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Parallel Global Routing for 

Abstract-Combined placement and routing has the potential to 
achieve better quality automatic layout because the placement opti- 
mization can use the actual wire paths to make better decisions. This 
approach has been considered infeasible because of the computational 
requirements of the routing task. In this paper, we investigate the po- 
tential speedup of a standard cell global router using a general-purpose 
multiprocessor. We present LocusRoute, a global routing algorithm for 
standard cells, and its parallel implementation. The uniprocessor speed 
and quality of LocusRoute is comparable to modern global routers- 
LocusRoute compares favorably with the Timberwolf 5.0 global rou- 
ter 1161, and a maze router that searches the same space more com- 
pletely. Two successful methods of parallel decomposition of the router 
are  presented. The first, in which multiple wires a re  routed in parallel, 
uses the notion of chaotic parallelism to achieve significant perfor- 
mance gains by relaxing data dependencies, a t  the cost of a minor loss 
in quality. Using iteration and careful assignment of wires to proces- 
sors, this degradation is reduced. The approach achieves measured 
speedups from 5 to 14 using 15 processors. The second parallel decom- 
position technique is the evaluation of different routes for each wire on 
separate processors. It achieves speedups of up to 6 using 10 proces- 
sors. We demonstrate that when these two approaches a re  combined, 
the aggregate speedup is the product of the individual approaches’ 
speedup and, using an improved scheduling approach, it can be even 
greater. With a simple model based on these results, we predict speed- 
ups of more than 75 using 150 processors. 

I .  INTRODUCTION 
ULLY combined automatic placement and routing, in F which every placement is judged on the basis of the 

routed interconnections, can provide the best possible 
measure of the goodness of a placement. Evidence from 
recent research has shown that information provided by 
the routing can be helpful: Burstein and Hong [7] describe 
a gate array layout system in which routing is interleaved 
with the placement process. Dai and Kuh [ l  11 perform 
simultaneous floorplanning and global routing by hierar- 
chically decomposing the problem to reduce the compu- 
tational complexity of the routing problem. Suaris and 
Kedem [33] also integrate placement and routing by suc- 
cessively refining a hierarchical routing at the same time 
the placement hierarchy is refined in a quadrisection-based 
approach. 

Each of these approaches reduce the computational 
complexity of the routing either by i) routing only after 
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some amount of placement optimization [7] or by ii) rout- 
ing at the current level of hierarchy [ 111, [33]. To achieve 
fully combined placement and routing, global routing 
must be invoked whenever changes to the placement are 
considered and each affected wire must be completely re- 
routed. This approach may achieve further gains in place- 
ment quality but requires so much computation that up to 
now it has been considered infeasible. In this paper we 
address this problem by investigating the performance 
gains possible for global routing using a multiprocessor. 
We present LocusRoute, a global routing algorithm for 
standard cells and its parallel implementation. 

Currently, we envision two approaches to combined 
placement and routing. We summarize the approaches 
here to further motivate the parallel router presented in 
this paper. 

I .  1. Direct Area Estimation 
A fast standard cell global router could be invoked to 

route and reroute wires as the positions of the endpoints 
of the wires are changed during the placement process. 
This allows the direct measurement of the area of the 
placement. Other work [32], [23] suggests that it is dif- 
ficult to optimize area-based cost functions because the 
so-called energy landscape or convexity of the cost func- 
tion is unfavorable, particularly if the placement optimi- 
zation uses single cell moves or two-cell exchanges. We 
regard this problem, however, as an interesting open 
question in automatic placement. 

I .  2. Multiway Partition-Based Placement Optimization 
This is an N-way recursive partitioning algorithm, as 

opposed to 2-way in min-cut placement [ 5 ]  and 4-way in 
quadrisection [33]. In this kind of approach a coarse grid 
of N partitions is recursively imposed on an initial place- 
ment. The placement is perturbed by proposing and pos- 
sibly accepting moves that change the partition assign- 
ment of one or more cells. The cost function is determined 
from the number of wires crossing each segment of a par- 
tition line, and the partition balance requirements. To cal- 
culate the segment crossing counts, the paths of all the 
wires must be determined. This is exactly the global rout- 
ing problem, and thus the motivation for a fast parallel 
router is to make the segment crossing count recalculation 
as fast as possible. 

While the context of LocusRoute is as a tool to gain 
higher quality placement, we show that it is a reasonable 
global router for standard cells in its own right. The rout- 
ing performance of LocusRoute, as measured by the total 
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number of routing tracks, is comparable to that of the 
Timberwolf 5.0 global router [16] and a maze router. 

We present three approaches to the parallel decompo- 
sition of LocusRoute: routing several wires at once, rout- 
ing several two-pin segments of the wire simultaneously, 
and evaluating possible routes in parallel. In the first ap- 
proach, we use the notion of chaotic parallelism in which 
data dependencies are relaxed in order to gain perfor- 
mance. This causes a loss of quality in the results, but 
because the underlying algorithm is iterative, we can re- 
cover some of the lost quality. The quality is improved 
further by assigning wires to processors in such a way as 
to reduce the data dependency violations. Also, we argue 
throughout this paper that, in a combined placement and 
routing scheme, it is advantageous to trade a small amount 
of quality for a large gain in speed, allowing more place- 
ments to be evaluated. This approach achieves measured 
speedups ranging from 5 to 14 using 15 processors de- 
pending on the size of the circuit. 

A second parallel decomposition, the route-by-route 
approach, achieves speedups of up to 6 using 10 proces- 
sors. Since the route-by-route approach is orthogonal to 
the wire-by-wire scheme, when the two are used together 
the total parallelism should be the product of the parallel- 
ism of the two individual methods. This is demonstrated 
on 15 processors, and used to predict speedups of more 
than 75 using 150 processors for standard benchmark cir- 
cuits, using a static scheduling policy. We show that when 
a dynamic scheduling approach is used, greater speedup 
and efficiency results. 

1.3. Related Work 
Previous work on parallel routing [6], [4], 1 1 1 ,  [181, 

[30], [12], [35] has focused on a fixed hardware mapping 
for the Lee maze routing algorithm [15]. As such they 
lack the flexibility that is required in practical CAD soft- 
ware. Another drawback of special hardware for the Lee 
algorithm is that a uniprocessor implementation can be 
made very efficient using special software data structures 
that cannot be put easily into fixed hardware. 

Until recently, there have been few publications on 
global routing for standard cells. Supowit [34] presents a 
simple heuristic for solving a limited subcase of the global 
routing problem. Sechen [3 I], [32] describes the original 
Timberwolf global router which decomposes multipin 
wires into two-pin wires using a minimum spanning tree 
algorithm and then employs an iterative track-switching 
algorithm to reduce channel densities. It suffered from the 
inability to cross any standard cell row more than once. 
Two global routers are described in [ 131 and [36] but give 
little detail of the process. An early version of the work 
presented in this paper was given in [28]. More recently, 
[16] and [lo] have introduced new global routing algo- 
rithms that consider the problem much more carefully. In 
[ 161, a Steiner tree approximation for a wire is followed 
by a coarse global routing in which paths are chosen to 
minimize a penalty function that includes the channel 
density. Feedthroughs are assigned, and particular atten- 
tion is paid to aligning the feedthrough paths. Finally, the 

spanning tree is refined using more detailed knowledge of 
the previous steps, and a final optimization of the switch- 
able segments is performed. In [ lo], a minimal spanning 
forest is determined, which has the unique feature that it 
considers all wires at once. The algorithm of [ 161 is quan- 
titatively compared to the LocusRoute algorithm in this 
paper. A survey of global routing that touches on standard 
cells appears in [ 171. 

I .  4. Organization 
This paper is organized as follows: Section I1 defines 

the global routing problem for standard cells and de- 
scribes the sequential LocusRoute algorithm. Section 111 
gives performance comparisons with the Timberwolf 5.0 
global router [ 161 and a maze router. Section IV presents 
three approaches for speeding up the new router using 
parallel processing, and performance results. Section V 
presents experiments with combining two of the 
aproaches, using two scheduling policies, which are then 
used to model and predict speedups for larger numbers of 
processors. 

11. THE LOCUSROUTE ALGORITHM 

This section defines the standard cell global routing 
problem, and describes the new LocusRoute approach to 
solving it.  

2. I .  Problem Dejinition 

for each wire in the circuit. 
Global routing for standard cells decides the following 

1 )  For each group of electrically equivalent pins (pin 
clusters in the terminology of [31]) it determines 
which of those pins are actually to be connected. 

2) If there is no path between channels when one is 
required, it must decide either which built-in feed- 
through to use or where to insert a feedthrough cell. 

3) It decides which part or parts of a channel a wire 
should occupy. 

4) It must determine the channel to use in routing from 
a pad into the core cells. 

The objective of a global router is to minimize the sum 
of the channel densities of all the channels (hereafter 
called the total number of tracks). 

In this discussion of global routing there will be no dif- 
ferentiation between feedthrough cells and built-in 
feedthroughs-they are referred to jointly as vertical hops. 
The decision to insert a feedthrough cell or use a built-in 
feedthrough is deferred to a post-processing step. When- 
ever comparisons are made to other global routers, the 
post-processing step is invoked to obtain accurate track 
counts. 

2.2. The LocusRoute Algorithm 
In the LocusRoute algorithm, the following five steps 

are executed for each wire. The details of each step are 
contained in the subsequent sections. 
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Segment decomposition: Each multipoint wire is di- 
vided into a set of two-point segments (where a 
“point” is a pin cluster), using a minimum span- 
ning tree algorithm. By considering only two-point 
wires we introduce a suboptimality, but some of the 
negative effect is mitigated by a local optimization 
performed in the reconstruction: step 4) below. A 
direct comparison with a multipoint maze route is 
given in Section 111-3.2. 
Permutation decomposition: Since each pin cluster 
can consist of two physical pins (one on the top of 
a cell and one on the bottom), there are four possible 
ways to connect two pin clusters. Each of these pos- 
sible routes is called a permutation. This step de- 
composes the segment into permutations and uses a 
simple heuristic (described below) to see if all the 
permutations should be evaluated. 
Route generation and evaluation: A low-cost path 
is found for each permutation by evaluating a subset 
of the two-bend routes between physical each pin 
pair. The cost of a wire is defined below, in Section 
11-2.2.3. The permutation with the best cost is se- 
lected as the route for that segment. 
Reconstruct: This step joins all the segments back 
together, performs a local optimization, and assigns 
unique numbers to distinct segments of the same 
wire in each channel. This is so that a channel router 
can distinguish between two segments and will not 
inadvertently join them together. 
Record: The presence of the newly routed wire is 
recorded so that later wires can take it into account. 

LocusRoute uses the iterative technique described in 
[19]. Briefly, this means that after the first time all wires 
are routed, each is sequentially ripped up and then re- 
routed. By routing each wire several times (typically four 
iterations gives the best answer, but little improvement is 
seen after two iterations), the final answer is improved by 
5-10% because later wires can take earlier wires into ac- 
count. Iteration also reduces the effect of the wire order 
dependency. Wires are routed in the order they are input. 

The details of each of the above steps are described in 
the following sections. 

2.2.1. Segment Decomposition: In this step each wire 
with more than two logical pins is decomposed into pairs 
of logical pins. This is done by determining a minimum 
spanning tree by using Prim’s algorithm [24] (formerly 
we used Kruskal’s algorithm [ 141, but [16] observed that 
Prim’s algorithm is more efficient for complete graphs). 
A complete graph is constructed, with each logical pin 
assigned to one node of the graph. The position of each 
logical pin is set to be the average of all its constituent 
physical pins. The weights on each edge of the graph are 
a function of the horizontal and vertical distance between 
the two nodes of the edge. If the two nodes are separated 
by H horizontal routing grids (where a routing grid is the 
routing pitch used in the standard cell system), and C 
routing channels, then the weight on edge W is given by 

W = v C + H  
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Fig. 1 .  Permutation decomposition of segment. 

where v is a weighting factor for crossing a row. We have 
found that setting U to 20 gives a good number of tracks 
with a reasonable number of vertical hops. Prim’s algo- 
rithm has a running time of 0 ( n 2 )  in the number of log- 
ical pins. 

2.2.2. Decomposition into Permutations: Each two- 
point segment consists of pairs of pin clusters that contain 
electrically equivalent pins. The algorithm considers 
routes between every pin in one cluster and every pin in 
the other cluster. Each pair of pin clusters is called a per-  
mutation. Fig. 1 illustrates three of the four possible per- 
mutations between clusters A and B ,  which have two 
physical pins each. The four possible permutations are: 

It is not always necessary to evaluate every permuta- 
tion. For example, if clusters A and B occupy the same 
channels, then it is only necessary to investigate the con- 
nections between pins in the same channel-that is, per- 
mutations ( A l ,  B , )  and ( A 2 ,  B 2 ) .  (Note that only routes 
inside the bounding box of the wire are evaluated.) In ad- 
dition, if two pin clusters are separated by a short hori- 
zontal distance, then it is likely that the best route joins 
the two closest physical pins-permutation ( A , ,  B2 ) in  
Fig. 1.  However, if the horizontal distance is larger, then 
it may be worthwhile (to avoid some heavily congested 
area) to be able to connect to a cell in a different row, and 
hence, make it worthwhile to consider all four permuta- 
tions. These observations have been confirmed experi- 
mentally-if pin clusters are separated by less than 300 
routing grids (where one grid is the size of the routing 
pitch) then it is only necessary to evaluate routes between 
the closest physical pins. Otherwise, all four permutations 
should be evaluated. This modification reduces the com- 
putation time significantly, but leaves the number of tracks 
the same. 

2.2.3. Route Evaluation: The route evaluation step in- 
troduces two crucial notions of the LocusRoute algo- 
rithm: the cost model, which dictates the cost assigned to 
a path chosen for a wire, and the method of choosing 
routes based on paths that have two or less bends. 

a) Cost model: Each routing position in a channel 
(also called routing grid of that channel) is represented as 
one element of an array as shown in Fig. 2. The array, 
called the cost array, has a vertical dimension of the num- 
ber of rows plus one, and a horizontal dimension of the 
width of the placement in  routing grids. Each element of 
the cost array, H,, ,  contains the number of wire routes that 

(AI5 BI)? ( A I ?  B2) ,  (A23 Bl)9 ( 4 7  B2) .  
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Standard Cell Placement Cost Array 

Fig. 2. Coal model 

pass horizontally through channel i in routing gridj. These 
values change as wires are routed. A wire to be routed is 
represented as a list of ( i ,  j ) pairs of locations in the cost 
array, corresponding to the locations of pins to be joined. 
The path of a wire, P ,  that joins the pins is also a set of 
( i ,  j )  locations in the cost array. The cost of a path is 
given by 

cost ( P )  = c Hii + x c 

where C is the number of cell rows that are crossed in the 
path, and u is the assigned cost of a row crossing, the 
same parameter used in the minimum spanning tree de- 
composition discussed in Section 11-2.2. l above. 

This model implies that more than one vertical hop can 
exist in one grid location, and that the assignment of a 
vertical hop does not disturb the placement. These as- 
sumptions are strictly incorrect. However, when the stan- 
dard cells contain sufficient built-in feedthrough cells, the 
placement is disturbed little because few feedthrough cells 
are inserted. In the case where there are no built-ins, the 
fact that all the rows will have feedthrough cells keeps the 
relative positions of the pins similar and tends to mini- 
mize the effect of the error. 

This type of grid-based cost model is typically used for 
unconstrained (nonchannel-based) routing problems [29]. 
Pate1 [21] applied it to gate arrays. To our knowledge, 
this is the first use of such an approach in standard cells. 

b) Two-bend route generation and evaluation: After 
each permutation is identified, a low-cost path for a per- 
mutation is determined by evaluating the cost of a number 
of different routes and choosing the best. The approach is 
to evaluate a subset of all two-bend routes between the 
two physical pins, and then choose the one with the low- 
est cost. Generation of two-bend routes is discussed in 
[20]. Fig. 3 illustrates three possible two-bend (or less) 
routes inside a representation of the cost array as a small 
example. 

If the horizontal distance between the two pins is H 
routing grids, and the vertical difference is C channels 
then the total number of possible two-bend routes is C + 
H.  In the LocusRoute algorithm the percentage of all the 
possible two-bend routes to be evaluated is a parameter. 
If fewer than 100% of all the routes are to be evaluated, 
the set of all possible routes is prioritized as follows: first 
all principally horizontal routes (those with bends only at 
the left and right extremes) are evaluated. Then the prin- 

(a) (b) (c 1 

Fig. 3 .  Sample two-bend routeb. 

cipally vertical routes (those with bends at the upper and 
lower extremes) are evaluated. Horizontal routes are eval- 
uated first to ensure that all of the potential channels for 
the route are examined at least once. Within the horizon- 
tal and vertical groups, routes are searched in bisection 
order; i.e., if the limits of the group span are normalized 
to [ 0, 13 then the routes are prioritized as 0, 1, 1 /2 ,  1 /4,  
3 /4, 1 /8, and so on. This ensures that the possible space 
of routes is evenly spanned. 

To calibrate the percentage of two-bend routes to be 
evaluated, the two-bend router was compared against a 
least-cost path maze router. Both routers were not allowed 
to go beyond the bounding box of the two end points of 
the permutation. Experimentally, it was determined that 
if only 20% of the two-bend routes were evaluated, then 
this would result in a path as good as that found by the 
maze router, as compared on the basis of total track count 
for the entire circuit. On all of the test circuits used in the 
experiments discussed in the Section 111, the LocusRoute 
router’s track count was within 2 % of that obtained by the 
two-point maze router, with one exception of 3 . 3  % . Most 
of the differences were below 1 %. This is surprising in 
that the maze router looks for not only two-bend routes 
but for three or more bend routes. It implies that two-bend 
routes provide a sufficiently rich route set for avoiding the 
congestion that occurs in standard cell routing. 

2.2 .4 .  Reconstruction: In this step the two-point seg- 
ments are rejoined into multisegment wires. One of the 
major suboptimalities with considering only two logical 
pins at a time is that the router may assign two or more 
tracks to the same network in the same area of a channel- 
one each for connecting a pin to two other pins. During 
reconstruction, LocusRoute detects duplicate connections 
to a single pin and collapses the two (or more) tracks into 
one. 

2.2.5. Wire Recording: The last step in the algorithm 
is to record the presence of the wire’s route in the cost 
array, so that the cost of using any part of that path will 
increase for wires routed subsequently. This is done by 
incrementing the appropriate H!, cells of the cost array. In 
the succeeding iterations, the wire is “ripped up” by dec- 
rementing those same cells of the cost array, before the 
route evaluation step. 

111. PERFORMANCE COMPARISONS 
This section compares the quality and execution time 

of LocusRoute with two other routers. Here we wish to 
demonstrate that LocusRoute is comparable to the best 
routers in both the number of tracks used and computation 
time. 
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TABLE I 
QUALITY COMP%RISOY O t  LOCUSROLTf A \ D  TIMBFRWOLk 

Clrcult I # I Track Count 

417 +lZ% 
+33% 

558 -6% 

3.1. Comparison with Timberwolf 
Table I shows a comparison between the LocusRoute 

global router and the Timberwolf 5.0 [16] global router 
for nine industrial circuits. These circuits are from several 
sources: the standard cell benchmark suite (Primary 1, 
Primary2, Test06 [22]), Bell-Northern Research Ltd. 
(BNRA + BNRE), and the University of Toronto Mi- 
croelectronic Development Centre (MDC). The place- 
ment for all of the circuits was done by the ALTOR stan- 
dard cell placement program [25], which is a min-cut 
based approach [ 5 ] .  Table I gives the number of wires in 
each circuit, the track count achieved by LocusRoute and 
Timberwolf, and the percentage difference in tracks be- 
tween LocusRoute and the Timberwolf 5.0 global router. 

To make a fair comparison, the LocusRoute output is 
passed through ALTOR, so that the post-process step of 
converting all vertical hops to either built-in feedthroughs 
or actual feedthroughs is performed and the track counts 
are exact. For two of the circuits, Primaryl and Primary2 
from the standard cell benchmark suite, the Timberwolf 
router achieves about 6% fewer tracks in LocusRoute. For 
the other circuits, LocusRoute achieves a range from 8 to 
33% fewer tracks than the Timberwolf global router. This 
is probably due to the difference between Primaryl and 
Primary2, which have many built-in feedthroughs in the 
standard cells, while the other circuits have none. In all 
cases the number of actual feedthrough cells inserted by 
LocusRoute and Timberwolf were similar, with 
Timberwolf using slightly more. 

Table I1 gives the execution time for the LocusRoute 
and Timberwolf runs on a DECstation 3100, which is a 
12 MIP machine. The LocusRoute runs use two iterations 
over all the wires. The execution time for LocusRoute 
includes the time for input and output of the global rout- 
ing. For the Timberwolf runs, it is the entire time from 
input of the placement file, costing, and global routing 
(no placement is done). Table I1 indicates that the run- 
times of LocusRoute and Timberwolf are very similar. 

3.2. Comparison with Maze Router 
For comparison purposes a maze router [15] was de- 

veloped, using the same cost model as LocusRoute, which 
determines exhaustively the optimal solution to the two- 
point routing problem. It also determines a good approx- 
imation to the minimum-cost Steiner tree for multipoint 

73 
107 

TABLE 111 
C O M P A R I S O U  O F  L o c v s R o u r t  ,\&I) M A Y F  ROUTER 

Clrcult 1 Track Count h e  (DECstatlon 3100 SI 

, 
Test06 1 324 1 308 1 +5W 1 229 I 3381 1 15x 

Primarvz I 563 I 559 I + I %  I 167 I 1817 I I IX 

wires using the approach described in [2]. The maze rou- 
ter was carefully optimized for speed. Table 111 shows the 
comparison of track count and execution time for the maze 
router and LocusRoute. Each router used the same num- 
ber of vertical hops. The post-process step of converting 
vertical hops to feedthroughs or built-ins is not done here 
because both algorithms use vertical hops and thus can be 
fairly compared without the conversion. Execution times 
are for two iterations over all wires on a DECstation 3100. 

For all circuits the LocusRoute track count is no greater 
than 5% more than that achieved by the maze router, and 
in some cases is as little as 1 % more. Most of this differ- 
ence is due to the suboptimality of dividing the wires up 
into two point wires. The speed of LocusRoute is from 11 
to 27 times faster than the maze router. Since the purpose 
of the router is to evaluate a placement in a placement 
algorithm, we will always be willing to trade this slight 
loss in quality for such a large gain in speed, allowing 
many more placements to be evaluated in the same amount 
of time. 

IV. PARALLEL DECOMPOSITION A N D  IMPLEMENTATION 

The previous section makes the case that the unipro- 
cessor LocusRoute algorithm is competitive with modem 
global routers in both quality and time. Our purpose is to 
determine how fast this basic algorithm can be made to 
run on a parallel processor. 

We are willing to consider a tradeoff between execution 
time and quality of the final answer, because, if a parallel 
decomposition allows a significantly faster routing with 
only a small loss of quality, then an automatic placement 
process would be able to evaluate many more placements. 
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One such approach will be discussed in Section IV-4.1. 
This kind of tradeoff is possible to consider because we 
have a particular end purpose in mind-in general this is 
not possible in parallel processing where the exact same 
(correct) answer must be guaranteed. 

Prior work on parallel routing [6], [41, [ l l ,  [181, [301, 
[ 121, [35] has focused on fixed hardware implementations 
of the maze routing algorithm [ 151. A more flexible ap- 
proach is to use general purpose parallel processors, which 
can be adapted to many applications. Also, using the flex- 
ibility of a general purpose multiprocessor, different par- 
allel decompositions can be exploited on the same ma- 
chine. If these decompositions are orthogonal, and they 
are used in tandem, then they can achieve significant 
speedup. Two approaches to parallelizing an algorithm are 
said to be othogonal if, when used together, the resulting 
speedup is the product of the speedup of the individual 
methods. In this section, three orthogonal parallel decom- 
positions of the LocusRoute router are proposed, imple- 
mented, and measured for performance. 

1) Wire-by-wire parallelism: Each processor is given 
an entire multipoint wire to route. 

2) Segment-based parallelism: Each two-point seg- 
ment produced by the minimum spanning tree de- 
composition is routed in parallel. 

3) Route-based parallelism: Potential routes for each 
permutation of a segment (described in Section 
IV-4.3) are evaluated in parallel. 

The following sections give the details of the three par- 
allel approaches, their performance, and a quantitative 
measure of the degradation in quality if there is some. All 
decompositions assume a shared-memory multiprocessor. 

4. I .  Wire-by- Wire Parallelism 

In the wire-by-wire parallel approach, each processor 
routes a different wire at the same time, using the algo- 
rithm described in Section 11. The cost array is stored in 
shared memory and all processors access and change this 
structure simultaneously. The general flow of this parallel 
decomposition is shown in Fig. 4. The master processor 
initializes the cost array, and sets up each individual wire 
as a task on one central task queue. All processors then 
remove wire tasks from the queue and execute the 
LocusRoute algorithm-reading the shared cost array to 
evaluate the routes for each wire and then updating the 
cost array with the best route that is found. 

This wire-by-wire approach does not exactly reproduce 
the serial LocusRoute algorithm. In the sequential algo- 
rithm there is a data dependency which dictates that wires 
be routed sequentially: after the wire is routed, its pres- 
ence is recorded in the cost array so that subsequent wires 
may take the new path into account. In the wire-by-wire 
parallel approach, we relax this data dependency by al- 
lowing several wires to be routed simultaneously. This 
kind of approach is called chaotic parallelism-where data 
dependencies are relaxed under the assumption that the 

Fl Fl ... 
I I I 

c o s  ARRAY 

Fig. 4. Wire-by-wire parallel decomposition. 

data used will only be marginally different from the cor- 
rect data, and thus will still lead the system toward a good 
solution. 

In a chaotic approach, iteration is typically used so that 
the system converges to the same answer as the sequential 
program. For example, in the parallel simulated annealing 
work for placement of standard cells 1261, [27], [81, [91, 
[3] the iteration of simulated annealing overcomes the er- 
ror due to the chaotic parallel approach. While Locus- 
Route does iterate over the solution there is no guarantee 
that this kind of iteration will converge to the same an- 
swer as the sequential algorithm. Hence, there is a deg- 
radation in the quality of the final answer. We are willing, 
as discussed earlier, to trade some amount of quality for 
increased speed, for the end purpose of combined place- 
ment and routing. Quantitative measurements of the 
amount of degradation are given below, in Section 
IV-4.1.3. The following section describes a technique for 
reducing the degradation. 

4.1.1. Geographic Wire Assignment (GWA): It is pos- 
sible to reduce the quality degradation by taking steps to 
ensure that fewer data dependencies are violated. In this 
approach, called geographic wire assignment (GWA), 
each processor is assigned wires that reside in a specific 
area of the chip. In the ideal case, a processor will change 
areas of the cost array that only it reads, and so no data 
dependencies are violated. To do this, a task scheduler 
must assign wires to processors that do not overlap in 
space at any time during the evaluation phase of compu- 
tation. Unfortunately, this assignment requires too much 
computation, and can drastically reduce the amount of 
parallelism, since there may not be many totally indepen- 
dent wires. 

A simpler version of this approach has been imple- 
mented-the chip is divided into distinct geographic areas, 
one for each processor. Each area has a task queue asso- 
ciated with it, and the processor takes tasks out of that 
queue. A wire is assigned to a queue if the position of its 
leftmost pin falls within the assigned area of that task 
queue. This does not generate totally independent tasks, 
because wires from different task queues/processors can 
still overlap in space and time, but it does reduce the 
amount of overlap. 
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This approach causes an imbalance of workload among 
the processors, because each queue may not represent the 
same amount of work. To prevent loss of performance 
when a queue becomes empty, the processor associated 
with that queue searches for an nonempty queue. It 
chooses among the available queues to balance the num- 
ber of processors working on all the queues. The geo- 
graphic wire assignment approach was implemented and 
resulted in significant improvement in  the final quality of 
the routing, without loss of performance, as shown in 
Section IV-4.1.3. 

4.1.2.  Elimination of Synchronization Overhead: In 
the wire-by-wire approach, several processors may be 
changing the cost array at the same time-incrementing 
the cost array when the best route is found, or decre- 
menting it during rip-up for the second and further itera- 
tions. In strict parallel programming, the cost array must 
be locked to provide exclusive access to the array during 
the update operations. Without locking, if two processors 
increment or decrement the same cost array element at the 
same time, then one of those operations will be lost. This 
synchronization, however, reduces the number of opera- 
tions that can be performed at the same time, degrading 
performance. 

For typical circuits, however, there are thousands of 
cost array elements. The chances of two processors op- 
erating on the same element at the same time is very small. 
This chance is further reduced in the geographic wire as- 
signment approach. If such operations do collide, all that 
happens is that the cost array element would be wrong by 
an amount of one. In the LocusRoute algorithm, this kind 
of error is unlikely to change the results because the routes 
are evaluated based on many cost array elements. As such, 
we eliminated the locking of the cost array-this results 
in increased performance and no loss in quality, as shown 
in the following section. 

4.1.3. Wire-by- Wire Performance Measurements: 
Fig. 5 is a plot of the speedup versus number of proces- 
sors for the 3029-wire (Primary2) example running on an 
sixteen-processor Encore MULTIMAX, using the geo- 
graphic wire-assignment approach, and not locking the 
cost array. The speedup f o r p  processors, S,, is calculated 
as TI / Tp, where TI is the execution time on one processor 
and T, is the execution time using p processors. The En- 
core uses the National 32032 microprocessor, in our 
benchmarks, which is about the same speed as a DEC 
VAX 11/780. 

It is clear from the figure that the wire-based approach 
achieves excellent speedup--14.6 times faster using 16 
processors. Note that the execution time is only the actual 
routing computation time, and excludes the input time. 
We exclude input time because the router is intended to 
be used inside a placement program, and it is the actual 
routing, not the input, that needs to be fast for the place- 
ment optimization process. 

Fig. 6 is a plot of the number of tracks achieved by the 
router versus the number of processors, for two ap- 
proaches-using geographic wire assignment and not 
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Fig. 5 .  Wire-based speedup for circuit Primary2. 
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Fig. 6.  Tracks versus number of processors for Primary2. 

using geographic wire assignment. The number of tracks 
are averaged over 10 runs for each of the number of pro- 
cessors. The geographic assignment reduces the quality 
degradation by a significant amount-cutting the increase 
in tracks by about half, without loss of performance. In 
fact, the performance improves slightly in the geographic 
approach because it exhibits more data locality which im- 
proves the performance of the processor caches. 

Table IV gives the speedup using fifteen processors for 
the other test circuits. The speedup ranges from 5 for a 
smaller circuit to 13.8  for the largest. The speedup is less 
for smaller circuits because they are done in such a short 
time, so that the startup overhead and workload balance 
become factors. The execution time is for two iterations 
over all the wires. 

Table V gives the track and vertical hop counts for 1 
and 15 processors using wire-by-wire parallelism and 
geographic wire assignment, averaged over 10 runs. The 
degradation in track count ranges between 2- lo%, mostly 
less than 5 % . The increase in vertical hops is 9 % or less. 
The larger circuits exhibit less degradation because the 
geographic wire assignment has a larger area to spread the 
processors over, and they are less likely to interact. 

a)  Gain due to removal of locks: Table VI gives 
measurements of speed and quality comparing the perfor- 
mance of the wire-by-wire approach with and without 
locking of the cost array as discussed in Section IV-4.1.2. 
The table gives the execution time, number of tracks, and 
vertical hops averaged over 10 runs for the circuits 
Primaryl and Primary2, using 15 processors. It also gives 
the standard deviations (SD) for the track and vertical hop 
counts. For the Primaryl circuit the speedup decreased 
from 10.4 to 7 .3  using 15 processors when cost array 
locking was used. For the Primary2 circuit the speedup 
for 15 processors was reduced from 13.5 to 12.4 due to 
locking. The final routing quality, however, does not de- 
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TABLE IV 
WIRE-BASED PARALLELISM SPEEDUP 

TABLE V 
WIRE-BASED PARALLELISM QUALITY 

Track Count vertlcai HOPS 

TABLE VI 
SPEED A N D  QUALITY USING A N D  NOT USING LOCKS FOR 15 PROCESSORS 

Clrcult & 

crease when locking is omitted, due to the low probability 
of collisions as discussed in Section IV-4.1.2. 

4.2. Segment-Based Parallelism 

In segment-based parallelism, each two-point segment 
of a wire (produced by the minimum spanning tree de- 
composition) is given to a different processor to perform 
the routing. Measurements of the sequential router showed 
that about 60% of the routing time was spent on wires 
with more than one segment. This means that a speedup 
of about two might be expected using three processors. 
However, even though there are many wires that provide 
two or three-way parallel tasks, the size of those tasks are 
unequal. The amount of time taken by the LocusRoute to 
route between two points is proportional to the Manhattan 
distance between the two points. If, in a three-point wire, 
two of the points are close together and the third is far 
away, it will then take much longer to route one segment 
than the other. The processor assigned to the short seg- 
ment will be idle while the longer one is being routed. 
This unequal load prevents a reasonable speedup. On the 
test circuits a speedup of about 1.1 using two processors 
was measured. 

1 2 3 4 5 6 7 8  
Number of Processors 

Fig. 7. Route-based speedup for Primary2. 

It is fairly clear, however, that an extra processor could 
be assigned to a number of processors that are routing 
different wires. It is likely that at any given time, one of 
them will be able to use the extra processor to route an 
extra segment. This technique would become essential in 
wire-based parallelism if the number of processors were 
increased much beyond sixteen. In that case, the load bal- 
ance becomes a problem because wires with many seg- 
ments take much longer than wires with few segments. 
Hence, segment-based parallelism could be used as a 

, -  

method to balance those workloads. 

4.3. Route-Based Parallelism 
In route-based parallelism all of the two-bend routes to 

be evaluated are divided among the processors. Each finds 
the lowest-cost path among the set of routes it is assigned. 
When all processors finish, the route with the best overall 
cost is selected. Here the processor loads are well bal- 
anced because the routes are all of the same length, and 
the number of routes is evenly divided among the proces- 
sors. 

Fig. 7 is a plot of the speedup versus number of pro- 
cessors for the circuit Primary2, for the route-based ap- 
proach. It achieves a speedup of 4.4 using 8 processors. 

Table IV gives the best speedup achieved for all of the 
test circuits, ranging from 1.2 using 2 processors to 6 
using 10 processors. The number of processors given in 
the table is at the “knee” of the speedup curve-the point 
where increasing the number of processors does not ap- 
preciably improve performance. The principal reason for 
the limitation is speedup is the sequential portion of the 
routing: the wire decomposition and the post-route pro- 
cessing that places the presence of the route into the cost 
array. On the small circuits that have lesser speedup, the 
sequential portion is about 50% of the total routing time, 
while on the larger circuits, which have better speedup, 
the sequential portion ranges from 10 to 15 % . 

V .  COMBINING Two ORTHOGONAL PARALLEL 
DECOMPOSITIONS 

The wire and route parallel approaches described above 
are orthogonal, and so when they are combined we can 
expect a multiplication of their respective speedups. In 
this section experiments are performed to demonstrate this 
effect on the Encore MULTIMAX, including a discussion 
and experiments on scheduling of the two kinds of tasks. 
Using a simple model, the speedup for a larger number of 
processors is predicted. 
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TABLE VI1 
PERFORMANCE OF ROUTEBASED PARALLELISM 

(M) 
3 
4 

6 
3 
5 

I 
1.2 
2 

MDC - 

(NI (M x N) Predlcted Measured 
4 12 8.9 8.5 
3 12 9.5 9.3 
2 12 10.6 10.1 

5 15 10.2 9.1 
7 15 12.2 10.9 

4.1 Primary2 

Note that there is a significant difference between the 
two kinds of parallelism: the wire-by-wire approach 
causes a degradation in the quality of the results that is an 
increasing function of the number of processors. The 
route-by-route parallel decomposition reproduces the se- 
quential algorithm exactly. As such it is important to con- 
trol the number of processors using the wire-by-wire ap- 
proach, so that there is control on the quality of the 
answer. For this reason, the number of wires allowed to 
be routed at the same time is an input parameter. 

5. I .  Implementation on the MULTIMAX 
Because there are different kinds of tasks to be exe- 

cuted, the major challenge of combining the wire and 
route approaches is the scheduling of those tasks. We pre- 
sent two approaches: a static schedule which permanently 
assigns processors to a wire, and a dynamic one which 
allows processors to be applied wherever they are needed. 

5.1.1. Static Schedule: This scheduling strategy is im- 
plied by the notion of orthogonality: for each wire that is 
being routed by one processor in the wire-based approach, 
we now design a constant number of processors to aid in 
the parallel execution of the route-based tasks. This 
scheme is depicted in Fig. 8.  The extra processors are 
used only during the two-bend route generation and eval- 
uation. The approach is implemented by assigning a sep- 
arate task queue to each wire stream, from which the route 
processors remove route-based tasks. 

Several experiments were performed to show that the 
combined speedup of the wire and route-based approaches 
was indeed the multiplication of the individually mea- 
sured speedups. Table VI11 gives the result of those ex- 
periments for the 3029-wire Primary2 circuit. For each 
experiment it gives the number of wires being routed in 
parallel (M), the number of processors assigned to each 
wire to do the routing tasks ( N ) ,  the total number of pro- 
cessors (M x N ), the speedup predicted by multiplying 
the wire-based speedup using M processors and the route- 
based speedup using N processors (from Tables IV and 
VII), and the measured combined speedup. From this ta- 
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Fig. 8. Static scheduling policy. 

TABLE VI11 
STATIC SCHEDULE EXPERIMENTS FOR CIRCUIT PRIMARY2 

# Wlres In Parallel BRoute Procs Per Wlrd Total 1 Speedup 

I 1 - 1  , 
I I 2 I 14 1 12.0 1 11.8 

ble it is clear that the speedups very nearly multiply. The 
small difference is due to increased contention for shared 
memory and the central bus, the fact that two processors 
contend for one cache in the Encore MULTIMAX, and 
the increased cache coherence traffic that occurs with more 
processors. 

5.1.2. Dynamic Schedule: A drawback of the static 
scheduling policy is that it cannot assign processors where 
they will be of best use. If one wire has very few routes 
while another has many, the processors assigned to the 
first are not used by the second. In addition, there is a 
portion of the wire routing procedure that only uses one 
processor, so the other processors will be idle. A dynamic 
scheduling approach allows any idle processor to be used 
by any wire that has a need for it. This was implemented 
by assigning all “route-by-route’’ tasks from any wire to 
a single task queue, from which any processor performing 
route tasks can retrieve tasks. Here M wire processors add 
tasks to the queue, and R route processors remove and 
execute tasks, where M and R are parameters specified by 
the user-a total of M + R processors are used. The gran- 
ularity of the routing tasks in the dynamic scheme, the 
number of two-bend routes assigned to one processor to 
evaluate per task, was tuned to achieve the best speedup. 
The best performance was achieved when the number of 
tasks was several times the number of available proces- 
sors, indicating that the load balance effect was more sig- 
nificant than the overhead of starting up a task. 

Table IX gives an experimental comparison of the static 
and dynamic scheduling approaches, also for circuit 
Primary2. In each experiment, the total number of pro- 
cessors is the same-the only difference is the scheduling 
discipline. The table gives the number of wires being 
routed simultaneously (M ), the number of additional pro- 
cessors used to help in routing tasks ( R ) ,  the total number 
of processors ( M  + R ) ,  the speedup for the static and 



1094 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL. 9. NO. IO. OCTOBER 1990 

TABLE IX 
STATIC VERSUS D Y N A M I C  PERFORMANCE FOR CIRCUIT PRIMARY2 

dynamic scheduling approach, and the percentage in- 
crease in speedup of the dynamic approach over the static. 

The improvement in performance of dynamic schedul- 
ing over static scheduling ranges from 5 to 19% for the 
six examples. The difference is greater when more route 
processors are involved, because there is more opportu- 
nity to take advantage of the inefficiency of static sched- 
uling. 

5.2. Performance Prediction on Larger Number of 
Processors 

Since we have experimentally demonstrated that the 
static schedule performance of the combined approach 
does indeed nearly multiply the speedups attained by the 
individual methods, it is possible to predict the perfor- 
mance of the static schedule on many more processors. 
Assume, for a given circuit that a speedup of SM is 
achieved using wire-based parallelism on M processors, 
and a speedup of S, is achieved using route-based paral- 
lelism on N processors. Then, because the two ap- 
proaches are orthogonal, the resulting speedup when they 
are used together should be Sw x S,  using M X N pro- 
cessors. This model neglects the effect of memory con- 
tention that may occur when the number of processors is 
increased dramatically. Table X shows the predicted 
speedup for the test circuits, using the data from Tables 
IV and VII. Combined speedup ranges from 6 using 30 
processors to 79 using 150 processors. The smaller cir- 
cuits are routed very quickly and so it is difficult to get 
speedups greater than 6 due to the startup overhead, and 
load balance effects. The larger circuits benefit greatly 
from the combination of the approaches. In addition, we 
can expect even better performance using the dynamic 
scheduling approach. 

VI. CONCLUSIONS 
A new global routing algorithm for standard cells and 

its parallel implementation has been presented. The 
LocusRoute algorithm is a simple and effective way of 
searching for good paths for routes in the standard cell 
layout style, yet it is comparable in speed and quality to 
the Timberwolf 5.0 standard cell global router. It 
achieves similar quality to a much slower maze router that 
searches the same space of possible routes. Two of the 
three parallel decompositions that were implemented 
achieve significant speedup-up to 13.8 using fifteen pro- 
cessors and 6 using 10 processors. They should produce 
combined speedups of more than 75 times. 

TABLE X 
PREDICTED COMBINED SPEEDUP OF WIRE A N D  ROUTE PARALLELISM 

We introduce a number of techniques to achieve these 
results. 

i) A chaotic parallel approach in which data depen- 
dencies are relaxed to allow a tradeoff between ex- 
ecution time and quality. 

ii) Careful assignment of tasks to processors to reduce 
the quality degradation of the chaotic approach. 

iii) Elimination of costly locking with no loss of qual- 
ity, due to the low statistical chance of interactions. 

iv) Using two orrhogonaf parallel decompositions, 
which when combined give a speedup which is the 
product of the individual approaches’ speedups. 

v) Dynamic (as opposed to static) scheduling of par- 
allel tasks to improve the parallel performance. 

In the future, we hope to integrate the global router into 
a placement algorithm and see how the added information 
can be used to improve the placement. Several issues that 
have been raised by the parallel router will also be pur- 
sued: theoretical study of the effect of relaxing data de- 
pendencies in parallel combinatorial optimization; more 
flexible scheduling; parallelizing more of the algorithm 
such as the minimum spanning tree decomposition; and 
implementation of a similar approach on a massively par- 
allel machine. 
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