
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL Y. NO IO. OCTOBtK IYYO 1085

Parallel Global Routing for

Abstract-Combined placement and routing has the potential to
achieve better quality automatic layout because the placement opti-
mization can use the actual wire paths to make better decisions. This
approach has been considered infeasible because of the computational
requirements of the routing task. In this paper, we investigate the po-
tential speedup of a standard cell global router using a general-purpose
multiprocessor. We present LocusRoute, a global routing algorithm for
standard cells, and its parallel implementation. The uniprocessor speed
and quality of LocusRoute is comparable to modern global routers-
LocusRoute compares favorably with the Timberwolf 5.0 global rou-
ter 1161, and a maze router that searches the same space more com-
pletely. Two successful methods of parallel decomposition of the router
are presented. The first, in which multiple wires a re routed in parallel,
uses the notion of chaotic parallelism to achieve significant perfor-
mance gains by relaxing data dependencies, a t the cost of a minor loss
in quality. Using iteration and careful assignment of wires to proces-
sors, this degradation is reduced. The approach achieves measured
speedups from 5 to 14 using 15 processors. The second parallel decom-
position technique is the evaluation of different routes for each wire on
separate processors. It achieves speedups of up to 6 using 10 proces-
sors. We demonstrate that when these two approaches a re combined,
the aggregate speedup is the product of the individual approaches’
speedup and, using an improved scheduling approach, it can be even
greater. With a simple model based on these results, we predict speed-
ups of more than 75 using 150 processors.

I . INTRODUCTION
ULLY combined automatic placement and routing, in F which every placement is judged on the basis of the

routed interconnections, can provide the best possible
measure of the goodness of a placement. Evidence from
recent research has shown that information provided by
the routing can be helpful: Burstein and Hong [7] describe
a gate array layout system in which routing is interleaved
with the placement process. Dai and Kuh [l 11 perform
simultaneous floorplanning and global routing by hierar-
chically decomposing the problem to reduce the compu-
tational complexity of the routing problem. Suaris and
Kedem [33] also integrate placement and routing by suc-
cessively refining a hierarchical routing at the same time
the placement hierarchy is refined in a quadrisection-based
approach.

Each of these approaches reduce the computational
complexity of the routing either by i) routing only after

Manuscript received September2 1 , 1988; revised October 8, 1989. This
work was supported by DARPA under Contract N00014-87-K-0828, a
Stanford Center for Integrated Systems Seed Research Grant, and an
NSERC Post-Doctoral Fellowship. This paper was recommended by As-
sociate Editor R . H. J . M. Otten.

The author was with the Computer Systems Laboratory. Stanford Uni-
versity. Stanford. CA. He is now with the Department of Electrical Engi-
neering, University of Toronto, Toronto, Ont., Canada M5S 1A4.

IEEE Log Number 9036683.

Standard Cells
IEEE

some amount of placement optimization [7] or by ii) rout-
ing at the current level of hierarchy [111, [33]. To achieve
fully combined placement and routing, global routing
must be invoked whenever changes to the placement are
considered and each affected wire must be completely re-
routed. This approach may achieve further gains in place-
ment quality but requires so much computation that up to
now it has been considered infeasible. In this paper we
address this problem by investigating the performance
gains possible for global routing using a multiprocessor.
We present LocusRoute, a global routing algorithm for
standard cells and its parallel implementation.

Currently, we envision two approaches to combined
placement and routing. We summarize the approaches
here to further motivate the parallel router presented in
this paper.

I . 1. Direct Area Estimation
A fast standard cell global router could be invoked to

route and reroute wires as the positions of the endpoints
of the wires are changed during the placement process.
This allows the direct measurement of the area of the
placement. Other work [32], [23] suggests that it is dif-
ficult to optimize area-based cost functions because the
so-called energy landscape or convexity of the cost func-
tion is unfavorable, particularly if the placement optimi-
zation uses single cell moves or two-cell exchanges. We
regard this problem, however, as an interesting open
question in automatic placement.

I . 2. Multiway Partition-Based Placement Optimization
This is an N-way recursive partitioning algorithm, as

opposed to 2-way in min-cut placement [5] and 4-way in
quadrisection [33]. In this kind of approach a coarse grid
of N partitions is recursively imposed on an initial place-
ment. The placement is perturbed by proposing and pos-
sibly accepting moves that change the partition assign-
ment of one or more cells. The cost function is determined
from the number of wires crossing each segment of a par-
tition line, and the partition balance requirements. To cal-
culate the segment crossing counts, the paths of all the
wires must be determined. This is exactly the global rout-
ing problem, and thus the motivation for a fast parallel
router is to make the segment crossing count recalculation
as fast as possible.

While the context of LocusRoute is as a tool to gain
higher quality placement, we show that it is a reasonable
global router for standard cells in its own right. The rout-
ing performance of LocusRoute, as measured by the total

0278-0070/90/1000-1085$01 .OO 0 1990 IEEE

1086 IEEE TRANSACTIONS O N COMPUTER-AIDED DESIGN. VOL Y. NO IO. OCTOBER 1990

number of routing tracks, is comparable to that of the
Timberwolf 5.0 global router [16] and a maze router.

We present three approaches to the parallel decompo-
sition of LocusRoute: routing several wires at once, rout-
ing several two-pin segments of the wire simultaneously,
and evaluating possible routes in parallel. In the first ap-
proach, we use the notion of chaotic parallelism in which
data dependencies are relaxed in order to gain perfor-
mance. This causes a loss of quality in the results, but
because the underlying algorithm is iterative, we can re-
cover some of the lost quality. The quality is improved
further by assigning wires to processors in such a way as
to reduce the data dependency violations. Also, we argue
throughout this paper that, in a combined placement and
routing scheme, it is advantageous to trade a small amount
of quality for a large gain in speed, allowing more place-
ments to be evaluated. This approach achieves measured
speedups ranging from 5 to 14 using 15 processors de-
pending on the size of the circuit.

A second parallel decomposition, the route-by-route
approach, achieves speedups of up to 6 using 10 proces-
sors. Since the route-by-route approach is orthogonal to
the wire-by-wire scheme, when the two are used together
the total parallelism should be the product of the parallel-
ism of the two individual methods. This is demonstrated
on 15 processors, and used to predict speedups of more
than 75 using 150 processors for standard benchmark cir-
cuits, using a static scheduling policy. We show that when
a dynamic scheduling approach is used, greater speedup
and efficiency results.

1.3. Related Work
Previous work on parallel routing [6], [4], 1 1 1 , [181,

[30], [12], [35] has focused on a fixed hardware mapping
for the Lee maze routing algorithm [15]. As such they
lack the flexibility that is required in practical CAD soft-
ware. Another drawback of special hardware for the Lee
algorithm is that a uniprocessor implementation can be
made very efficient using special software data structures
that cannot be put easily into fixed hardware.

Until recently, there have been few publications on
global routing for standard cells. Supowit [34] presents a
simple heuristic for solving a limited subcase of the global
routing problem. Sechen [3 I], [32] describes the original
Timberwolf global router which decomposes multipin
wires into two-pin wires using a minimum spanning tree
algorithm and then employs an iterative track-switching
algorithm to reduce channel densities. It suffered from the
inability to cross any standard cell row more than once.
Two global routers are described in [131 and [36] but give
little detail of the process. An early version of the work
presented in this paper was given in [28]. More recently,
[16] and [lo] have introduced new global routing algo-
rithms that consider the problem much more carefully. In
[161, a Steiner tree approximation for a wire is followed
by a coarse global routing in which paths are chosen to
minimize a penalty function that includes the channel
density. Feedthroughs are assigned, and particular atten-
tion is paid to aligning the feedthrough paths. Finally, the

spanning tree is refined using more detailed knowledge of
the previous steps, and a final optimization of the switch-
able segments is performed. In [lo], a minimal spanning
forest is determined, which has the unique feature that it
considers all wires at once. The algorithm of [161 is quan-
titatively compared to the LocusRoute algorithm in this
paper. A survey of global routing that touches on standard
cells appears in [171.

I . 4. Organization
This paper is organized as follows: Section I1 defines

the global routing problem for standard cells and de-
scribes the sequential LocusRoute algorithm. Section 111
gives performance comparisons with the Timberwolf 5.0
global router [161 and a maze router. Section IV presents
three approaches for speeding up the new router using
parallel processing, and performance results. Section V
presents experiments with combining two of the
aproaches, using two scheduling policies, which are then
used to model and predict speedups for larger numbers of
processors.

11. THE LOCUSROUTE ALGORITHM

This section defines the standard cell global routing
problem, and describes the new LocusRoute approach to
solving it.

2. I . Problem Dejinition

for each wire in the circuit.
Global routing for standard cells decides the following

1) For each group of electrically equivalent pins (pin
clusters in the terminology of [31]) it determines
which of those pins are actually to be connected.

2) If there is no path between channels when one is
required, it must decide either which built-in feed-
through to use or where to insert a feedthrough cell.

3) It decides which part or parts of a channel a wire
should occupy.

4) It must determine the channel to use in routing from
a pad into the core cells.

The objective of a global router is to minimize the sum
of the channel densities of all the channels (hereafter
called the total number of tracks).

In this discussion of global routing there will be no dif-
ferentiation between feedthrough cells and built-in
feedthroughs-they are referred to jointly as vertical hops.
The decision to insert a feedthrough cell or use a built-in
feedthrough is deferred to a post-processing step. When-
ever comparisons are made to other global routers, the
post-processing step is invoked to obtain accurate track
counts.

2.2. The LocusRoute Algorithm
In the LocusRoute algorithm, the following five steps

are executed for each wire. The details of each step are
contained in the subsequent sections.

GLOBAL ROUTING OF STANDARD CELLS

Segment decomposition: Each multipoint wire is di-
vided into a set of two-point segments (where a
“point” is a pin cluster), using a minimum span-
ning tree algorithm. By considering only two-point
wires we introduce a suboptimality, but some of the
negative effect is mitigated by a local optimization
performed in the reconstruction: step 4) below. A
direct comparison with a multipoint maze route is
given in Section 111-3.2.
Permutation decomposition: Since each pin cluster
can consist of two physical pins (one on the top of
a cell and one on the bottom), there are four possible
ways to connect two pin clusters. Each of these pos-
sible routes is called a permutation. This step de-
composes the segment into permutations and uses a
simple heuristic (described below) to see if all the
permutations should be evaluated.
Route generation and evaluation: A low-cost path
is found for each permutation by evaluating a subset
of the two-bend routes between physical each pin
pair. The cost of a wire is defined below, in Section
11-2.2.3. The permutation with the best cost is se-
lected as the route for that segment.
Reconstruct: This step joins all the segments back
together, performs a local optimization, and assigns
unique numbers to distinct segments of the same
wire in each channel. This is so that a channel router
can distinguish between two segments and will not
inadvertently join them together.
Record: The presence of the newly routed wire is
recorded so that later wires can take it into account.

LocusRoute uses the iterative technique described in
[19]. Briefly, this means that after the first time all wires
are routed, each is sequentially ripped up and then re-
routed. By routing each wire several times (typically four
iterations gives the best answer, but little improvement is
seen after two iterations), the final answer is improved by
5-10% because later wires can take earlier wires into ac-
count. Iteration also reduces the effect of the wire order
dependency. Wires are routed in the order they are input.

The details of each of the above steps are described in
the following sections.

2.2.1. Segment Decomposition: In this step each wire
with more than two logical pins is decomposed into pairs
of logical pins. This is done by determining a minimum
spanning tree by using Prim’s algorithm [24] (formerly
we used Kruskal’s algorithm [141, but [16] observed that
Prim’s algorithm is more efficient for complete graphs).
A complete graph is constructed, with each logical pin
assigned to one node of the graph. The position of each
logical pin is set to be the average of all its constituent
physical pins. The weights on each edge of the graph are
a function of the horizontal and vertical distance between
the two nodes of the edge. If the two nodes are separated
by H horizontal routing grids (where a routing grid is the
routing pitch used in the standard cell system), and C
routing channels, then the weight on edge W is given by

W = v C + H

1087

Standard Cell Rows

t
Route Permuelon A2 -5 82

Fig. 1 . Permutation decomposition of segment.

where v is a weighting factor for crossing a row. We have
found that setting U to 20 gives a good number of tracks
with a reasonable number of vertical hops. Prim’s algo-
rithm has a running time of 0 (n 2) in the number of log-
ical pins.

2.2.2. Decomposition into Permutations: Each two-
point segment consists of pairs of pin clusters that contain
electrically equivalent pins. The algorithm considers
routes between every pin in one cluster and every pin in
the other cluster. Each pair of pin clusters is called a per-
mutation. Fig. 1 illustrates three of the four possible per-
mutations between clusters A and B , which have two
physical pins each. The four possible permutations are:

It is not always necessary to evaluate every permuta-
tion. For example, if clusters A and B occupy the same
channels, then it is only necessary to investigate the con-
nections between pins in the same channel-that is, per-
mutations (A l , B ,) and (A 2 , B 2) . (Note that only routes
inside the bounding box of the wire are evaluated.) In ad-
dition, if two pin clusters are separated by a short hori-
zontal distance, then it is likely that the best route joins
the two closest physical pins-permutation (A , , B2) in
Fig. 1. However, if the horizontal distance is larger, then
it may be worthwhile (to avoid some heavily congested
area) to be able to connect to a cell in a different row, and
hence, make it worthwhile to consider all four permuta-
tions. These observations have been confirmed experi-
mentally-if pin clusters are separated by less than 300
routing grids (where one grid is the size of the routing
pitch) then it is only necessary to evaluate routes between
the closest physical pins. Otherwise, all four permutations
should be evaluated. This modification reduces the com-
putation time significantly, but leaves the number of tracks
the same.

2.2.3. Route Evaluation: The route evaluation step in-
troduces two crucial notions of the LocusRoute algo-
rithm: the cost model, which dictates the cost assigned to
a path chosen for a wire, and the method of choosing
routes based on paths that have two or less bends.

a) Cost model: Each routing position in a channel
(also called routing grid of that channel) is represented as
one element of an array as shown in Fig. 2. The array,
called the cost array, has a vertical dimension of the num-
ber of rows plus one, and a horizontal dimension of the
width of the placement in routing grids. Each element of
the cost array, H,, , contains the number of wire routes that

(AI5 BI)? (A I ? B2) , (A23 Bl)9 (4 7 B2) .

1088 l E F t TRANSACTIONS ON C O M P U T t R - A I D E D DESIGN. VU[.. Y. N O IO. O C T O B E R 1990

Channel 1 -

H - . V _.
‘1 9 Routing Pin

Standard Cell Placement Cost Array

Fig. 2. Coal model

pass horizontally through channel i in routing gridj. These
values change as wires are routed. A wire to be routed is
represented as a list of (i , j) pairs of locations in the cost
array, corresponding to the locations of pins to be joined.
The path of a wire, P , that joins the pins is also a set of
(i , j) locations in the cost array. The cost of a path is
given by

cost (P) = c Hii + x c

where C is the number of cell rows that are crossed in the
path, and u is the assigned cost of a row crossing, the
same parameter used in the minimum spanning tree de-
composition discussed in Section 11-2.2. l above.

This model implies that more than one vertical hop can
exist in one grid location, and that the assignment of a
vertical hop does not disturb the placement. These as-
sumptions are strictly incorrect. However, when the stan-
dard cells contain sufficient built-in feedthrough cells, the
placement is disturbed little because few feedthrough cells
are inserted. In the case where there are no built-ins, the
fact that all the rows will have feedthrough cells keeps the
relative positions of the pins similar and tends to mini-
mize the effect of the error.

This type of grid-based cost model is typically used for
unconstrained (nonchannel-based) routing problems [29].
Pate1 [21] applied it to gate arrays. To our knowledge,
this is the first use of such an approach in standard cells.

b) Two-bend route generation and evaluation: After
each permutation is identified, a low-cost path for a per-
mutation is determined by evaluating the cost of a number
of different routes and choosing the best. The approach is
to evaluate a subset of all two-bend routes between the
two physical pins, and then choose the one with the low-
est cost. Generation of two-bend routes is discussed in
[20]. Fig. 3 illustrates three possible two-bend (or less)
routes inside a representation of the cost array as a small
example.

If the horizontal distance between the two pins is H
routing grids, and the vertical difference is C channels
then the total number of possible two-bend routes is C +
H. In the LocusRoute algorithm the percentage of all the
possible two-bend routes to be evaluated is a parameter.
If fewer than 100% of all the routes are to be evaluated,
the set of all possible routes is prioritized as follows: first
all principally horizontal routes (those with bends only at
the left and right extremes) are evaluated. Then the prin-

(a) (b) (c 1

Fig. 3 . Sample two-bend routeb.

cipally vertical routes (those with bends at the upper and
lower extremes) are evaluated. Horizontal routes are eval-
uated first to ensure that all of the potential channels for
the route are examined at least once. Within the horizon-
tal and vertical groups, routes are searched in bisection
order; i.e., if the limits of the group span are normalized
to [0, 13 then the routes are prioritized as 0, 1, 1 /2 , 1 /4,
3 /4, 1 /8, and so on. This ensures that the possible space
of routes is evenly spanned.

To calibrate the percentage of two-bend routes to be
evaluated, the two-bend router was compared against a
least-cost path maze router. Both routers were not allowed
to go beyond the bounding box of the two end points of
the permutation. Experimentally, it was determined that
if only 20% of the two-bend routes were evaluated, then
this would result in a path as good as that found by the
maze router, as compared on the basis of total track count
for the entire circuit. On all of the test circuits used in the
experiments discussed in the Section 111, the LocusRoute
router’s track count was within 2 % of that obtained by the
two-point maze router, with one exception of 3 . 3 % . Most
of the differences were below 1 %. This is surprising in
that the maze router looks for not only two-bend routes
but for three or more bend routes. It implies that two-bend
routes provide a sufficiently rich route set for avoiding the
congestion that occurs in standard cell routing.

2.2 .4 . Reconstruction: In this step the two-point seg-
ments are rejoined into multisegment wires. One of the
major suboptimalities with considering only two logical
pins at a time is that the router may assign two or more
tracks to the same network in the same area of a channel-
one each for connecting a pin to two other pins. During
reconstruction, LocusRoute detects duplicate connections
to a single pin and collapses the two (or more) tracks into
one.

2.2.5. Wire Recording: The last step in the algorithm
is to record the presence of the wire’s route in the cost
array, so that the cost of using any part of that path will
increase for wires routed subsequently. This is done by
incrementing the appropriate H!, cells of the cost array. In
the succeeding iterations, the wire is “ripped up” by dec-
rementing those same cells of the cost array, before the
route evaluation step.

111. PERFORMANCE COMPARISONS
This section compares the quality and execution time

of LocusRoute with two other routers. Here we wish to
demonstrate that LocusRoute is comparable to the best
routers in both the number of tracks used and computation
time.

ROSE: GLOBAL ROUTING OF STANDARD CELLS 1089

TABLE I
QUALITY COMP%RISOY O t LOCUSROLTf A \ D TIMBFRWOLk

Clrcult I # I Track Count

417 +lZ%
+33%

558 -6%

3.1. Comparison with Timberwolf
Table I shows a comparison between the LocusRoute

global router and the Timberwolf 5.0 [16] global router
for nine industrial circuits. These circuits are from several
sources: the standard cell benchmark suite (Primary 1,
Primary2, Test06 [22]), Bell-Northern Research Ltd.
(BNRA + BNRE), and the University of Toronto Mi-
croelectronic Development Centre (MDC). The place-
ment for all of the circuits was done by the ALTOR stan-
dard cell placement program [25], which is a min-cut
based approach [5] . Table I gives the number of wires in
each circuit, the track count achieved by LocusRoute and
Timberwolf, and the percentage difference in tracks be-
tween LocusRoute and the Timberwolf 5.0 global router.

To make a fair comparison, the LocusRoute output is
passed through ALTOR, so that the post-process step of
converting all vertical hops to either built-in feedthroughs
or actual feedthroughs is performed and the track counts
are exact. For two of the circuits, Primaryl and Primary2
from the standard cell benchmark suite, the Timberwolf
router achieves about 6% fewer tracks in LocusRoute. For
the other circuits, LocusRoute achieves a range from 8 to
33% fewer tracks than the Timberwolf global router. This
is probably due to the difference between Primaryl and
Primary2, which have many built-in feedthroughs in the
standard cells, while the other circuits have none. In all
cases the number of actual feedthrough cells inserted by
LocusRoute and Timberwolf were similar, with
Timberwolf using slightly more.

Table I1 gives the execution time for the LocusRoute
and Timberwolf runs on a DECstation 3100, which is a
12 MIP machine. The LocusRoute runs use two iterations
over all the wires. The execution time for LocusRoute
includes the time for input and output of the global rout-
ing. For the Timberwolf runs, it is the entire time from
input of the placement file, costing, and global routing
(no placement is done). Table I1 indicates that the run-
times of LocusRoute and Timberwolf are very similar.

3.2. Comparison with Maze Router
For comparison purposes a maze router [15] was de-

veloped, using the same cost model as LocusRoute, which
determines exhaustively the optimal solution to the two-
point routing problem. It also determines a good approx-
imation to the minimum-cost Steiner tree for multipoint

73
107

TABLE 111
C O M P A R I S O U O F L o c v s R o u r t ,\&I) M A Y F ROUTER

Clrcult 1 Track Count h e (DECstatlon 3100 SI

,
Test06 1 324 1 308 1 +5W 1 229 I 3381 1 15x

Primarvz I 563 I 559 I + I % I 167 I 1817 I I IX

wires using the approach described in [2]. The maze rou-
ter was carefully optimized for speed. Table 111 shows the
comparison of track count and execution time for the maze
router and LocusRoute. Each router used the same num-
ber of vertical hops. The post-process step of converting
vertical hops to feedthroughs or built-ins is not done here
because both algorithms use vertical hops and thus can be
fairly compared without the conversion. Execution times
are for two iterations over all wires on a DECstation 3100.

For all circuits the LocusRoute track count is no greater
than 5% more than that achieved by the maze router, and
in some cases is as little as 1 % more. Most of this differ-
ence is due to the suboptimality of dividing the wires up
into two point wires. The speed of LocusRoute is from 11
to 27 times faster than the maze router. Since the purpose
of the router is to evaluate a placement in a placement
algorithm, we will always be willing to trade this slight
loss in quality for such a large gain in speed, allowing
many more placements to be evaluated in the same amount
of time.

IV. PARALLEL DECOMPOSITION A N D IMPLEMENTATION

The previous section makes the case that the unipro-
cessor LocusRoute algorithm is competitive with modem
global routers in both quality and time. Our purpose is to
determine how fast this basic algorithm can be made to
run on a parallel processor.

We are willing to consider a tradeoff between execution
time and quality of the final answer, because, if a parallel
decomposition allows a significantly faster routing with
only a small loss of quality, then an automatic placement
process would be able to evaluate many more placements.

1090 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL. Y. NO. IO. OCTOBER 1990

One such approach will be discussed in Section IV-4.1.
This kind of tradeoff is possible to consider because we
have a particular end purpose in mind-in general this is
not possible in parallel processing where the exact same
(correct) answer must be guaranteed.

Prior work on parallel routing [6], [41, [l l , [181, [301,
[121, [35] has focused on fixed hardware implementations
of the maze routing algorithm [151. A more flexible ap-
proach is to use general purpose parallel processors, which
can be adapted to many applications. Also, using the flex-
ibility of a general purpose multiprocessor, different par-
allel decompositions can be exploited on the same ma-
chine. If these decompositions are orthogonal, and they
are used in tandem, then they can achieve significant
speedup. Two approaches to parallelizing an algorithm are
said to be othogonal if, when used together, the resulting
speedup is the product of the speedup of the individual
methods. In this section, three orthogonal parallel decom-
positions of the LocusRoute router are proposed, imple-
mented, and measured for performance.

1) Wire-by-wire parallelism: Each processor is given
an entire multipoint wire to route.

2) Segment-based parallelism: Each two-point seg-
ment produced by the minimum spanning tree de-
composition is routed in parallel.

3) Route-based parallelism: Potential routes for each
permutation of a segment (described in Section
IV-4.3) are evaluated in parallel.

The following sections give the details of the three par-
allel approaches, their performance, and a quantitative
measure of the degradation in quality if there is some. All
decompositions assume a shared-memory multiprocessor.

4. I . Wire-by- Wire Parallelism

In the wire-by-wire parallel approach, each processor
routes a different wire at the same time, using the algo-
rithm described in Section 11. The cost array is stored in
shared memory and all processors access and change this
structure simultaneously. The general flow of this parallel
decomposition is shown in Fig. 4. The master processor
initializes the cost array, and sets up each individual wire
as a task on one central task queue. All processors then
remove wire tasks from the queue and execute the
LocusRoute algorithm-reading the shared cost array to
evaluate the routes for each wire and then updating the
cost array with the best route that is found.

This wire-by-wire approach does not exactly reproduce
the serial LocusRoute algorithm. In the sequential algo-
rithm there is a data dependency which dictates that wires
be routed sequentially: after the wire is routed, its pres-
ence is recorded in the cost array so that subsequent wires
may take the new path into account. In the wire-by-wire
parallel approach, we relax this data dependency by al-
lowing several wires to be routed simultaneously. This
kind of approach is called chaotic parallelism-where data
dependencies are relaxed under the assumption that the

Fl Fl ...
I I I

c o s ARRAY

Fig. 4. Wire-by-wire parallel decomposition.

data used will only be marginally different from the cor-
rect data, and thus will still lead the system toward a good
solution.

In a chaotic approach, iteration is typically used so that
the system converges to the same answer as the sequential
program. For example, in the parallel simulated annealing
work for placement of standard cells 1261, [27], [81, [91,
[3] the iteration of simulated annealing overcomes the er-
ror due to the chaotic parallel approach. While Locus-
Route does iterate over the solution there is no guarantee
that this kind of iteration will converge to the same an-
swer as the sequential algorithm. Hence, there is a deg-
radation in the quality of the final answer. We are willing,
as discussed earlier, to trade some amount of quality for
increased speed, for the end purpose of combined place-
ment and routing. Quantitative measurements of the
amount of degradation are given below, in Section
IV-4.1.3. The following section describes a technique for
reducing the degradation.

4.1.1. Geographic Wire Assignment (GWA): It is pos-
sible to reduce the quality degradation by taking steps to
ensure that fewer data dependencies are violated. In this
approach, called geographic wire assignment (GWA),
each processor is assigned wires that reside in a specific
area of the chip. In the ideal case, a processor will change
areas of the cost array that only it reads, and so no data
dependencies are violated. To do this, a task scheduler
must assign wires to processors that do not overlap in
space at any time during the evaluation phase of compu-
tation. Unfortunately, this assignment requires too much
computation, and can drastically reduce the amount of
parallelism, since there may not be many totally indepen-
dent wires.

A simpler version of this approach has been imple-
mented-the chip is divided into distinct geographic areas,
one for each processor. Each area has a task queue asso-
ciated with it, and the processor takes tasks out of that
queue. A wire is assigned to a queue if the position of its
leftmost pin falls within the assigned area of that task
queue. This does not generate totally independent tasks,
because wires from different task queues/processors can
still overlap in space and time, but it does reduce the
amount of overlap.

ROSE: GLOBAL ROUTING OF STANDARD CELLS 1091

This approach causes an imbalance of workload among
the processors, because each queue may not represent the
same amount of work. To prevent loss of performance
when a queue becomes empty, the processor associated
with that queue searches for an nonempty queue. It
chooses among the available queues to balance the num-
ber of processors working on all the queues. The geo-
graphic wire assignment approach was implemented and
resulted in significant improvement in the final quality of
the routing, without loss of performance, as shown in
Section IV-4.1.3.

4.1.2. Elimination of Synchronization Overhead: In
the wire-by-wire approach, several processors may be
changing the cost array at the same time-incrementing
the cost array when the best route is found, or decre-
menting it during rip-up for the second and further itera-
tions. In strict parallel programming, the cost array must
be locked to provide exclusive access to the array during
the update operations. Without locking, if two processors
increment or decrement the same cost array element at the
same time, then one of those operations will be lost. This
synchronization, however, reduces the number of opera-
tions that can be performed at the same time, degrading
performance.

For typical circuits, however, there are thousands of
cost array elements. The chances of two processors op-
erating on the same element at the same time is very small.
This chance is further reduced in the geographic wire as-
signment approach. If such operations do collide, all that
happens is that the cost array element would be wrong by
an amount of one. In the LocusRoute algorithm, this kind
of error is unlikely to change the results because the routes
are evaluated based on many cost array elements. As such,
we eliminated the locking of the cost array-this results
in increased performance and no loss in quality, as shown
in the following section.

4.1.3. Wire-by- Wire Performance Measurements:
Fig. 5 is a plot of the speedup versus number of proces-
sors for the 3029-wire (Primary2) example running on an
sixteen-processor Encore MULTIMAX, using the geo-
graphic wire-assignment approach, and not locking the
cost array. The speedup f o r p processors, S,, is calculated
as TI / Tp, where TI is the execution time on one processor
and T, is the execution time using p processors. The En-
core uses the National 32032 microprocessor, in our
benchmarks, which is about the same speed as a DEC
VAX 11/780.

It is clear from the figure that the wire-based approach
achieves excellent speedup--14.6 times faster using 16
processors. Note that the execution time is only the actual
routing computation time, and excludes the input time.
We exclude input time because the router is intended to
be used inside a placement program, and it is the actual
routing, not the input, that needs to be fast for the place-
ment optimization process.

Fig. 6 is a plot of the number of tracks achieved by the
router versus the number of processors, for two ap-
proaches-using geographic wire assignment and not

SP-JUP

for 3029-Wire
Circuit

;;v,
6
4
2

2 4 6 0 10 12 14 16

Number of Processors

Fig. 5 . Wire-based speedup for circuit Primary2.

- wilhoUl gwgraphie assignment

wtlh gwgraphlc essignmenl Average
#Tracks 580 q//, I I , ,

lor 3029-Wire
Circuii

565

2 4 6 0 10 12 14 16

Number of Processors

Fig. 6. Tracks versus number of processors for Primary2.

using geographic wire assignment. The number of tracks
are averaged over 10 runs for each of the number of pro-
cessors. The geographic assignment reduces the quality
degradation by a significant amount-cutting the increase
in tracks by about half, without loss of performance. In
fact, the performance improves slightly in the geographic
approach because it exhibits more data locality which im-
proves the performance of the processor caches.

Table IV gives the speedup using fifteen processors for
the other test circuits. The speedup ranges from 5 for a
smaller circuit to 13.8 for the largest. The speedup is less
for smaller circuits because they are done in such a short
time, so that the startup overhead and workload balance
become factors. The execution time is for two iterations
over all the wires.

Table V gives the track and vertical hop counts for 1
and 15 processors using wire-by-wire parallelism and
geographic wire assignment, averaged over 10 runs. The
degradation in track count ranges between 2- lo%, mostly
less than 5 % . The increase in vertical hops is 9 % or less.
The larger circuits exhibit less degradation because the
geographic wire assignment has a larger area to spread the
processors over, and they are less likely to interact.

a) Gain due to removal of locks: Table VI gives
measurements of speed and quality comparing the perfor-
mance of the wire-by-wire approach with and without
locking of the cost array as discussed in Section IV-4.1.2.
The table gives the execution time, number of tracks, and
vertical hops averaged over 10 runs for the circuits
Primaryl and Primary2, using 15 processors. It also gives
the standard deviations (SD) for the track and vertical hop
counts. For the Primaryl circuit the speedup decreased
from 10.4 to 7 .3 using 15 processors when cost array
locking was used. For the Primary2 circuit the speedup
for 15 processors was reduced from 13.5 to 12.4 due to
locking. The final routing quality, however, does not de-

1092 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL. 9. NO. IO. OCTOBER 1990

TABLE IV
WIRE-BASED PARALLELISM SPEEDUP

TABLE V
WIRE-BASED PARALLELISM QUALITY

Track Count vertlcai HOPS

TABLE VI
SPEED A N D QUALITY USING A N D NOT USING LOCKS FOR 15 PROCESSORS

Clrcult &

crease when locking is omitted, due to the low probability
of collisions as discussed in Section IV-4.1.2.

4.2. Segment-Based Parallelism

In segment-based parallelism, each two-point segment
of a wire (produced by the minimum spanning tree de-
composition) is given to a different processor to perform
the routing. Measurements of the sequential router showed
that about 60% of the routing time was spent on wires
with more than one segment. This means that a speedup
of about two might be expected using three processors.
However, even though there are many wires that provide
two or three-way parallel tasks, the size of those tasks are
unequal. The amount of time taken by the LocusRoute to
route between two points is proportional to the Manhattan
distance between the two points. If, in a three-point wire,
two of the points are close together and the third is far
away, it will then take much longer to route one segment
than the other. The processor assigned to the short seg-
ment will be idle while the longer one is being routed.
This unequal load prevents a reasonable speedup. On the
test circuits a speedup of about 1.1 using two processors
was measured.

1 2 3 4 5 6 7 8
Number of Processors

Fig. 7. Route-based speedup for Primary2.

It is fairly clear, however, that an extra processor could
be assigned to a number of processors that are routing
different wires. It is likely that at any given time, one of
them will be able to use the extra processor to route an
extra segment. This technique would become essential in
wire-based parallelism if the number of processors were
increased much beyond sixteen. In that case, the load bal-
ance becomes a problem because wires with many seg-
ments take much longer than wires with few segments.
Hence, segment-based parallelism could be used as a

, -

method to balance those workloads.

4.3. Route-Based Parallelism
In route-based parallelism all of the two-bend routes to

be evaluated are divided among the processors. Each finds
the lowest-cost path among the set of routes it is assigned.
When all processors finish, the route with the best overall
cost is selected. Here the processor loads are well bal-
anced because the routes are all of the same length, and
the number of routes is evenly divided among the proces-
sors.

Fig. 7 is a plot of the speedup versus number of pro-
cessors for the circuit Primary2, for the route-based ap-
proach. It achieves a speedup of 4.4 using 8 processors.

Table IV gives the best speedup achieved for all of the
test circuits, ranging from 1.2 using 2 processors to 6
using 10 processors. The number of processors given in
the table is at the “knee” of the speedup curve-the point
where increasing the number of processors does not ap-
preciably improve performance. The principal reason for
the limitation is speedup is the sequential portion of the
routing: the wire decomposition and the post-route pro-
cessing that places the presence of the route into the cost
array. On the small circuits that have lesser speedup, the
sequential portion is about 50% of the total routing time,
while on the larger circuits, which have better speedup,
the sequential portion ranges from 10 to 15 % .

V . COMBINING Two ORTHOGONAL PARALLEL
DECOMPOSITIONS

The wire and route parallel approaches described above
are orthogonal, and so when they are combined we can
expect a multiplication of their respective speedups. In
this section experiments are performed to demonstrate this
effect on the Encore MULTIMAX, including a discussion
and experiments on scheduling of the two kinds of tasks.
Using a simple model, the speedup for a larger number of
processors is predicted.

ROSE: GLOBAL ROUTING OF STANDARD CELLS

BNRD

Primary1

BNRC

BNRB

1093

1.3
2
- 1.8
3

1.5
3

2.2

-

-

4

TABLE VI1
PERFORMANCE OF ROUTEBASED PARALLELISM

(M)
3
4

6
3
5

I
1.2
2

MDC -

(NI (M x N) Predlcted Measured
4 12 8.9 8.5
3 12 9.5 9.3
2 12 10.6 10.1

5 15 10.2 9.1
7 15 12.2 10.9

4.1 Primary2

Note that there is a significant difference between the
two kinds of parallelism: the wire-by-wire approach
causes a degradation in the quality of the results that is an
increasing function of the number of processors. The
route-by-route parallel decomposition reproduces the se-
quential algorithm exactly. As such it is important to con-
trol the number of processors using the wire-by-wire ap-
proach, so that there is control on the quality of the
answer. For this reason, the number of wires allowed to
be routed at the same time is an input parameter.

5. I . Implementation on the MULTIMAX
Because there are different kinds of tasks to be exe-

cuted, the major challenge of combining the wire and
route approaches is the scheduling of those tasks. We pre-
sent two approaches: a static schedule which permanently
assigns processors to a wire, and a dynamic one which
allows processors to be applied wherever they are needed.

5.1.1. Static Schedule: This scheduling strategy is im-
plied by the notion of orthogonality: for each wire that is
being routed by one processor in the wire-based approach,
we now design a constant number of processors to aid in
the parallel execution of the route-based tasks. This
scheme is depicted in Fig. 8. The extra processors are
used only during the two-bend route generation and eval-
uation. The approach is implemented by assigning a sep-
arate task queue to each wire stream, from which the route
processors remove route-based tasks.

Several experiments were performed to show that the
combined speedup of the wire and route-based approaches
was indeed the multiplication of the individually mea-
sured speedups. Table VI11 gives the result of those ex-
periments for the 3029-wire Primary2 circuit. For each
experiment it gives the number of wires being routed in
parallel (M), the number of processors assigned to each
wire to do the routing tasks (N) , the total number of pro-
cessors (M x N), the speedup predicted by multiplying
the wire-based speedup using M processors and the route-
based speedup using N processors (from Tables IV and
VII), and the measured combined speedup. From this ta-

Wire 4 0 n 0
nnn Wire -

Wire -
Wire

c] 0
0 0 [7
v

N Route Procs

M Wires

Fig. 8. Static scheduling policy.

TABLE VI11
STATIC SCHEDULE EXPERIMENTS FOR CIRCUIT PRIMARY2

Wlres In Parallel BRoute Procs Per Wlrd Total 1 Speedup

I 1 - 1 ,
I I 2 I 14 1 12.0 1 11.8

ble it is clear that the speedups very nearly multiply. The
small difference is due to increased contention for shared
memory and the central bus, the fact that two processors
contend for one cache in the Encore MULTIMAX, and
the increased cache coherence traffic that occurs with more
processors.

5.1.2. Dynamic Schedule: A drawback of the static
scheduling policy is that it cannot assign processors where
they will be of best use. If one wire has very few routes
while another has many, the processors assigned to the
first are not used by the second. In addition, there is a
portion of the wire routing procedure that only uses one
processor, so the other processors will be idle. A dynamic
scheduling approach allows any idle processor to be used
by any wire that has a need for it. This was implemented
by assigning all “route-by-route’’ tasks from any wire to
a single task queue, from which any processor performing
route tasks can retrieve tasks. Here M wire processors add
tasks to the queue, and R route processors remove and
execute tasks, where M and R are parameters specified by
the user-a total of M + R processors are used. The gran-
ularity of the routing tasks in the dynamic scheme, the
number of two-bend routes assigned to one processor to
evaluate per task, was tuned to achieve the best speedup.
The best performance was achieved when the number of
tasks was several times the number of available proces-
sors, indicating that the load balance effect was more sig-
nificant than the overhead of starting up a task.

Table IX gives an experimental comparison of the static
and dynamic scheduling approaches, also for circuit
Primary2. In each experiment, the total number of pro-
cessors is the same-the only difference is the scheduling
discipline. The table gives the number of wires being
routed simultaneously (M), the number of additional pro-
cessors used to help in routing tasks (R) , the total number
of processors (M + R) , the speedup for the static and

1094 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL. 9. NO. IO. OCTOBER 1990

TABLE IX
STATIC VERSUS D Y N A M I C PERFORMANCE FOR CIRCUIT PRIMARY2

dynamic scheduling approach, and the percentage in-
crease in speedup of the dynamic approach over the static.

The improvement in performance of dynamic schedul-
ing over static scheduling ranges from 5 to 19% for the
six examples. The difference is greater when more route
processors are involved, because there is more opportu-
nity to take advantage of the inefficiency of static sched-
uling.

5.2. Performance Prediction on Larger Number of
Processors

Since we have experimentally demonstrated that the
static schedule performance of the combined approach
does indeed nearly multiply the speedups attained by the
individual methods, it is possible to predict the perfor-
mance of the static schedule on many more processors.
Assume, for a given circuit that a speedup of SM is
achieved using wire-based parallelism on M processors,
and a speedup of S, is achieved using route-based paral-
lelism on N processors. Then, because the two ap-
proaches are orthogonal, the resulting speedup when they
are used together should be Sw x S, using M X N pro-
cessors. This model neglects the effect of memory con-
tention that may occur when the number of processors is
increased dramatically. Table X shows the predicted
speedup for the test circuits, using the data from Tables
IV and VII. Combined speedup ranges from 6 using 30
processors to 79 using 150 processors. The smaller cir-
cuits are routed very quickly and so it is difficult to get
speedups greater than 6 due to the startup overhead, and
load balance effects. The larger circuits benefit greatly
from the combination of the approaches. In addition, we
can expect even better performance using the dynamic
scheduling approach.

VI. CONCLUSIONS
A new global routing algorithm for standard cells and

its parallel implementation has been presented. The
LocusRoute algorithm is a simple and effective way of
searching for good paths for routes in the standard cell
layout style, yet it is comparable in speed and quality to
the Timberwolf 5.0 standard cell global router. It
achieves similar quality to a much slower maze router that
searches the same space of possible routes. Two of the
three parallel decompositions that were implemented
achieve significant speedup-up to 13.8 using fifteen pro-
cessors and 6 using 10 processors. They should produce
combined speedups of more than 75 times.

TABLE X
PREDICTED COMBINED SPEEDUP OF WIRE A N D ROUTE PARALLELISM

We introduce a number of techniques to achieve these
results.

i) A chaotic parallel approach in which data depen-
dencies are relaxed to allow a tradeoff between ex-
ecution time and quality.

ii) Careful assignment of tasks to processors to reduce
the quality degradation of the chaotic approach.

iii) Elimination of costly locking with no loss of qual-
ity, due to the low statistical chance of interactions.

iv) Using two orrhogonaf parallel decompositions,
which when combined give a speedup which is the
product of the individual approaches’ speedups.

v) Dynamic (as opposed to static) scheduling of par-
allel tasks to improve the parallel performance.

In the future, we hope to integrate the global router into
a placement algorithm and see how the added information
can be used to improve the placement. Several issues that
have been raised by the parallel router will also be pur-
sued: theoretical study of the effect of relaxing data de-
pendencies in parallel combinatorial optimization; more
flexible scheduling; parallelizing more of the algorithm
such as the minimum spanning tree decomposition; and
implementation of a similar approach on a massively par-
allel machine.

ACKNOWLEDGMENT

The author is grateful to John Hennessy for the encour-
agement and support of this work, and to Tom Blank for
many good suggestions of an earlier version of this paper.
Thanks also to Grant Martin of Bell-Northern Research
for the use of company circuits and to the people involved
in the standard cell benchmark effort for supplying those
test circuits. Carl Sechen provided the version of 5.0 of
TimberWolfSC.

REFERENCES

[I] H . G. Adshead. “Employing a distributed array processor in a dedi-
cated gate array layout system,” in Proc. ICCC, Sept. 1982, pp. 41 I -
414.

ROSE: GLOBAL ROUTING OF S T A N D A R D CELLS 1095

121 S . B. Akers, Drsigri Aurorricrriort o/Digirtrl Sy.\t(,rri.\; Tlieorx (rrid Todi-
riiques. M. A. Breuer, Ed. Englewood Clill's. NJ: Prentice-Hall.
1972. chap. 6.

[3] P. Banerjee and M. Jones. "A parallel simulated annealing algorithm
for standard cell placement o n a hypercube computer.'' i n Proc.
l C C A D ' 8 6 , Nov. 1986. pp. 34-37.

141 T. Blank. M. Stetik. and W. VanCleeniput, "A parallel bit map pro-
cessor architecture for DA algorithms," in Proc. 18th Drsi~ri Auto-
r?icrtior? Corif:. June 1981. pp. 837-845.

151 M. A. Breuer. "Min-cut placement." J . Dc,.\igri Airforriot. F'ou/t-To/-
erfirif Corriput., pp. 343-362. Oct. 1977.

161 M . A. Breuer and K. Shamsa, "A hardware router." J . Di,qirtrl Sysr . .
vol. IV. no. 4, pp. 393-408, 1981.

[7] M. Burstein and S . J . Hong. "Hierarchical VLSl layout: Simulta-
neous placement and wiring ofgate arrays." in Pro(.. VLSl '83. 1983.

[E] A. Casotto. F. Romeo, and A. Sangiovanni-Vincentelli. "A parallel
simulated annealing algorithm for the placement of macro-cells," in
Proc. ICCAD 8 6 , Nov. 1986, pp. 30-33.

[9] -. "A Parallel Simulated Annealing Algorithm for the Placement
of Macro-Cells," IEEE Trans. Computer-Aided Design. vol. 6 , pp.
838-847. Sept. 1987.

[IO] J . Cong and B. Preas, "A new algorithm for standard cell global rout-
ing." in Proc. l C C A D 88, Nov. 1988. pp. 176-179.

I 1 I] W-M. Dai and E . S . Kuh, "Simultaneous floorplanning and global
routing for hierarchical building-block layout," l E E E Trum. Corri-
purer-Aided Desigri, vol. CAD-6. pp. 828-837. Sept. 1987.

1121 A. Iosupovici. "A class of array architectures for hardware grid rou-
ters." IEEE Truris. Corriputer-Aided Design. vol. CAD-5. pp. 245-
255. Apr. 1986.

1131 T. Kambe, T. Okada. T. Chiba. and 1. Nishioka. "A global routing
scheme for polycell LSI," in Proc. ISCAS. 1985. pp. 187-190.

1141 J . B. Kruskal, "On the shortest spanning subtree of a graph and the
traveling salesman problem.'' in Proc. Airier. Murh. Soc., vol. 7 .
1956. pp. 48-50.

[151 C. Y. Lee, "An algorithm for path connections and its applications.''
IRE Trun.~. Elec tron. Conipur.. vol. EC-IO, pp. 346-365. 1961.

1161 K-W. Lee and C . Sechen, "A new global router for row-based lay-
out." in Proc. lCCAD 88, Nov. 1988. pp. 180-183.

1171 M. J . Lorenzetti and D. S. Baeder. "Routing." in Pliy.sic.tr/ D ~ s i g r i
Automarion of VLSl Systerns, B. Preas and M. Lorenzetti, Ed. Menlo
Park. CA: BenjaminiCummings, 1988. chap. 5.

1181 R. Nair. S . J. Hong, S . Liles. and R. Villani. "Global wiring on a
wire routing machine," in Proc. 19th Design Aurorncrtiori Cor?f., pp.
224-231. June 1982.

[191 R. Nair. "A simple yet effective technique for global wiring," l E € E
Trcrris. Cornputer-Aided Desijiri. vol. CAD-6. pp, 165-172. Mar.
1987.

1201 A. P:C. Ng. P. Raghavan. and C . D. Thompson, "A language for
describing rectilinear Steiner tree configurations." in Pvoc. Z3rd Do-
sign Auror?7ution Cor7f.. pp. 659-662, June 1986.

pp. 45-60.

1211 A. M. Patel. N . L. Soong. and R. K . Korn. "Hierarchical VLSl
Routing-An approximate routing procedure." / € € E Trcrr7.s. Corti-
purrr-Ai t l~v l Dcsigri. vol. CAD-4. pp. 121-126. Apr. 1985.

1221 B. T . Preas. "Benchmarks for cell-based layout systems." in Proc..
24rd Dosigri Aurorrioriori Cori,/:. June 1987. pp. 3 19-320.

1231 -. private communication.
1241 R. Prim. "Shortest connecting networks and some generalizations."

Ball. Syst. Tc.ch. J . . vol. 36. pp. 1389-1401. 1957.
1251 J . S. Rose. W. M. Snelgrove. and Z. G. Vranesic. "ALTOR: An

automatic standard cell layout program." in Pro(, . Coridiori Cortf.
o r i VLSI. Nov. 1985. pp. 168-173.

1261 J . S. Roye, D. R. Blythe. W . M . Snelgrove. and Z . G. Vranesic.
"Fast. high quality VLSl placement on an MIMD multiprocessor."
in /'roc,. 1CCAD 86. Nov. 1986. pp. 42-45.

1271 J . S. Rose. W. M. Snelgrove. and Z. G. Vranesic, "Parallel standard
cell placement algorithms with quality equivalent to simulated an-
nealing." / E € € Trori.\. Corrlp/rf"-Aidetl Desigri. vol. 7. pp. 387-396.
Mar. 1988.

1281 J. S . Rose. "Locu\Route: A parallel global router lor standard cells."
in Proc.. 25rh Dosigri Aufor)i(itrori Cor7.f.. June 1988. pp. 189- 195.

1291 F. Rubin. "The Lee path connection algorithm," l E E E Ttwi.\. Corri-
pur.. vol. C-23, pp. 907-914. Sept. 1974.

1301 R. A. Rutenbar. T. N. Mudge. and D. E. Atkins. "A class of cellular
architectures to support physical design automation." l E E E Trtrris.
Corriputrr-Aided Desigr7. vol. CAD-3, pp. 264-278. Oct. 1984.

13 I] C. Sechen and A. Sangiovanni-Vincentelli, "The Timberwolf place-
ment and routing package." IEEE J . Solicl-Srtrtc, Circ.uit.s. vol. SC-20.
pp. 510-522. Apr. 1985.

[32] C . Sechen. D. Braun. and A . Sangiovanni-Vincentelli, "Thunder-
Bird: A complete standard cell layout package." l E E E ;. Solid-Srure
Circuits. vol. 23, pp. 410-420. Apr. 1988.

133) P. R . Suaris and G. Kedem. "A quadrisection based combined place
and route scheme for standard cells.'' 1EEE T r u m . Corriputer-Aided
De,sig,i. vol. 8. pp. 234-244. Mar. 1989.

1341 K. Supowit, "Reducing channel density in standard cell layout." in
Proc. 2Ofh Desigri Airrorrmtiori Corif.. June 1983. pp. 263-269.

13.51 Y. Won. S. Sahni. and Y . El-Ziq, "A hardware accelerator for maze
routing," in Proc. 24111 Dcsigti Autorricrtiori Conf.. June 1987. pp.

1361 M. Yamada. T. Hiwatashi. T. Mitsuhashi. and K. Yoshida, "A multi-
layer router for standard cell LSIs." in Proc. ISCAS. 1985. pp. 191-
194.

800-806.

*

Jonathan Rose (S'79-M'86), for a photograph and biography please see
page 259 of the March 1990 issue of this TRANSACTIONS.

