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Temperature Measurement and Equilibrium Dynamics 
of Simulated Annealing Placements 

JONATHAN ROSE, MEMBER, IEEE, WOLFGANG KLEBSCH, A N D  JURGEN WOLF 

Abstract-One way to alleviate the heavy computation required by 
simulated annealing placement algorithms is to replace a significant 
fraction of the higher or middle temperatures with a faster heuristic, 
and then follow it with simulated annealing. A crucial issue in this ap- 
proach is the determination of the starting temperature for the simu- 
lated annealing phase-a temperature should be chosen that causes an 
appropriate amount of optimization to he done, but makes good use of 
the structure provided by the heuristic. This paper presents a method 
for measuring the temperature of an existing placement. The approach 
is based on the measurement of the probability distribution of the 
change in cost function, P ( A C ) ,  and makes the assumption that the 
placement is in simulated annealing equilibrium at some temperature. 
The temperature of placements produced both by a simulated anneal- 
ing and a min-cut placement algorithm are measured, and good agree- 
ment with known temperatures is obtained. The P( A C )  distribution 
is also used to give an interesting view of the equilibrium dynamics of 
simulated annealing. 

I .  INTRODUCT~ON 
HE SUCCESS of the simulated annealing algorithm T for automatic placement [ 181 has been hindered by its 

excessive computational requirements. Recent work on 
standard cell placement algorithms [6], [14], [16] has 
suggested alleviating this by using a two-stage approach: 
begin with a good, reasonably successful heuristic such 
as the min-cut algorithm [2], [3] and then follow it with 
a simulated annealing-based approach for more fine op- 
timization. This can be used to tradeoff quality for exe- 
cution time: as more of the simulated annealing work is 
replaced (and this can be just the high temperature, or 
include both middle and lower temperatures), the quality 
may decrease but so will the execution time. 

A crucial issue in this approach is the starting temper- 
ature of the simulated annealing phase. If the temperature 
is too high, then some of the structure created by the heu- 
ristic will be destroyed and unnecessary extra work will 
be done in the simulated annealing phase. If the temper- 
ature is too low then solution quality is lost, similar to the 
case of a quenching cooling schedule [19]. This paper 
presents a technique for measuring the temperature of a 
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placement for use in such two-stage systems. We make 
the assumption that the placement to be measured is in 
equilibrium for the given simulated annealing process at 
some temperature. 

The temperature determination procedure is based on 
the measurement of the probability distribution of the 
change in cost function, P (  A C ), of a running simulated 
annealing process. This is a difficult distribution to mea- 
sure, and we show how it can be approximately mea- 
sured. Using P ( A C ) ,  a method is presented for measur- 
ing the equilibrium temperature of a placement, and is 
shown to work both for placements produced by a simu- 
lated annealing and a min-cut placement algorithm. 

The determination of starting temperature for simulated 
annealing in two-stage systems has not been seriously ad- 
dressed before. Both [14], [16], and [6] introduce the 
question but avoid answering it by using a constant start- 
ing temperature based on experience. That approach gives 
no theoretical foundation for determining starting temper- 
atures and cannot be used if the simulated annealing for- 
mulation is changed, or for other problems. Previous work 
on cooling schedules [ l ] ,  [7], [ lo]  gives no guidance in 
choosing a starting temperature other than the very high- 
est. An earlier version of this work appeared in [17]. 

Section I1 of this paper defines the terms of simulated 
annealing, gives a precise definition of the equilibrium 
temperature of a placement, and the probability distribu- 
tion P ( A C ) .  Section 111 shows how P ( A C )  changes at 
different temperatures. Section IV presents the algorithm 
for measuring the temperature of a placement and shows 
that it works on placements produced by the simulated 
annealing algorithm itself. Section V presents tempera- 
ture measurements of placements produced by the min- 
cut placement algorithm. 

11. SIMULATED ANNEALING TERMS, DEFINITION OF 

TEMPERATURE, A N D  P (  A C ) 

To define the temperature of a placement, we first re- 
view the terms of simulated annealing [8], [ 121, and give 
a few necessary assumptions required on the placement. 
A concrete definition of the probability distribution 
P (  A C ) is given, along with a discussion of how to mea- 
sure it. 

2. I .  Simulated Annealing 
The purpose of simulated annealing is to choose a good 

solution to an optimization problem according to some 
costfunction on the state space of possible solutions. A 
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simulated annealing optimization process is a procedure 
that iteratively perturbs a state of the optimization prob- 
lem, and the perturbations are chosen using a generation 
function. The decision of whether or not to actually make 
the perturbation is determined by the acceptance function, 
and this is a function of the change in cost function ( A  C ) 
and a control parameter referred to as the temperature, T. 
A simulated annealing formulation for a given problem 
consists of a generation function, a cost function, and an 
acceptance function. 

A simulated annealing process generates perturbations, 
or moves, at a given temperature until equilibrium is 
achieved. If the process is modeled as a Markov chain 
[4], equilibrium is said to occur when the probability of 
being in a particular state becomes constant even as moves 
are being generated and accepted. That is, a stationary 
probability distribution is achieved. 

2.2. Temperature 
To define the notion of the temperature of a placement, 

we need to assume the following: that the placement un- 
der consideration is in equilibrium under the simulated 
annealing process at some temperature. This can be 
strictly true only for placements produced by the same 
simulated annealing process that are terminated in equi- 
librium. It is an approximation for any other placement. 
The effect of this approximation is shown, for one ex- 
ample, in Section V-5.3. 

With this assumption, the temperature of a placement 
is defined as follows: for a given simulated annealing for- 
mulation, the temperature of a placement is the tempera- 
ture for which the simulated annealing process running on 
that placement (i.e., beginning with that placement) is in 
equilibrium. 

To give this definition concrete mathematical form, we 
use the observation that at equilibrium, the cost function 
no longer changes, implying that the expected value of 
the change in cost function is zero: 

E(AC) = 0. (1)  

An expression for E (  A C ) can be formed as follows: 

m 

E ( A C )  = AC P(AC) PAccept(AC) dAC (2)  
-a 

where P ( A  C ) is the probability that a simulated anneal- 
ing process running on the placement at equilibrium will 
generate a move with cost AC. This distribution is de- 
fined mathematically below, in Section 11-2.3, which 
includes a discussion on how P ( A C )  is measured. 
PAccept ( A C ) is the probability that the acceptance func- 
tion will accept a move with cost AC. It commonly has 
the value 1 for AC I 0 and e ( - A C / T )  for AC > 0 [9]. 
This acceptance function will be used in the discussion 
below, but all of the following can be applied equally well 
to any acceptance function. 

Using this PAccept ( A  C ) we can split (2) into two parts 

and, and at equilibrium from (1) we can equate it to zero: 
0 

ACP(AC)dAC 

+ iom AC P(AC)e-AC/T'q dAC = 0. 

-m 

( 3 )  

Thus the temperature of a placement with a given dis- 
tribution P (  A C ) is the temperature, Te,, for which (3) is 
satisfied. 

2.3. Dejinition and Measurement of P (A C )  
P(  A C ) is the probability that the generation function 

of the simulated annealing process running on the given 
placement generates a move with cost AC. It can be de- 
fined using the Markov chain terminology used in [9], 
[12]. Assume that there are N possible states (place- 
ments). For a simulated annealing process, the transition 
probability matrix P is an N X N matrix whose elements 
Pij are the probability of the changing from state i to state 
j in one step. P is a function of the temperature, T.  A 
similar N x N matrix, G can be defined, whose elements 
Gj j  are the probability that a process in state i will gen- 
erate a move (regardless of whether the move is accepted) 
that will take it to statej .  G usually depends only on the 
generation function, and not temperature, unless the gen- 
eration function is temperature dependent due to the use 
of a range-windowing device [ 181. The effect of range 
windowing is discussed later in this section. 

At equilibrium, the probability of being in any state is 
given by the stationary probability distribution vector, a 
whose elements ai are the probability that the process is 
in state (placement) i ,  where 1 I i I N .  If we define the 
change in cost from state i t o j  as 

A Cij = cost (state i ) - cost (state j ) 

then the distribution P (  A C ) is given by 

Gjj, AC;j = AC 

0, AC;; # AC 
P(AC) = c c ai x 

I S i S N  i s j s N  

(4)  
We note that if the probability distribution a is stationary, 
then P ( A C ) will not vary as moves are made, since G is 
constant. 

The probability distribution of the states, a, is a func- 
tion of the equilibrium temperature of the placement. The 
temperature, however, is the quantity we are seeking to 
determine and is not known. If P (A C ) were measured by 
running a simulated annealing process and gathering sta- 
tistics on A Cat  the wrong temperature, this would change 
a, and hence, the measured P ( A C )  would be incorrect. 
This is not unlike the Heisenberg uncertainty principle- 
the act of measuring a quantity can cause that quantity to 
change. Measuring the P (  A C ) distribution during a run- 
ning simulated annealing process is called a dynamic 
measurement. It is impossible to make a correct dynamic 
measurement without knowing the placement's tempera- 
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ture. However, it is possible to get arbitrarily close to the 
right temperature because a measurement process (i.e., 
gathering statistics on AC to measure P ( A C ) )  can be 
restarted any number of times from the initial configura- 
tion. This could be used to determine the temperature, in 
a computationally expensive procedure, by iteratively 
searching for the temperature at which the cost function 
does not change at all. This procedure is described in Sec- 
tion V-5.3.  

P ( A  C ) can be approximated using a static method of 
measurement, which does not need to know the temper- 
ature. Here virtual moves are generated on the placement, 
and statistics are collected on the AC, but no moves are 
actually accepted. PLtatic ( A C ) then, is the probability of 
generating a move of cost AC from one particular state, 
i, and is defined as follows: 

P{tat,c ( A  C ) is not a function of T ,  and hence, is not a 
function of temperature. Its accuracy as an approximation 
of P ( A C ) depends on the simulated annealing formula- 
tion, including the underlying problem to be solved. By 
comparing (4) and ( 5 ) ,  it is clear that accuracy depends 
on how the distribution of P ( A C )  measured just from 
one state differs from the distribution measured from all 
states. For example, suppose that state i is a local mini- 
mum. Then P~tat lc  ( A  C ) would be zero for all A C I 0, 
whereas P (  A C ) would likely be nonzero. 

Because the accuracy of the static measurement method 
is so problem dependent, we can only give quantitative 
comparisons for a specific problem and formulation. For 
the placement problem, using the simulated annealing 
standard cell algorithm similar to the one described in [ 181 
and implemented in [ 161, the static approximation works 
very well. To demonstrate this, the simulated annealing 
process was run to produce placements at various tem- 
peratures on several circuits, and then P ( A C )  was mea- 
sured using the static and dynamic methods. (The dy- 
namic method can be used when the equilibrium 
temperature is known.) They were found to be almost ex- 
actly the same. For example, Fig. 1 is a plot of P,,,,,, ( A  C ) 
and Pdynamlc ( A  C ) for the Primary 1 standard cell bench- 
mark circuit [ 113 produced at temperature 300. It shows 
that the distributions are very close, and indeed, they are 
even closer than they appear in the figure, as the dots are 
more offset from the line than is in fact the case. 

This is not enough to guarantee, however, that 
P,,,,,, ( A  C ) will always give a good approximation of 
P ( A C ) ,  even for this case. It is likely that a greedy heu- 
ristic that uses the same cost function as the simulated 
annealing process would produce a placement in a local 
optimum. Note that some heuristics, such as min-cut [2j, 
are unlikely to do so because they only place cells to a 
specified area and will not have a local optimum place- 
ment within that area. It is important then to ensure that 
the initial heuristic either uses a different cost function 
from the simulated annealing process, or that it prevents 

a local optimum by not using a completely greedy ap- 
proach. Note that this is how the temperature measure- 
ment is intended to be used-as a follow on from a non- 
optimum (local or global). 

Lastly, note that P (  A C ) can be a function of temper- 
ature due to such techniques as runge-windowing [ 181. A 
range-window technique seeks to eliminate highly un- 
likely moves by preventing the generation function from 
yielding them. As long as the generation temperature is 
set to be very high, this will not affect the measured dis- 
tribution, since at low temperatures the effect of the elim- 
inated moves is negligible by definition of the range win- 
dow. It does mean that more moves have to be generated 
because the efficiency of eliminating unlikely moves is 
lost. 

Here T,,, is the temperature of the simulated annealing pro- 
cess. 

Suppose that now a system is in equilibrium at tem- 
perature T I ,  and its temperature is then lowered to T2. Fig. 
2 is a plot of P ( A  C ) and PAccept versus A C for a fictitious 
system in equilibrium at temperature T, .  When the tem- 
perature is lowered to T, the only change is that the pos- 
itive portion of the accept function becomes uniformly 
lower because 

For this system to regain equilibrium after the temper- 
ature change, P (  A C ) must change to again satisfy (3)- 
i.e., make the magnitude of the expected value of the good 
moves equal to expected value of the bad moves. This 
means that one or both of the following must happen: 

1) the positive portion of P (  A C ) must either shift right 
(greater bad moves) or up (more bad moves), increasing 
E+ ; 

2) the negative portion of P (A C ) must either shift right 
(smaller good moves) or down (fewer good moves), re- 
ducing E - .  

Experimentally, both these effects are observed. Fig. 3 is 
a plot of P ( A C )  versus AC for the 833 standard cell 
Primary1 circuit [ l l ] .  It was produced by the SALTOR 
simulated annealing placement program [ 151, [ 161, which 
is based on the ideas of the Timberwolf standard cell 

< e(-Ac'T') for all A C > 0. 
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placement program [ 181. P ( A  C ) is measured statically 
by generating 200 000 virtual moves on a placement. 

Fig. 3 gives P (  AC) for three temperatures: very high 
( T  = 5000), medium ( T  = 300) and low ( T  = 9).  As 
the temperature decreases, the negative portion of P ( A C ) 
undergoes a dramatic shift to the right, and is much 
smaller than the positive portion of P (  A C ). This relates 
to the placement process in that all of the large good 
moves are used up, and only a few relatively small im- 
provements are possible. 

As temperature decreases, the positive portion of 
P (  A C ) in Fig. 3 undergoes a right and upward shift. This 
occurs because as the placement gets better, there are more 
moves that will have a worse effect on the placement. 

IV. MEASURING TEMPERATURE 
As defined in Section 11, the temperature of a placement 

is the temperature at which the simulated annealing pro- 
cess running on the placement is in equilibrium. In this 
section, we present a method for measuring the tempera- 
ture of an arbitrary placement. 

The method is called the Equilibrium Binary Search and 
has the following outline: 

1) measure P ( A C ) for the given circuit under the sim- 
ulated annealing process, using the static method as de- 
scribed in Section 11-2.3; 

2) set the starting search temperature, T,, arbitrarily; 
3) based on the current TT, calculate: 

, A C > O  

= 1, AC I O ;  

- A C / T r  
PAccept ( A = e 

4) calculate E- and E+ as defined above, in Section 111; 
5 )  if E -  < E+,  reduce T, according to a binary search 

and go to step 3; if E- > E,, increase T, according to a 
binary search and go to step 3; if E- = E + ,  T, is the 
equilibrium temperature, Teq. Finish. 

Each iteration of the Equilibrium Binary Search re- 
quires only the recalculation of the positive portion of the 
acceptance function probability, PAccept ( A C ), and sub- 
sequently E+ since E- does not change with T,. Note also 
that P (  A C ) need only be generated once, since the static 
method of measurement is used. This is important since 
it takes many moves ( 104-105) to get an accurate proba- 
bility distribution. 

4. I .  Temperature Measurements of Simulated 
Annealing Placements 

The Equilibrium Binary Search was used to measure the 
temperature of a set of Primary1 placements produced by 
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the SALTOR simulated annealing placement program 
[14], [16]. Each placement was measured by using N = 
100 000 virtual moves to experimentally determine 
P ( A C ) .  Table I gives the temperature at which each 
placement's simulated annealing process was terminated 
(while in equilibrium), and the measured temperature 
using the Equilibrium Binary Search. 

The measured temperature is quite accurate at the higher 
temperature, usually less than a 7-percent error. The lower 
temperature measurements are proportionately less accu- 
rate, but since their absolute values are small this is not 
surprising. The error is due to the following four effects. 

1) Statistical variation caused by measuring P (  A C ) 
using a finite number of moves (see below). 

2) The cooling schedule used to produce the placement 
is not perfect, and so the placement is probably not quite 
in equilibrium. 

3) At lower temperatures, there are fewer negative 
moves, and so the accuracy of E- decreases, decreasing 
the accuracy of the temperature measurement. 

4) The slight difference, as discussed above, between 
the static and the (more correct) dynamic measurement of 
P ( A C ) .  

Point 1) can be seen experimentally: Fig. 4 is a plot of 
the percentage standard deviation of the measured tem- 
perature as a function of the number of virtual moves, N , , ,  
for temperatures 28, 153, and 405. The standard devia- 
tion was calculated from five runs at each number of vir- 
tual moves. The variation is a decreasing function of N , , ,  
as would be expected. The higher percentage variation at 
lower temperatures and fewer virtual moves is illustrated 
in the plot. 

213 
153 
99 

V. TEMPERATURE MEASUREMENT OF MIN-CUT 
PLACEMENTS 

The reason for measuring the temperature of a place- 
ment is to be able to switch from a nonannealing algo- 
rithm to an annealing-based one, and to begin at an ap- 
propriate temperature. In this section we first define a few 
relevant terms, then discuss the feasibility of measuring 
nonannealing placements, and finally measure a set of 
placements produced by the min-cut placement algorithm 
121, 131. 

5. I .  Dejinition of Terms 
Fig. 5 depicts the cut lines typically used in a min-cut 

placement algorithm. Min-cut placement is characterized 
by, among other things, the order and spacing of the cut 
lines applied. In Fig. 5 ,  the rectangle represents the entire 
placement, over which is laid a set of vertical and hori- 
zontal cut lines. If the spacing of the vertical cut lines is 
V and of the horizontal cut lines is H ,  then the cut area, 
A ,  is given by A = V x H. 

5.2.  Feasibility and Matching of Algorithms 
We must take into account a mismatch between min- 

cut placement and the simulated annealing move set used 
in Timberwolf [ 181 and SALTOR [16]. This move set al- 
lows cells to overlap and penalizes that overlap. The min- 
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Fig. 4. Variation of temperature with log,,, (number virtual moves). 
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Fig. 5 .  Definition of cut-area. 

TABLE I 
TEMPERATURE MEASUREMENT OF SIMULATED ANNEALING PLACEMENTS 

SA Produced Fquilibrium Binary Searcq Difference 
Temperature I MeasuredTemp I 

5rm I 496 I d  

4 
+6 
+? 

cut placement, however, has no overlap. Thus the first 
moves made on the min-cut placement during a simulated 
annealing process are more likely to be bad until a basic 
amount of overlap occurs, since almost every move will 
create some overlap where there was none before. This 
will shift the P ( A C )  distribution to the right and give 
erroneous results for a measured temperature. On the other 
hand, some simulated annealing formulations, such as [5], 
do not use overlap and would not have this problem. To 
avoid it here, we used a simplified circuit in which all 
cells were set to be of equal size and only exchange moves 
are made in the simulated annealing process. This pre- 
vents any overlap from occurring. Experimentally, we 
have seen that reasonable results are still obtained if over- 
lap is allowed to occur, since the wire length portion of 
the cost function dominates the overlap. 

5.3. Measurements 
Using the Equilibrium Binary Search method we mea- 

sured the temperature of several min-cut placements with 
a range of cut areas. These placements were produced by 
the ALTOR standard-cell placement program [ 131. Table 
I1 gives the measured temperature for each placement and 
its cut area. 
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TABLE 11 
TEMPERATURE MEASUREMENT OF MIN-CUT PLACEMENTS 

To check if the temperature measurements were cor- 
rect, we measured the temperatures of the placements in 
a different way, called the delta method. The delta method 
finds the temperature of a placement by running a dy- 
namic annealing process on the placement at a range of 
temperatures. It is run for 100 move generations per cell, 
for each temperature, and the percentage difference in ab- 
solute cost function is measured, called the delta. The 
temperature at which the absolute value of the delta is less 
than 2 percent is taken as the equilibrium temperature of 
the placement. This is a direct way of experimentally 
finding the temperature at which the change in cost func- 
tion is near 0. The delta method requires much more com- 
putation than the Equilibrium Binary Search method. Ta- 
ble I1 shows the temperatures determined by the delta 
method, and the difference between the binary search 
method and the delta method. The binary search temper- 
ature measurement of min-cut placements is not as accu- 
rate as those for simulated-annealing produced place- 
ments, yet it does track the temperature reasonably well. 

The Equilibrium Binary Search method consistently 
overestimates the equilibrium temperature. The principal 
reason is that a min-cut placement is not in equilibrium, 
which is one of the assumptions on the input placement, 
as discussed in Section 11-2.2. 

Intuitively, one would expect the measured temperature 
of a min-cut placement to be an increasing function of the 
cut area, and this is observed in Table 11. This intuition 
comes from the observation that at higher temperatures, 
simulated annealing moves cells over large distances and 
determines a coarse placement, while at lower tempera- 
tures a more fine placement is determined by small moves 
[19]. The first few cuts of min-cut placement correspond 
to a large cut area, and hence, a coarse placement, while 
smaller cut areas result in a fine placement. 

VI. CONCLUSIONS 
We have presented a method for determining the tem- 

perature, in the simulated annealing sense, of a place- 
ment. It is based on the measurement of the probability 
distribution of the change in cost function, which is dif- 
ficult to measure exactly. We describe a method of ap- 
proximately measuring this distribution and show that it 
works well for a particular instance of a placement prob- 

lem and algorithm implementation. We outline conditions 
under which the approximation will work. 

The temperature of several simulated annealing place- 
ments have been measured with good accuracy, and the 
temperature of a set of min-cut placements has been mea- 
sured with reasonable accuracy. These measurements are 
useful for determining the starting temperature when 
switching from a nonannealing based placement strategy 
to an annealing-based one. 
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