exhaustively. Previous to even that large com- 
putation there are N 2 / 2  of the D, to be calculated, which 
is excessive computation in itself. For this reason the 
Max-Span algorithm was developed, which has O (  sN ) 
running time. It is a greedy algorithm that works well in 
practice [19], and is described in Fig. 2 .  It begins with an 
arbitrarily chosen first seed, and then selects the second 
seed as the one farthest away from the first. The next seed 
is chosen as the one with the greatest distance from either 
of the first two seeds. Subsequent seeds are selected to be 
as far away as possible from the seeds already chosen. 

Thus, choosing a set of seed cells that are far from each 
other, and using initial partitions “grown” from these 
seeds, multiple runs of the Min-cut algorithm will inves- 
tigate different areas of the plausible search space. 

3.2. Choosing the Best Interim Placement 
The second step of the Heuristic Spanning approach is 

to choose one of the interim placements to be annealed 
hrther at low temperatures. The simplest and most ob- 
vious way is to chose the interim placement with the low- 
est cost function. Experiments have shown (see Section 

T 
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Fig. 2. The max-span algorithm 

3.4) that there is a direct correlation between the interim 
and final cost functions, although the interim placement 
with the lowest cost function is not necessarily the one 
with the lowest final cost function. Empirically, however, 
the placement with the lowest interim cost function is al- 
ways among the placements with the lower final cost 
Function. Practically, this means that there must be a suf- 
ficient number of seeds processed by ALTOR to guaran- 
tee that the interim placement with the lowest cost func- 
tion will achieve a final cost function as good as what 
would have been achieved by regular Simulated Anneal- 
ing. No method has yet been developed to ensure that this 
occurs, but in practice ten seeds have been observed to be 
sufficient, as will be shown in Section 3.4. 

3.3.  Low Temperature Annealing 
The third step of Heuristic Spanning is to anneal the 

interim placements at low temperatures. The crucial ques- 
tion here is to decide the best temperature at which to 
begin the annealing. If the temperature is too high then 
unnecessary work is done. If it is too low then the final 
cost function will not be as low as that for regular Simu- 
lated Annealing. The following method has been used to 
determine the starting temperature: 

1 )  Determine the cost of the interim placement. 
2) In a regular Simulated Annealing run, obtain a table 

of cost function versus temperature. 
3) Determine which temperature of the full Simulated 

Annealing run has the closest cost function to the 
interim cost function. Choose that temperature as the 
starting temperature. 

It is of course infeasible to do this matching within the 
approach itself, since that would mean doing a regular 
Simulated Annealing run every time-defeating the pur- 
pose of speeding up the process in the first place. How- 
ever, the resulting temperature has been found to be con- 
stant with respect to circuit size. For all the test circuits, 
using the above method, the starting temperature was 
found to be 39 degrees, where degrees in this case have 
cost function units. This number is a function of the par- 
ticular constants chosen in our cost function. In the reg- 
ular Simulated Annealing process we used, there were 27 
temperatures, and 39 was the 12th temperature, with an 

acceptance ratio of about 6 percent. Lower temperatures 
were tried, but they produced progressively higher final 
cost functions. 

Another possibility, which we have not yet imple- 
mented, is to determine the starting temperature dynami- 
cally with every run, making use of the equilibrium char- 
acteristics of Simulated Annealing. To measure the 
temperature of a given placement, simply start at any tem- 
perature and generate several hundred moves (depending 
on circuit size) on the circuit, something which can be 
done in several seconds. The moves should not actually 
be accepted, but the total net change of the cost function 
should be recorded. If the net change is negative then the 
temperature should be higher, and if positive, the tem- 
perature should be lower. Using this approach a binary 
search can be done to quickly converge to the correct 
starting temperature. 

3.4.  Results 
The Max-Span algorithm was implemented and used to 

produce ten seeds and subsequently ten interim place- 
ments (using the min-cut placement program, ALTOR) 
for each of six test circuits. Five of these circuits were 
industrial circuits provided by Bell Northern Research 
Ltd. The other circuit was taken from a gate array de- 
signed by the University of Toronto Microelectronic De- 
velopment Centre. Each of these placements was further 
annealed beginning at temperature 39. In all cases, more 
than one of the interim placements achieved a cost func- 
tion close to that of the regular Simulated Annealing pro- 
cess (a definition of “close” is given below). Table I 
shows the interim and final cost function for an 1 188-cell 
circuit and the percentage difference between the final cost 
function and the average final cost of five regular Simu- 
lated Annealing runs. It also shows that the rank (i.e., the 
position in sorted order) of the interim and final cost are 
closely correlated, an empirical justification for using the 
interim cost function as a basis for choosing which place- 
ment is selected for low temperature annealing. Choosing 
the first seed for further annealing (as the one with the 
lowest interim cost) results in a placement with a cost 
within 0.6 percent of that achieved by the regular Simu- 
lated Annealing process. 

Table I1 summarizes the results for all the sample cir- 
cuits. It gives the lowest cost function achieved by the ten 
interim placements after the Min-Cut algorithm, the final 
cost function after annealing of the placement with the 
lowest interim cost function, the average and standard de- 
viation of the final cost function of five regular Simulated 
Annealing runs, and the number of interim placements that 
were within one standard deviation of the average. This 
criterion was chosen because one standard deviation en- 
compasses a significant percentage of all samples of the 
distribution. This last column is our method of comparing 
the quality of Heuristic Spanning with that of regular Sim- 
ulated Annealing. Note that no fewer than two of the final 
placements were within one standard deviation of the 
average. In addition, the interim placement that would 

I 
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TABLE I 
LOW TEMPERATURE ANNEALING FOR 1 1 8 8 - C E L L  CIRCUIT 

TABLE I1 
HEURISTIC SPANNING RESULTS FOR ALL CIRCUITS 

have been chosen in the Heuristic Spanning process is 
close to or better than the average of five regular Simu- 
lated Annealing runs. From these results, it is clear that 
Heuristic Spanning works well, and achieves quality 
equivalent to that of regular Simulated Annealing. 

3.5. Performance 
The performance improvement of Heuristic Spanning 

over regular Simulated Annealing come from two sources: 

1) The algorithm itself is faster than the high-temper- 
ature portion of Simulated Annealing when run on a 
uniprocessor. 

2) Heuristic Spanning can be easily sped up using mul- 
tiple processors. 

The number of interim placements that is produced in 
Heuristic Spanning must be sufficient to guarantee that the 
interim placement with the lowest cost function will have 
a final cost function as good as regular Simulated An- 
nealing. Empirically, 10 interim placements have been 
shown to be sufficient for the 6 test circuits. 

Table I11 gives the performance improvement of Heu- 
ristic Spanning over regular Simulated Annealing. For 
each circuit it gives the time for ALTOR to produce one 
placement, the time to execute a full Simulated Annealing 
run and the portion of that time which corresponds to the 
high temperature phase. The last column gives the speed- 
up of Heuristic Spanning run on one processor (i.e., one 
processor generates all ten interim placements) compared 
with the high temperature portion of regular Simulated 
Annealing. It is between 1.5 and 2.5 times faster for all 
the test circuits. 

If Heuristic Spanning were run using 10 processors 
(each generating an interim placement), the speed-up over 
the one processor Heuristic Spanning time would be al- 

TABLE 111 
SPEED-UP OF HEURISTIC SPANNING OVER SIMULATED ANNEALING 

most exactly 10. This is because the Max-Span algorithm 
takes negligible time to compute and there is no other se- 
rial component in the calculation. Thus the speedup of 10- 
processor Heuristic Spanning over uniprocessor Simu- 
lated Annealing at high temperature is simply a factor of 
10 better than the figure given in the last column of Table 
111. This results in factors of improvement from 15 to 25 
times, using only 10 processors. 

This marked increase in speed of the multiprocessor al- 
gorithm over uniprocessor Simulated Annealing is due to 
the combination of a faster algorithm and the use of mul- 
tiple processors. It is possible that when the parameters 
of Simulated Annealing such as the cooling rate and the 
number of acceptances per temperature are better known, 
these figures will not be quite so dramatic. At present, 
since the properties of Simulated Annealing are not well 
understood (though some recent work [ 121 has shed some 
light on the subject), it is reasonable that a more intelli- 
gent heuristic will be more efficient. 

IV. Low Temperature: Section Annealing 
The low temperature phase of Simulated Annealing has 

several appealing factors that argue in favor of using it 
directly in a parallel implementation: 

The low acceptance ratio affords a direct parallelism 
since data is changed infrequently. 
The small move size at low temperature provides 
locality that is useful in creating independent par- 
allel tasks. 
Intuitively, the random “hunting” for good moves 
that goes on at low temperature makes sense, espe- 
cially in the context of a multiprocessor environ- 
ment where it is easy and cheap to add more pro- 
cessors. 

Section Annealing begins with an interim placement for 
which the high temperature placement or equivalent has 
already been performed. This placement is divided up 
geographically, with the geographic areas and the cells 
contained in those areas assigned to separate processors. 
Each processor then generates Simulated Annealing-style 
moves, in parallel, for the cells which it is assigned, and 
tests those moves for acceptance. If a move is not ac- 
cepted then no further work is done. If a move is ac- 
cepted, then the accepting processor transmits the move 
tc the other processors so they can maintain a consistent 
view of cell positions. Fig. 3 depicts the basic process of 
Section Annealing. 
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Interim Placemen database can also be a bottleneck because it is accessed 
by every processor for every move. Local caches may al- 
leviate this, however, at the price of requiring some form 
of cache consistency. 

Having separate databases in each processor means that 
global communication is required only when a processor 
makes a move (changing the database) rather than at every 
move. This is good because Section Annealing is done at 
temperatures that have low acceptance ratios, and thus 
global accesses are infrequent. However, since there are 
multiple copies of the same information, there will always 
be times when different copies are inconsistent-causing 
erroneous moves to be made. 

We chose the separate database implementation, so as 
to avoid the central bottleneck, keeping in mind that the 
misinformation would have to be dealt with at some point. 

t 1 8 
IntefpmcslilOr Communication Neiwa~k 

Divide Placement 
Geographically 

Assign Areas and 
Cells Io Pmcessors 

P M S S O R  
Generate Mows 
andTestfor 
Acceptance 

I 
Accepted Moves 
are Sent lo 
P m c 8 ~ ~ 0 n  that 
Need to Know 

Fig. 3.  The basic process of Section Annealing. 

4.1. Multiprocessor Algorithm Design 

Section Annealing. 
There are a number of design trade-offs involved in 

Asynchronous versus Synchronous Moves: 
There are two choices concerning the synchronization 

of the processors as they generate moves: each processor 
can either stop after every move and wait for the others 
to finish their moves (the synchronous case) or continu- 
ously generate moves without regard to the state of the 
other processors (the asynchronous case). The synchro- 
nous case allows a central database of cell positions to be 
maintained in a consistent fashion and thus permits Sim- 
ulated Annealing to be reproduced exactly [16]. Unfor- 
tunately, since different moves require different amounts 
of time to be evaluated (i.e., determine the change in cost 
function), synchronization means that processors will sit 
idle waiting for the slowest to finish, which can be a se- 
vere performance penalty. Also, the task of keeping the 
database consistent when several moves are accepted at 
once (if this consistency is desired) takes a great deal of 
time. 

The asynchronous case allows the processors to run 
faster, unhindered by synchronization, but introduces an 
error in the process because the cell position database(s) 
as seen by the processors will not be consistent. This oc- 
curs when one processor changes the position of a cell 
while another is doing a cost function calculation using 
it. 

Since we require the greatest speed possible, we chose 
the asynchronous case. The effects of the error induced 
are discussed further, in Section 4.2. 

Central versus Separate Databases: 
The database containing the cell locations can either be 

in one central location (which all processors read and up- 
date directly) or each processor could have its own copy 
of the data. In the case of a central database, it is easier 
to make changes to the cell positions because the changes 
are only made once. During such changes, however, the 
database may be in a dramatically inconsistent state (bro- 
ken linked lists and other data structures) so some kind of 
locking of data structures would be necessary. A central 

This choice was also influenced by the architecture of our 
prototype multiprocessor, which has large local memo- 
ries. 

Move Generation: 
The types of moves used in Section Annealing are ba- 

sically a subset of those in [23]: single-cell displacements 
and two-cell exchanges, with range-limiting. If a dis- 
placement causes a cell to move beyond its processor’s 
geographically assigned area, then responsibility for gen- 
erating moves for that cell is transmitted to the processor 
assigned to the new area. This is called a displacement- 
responsibility transfer. 

The only difference from [23] is that exchange-type 
moves are only generated among the cells assigned to a 
particular processor. Exchanges of cells between two pro- 
cessors would necessitate interlocking to ensure that an 
exchanged cell had not already been moved by the remote 
processor, and would be difficult to do. The intra-proces- 
sor exchange restriction of the search space is not signif- 
icant since cells are allowed to displace across processor 
boundaries and displacements outnumber exchanges by a 
ratio of 5 : 1 [23]. Empirically, this restriction has resulted 
in no loss of convergence. 

Geographic Division: 
The task of assigning geographic areas and the cells in 

those areas to processors is non-trivial. The division tech- 
nique must allow the assignment of arbitrary numbers of 
cells to processors for workload balancing (see Section 
4.4) and ensure that the areas are as square as possible to 
reduce the number of displacement-responsibility trans- 
fers: if the boundaries are allowed to be an arbitrary rec- 
tilinear shape, more perimeter will be exposed to other 
processors’ areas, increasing the likelihood that they will 
have to be informed of the local processor’s moves. Di- 
vision is accomplished by “sweeping” out manually des- 
ignated areas (i.e., areas defined by the CAD programmer 
in a table, rather than by some automatic technique) until 
the right number of cells is collected [ 191. 

4.2.  Misinformation 
The principle drawback of using separate cell databases 

is that they can be in inconsistent states. This occurs be- 

- 
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tween the time that one processor moves a cell and when 
it informs the other processors of that move. If another 
processor makes a move based on the cell’s location dur- 
ing that time, we call this a misinformed move, and say 
that placement then contains some error. Total error is 
defined as the difference between the sum of the changes 
in cost function as viewed by the processors and the actual 
change in cost function when the data are made consis- 
tent. We need to know what the effect of the misinfor- 
mation is, and how much error the process can withstand. 
Grover [lo] claims that the most error that can be with- 
stood is about half of the current temperature. 

In our first simple implementation of Section Anneal- 
ing, we were able to do some experiments that gave val- 
uable insight into the effect of the error. In this imple- 
mentation, the separate databases were updated only after 
some fixed number ( X )  of moves were generated by each 
processor. By changing X ,  we were able to observe the 
convergence properties of Section Annealing with varying 
amounts of error. With a 552-cell circuit, we found that 
if the average number of moves accepted without being 
broadcast to all processors was less than roughly 10, then 
the Section Annealing process converged to the same final 
cost function as regular Simulated Annealing. If more than 
10 moves were accepted (by all of the processors) then 
the cost function became unstable and was observed to 
increase monotonically, rather than decrease. These basic 
observations on the effect of misinformation on conver- 
gence bode well for the implementations described below, 
because we anticipate far fewer than 10 moves will be 
accepted without every processor being informed. 

We note that this was a limited experiment that pro- 
vided a rough idea of Section Annealing’s tolerance for 
error. Further experimentation and analysis is required to 
determine these properties for varying sizes of circuits and 
under different temperature conditions. 

One further effect of misinformation is discussed below 
in Section 4.4. 

4.3. Implementation of Section Annealing 
The first full implementation takes the obvious ap- 

proach to maintaining consistent databases in each of the 

TABLE IV 
CONVERGENCE OF SECTION ANNEALING USING 1-5 PROCESSORS 

BNRA 1 181485 1 183577 184327 1 183072 I 180554 

cast Section Annealing for one to five processors, for each 
of the five test circuits. There is no significant difference 
between the uniprocessor cost function and the 2-5 pro- 
cessor cost functions. 

In the Full-Broadcast approach, the principle perfor- 
mance degradation is due to each of the processors spend- 
ing time updating their local databases (not the time to 
transmit the move) when informed of extra-processor 
moves. In fact, every processor does not really need to 
know about every move made elsewhere. A processor only 
needs to know about the motion of a cell when: 

1) It contains a cell connected to the moved cell (to 
calculate wire length correctly), or 

2) It contains at least one cell less than the range win- 
dow distance away from either the old or new po- 
sition of the cell (to calculate overlap penalties cor- 
rectly), or 

3) It contains a row whose total width has changed due 
to the move (so it can calculate row width penalties 
correctly). 

Rather than broadcast every move, in the need-to-know 
approach only the processors that are in one or more of 
these categories for a given move are informed. There is 
computation required, however, to determine which pro- 
cessors are in these categories. For this method to be use- 
ful, the time spent in that calculation must be less than 
the total amount of computation saved. 

Measured results indicate that, at the higher tempera- 
tures in the early phase, this is not true-basically all of 
the processors “need to know” about every move. At the 
lower temperatures, however, the number of moves sent 
to other processors is reduced by as much as 50 percent, 
a significant saving. Define f N  as 

# Moves sent to other processors in Need-To-Know scheme 
fN = # Moves sent to other processors in Full-Broadcast scheme 

processors: as soon as any processor accepts a move, it 
immediately broadcasts it to all of the processors. This is 
called the Full-Broadcast mode. Since Section Annealing 
will deal with no more than P = 20 processors, and will 
be used at acceptance ratios of no more than A = 0.06, 
then on average no more than P X A = 1.2 moves will 
be accepted during one move period. Since this number 
is much less than 10, we expect to get convergence equiv- 
alent to that of regular Simulated Annealing, and indeed 
this has been observed experimentally, as shown in Table 
IV. This table gives the final cost function of Full-Broad- 

Fig. 4 is a plot offN versus temperature stage, using 5 
processors. (A temperature stage is the work done at each 
unique temperature. There are 27 temperature stages in 
our version of regular Simulated Annealing; Section An- 
nealing begins at stage number 13.) It is clear that at some 
point, depending on the overhead involved, it is worth- 
while switching to the need-to-know approach. 

4.4. Observations and Dificulties 

ties encountered in implementing Section Annealing. 
There are several interesting observations and difficul- 

1 1 1 
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Fig. 4.  fy versus temperature 5tag.e. for 590-cell circuit using 5 processors. 

Acceptance Ratio: 
In running Section Annealing, the acceptance ratio was 

observed to be an increasing function of the number of 
processors. This is due to the fact that the amount of mis- 
information, or error, increases as the number of proces- 
sors increases. If a move is made based on misinformation 
then it is likely the move is bad ( i .e . ,  increases the cost 
function) since most moves are bad. This move would not 
have taken place in regular Simulated Annealing. Fur- 
thermore, since we have observed convergence of Section 
Annealing to the same final cost function as regular Sim- 
ulated Annealing, then further good moves have to be 
made to make up for the bad move. Thus the acceptance 
ratio increases in the presence of misinformation, which 
is an increasing function of the number of processors. 

Cell Balance: 
On occasion, all of the cells assigned to one processor 

were observed to vacate that processor and the geographic 
area it  was assigned. This is clearly an effect of the mul- 
tiprocessor algorithm, since it never happens in unipro- 
cessor Simulated Annealing. The effect can be explained 
as follows. The number of moves made by a processor is 
directly proportional to the number of cells it is originally 
assigned. (This keeps the multiprocessor algorithm com- 
parable to the uniprocessor version.) Due to the random 
nature of Simulated Annealing it is possible that the num- 
ber of cells in a processor will dip below some critical 
amount resulting from displacement-responsibility trans- 
fers. Here, more moves are generated per cell for the cells 
remaining in that processor, making it more likely a move 
will be accepted for each cell. Since more of each cell’s 
circuit neighbors have already left the processor, it be- 
comes more likely that remaining cells will also move out. 
Thus a kind of positive feedback occurs and soon all cells 
leave the processor. 

Fortunately. the effect is easy to cure: simply rebalance 
the cells among processors whenever the number in any 
procesor dips below 75 percent of the original assign- 
ment. This has been observed to solve the problem and 
happens infrequentiy enough to have a negligible effect 
on performance. 

Workload B ~ I ~ i i c e :  
Since cel!s in circuits are different from each other, i t  

takes varying amounts of time to calculate a change in 
cost function for different cells. If a set of “slow” cells 
are grouped together in one processor, then it  will take a 

longer time for that processor to complete the same num- 
ber of moves as another processor. This means that pro- 
cessors will be idle waiting for the slowest processor to 
finish, decreasing performance. 

To correct this problem, the speed at which each pro- 
cessor is executing moves is measured at each synchro- 
nization point (after about every 2000-3000 moves is 
made in each processor). The number of cells and area of 
geographic responsibility in each “slow” processor are 
reduced and the number in each “fast” processor in- 
creased in a time-balancing algorithm [ 191. This approach 
corrects the time imbalance that occurs when one proces- 
sor is more than 10 percent slower than the fastest pro- 
cessor. 

To completely correct the remaining 10 percent imbal- 
ance, all processors terminate when the first processor fin- 
ishes, and the moves that are missed are evenly distrib- 
uted over all processors at the end of the temperature 
stage. 

4.5. Performance 
Section Annealing has been successfully implemented 

on a six-processor prototype. One of the processors is 
dedicated to operating system functions, so we have five 
usable processors. 

As mentioned above, Section Annealing converges to 
the same final cost function as regular Simulated Anneal- 
ing. The timing and speed-up results for the Full-Broad- 
cast case is given in Table V, for an 856-cell circuit. It 
achieves a speed-up of 4.3 using 5 processors, where 
speed-up for n processors is given by S, = TI / T I ,  and TI, 
is the execution time using n processors. Table VI sum- 
marizes the results for all of the test circuits, ranging in 
size from 552 cells to 1795 cells. Similar speed-up results 
were obtained for all circuits. Circuit BNR Chad a worse 
speed-up because it exhibited a higher acceptance ratio at 
the lower temperatures. The reason for this is not known. 

The timing and speed-up results for need-to-know sec- 
tion annealing are given for one to five processors on an 
856-cell circuit in Table VII. The speedup is given rela- 
tive to the uniprocessor Full-Broadcast case. As discussed 
above, the overhead incurred in determining which pro- 
cessors need to know more about a move is greater than 
the work saved at the higher temperatures. Thus, the 
speed-up is only 4.1 using 5 processors; less than that of 
the Full-Broadcast case for the same circuit. However, 
since need-to-know is worthwhile at lower temperatures, 
an adaptive approach which switches from Full-Broadcast 
to need-to-know will provide a performance improve- 
ment. 

Fig. 5 is a plot of the speed-up versus the number of 
processors for both the Full-Broadcast and Need-To-Know 
approaches, for the 856-cell circuit. 

A model developed in [ 191 takes into account all of the 
properties of Full-Broadcast Section Annealing discussed 
here, and allows the prediction of performance for up to 
10 processors. Table VI11 gives the predicted 10-proces- 
sor results for all the test circuits. We expect a speed-up 

I 
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TABLE V 
FULL-BROADCAST TIMING AND SPEED-UP FOR AN 8 5 6 - C E L L  CIRCUIT 

m1 
47 4.3 

TABLE VI 

PROCESSORS 
FULL-BROADCAST SPEED-UP RESULTS FOR ALL CIRCUITS, USING 5 

1 Circuit I Number of I S d - u o  I 

BNRD 856 -1 
BNRA 1795 

TABLE VI1 
NEED-TO-KNOW TIMING AND SPEED-UP FOR AN 8 5 6 - C E L L  CIRCUIT 

N u m b o f  fiecution Spocd-up 
W s o m  T i m s W u u r )  

3.5 

40 4 1  

TABLE VI11 
PREDICTED 10 PROCESSOR FULL-BROADCAST SPEED-UP FOR ALL CIRCUITS 

BNRA 1 1795 1 7.1 

of roughly 7 using 10 processors, which represents an ef- 
ficient use of the multiprocessor. 

4.6. Section Annealing Conclusions 
Section Annealing takes good advantage of the paral- 

lelism available at low temperature Simulated Annealing. 
If Section Annealing were combined with the Heuristic 
Spanning approach of Section 111, then we expect that, 
when compared with the Simulated Annealing program 
using parameters suggested in [23], for our test circuits 

the combined approach would achieve speed-ups ranging 
from 10 to 13 using 10 processors. 

V.  CONCLUSIONS 
We have presented two parallel algorithms for the stan- 

dard cell placement problem that together provide the 
same quality as the Simulated Annealing placement al- 
gorithm, yet are faster on a parallel processor. They 
achieve an aggregate speed-up of from 10 to 13 times the 
uniprocessor algorithm of [23] using only 10 processors. 
This total speed-up is due to the use of both multiple pro- 
cessors and, for the high temperature portion, a faster 
basic algorithm. The Heuristic Spanning approach has 
shown that an intelligent heuristic, given a few well-cho- 
sen attempts, will produce quality equivalent to the high 
temperature portion of Simulated Annealing and a total 
speed-up of 15-25 using I O  processors. The Section An- 
nealing approach takes advantage of the abundant paral- 
lelism available in the low temperature phase of Simu- 
lated Annealing, and having measured a speed-up of about 
4 using 5 processors. We expect to get about 7 using 10 
processors. 

Future work in this area will go in a number of direc- 
tions: our experience with the Simulated Annealing place- 
ment algorithm for standard cells has shown that the cost 
function does not map all that closely to the final area. 
We are thus working on better cost functions, keeping in 
mind that we should be allowed to use more computation 
if it can be done in parallel. 

We believe that another Heuristic Spanning technique 
could be derived directly from the basic idea of spanning 
the search space, rather than using an existing algorithm. 
This has the aim of achieving even better quality and thus 
a lower low-temperature annealing starting temperature. 

The Section Annealing approach could easily be com- 
bined with the direct pipelining and parallelizing of the 
Simulated Annealing algorithm such as that done by 
Kravitz and Rutenbar [ 161. Since the two kinds of paral- 
lelism are orthogonal, we expect the speedups to simply 
multiply. This would mean that speedups of 7 using 10 
processors (obtained in this work) and 2 using 3 proces- 
sors (as reported in [ 171) should give a speedup of 14 using 
30 processors. Further research on tuning both of these 
algorithms could significantly increase the performance 
and presents an opportunity to make efficient use of a large 
number of processors. 
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