The VTR Project: Architecture and CAD for FPGAs from
Verilog to Routing

Jonathan Rose!, Jason Luu', Chi Wai Yu*, Opal Densmore*, Jeffrey Goeders?,
Andrew Somerville?, Kenneth B. Kent?, Peter Jamieson® and Jason Anderson'

!Dept. Electrical and Computer Engineering, University of Toronto
2Dept. Computer Science, University of New Brunswick
3Dept. Electrical and Computer Engineering, University of British Columbia
“Dept. Electrical Engineering, City University of Hong Kong
*Dept. Electrical and Computer Engineering, Miami University

ABSTRACT

To facilitate the development of future FPGA architectures
and CAD tools — both embedded programmable fabrics and
pure-play FPGAs — there is a need for a large scale, pub-
licly available software suite that can synthesize circuits into
easily-described hypothetical FPGA architectures. These
circuits should be captured at the HDL level, or higher, and
pass through logical and physical synthesis. Such a tool must
provide detailed modelling of area, performance and energy
to enable architecture exploration. As software flows them-
selves evolve to permit design capture at ever higher levels of
abstraction, this downstream full-implementation flow will
always be required. This paper describes the current status
and new release of an ongoing effort to create such a flow -
the ‘Verilog to Routing’ (VTR) project, which is a broad col-
laboration of researchers. There are three core tools: ODIN
II [10] for Verilog Elaboration and front-end hard-block syn-
thesis, ABC [16] for logic synthesis, and VPR [13] for phys-
ical synthesis and analysis. ODIN II now has a simulation
capability to help verify that its output is correct, as well as
specialized synthesis at the elaboration step for multipliers
and memories. ABC is used to optimize the ‘soft’ logic of
the FPGA. The VPR-based packing, placement and routing
is now fully timing-driven (the previous release was not) and
includes new capability to target complex logic blocks. In
addition we have added a set of four large benchmark cir-
cuits to a suite of previously-released Verilog HDL circuits.
Finally, we illustrate the use of the new flow by using it to
help architect a floating-point unit in an FPGA, and con-
trast it with a prior, much longer effort that was required to
do the same thing.

Categories and Subject Descriptors
B.5.2 [Design Aids]: Automatic Synthesis, Optimization

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

FPGA’12, February 22-24, 2012, Monterey, California, USA.

Copyright 2012 ACM 978-1-4503-1155-7/12/02 ...$10.00.

77

General Terms

Algorithms, Design, Architecture, Measurement, Performance

1. INTRODUCTION

The exploration of new programmable architectures, and
the development of innovative algorithms required to synthe-
size circuits into FPGAs requires a robust software flow that
permits experimentation. In order to model modern and fu-
ture architectures, such a flow is necessarily quite complex,
and largely beyond the capacity of any single academic en-
terprise to create, evolve and maintain. By contrast, the
related commercial flows are supported by hundreds of full-
time engineers. Equally important, to serve the same needs,
is a set of relevant large-scale circuit benchmarks that can
be used to test architectures and algorithms. This paper
describes the status of a global collaboration attempting
to provide such a framework - including several innovations
within the three main parts of the tool flow, new work to
create robust benchmarks, and an illustration of the flow’s
capability to explore a new kind of hard logic block.

One of the goals of this project is to provide a managed
repository where enhancements of the flow by others can
be more easily integrated into the suite of tools. Without
such an effort, innovations are often orphaned, preventing
our field from progressing by building on each other’s work.
These goals are challenging, because making a flow that is
robust requires more effort than a typical academic project
and publication requires.

In this paper we first describe several advancements in
the core set of tools - Section 2 describe new features of the
ODIN II tool [10] which takes in the Verilog description of
the circuit and elaborates it into a BLIF netlist. Section 3
describes the use of the ABC tool [16], which performs logic
optimization and technology mapping on the soft-logic por-
tion of the BLIF. Section 4 describe advances in the VPR
tool [13] which takes the synthesized BLIF and performs
physical synthesis and timing analysis. Section 5 gives the
basic flow’s result for the set of previous and some new Ver-
ilog benchmark circuits that are a part of the related release.
Section 6 provides a case study of the use of the flow to repli-
cate previous work (done on a branch of the original VPR
4.3[3] flow) to model floating-point logic blocks. Section 7
gives the details of the full release of software, architecture
files and benchmark circuits. Section 8 outlines the exten-

sive set of additional features we see as necessary to continue
this work, while Section 9 concludes.

2. ODIN II: ELABORATION

The Odin II Verilog elaboration front end [10] has four
key roles in the VTR framework:

1. To interpret and convert some of the Verilog syntax
into a logical netlist targeting the ‘soft logic’ on the
FPGA.

2. To synthesize other constructs directly into ‘hard logic’
blocks on the FPGA, making specific use of the logical
properties of those blocks to ensure that the logical
netlist is physically realizable.

3. To be responsive to the architecture description of the
FPGA. This is provided in the architecture description
file which contains an extensive description of physical
properties of the FPGA, together with a small amount
of the logical properties. This includes the routing
architecture of the FPGA [3], the internal structure of
the logic blocks [13], the global pattern of logic blocks,
and the I/O structure. Examples of a portion of an
architecture file are given in Section 6.

4. To provide a framework for the verification of the cor-
rectness of the software flow.

This section reports on several new capabilities in these
roles, including synthesis for memories, multipliers and other
hard logic, a macro pre-processor, and a new verification in-
frastructure.

2.1 Compilation

It is essential for the elaboration step to be aware of the
higher-level functionality of hard blocks in existing and hy-
pothetical FPGAs. The Odin II Verilog compiler has been
improved to enable more sophisticated mapping of hard mul-
tipliers and memories on FPGAs, which we describe in detail
in this section, in addition to other ‘generic’ hard blocks that
the architect can model.

2.1.1 Multipliers

Multiplication is a very common operation in digital cir-
cuits, and so modern FPGAs have included hard multipliers
[2][1] for area-efficiency and higher performance. Odin II
detects the multiplication operator (*) and synthesizes it
directly into a hard multiplier block on the FPGA, if one
exists in the architecture description file. Multiplication can
appear in Verilog either as an explicit instantiation, or im-
plicitly as a multiplier operation, as shown in Figure 1. Cur-
rently, Odin IT can only synthesize unsigned multipliers.

The key issue with the elaboration and synthesis of mul-
tiplication is the transformation between the logical speci-
fication of the operation and its implementation using the
available physical hard blocks [19]. The input circuit can
contain any size of multiplier operation, whereas the FPGA
architecture will typically have a physical hard block that is
fixed in size. For example, a design could contain a logical
128-bit x 128-bit multiply that produces a 256-bit result,
while the physical FPGA may contain only 8-bit x 8-bit
multiplication hard blocks (as specified in the architecture
description file) that provide a 16-bit result. This requires

78

multiply my_mult (a, b, outl); // explicit
always @(c,d)
begin

out2 <= ¢ * d;
end

// implicit

Figure 1: Explicit & Implicit Multiply in Verilog

a ‘splitting’ of the large logical multiplier into many smaller
multiplications that make use of the hard multipliers, and
the synthesis of some soft logic, between the hard multipli-
ers, to create the correct arithmetic function. This splitting
operation can best be described through an example: Con-
sider a logical multiplication operation that splits perfectly
in half (into two multipliers of exactly half the size) the re-
sult is four multiplication operations (each of 50% the size)
and three addition operations, as illustrated in Figure 2.
The additions must be implemented in generated soft logic.
Figure 2 shows the long multiplication form of A x B. If
the resulting multiplication operations remain too large to
implement in a hard multiplier, this splitting process is re-
peated recursively until the multiplication operation is small
enough to fit.

’ By | B. \ B
X ’ /\H I /\L ‘/\
| AB, |
| AuB, |
| A By |

+ |
| AB

AuBn__ |

Figure 2: Long multiplication of variables A and B.

It is important to note that, in working with hard and
soft multipliers, it has become clear that it is very inefficient
to use larger physical hard multipliers to implement small
logical multipliers - the resulting circuit is faster and smaller
when small logical multipliers are built in soft logic. For
this reason, Odin II has a parameter that sets the size of the
logical multiplier that is too small to be implemented in a
hard physical multiplier. This parameter is also applied to
the remaining multiplier after the recursive splitting process
described above. This parameter should be a function of the
size of the smallest hard multiplier available on the FPGA;
however we do not yet automate that setting.

2.1.2 Memories

Memory is a key component of digital circuits, and em-
bedded memories are commonly found in many commercial
FPGA architectures [1][2]. Odin II identifies explicit instan-
tiations of memory (implicit memory coded as Verilog arrays
is not yet supported) in the input Verilog circuit. Explicit
memories, both single and dual port, can be specified by the
designer as illustrated in Figure 4. These logical memories
are synthesized into the hard blocks that exist in the target
FPGA architecture, as specified in the architecture descrip-
tion file. Figure 3 illustrates part of the definition of a hard

<model name="single_port_ram">
<input_ports>

<port name="we"/> <!-- control -->
<port name="addr"/> <!-- address lines -->
<port name="data"/> <!-- data lines -->

<port name="clk" is_clock="1"/>

</input_ports>

<output_ports>

<port name="out"/>

</output_ports>
</model>

<!-- output -->

Figure 3: Excerpt of FPGA Architecture Descrip-
tion File Showing Model of Single Port Memory

single_port_ram my_mem(we, data, addr, clk, out);

dual_port_ram my_mem2(wel, we2, addrl, addr2, datal,
data2, clkl, outl, out2);

Figure 4: Example Verilog Instantiations of Single
and Dual Port Memories

block single-port RAM in the FPGA architecture descrip-
tion file, which is used by ODIN II to perform the synthe-
sis. The keywords single_port_ram and dual port_ram
along with the ports for each shown in Figure 4 have spe-
cific meanings that are necessary to perform the memory
synthesis within Odin II. A later physical layout section of
the description file gives the size of the memory ports, which
is also required.

Similar to multipliers, memories will appear in application
circuits in many different logical sizes, and some will have
to be split to fit into the physical size of memories on the
FPGA. This may also require the generation of additional
soft logic. The depth of a memory can be split in half by
utilizing one of the address lines to select one of two smaller
memories to access. The width of a memory can be split by
utilizing two memories where the entries are concatenated
together to achieve the required data width. Furthermore,
most FPGA memories have the ability to trade depth for
width, making the full memory synthesis problem somewhat
intricate [9]. Odin II can be set to split the logical memories
in two ways:

1. It can split a logical memory down into the size of the
smallest physical memory, or

2. It can split all memories into the smallest data size
possible (ie. 1-bit data). This method relies on down-
stream tools to pack memories together into the phys-
ical hard block size; we describe that more fully in
Section 4. This can potentially render better results
as multiple logical memories can share a single physical
hard block.

2.1.3 Generic Hard Blocks

Multipliers and memories are common entities that are
found in many digital circuits. A key goal of the VIR
project is to enable exploration of other dedicated hard blocks,
in order to explore their effectiveness. Odin II supports the
detection and synthesis of such generic hard blocks. To use
this feature, the design must explicitly specify the precise
usage of the generic hard block (similar to explicit speci-
fication of memories in Figure 4) where the logical size is
identical to the physical size. The specification of a generic
hard block in the FPGA architecture is identical to that of
memories and multipliers. A model must be described that

79

specifies the name of the block along with the input and out-
put port names. Subsequently in the physical layout of the
FPGA the size of the ports must be provided. No splitting
of generic hard blocks can be provided as this is dependent
on the block’s functionality. It is an open question as to
whether there is a method of specification of a hard block
that can concisely include how it can be split.

2.2 Pre-processor

An addition to Odin II in this release is a Verilog pre-
processor that can support greater Verilog language cover-
age. The pre-processor performs an additional parsing of
the Verilog circuit description prior to Verilog compilation.
The pre-processing step provides support of Verilog compiler
directives (i.e. define, ifdef, else, endif and include).
This support has substantially increased the flexibility in
writing Verilog benchmarks for the VTR project and has
increased the likelihood that an existing circuit description
can pass through the VTR flow without requiring modifica-
tion.

2.3 Verification

As we have developed the VTR flow, it has become im-
portant to ensure that the output of Odin II, and ultimately
the downstream tools, is correct. It is particularly difficult to
verify that the output of Odin II is correct when the user de-
fines new hard blocks with new functionality. This requires
an ability to separately specify the logical functionality of
those blocks to any kind of verification tool. To address this
issue, a logic simulator was developed [17] inside ODIN II.
The simulator exercises either the Verilog input (after elab-
oration into ODIN II's internal data structures) or a BLIF
netlist file, as the specification of the circuit. It can use ei-
ther an optional set of input test vectors that stimulate the
circuit, or the simulator will generate a specified number of
random vectors.

The logic functionality multiplication and memory hard
blocks is built in to the Odin IT simulation, as they are the
most common blocks. When the FPGA architect wants to
create custom hard blocks with unique functionality, the ar-
chitect must also provide the simulator with a C-language
description of the logical functionality. At simulation run-
time, these blocks are simulated by loading these compiled
codes as run-time libraries.

The output of the simulator is the computed result of the
input vectors for the circuit, from either the Verilog or BLIF
versions of the circuit. Once complete, any output vectors
can be compared for equality to achieve a level of confidence
that a circuit is synthesized correctly. In addition, the out-
put of the post-synthesis simulation can be compared against
the pre-synthesis simulation of commercial simulators, such
as Modelsim from Mentor. In the benchmarks presented in
Section 5, we have employed this latter method of verifica-
tion.

3. ABC: LOGIC SYNTHESIS

We use the ABC logic synthesis framework [16] for tech-
nology independent logic synthesis and technology mapping
to LUTs and flip-flops. ABC has evolved over the years
to produce higher-quality results with a number of innova-
tions. It has also evolved to handle both hard structures on
FPGAs, as well as predefined soft structures, as discussed
below. ABC represents a logic circuit using a network of two-

input AND gates and inverters: an AND-inverter graph (AIG).
We use ABC’s resyn2 script for technology independent op-
timization, which iteratively calls ABC commands that op-
timize the AIG to reduce the number of nodes and balance
the lengths of its paths, thereby minimizing the maximum
number of AND gates on any combinational path.

We also employ the WireMap [11] techngiue for technol-
ogy mapping the AIG into K-input LUTs. WireMap pro-
duces depth-optimal mappings for a given AIG, while at-
tempting to minimize the number of used inputs in the re-
sulting LUTs. This reduction in LUT inputs benefits both
routability and power [11], as well as facilitating a more ef-
ficient packing of these smaller LUTSs into dual-output frac-
turable LUT architectures [13].

While soft logic is represented as an AIG in ABC, hard
blocks, such as memories and multipliers, are received from
the Odin IT front-end modelled as black boxes in ABC. More
recent versions of ABC permit the modelling of timing paths
through black boxes which allows the synthesis and mapping
steps to optimize the surrounding soft logic while taking that
timing into account. We do not yet take advantage of this
feature of ABC, but hope to do so in the near future. To
do so will require experimentation and measurement of its
effectiveness. We will also work similarly to move to mod-
elling hard blocks as white boxes, wherein their internal logic
functionality is exposed. The logic circuits in the transitive
fanin and fanout of the white box can then be further opt-
imized, for example, by leveraging don’t-cares arising from
the white box logic functionality.

4. VPR: PHYSICAL SYNTHESIS

This release of VTR includes an important new release
of the VPR tool that is based on the VPR 6.0 beta release
described in [13]. That version introduced new constructs
that allow the description and packing of far more complex
logic blocks. The architecture description file can now de-
scribe an essentially arbitrary interconnection of primitives
inside the block, together with unlimited layers of hierar-
chy and multiple modes of operation within each piece of
the hierarchy. That version, however, suffered from a lack
of timing-driven physical synthesis - none of the packing,
placement or routing phases was timing driven.

In the present release, timing-driven functionality has now
been implemented. To do this, the timing analyzer in VPR,
and most particularly the timing graph generator inside the
timing analyzer, needed to generate timing graphs that re-
flect the arbitrary graph of connectivity that is now possible
inside the complex logic blocks. It must also correctly model
the different modes of operation, with different timing num-
bers for each mode. This has now been done; since the
VPR placement and routing algorithms only needed proper
timing analysis to work, this enhancement was all that was
required to make both of those steps timing-driven. There
are two interesting issues that arose in this work that will be
described in the two subsequent sections: first, we needed
to create a timing-driven packing algorithm that could deal
with the arbitrarily complex logic blocks. Second, we had to
come up with a clean method for handling the complexity
of specifying the timing inside hard and soft logic blocks

4.1 Timing-Driven Packing
We begin by describing the area-driven packing algorithm
in [13] and then describe how it was enhanced. The area-

80

driven algorithm first selects a complex logic block, and pop-
ulates it with primitives from the netlist, one at a time, until
the complex block is full. This is repeated until the entire
netlist is packed into complex blocks. This algorithm re-
solves the mode and hierarchy requirements of a complex
logic block by using a depth-first traversal of the hierarchy
and mode tree to find the appropriate location and mode
settings for each netlist block. For each such selection, the
algorithm invokes a router to ensure that the specific choice
is feasible - in the general case it is necessary to perform
routing within the block because there is no guarantee that
any arbitrary network of switches will allow the candidate
packed primitives to connect. The selection of which netlist
primitive to pack next is based on an attraction function
that was entirely area driven.

To make this algorithm timing-driven, the attraction func-
tion was modified based on a new timing model. The timing
model used is a simplified version of the model used by T-
VPack [15]. All blocks are modelled to have a logical depth
of one. Nets are modelled as having zero delay. The tim-
ing analysis engine calculates the normalized criticality of
each netlist primitive by dividing by the longest-path logical
depth. Tie breakers are employed to determine which block
should have higher criticality in the event that two blocks
share the same depth criticality. These tie breakers are the
same as those found in [15]; they are based on counting the
number of critical/near critical paths that pass through a
particular block.

The attraction function was modified to account for tim-
ing as follows:

Attr = «- eriticality(B) + (1 — &) - area_attraction(B) (1)

Where B is the candidate netlist block B and area_attraction

is the attraction function used in [13]. The parameter alpha
defaults to 0.75 to place a heavier emphasis on criticality.

As with earlier works on packing, the criticality of blocks
serves as a good proxy for packing critical edges into the
cluster. Due to the strong weighting in the attraction func-
tion in favour of criticality, there is a bias for packed netlist
blocks to have equal or higher criticality than candidates. If
a packed block is critical and the candidate block it is con-
nected to is critical, then the edge to the candidate from the
cluster is critical too. Thus, block criticalities alone achieves
the goal of absorbing critical edges most of the time while
avoiding the larger development effort needed to implement
edge criticalities.

We performed an experiment to compare the impact of
timing-driven and area-only packing in VPR 6.0 using the
legacy T-VPack/VPR 5.0 flow as the baseline. The largest
20 MCNC circuits were mapped onto a transistor optimized
homogeneous FPGA from the iFar repository [12] with clus-
ters of ten 6-LUTs. The timing-driven VPR 6.0 flow gave,
on average, the same critical path delay as T-VPack/VPR
5.0. The area-driven packer followed by timing-driven place-
ment and routing, on the other hand, produced circuits that
were 5% slower on average.

4.2 Timing Specification

The goal of the VPR 6.0 release was to enable the archi-
tectural exploration of very complex logic blocks. With the
addition of a fully-timing driven flow, it was necessary to
ensure that proper timing modelling and analysis was per-
formed at the various stages of the flow. It was necessary

to rethink how the timing of the primitives are described
in the architecture description file, so that a wide variety
of new kinds of blocks can be correctly modelled. Tim-
ing paths through a primitive can be either purely combi-
national, or have registered inputs, and/or have registered
outputs, and/or have an internal pipeline, or some combi-
nation of these. It turns out that for certain primitives, it is
not necessary to completely specify all its timing paths. For
example, Figure 5 shows the timing for a primitive with an
internal pipeline. Notice that, for the purposes of physical
synthesis, the primitive is indivisible so it is not necessary
to specify the timing in this level of detail.

Figure 5: Example of an internal pipeline within a
primitive.

Rather than have the architecture file specify the full tim-
ing graph itself, we decided that there was sufficient flexibil-
ity being able to specify delays in these four ways, dealing
only with the input pins and output pins of the primitive:

1. Fully combinational paths - a different combinational
delay can be specified from every input pin to every
output pin in a timing matrix. If all of the delays to
a specific output pin are the same, then this can be
specified more concisely.

2. Input pins that feed flip-flops can be specified as having
a set-up time to reflect the actual set-up time and any
extra combinational delay in the path from the pin to
the D input of the flip-flop.

3. Output pins that are fed by the output of flip-flops
can be specified as having a clock-to-Q delay, which
can also include any extra combinational delay in the
path from the Q output to the pin.

4. In the case that there are internal pipeline stages that
are not visible with the above specifications, the ar-
chitect can also specify the minimum clock period for
the primitive. By having only one possible specifica-
tion here, we limit the flexibility of the timing analysis.
However, if more accuracy is needed, then a more de-
tailed set of primitives can be used, essentially creating
the timing graph as part of the complex block.

Figure 6 provides two examples to illustrate these scenar-
ios. The timing for BIkA illustrates a primitive with fully
combinational paths. The timing for BIkB illustrates the
timing information for primitive with an internal pipeline.
This primitive has a setup time at the input pins, a clock-
to-Q delay at the output pins, and a longest combinational
path delay of 10 ns.

S. BENCHMARKS AND FLOW RUN

An important part of this software release is the concomi-
tant release of benchmarks circuits that can be processed

81

<delay matrix type=“max”
in port=“BlkA.in”
out_port=“BlkA.out[0]">
0 1.0e-9
4.0e-9
6.0e-9
</delay matrix>

<delay_matrix type="max”

in_port="BlkA.in[2]”

out_port="BlkA.out[1]”>
2.0e-9

</delay matrix>

BIkB
10ns Internal Delay

<T_setup value="5.0e-10"
port="BlkB.in" clock="clk"/>

<T clock to Q max="2e-09"
port="BlkB.out" clock="clk"/>

Setup Time
0.5ns out

<max_internal_delay value="1e-08"/>

Clock-to-Q

Time 2 ns

Figure 6: Examples of the different timing scenarios
that can be expressed for a primitive.

through the circuit flow. We have come to realize that the
benchmarks associated with a major software effort such as
this are both as important as the software itself, and are
themselves a form of software. As the language coverage of
the ODIN II tool improves, it is clear to us that specific ver-
sions of benchmarks must be associated with specific releases
of the tool flow. In this section we describe the benchmarks
and give the results of the running of the new flow on each.

5.1 The Circuits

Table 1 list the set of 19 benchmarks provided with this re-
lease, including four new circuits and several modifications
to previously-released circuits. The table gives the circuit
name, the number of primary inputs and outputs, the num-
ber of 6-input lookup tables in the combinational soft logic,
the number of flip-flops, the number of 36x36 multiplier
equivalents in each circuit, the number of logical memories,
the maximum data width of all the logical memories in the
circuit and the number of address bits in the deepest logical
memory.

Each benchmark is coded in the Verilog HDL, and in
many cases been recoded to meet the language coverage re-
strictions of ODIN II. There are three significant new ad-
ditions to the benchmark suite from [13]: The MCML cir-
cuit, which is an application that uses Monte Carlo simu-
lation of photons that could be used as part of a Photo-
Dynamic Therapy-based cancer treatment plan [14]. The
second circuit has provided two separate benchmarks - LU8
and LU32. This is a scalable linear system solver that makes
use of the LU Decomposition Method [20]. The third cir-
cuit, bgm, is a Monte Carlo simulation for a financial ap-
plication that uses the BGM interest rate model to price
derivatives [8]. The other benchmarks come from a vari-
ety of sources: Opencores (or1200, sha), various university
research projects (blob_merge, raygentop, boundtop, dif-
feql and diffeq2 ch_instrinsics and stereovisionX) and an
FPGA consultant (mkDelayWorker32B, mkSMAdapter5B,
and mkPktMerge).

The circuits range in size from 170 to 99,700 6-LUTs.
Three of the new circuits added to the benchmark set are
of significant size, although we note that even so, we are
not keeping up with the size of the modern, largest FPGAs,
which contain roughly to 500,000 6-LUTs.

Circuit # # # # # # Max Max Circuit Pack Place MinW Route Min Crit

In Out 6-LUTs FFs Mult Mem width Addr Time Time Route Time A% Path

bits (s) (s) Time (s) (s) (Tracks) Delay (ns)

bgm 257 32 30089 5362 11 0 0 0 bgm 2314 1768 12265 7 168 29.3
blob_merge 36 100 6016 735 0 0 0 0 blob_merge 624 107 475 7 100 14.2
boundtop 275 192 2921 1671 0 1 32 14 boundtop 522 37 17 2 72 7.57
ch_intrinsics 99 130 413 233 0 1 8 14 ch_intrinsics 52 4 2 0 48 3.72
diffeql 162 96 434 193 5 0 0 0 diffeql 25 5 7 2 62 19.1
diffeq2 66 96 277 96 5 0 0 0 diffeq2 17 3 7 1 52 17.7
LUSPEEng 114 102 21954 6630 8 9 256 14 LUSPEEng 2526 1322 2564 116 136 149
LU32PEEng 114 102 75530 20898 32 9 1024 14 LU32PEEng 9395 9983 109313 926 204 149
mcml 36 33 99700 53736 30 10 36 16 mcml 12674 5901 14173 168 144 109
mkDelayWorker32B 511 553 5580 2491 0 9 313 14 mkDelayWorker32B 1115 154 1368 36 110 7.43
mkPktMerge 311 156 226 36 0 3 153 14 mkPktMerge 11 8 53 6 50 3.48
mkSMAdapterdB 195 205 1977 983 0 3 61 14 mkSMAdapterdB 481 25 44 2 80 7.80
or1200 385 394 2963 691 1 2 32 14 or1200 373 55 92 4 90 24.0
raygentop 239 305 2134 1423 18 1 21 14 raygentop 431 29 16 2 74 6.46
sha 38 36 2212 911 0 0 0 0 sha 516 21 20 2 64 15.6
stereovisionQ 157 197 11462 13405 O 0 0 0 stereovisionQ 1538 172 93 6 78 4.54
stereovisionl 133 145 10366 11789 152 0 0 0 stereovisionl 2500 209 539 18 120 5.89
stereovision2 149 182 29849 18416 564 O 0 0 stereovision2 3160 923 157888 276 172 16.9
stereovision3 10 30 174 102 0 0 0 0 stereovision3 20 1 0 0 30 3.51

Table 1: Benchmarks and Data

One key contribution of this work is the more careful ver-
ification of the elaboration stage (through Odin II) of the
Verilog HDL code of these benchmarks. For 14 of the 19
circuits, there is an exact simulation match (of randomly
generated vectors) between the output of the ODIN II sim-
ulator, and Modelsim simulation of the same code and vec-
tors. For the other 5 circuits, (raygentop, boundtop, bgm,
mkSMAdapterdB, and mkDelayWorker32B) the variations
were minor.

5.2 Running the Flow

These Verilog circuits were run through the VTR flow
targeting a hypothetical 40 nm FPGA architecture, which
contains soft logic clusters of 10 fracturable LUTs. In this
architecture, each fracturable LUT can operate as either a
single 6-input LUT or two 5-input LUTSs that share all five
inputs, similar to the Virtex 6 FPGA [2]. The delays for
this cluster were scaled from a 45 nm 6-LUT FPGA found
in the iFar repository [12]. The routing architecture consists
of segments of only length 4 wires, with Fc(In) set to 0.15
and Fc(Out) = 0.1 [3]. Its delay model was taken from the
same iFar model used for the soft logic. The memory block
in this architecture is similar to the Altera Stratix IV M144K
memory block [1]. It contains 144K bits, and can act either
as a single-port or dual port RAM. In single-port mode, the
largest data width is 72 bits, and the smallest width is 9
bits; the maximum depth is 16K words. In dual-port mode
the maximum width is 36 bits, and the maximum depth is
16K words. The memory speed was based on the speed of
the Stratix IV M144K block. Each multiplier in the archi-
tecture can operate as one 36x36 or two independent 18x18
multipliers, which in turn can operate as two independent
9x9 multipliers. The multiplier delays were set to be the
same as the Stratix IV DSP block.

The circuits are run through the flow in the following way:
first through Odin II and ABC to create the pre-packing
netlist. Odin II is set to target the specific physical memory
and multipliers described above through a related descrip-
tion in the architecture file. Then the minimum channel
width (the number of tracks per channel, as is often mea-
sured) is determined by running VPR’s packing, placement
and routing in non-timing-driven mode. (Here, as usual, the

82

Table 2: Data from Basic Flow Run

router is run repeatedly to find the smallest number of tracks
per channel, W, which will succeed in routing.) Finally, the
VPR flow is again invoked, using timing-driven routing with
the channel width set to 1.3 times W. The latter measure-
ment is used to determine the final critical-path delay of
the circuit. The results of this flow are shown in Table 2.
The first column lists the circuits in the benchmark. In the
VTR flow, the VPR stage dominates the runtime so the next
four columns that follow are the packing, placement, mini-
mum channel width routing, and final routing runtimes for
VPR in seconds. The last two columns show the key circuit
statistics - minimum channel width and critical path delay.

One aspect of these results stand out - the runtime for
packing, compared to placement and routing, is very large.
This is caused by the part of the packing algorithm that in-
vokes a router to determine if a specific primitive can be con-
nected correctly within the logic block. This feature allows
the packer to handle any arbitrary internal routing structure
within the logic block, which we feel is important. However,
we plan to reduce this runtime when specific flexibile struc-
tures, such as crossbars, are present. This is left as future
work.

To illustrate the new timing-driven nature of the VPR
portion of the flow, we measure the effect of each stage’s
timing-driven algorithm for packing, placement and rout-
ing. To do so, each circuit was run through VPR, holding
its channel width at 1.3 * min W given in Table 2 (as is fairly
common to create a low-stress routing [3]), but turning the
timing-driven setting for each of placement and routing on
and off. The results are shown in Table 3. The first column
lists the circuit name followed by the critical path delays
for each run normalized to the default, fully timing-driven
run. The stages of the flow that have timing turned off are
labelled after the NT prefix. For example, the column la-
belling NT PackPlace is a flow with non-timing-driven pack-
ing and placement, but with timing-driven routing.

The last row shows the geometric mean of these ratios. We
see that turning off timing-driven placement results in the
least impact on critical path delay with only a 3% increase
on average. We also see that the stages are not independent:
turning off timing for all stages results in a 22% increase to
critical path delay on average but multiplying the individual

Circuit Full NT NT NT NT NT
Timing Route Place Pack PackPlace
bgm 1.00 1.06 1.01 1.14 1.24 1.30
blob_merge 1.00 1.02 1.08 1.14 1.18 1.20
boundtop 1.00 1.04 1.05 1.15 1.34 1.44
ch_intrinsics 1.00 1.02 0.96 1.02 1.09 1.17
diffeql 1.00 1.06 1.00 1.04 1.04 1.07
diffeq2 1.00 1.05 1.01 1.03 1.00 1.06
LUSPEEng 1.00 1.02 1.01 1.08 1.10 1.13
LU32PEEng 1.00 1.03 1.05 1.09 1.14 1.17
mcml 1.00 1.01 1.02 1.13 1.20 1.23
mkDelayWorker32B 1.00 1.04 1.06 1.16 1.28 1.36
mkPktMerge 1.00 1.00 1.04 1.06 1.02 1.02
mkSMAdapter4B 1.00 1.07 1.02 1.03 1.03 1.12
or1200 1.00 1.01 1.02 1.17 1.20 1.22
raygentop 1.00 1.06 1.00 1.28 1.30 1.30
sha 1.00 1.07 1.03 1.16 1.18 1.22
stereovisionQ 1.00 1.06 1.03 1.15 1.25 1.33
stereovisionl 1.00 1.00 1.06 1.32 1.42 1.43
stereovision2 1.00 1.02 1.15 1.05 1.26 1.29
geomean 1.00 1.04 1.03 1.12 1.17 1.22

Table 3: Impact of timing-driven algorithms in dif-
ferent stages of CAD flow

delay increases from different stages results in a lower gain
of 20%.

6. EXAMPLE: FLOATING-POINT BLOCKS

In this section we illustrate the power of the VTR frame-
work showing how a hard block modelled in a previous re-
search project (at great effort) can be modelled in the VTR
framework with far less effort. The goal of the previous
project [4] was to improve the computational efficiency of
floating-point-heavy applications on FPGAs. It explored the
architecture of a floating-point hard block, and showed that,
for certain floating-point intensive applications, an FPGA
employing the new block consumed a factor of 25 times less
area and the speed of the resulting circuit increased by four
times. In the following we describe the floating-point block,
and show how it can be captured in the new complex block
architecture description language. We then run the VIR
flow and compare the results with the previous work, and
comment on the relative effort required.

6.1 Architecture of Floating-Point Block

Figure 7 illustrates the generic architecture of the floating-
point block that was explored in [4] that we will model in
the VTR flow. The block consists of three basic elements:
floating-point multipliers (FMs), floating-point adders (FAs)
and wordblocks (WBs). The wordblocks are used for fixed-
point arithmetic and logical operations. The FAs, FMs and
WaBs are connected in series using bus-based routing, which
is provided by the multiplexers shown in the figure.

For the purpose of architecture exploration, several pa-
rameters are used to explore the architecture of the block,
including bus width (N), number of input buses (M), number
of output buses (R), number of feedback paths (F), number
of blocks (D) and number of FA and FM (P). The work in
[6] determined good choices for these parameters.

6.2 Architecture Description in VTR

The description of the block shown in Figure 7 was ren-
dered in the new complex block architecture description lan-
guage described in [13]. As described in Section 2, the first
part of the architecture file gives the atomic primitive con-
structs that must be instantiated in the Verilog input code,

83

Control signals input status flags output

T T T T T

wes,| |FM2, | [FA2,| [wB4,
u4 us ue uz |-

[T T ety

T

WB(D-
P

2P},
U{D-1}

Output
Bus (R)
N>

Input
Bus
(M)

Bus Width (N)

Feedback
lRegister (F)’

XNW
joeqpas,y

n

2

]

P

Note* WB : Word Block
FM : Floating point
multiplier
FA : Floating point adder

Figure 7: Architecture of the floating-point block

1 <model name="fpu_mul”>
2 <input_ports>

3 <port name ="clk” is_clock="1"/>
4 <port name="opa”/>

5 <port name="opb”/>

6 </input_ports>

7 <output_ports>

8 <port name="out”/>

9 <port name="control”/>
10 </output_ports>
11 </model>

13 <model name="fpu_add”>
14 <input_ports>

15 <port name ="clk” is_clock="1"/>
16 <port name="opa”/>
17 <port name="opb”/>

18 </input_ports>

19 <output_ports>

20 <port name="out”/>

21 <port name="control”/>
22 < /output_ports>

23 </model>

Figure 8: Architecture Description of Floating
Point Block (“fpu_mul” is the primitive of FM and
“fpu_add” is the primitive of FA)

and will appear in the netlist that are sent to the packing
stage, and is shown in Figure 8. Here the model “fpu_mul”
describes the primitive of the floating point multiplier, FM,
and “fpu_add” describes the primitive of the adder, FA. In
both primitives, the port clk provides the clock signal to
the registers in the block, and ports opa and opb are two
floating-point inputs of the primitives. The port out is the
floating-point addition or multiplication output. The port
control emits status flags that indicate such things as the
result is not a number value and overflow.

The FPU block contains the primitives illustrated in Fig-
ure 7, and the synthesis flow produces a netlist containing
those primitives. The packing step packs those primitives
into the physical block. For this to work, there must be
a clear description of the contents and interconnection be-
tween the primitives in the architecture description file. Fig-
ure 9 gives an excerpt of the architecture description file that
corresponds to the FAs, FMs and WBs and some of their in-
terconnect. The physical block name of the floating-point
block is “block_ FPU” and is given in line 1. The “FPU” on
line 12 is one of the configuration modes of this block, as dif-
ferent modes can be set for the overall “block_FPU”. The bus
width for all the floating point quantities is 32 bits (N=32)
as shown by the num_pins construct on lines 2 to 9. There
are four input busses (M=/ from inl to in4) and three out-
put busses (R=3 from outl to out3). There are a total of

eight primitives (D=§), including two floating-point adders
and two floating-point multipliers (P=2). The description of
the first FM (FM1) is from line 25 to 36 and the description
of first FA (FA1) is from line 37 to 48. Within those descrip-
tions are the netlist designations of the primitives that must
appear in the pre-packing BLIF netlist - for example “.sub-
ckt fpu_mul” is required to indicate an FM primitive. The
<T_setup> tag (on line 31) provides the setup time of the in-
put port of the primitive block and <T_clock_to_Q> tag (on
line 33) is the output port delay time. The maximum delay
of the block is specified by <max_internal delay value> tag
(on line 35), as described in Section 4.2. The four wordblocks
are simply registers as described from line 18 to 24, which
contain 32 registers in each wordblock. As such, these regis-
ters appear in the pre-packing netlist as the standard BLIF
primitive “.latch.” There are three feedback registers named
“feedback regl”, “feedback_reg2” and “feedback_reg3”. The
description of “feedback _regl” is from line 51 to 57.

After providing the definitions of the atomic primitive
constructs, the interconnection of FAs, FMs and WBs are
described in the interconnect section beginning on line 60.
Line 62 defines the direct connection of internal control sig-
nals. Line 69 describes a single bit of the input multiplexer
of “WB1”, which allows selection of the input from the four
block inputs and the outputs of feedback registers.

6.3 Experiment

In this section we describe an experiment that replicates
a prior research effort that explored the architecture of the
floating point block [6, 7]. The goal of that experiment was
to measure the area and delay impact of the presence (vs.
absence) of the floating point block. We employ the same
set of eight circuits, shown in Table 4, that were used in
the prior research. The table gives the number of FA and
FM instances used in each circuit, and the general nature of
the circuit. Note that all of these circuits can be completely
expressed with just these primitives, so in the case of a FPU-
based FPGA, there is almost no need of soft logic blocks to
implement these circuits.

Circuit | # of FA | # of FM Nature

bfly 4 4 DSP kernel
dscg 2 4 DSP kernel

fir 3 4 DSP kernel
mm3 2 3 Linear Algebra kernel
ode 3 2 Linear Algebra kernel
bgm 9 11 Finance application
syn2 5 4 Synthetic circuit
syn7 25 25 Synthetic circuit

Table 4: Floating-point benchmark circuits

In the case that the floating point block is not present, the
floating point operations are implemented in the soft logic
of the FPGA; in this experiment and the prior research, the
soft-logic implementation does not make use of hard integer
multipliers. For both FPGAs (with and without the floating
point unit), the soft logic CLB consists of four 4-input LUTs,
similar to the Virtex-II. The routing architecture used for
both FPGAs was Fc(In) = 0.15, Fc(Out) = 0.25, and all
length four wire segments. The number of tracks per chan-
nel, W, was set to be 72.

We used a 130nm CMOS process technology for estimat-
ing the area and timing of both the soft logic CLB and the
floating-point block. The area and delay of the soft logic
CLB are based on the iFAR architecture file FPGA Repos-

84

1 <pb_type name="block FPU” height="8">
2 <input name="in1” num_pins="32"/>

3 <input name="in2" num_pins="32"/>

4 <input name="in3" num_pins="32"/>

5 <input name="in4” num_pins="32"/>

6 <output name="outl” num_pins="32"/>

7 <output name="out2” num_pins="32"/>

8 <output name="out3” num_pins="32"/>

9 <output name="control” num_pins="32"/>

10 <clock name="clk” num_pins="1"/>

12 <mode name="FPU”>

13
14
15
16
17
18

19
20
21
22
23

24
25

26
27
28
29
30
31
32
33

34

35
36
37

38
39
40
41
42
43
44
45

46

47
48
49
50
51

52
53
54
55

56

57
58
59
60
61

62
63
64

65
66
67
68
69

70
71

<pb_type name="FPU_slice” num_pb="1">
<input name="in1” num_pins="32"/>

<input name="in2” num_pins="32"/>

<pb_type name="WB1” blif model=".latch” num_pb="32"

class="flipflop”>

<input name="D” num_pins="1" port_class="D"/>
<output name="Q” num_pins="1" port_class="Q"/>
<clock name="clk” num_pins="1" port_class="clock”/>
<T_setup value="3.88e—10" port="WB1.D” clock="clk”/>
<T_clock_to_Q max="1.557e—10" port="WB1.Q”
clock="clk”/>
</pb_type>
<pb_type name="FM1” blif model=".subckt fpu_mul”
num_pb="1">
<clock name="clk” num_pins="1"/>
<input name="opa” num_pins="32"/>
<input name="opb” num_pins="32"/>
<output name="out” num_pins="32"/>
<output name="control” num_pins="8"/>
<T_setup value="3.88e¢—10" port="FM1l.opa” clock="clk”/>
<T_setup value="3.88e¢—10" port="FM1.opb” clock="clk”/>
<T_clock_to_Q max="1.557¢—10” port="FM1.out”
clock="clk”/>
<T_clock_to_Q max="1.557e—10" port="FM1I1.control”
clock="clk”/>
<max_internal_delay value="2.99e—9"/>
</pb_type>
<pb_type name="FA1” blif model=".subckt fpu_add”
num_pb="1">
<clock name="clk” num_pins="1"/>
<input name="opa” num_pins="32"/>
<input name="opb” num_pins="32"/>
<output name="out” num_pins="32"/>
<output name="control” num_pins="8"/>
<T_setup value="3.88e¢—10" port="FAl.opa” clock="clk”/>
<T_setup value="3.88e¢—10" port="FAl.opb” clock="clk”/>
<T_clock_to_Q max="1.557e—10” port="FAl.out”
clock="clk”/>
<T_clock_to_Q max="1.557e—10" port="FAl.control”
clock="clk”/>
<max_internal_delay value="2.99¢—9”/>
</pb_type>
<pb_type name="feedback_regl” blif_model=".latch”

num_pb="32" class="flipflop”>
<input name="D” num_pins="1" port_class="D"/>
<output name="Q” num_pins="1" port_class="Q"/>
<clock name="clk” num_pins="1" port_class="clock”/>
<T_setup value="3.88e—10” port="feedback _regl.D”
clock="clk”/>
<T_clock_to_Q max="1.557e—10" port="feedback regl.Q”
clock="clk”/>
</pb_type>
<interconnect>
<!——Connection sequence: WB1—>FM1—>FA1—>

WB2—>WB3—>FM2—>FA2—>WDB4——>
<direct name="direct1” input="FM1.control[7:0]”
output="FPU_slice.control[7:0]"> </direct>
<direct name="direct2” input="FM2.control[7:0]”

output="FPU_slice.control[15:8]">< /direct>

<A HAAAH WBI ########——>

<!—— Input Muzx WBI1 inl ——>

<mux name="WB1_inl_mux1” input="FPU_slice.in1[0:0]
FPU_slice.in2[0:0] FPU_slice.in3[0:0] FPU_slice.in4[0:0]
feedback reg1[0:0].Q feedback_reg2[0:0].Q

feedback reg3[0:0].Q” output ="WB1[0:0].D”/>

Figure 9: Code for Architecture Description

itory [12]. The area included the routing resources at a
channel width equal to 72 tracks, and the area of the CLB
tile, including programmable routing was determined to be
5679 um?.

The area and delay of the floating-point block (with pa-
rameters N=32, M=4, R=3, F=3, D=8 and P=2) was esti-
mated, as in [7] by synthesizing the floating-point block into
standard cells from UMC in their 130nm CMOS process,
using the Synopsys Design Compiler. The area of the FPU
block, including programmable routing was determined to
be 498,847 um?. Using these two values, we calculate that
one FPU tile requires the same area as 88 CLB tiles. In the
discussion that follows, area is expressed in equivalent CLB
area units.

The total area consumed by a circuit is the sum of the
area taken by the floating-point block (in equivalent CLBs)
plus the number of soft logic CLBs used. The maximum
delay of the floating-point block is 2.99ns which is specified
in <max_internal_delay> in Figure 9.

All eight of the circuits described in Table 4 were imple-
mented in two hypothetical FPGAs: one with a hard float-
ing point hard block, and one without - the latter containing
only soft logic CLBs as described above. We compared the
speed and area consumed in both cases, and for the purposes
of this paper, compared those results with the measurements
in [4].

The speed comparison is shown in Table 5. The average
speedup of the FPGAs with a hard floating-point block is
12.6 times. This number differs significantly from the av-
erage speed ratio measured in the previous work which was
only 4 times [4]. In that work, the soft logic FPGA was
a Xilinx Virtex-II device which employs fixed carry chains
in the adders and the adders contained in the multipliers.
Those dedicated carry chains are significantly faster than
carry logic as implemented in the CLBs in this experiment -
directly in the LUTSs, and using the regular intra-CLB rout-
ing to connect. This speed difference shows up particularly
in the soft multiplier implementation; the speed of the soft
multipliers in most of the circuits alone was 35ns, accounting
for the difference. This result clearly shows that our future
work must include the modelling of high-speed carry logic
to support these kinds of experiments.

Circuit Soft-Only Hard-Logic Ratio
| Critical Path (ns) | Critical Path (ns) |
bfly 36.1 2.99 12.1
bgm 35.7 2.99 11.9
dscg 36.6 2.99 12.3
fir 36.0 2.99 12.0
mma3 35.3 2.99 11.8
ode 34.5 2.99 11.6
syn2 37.6 2.99 12.6
syn7 50.3 2.99 16.9
Geomean 12.6

Table 5: Delay Comparison of Hard v. Soft Logic

Table 6 shows the area comparison between the pure soft
logic and FPU hard block FPGA, where area is measured in
equivalent CLBs. On average, the the circuits implemented
in the FPGA with the hard FPU block is 18 times smaller
than the FPGA with only soft logic. This result is in the
same ballpark as the result (25x) in [4].

6.4 Comparison of Effort

The prior research that explored the floating point block
studied the optimization of its internal routing and logic

85

Circuit Soft-Only Hard-Logic Ratio
Area (CLBs) | Area (Equiv CLBs)
bfly 6405 264 24.3
bgm 16908 792 21.3
dscg 6371 440 14.5
fir 6215 352 17.7
mm3 4556 264 17.3
ode 3609 480 7.5
syn2 6553 264 24.8
syn7 39240 1584 24.8
Geomean 17.9

Table 6: Area Comparison of Hard v. Soft Logic

architecture [6, 7] using a customized version of the VPR
flow that was based on VPR 4.2, called VPH [5]. The de-
velopment time of the VPH tool was roughly one year; the
modelling using the new VTR flow took approximately 2
man-weeks of time, a significant reduction in effort. Overall,
this experiment shows that VTR framework provides a plat-
form to evaluate new complex blocks such as the floating-
point block, and that it is a more efficient way to enable this
kind of experiment. It is also useful to note that the prior
flow used a commercial synthesis tool from Synplicity as the
front end, which can only target existing FPGA architec-
tures. This prevents the exploration of FPGA architecture
parameters - for example changing the size of the LUT in the
FPGA. The new VTR flow permits the changing of many
more parameters in the FPGA architecture from synthesis
through placement and routing.

7. RELEASE

The release of this software and benchmarks can be found
at the following location:

http://www.eecg.utoronto.ca/vtr/
It contains:

1. The source code for the specific versions of ODIN II,
ABC, and VPR that are being released, which are com-
patible with the benchmarks being released.

2. A few sample architecture files including various mem-
ory architectures with different combinations of size
and flexibility, a suite of different fracturable LUT
architectures, and a few heterogeneous architectures
with realistic timing numbers.

3. The 19 benchmark circuits, which are compatible with
the release of the software.

4. Example scripts for running experiments as well as re-
gression tests for the software. These tests come with
golden results and a range of error bands.

5. A web page with documentation on how to run the var-
ious versions of the flow on the released benchmarks.

6. An issue-tracking site that users can report software
issues on the flow.

8. FUTURE WORK

There is a great deal of future work to be done on VTR
system to include all of the innovations already done, and
some new things in the future. These include:

1. Multi-clock timing analysis and optimization.

2. Cross-block Carry-Chains. VPR, with its new more
complex logic blocks, can model carry chains (which

provided augmented arithmetic speed and density) within

a single complex logic block. However, to model the
standard practice of building inter-block carry chains,
the placement algorithm has to be capable of aligning
(typically vertically) the blocks with connecting carry
logic. In addition, the front-end synthesis flow must
correctly capture and emit carry chains in the correct
circumstances.

3. Clock tree architecture. There should be a separately
described set of clock tree architectures that can be ex-
plored, and used for more realistic modelling of clocks.

4. Verilog language coverage. parameters. One of the
most laborious conversion issues for benchmark cir-
cuits is the lack of parameters in ODIN II’s coverage
of the Verilog language.

5. Libraries. To help acquire more circuits, we need to
have Verilog libraries of standard cores, such as di-
viders, square root units, and floating point arithmetic.

6. Bus-based routing. To help connect FPGAs to data-
oriented blocks, it would be good to integrate the rout-
ing of multi-wire busses into the router.

7. Power/Energy modelling. The back-end flow, VPR,
needs to model the energy consumption of all archi-
tectures, similar to [18]. This will necessitate a way to
properly model the new, more complex logic blocks.

8. Transistor-level modelling. The most accurate way to
model many aspects of the FPGA architecture is to
have a transistor-level model of the logic and the rout-
ing. To be sensible, these models must have proper
electrical design, including sizing.

9. White and Black box modelling in ABC. To enhance
the quality of logic synthesis, ODIN II will need to
transmit information, contained in the architecture file,
to ABC, making use of its white and black box syn-
thesis capabilities.

9. CONCLUSIONS

This paper has described new features and benchmarks of
the Verilog-To-Routing (VTR) flow, a publicly available syn-
thesis flow that permits exploration of hypothetical FPGA
architectures and new CAD algorithms. The release is now
fully timing-driven, and comes with a set of larger bench-
marks. We have shown how it can be used to model new
FPGA logic structures far more easily than previous tools.
This is a ongoing, world-wide collaboration which has much
more work to do to make the tool suite more viable.

10. REFERENCES

[1] Stratix IV Device Family Overview.

http://www.altera.com/literature/hb/stratix-iv/stx4_siv51001.pdf,

2009.

[2] Xilinx Virtex-6 Family Overview.

http://www.xilinx.com/support/documentation/data_sheets/ds150.pdf,

2009.

[3] V. Betz, J. Rose, and A. Marquardt. Architecture and CAD
for Deep-Submicron FPGAs. Kluwer Academic Publishers,
Norwell, Massachusetts, 1999.

4]

(5]

6]

(7]

8]

9]

(10]

(11]

(12]

(13]

(14]

(15]

[16]

(17]

(18]

(19]

(20]

C.H. Ho, C.W. Yu, PH.W. Leong, W. Luk and S.J.E. Wilton.
Floating-Point FPGA: Architecture and Modeling. IEEE
Trans. on VLSI Systems, 17(2):1709-1718, Dec 2009.

C.W. Yu. A Tool for Exploring Hybrid FPGAs. In Proc.
International Conference on Field Programmable Logic and
Applications (FPL), PhD Forum, pages 509-510, 2007.

C.W. Yu, A M. Smith, W. Luk, P.H.-W. Leong, S.J.E. Wilton.
Optimizing Floating Point Units in Hybrid FPGAs. IEEE
Trans. on VLSI Systems, to appear.

C.W. Yu, W. Luk, S.J.E. Wilton, P.H.W. Leong. Routing
Optimization for Hybrid FPGAs. In Proc. International
Conference on Field Programmable Technology (FPT), pages
419-422, 2009.

G.L. Zhang and P.H.W. Leong and C.H. Ho and K.H. Tsoi and
C.C.C. Cheung, D. Lee, R.C.C. Cheung and W. Luk.
Reconfigurable Acceleration for Monte Carlo Based Financial
Simulation. In Proc. International Conference on Field
Programmable Technology (FPT), pages 215-222, 2005.

W. K. C. Ho and S. J. E. Wilton. Logical-to-physical memory
mapping for fpgas with dual-port embedded arrays. In
Proceedings of the 9th International Workshop on
Field-Programmable Logic and Applications, pages 111-123,
London, UK, 1999. Springer-Verlag.

P. Jamieson, K. Kent, F. Gharibian, and L. Shannon. Odin
II-An Open-Source Verilog HDL Synthesis Tool for CAD
Research. In IEEE Annual Int’l Symp. on Field-Programmable
Custom Computing Machines, pages 149-156. IEEE, 2010.

S. Jang, B. Chan, K. Chung, and A. Mishchenko. WireMap:
FPGA technology mapping for improved routability and
enhanced LUT merging. ACM Trans. on Reconfigurable
Technology and Systems, 2(2):1-24, 2009.

I. Kuon and J. Rose. Automated transistor sizing for fpga
architecture exploration. In Proceedings of the 45th annual
Design Automation Conference, DAC ’08, pages 792-795, New
York, NY, USA, 2008. ACM.

J. Luu, J. Anderson, and J. Rose. Architecture description and
packing for logic blocks with hierarchy, modes and complex
interconnect. In Proceedings of the 19th ACM/SIGDA
international symposium on Field programmable gate arrays,
FPGA ’'11, pages 227-236, New York, NY, USA, 2011. ACM.
J. Luu, K. Redmond, W. Lo, P. Chow, L. Lilge, and J. Rose.
Fpga-based monte carlo computation of light absorption for
photodynamic cancer therapy. Field-Programmable Custom
Computing Machines, Annual IEEE Symp. on, 0:157-164,
2009.

A. Marquardt, V. Betz, and J. Rose. Using Cluster-Based Logic
Blocks and Timing-Driven Packing to Improve FPGA Speed
and Density. ACM Int’l Symp. on FPGAs, pages 37-46, 1999.
A. Mishchenko et al. ABC: A System for Sequential Synthesis
and Verification. http://www.eecs.berkeley.edu/alanmi/abc,
2009.

P. O’Brien, A. Furrow, B. Libby, and K. Kent. A simple
tractable approach to design tool verification through
simulation and statistics. In to appear in IEEE Conference on
Field Programmable Technologies, FPT ’11. IEEE, 2011.

K. K. W. Poon, A. Yan, and S. J. E. Wilton. A flexible power
model for fpgas. In Proceedings of the Reconfigurable
Computing Is Going Mainstream, 12th International
Conference on Field-Programmable Logic and Applications,
FPL °02, pages 312-321, London, UK, UK, 2002.
Springer-Verlag.

S. Srinath and K. Compton. Automatic generation of
high-performance multipliers for fpgas with asymmetric
multiplier blocks. In Proceedings of the 18th annual
ACM/SIGDA international symposium on Field
programmable gate arrays, FPGA ’10, pages 51-58, New York,
NY, USA, 2010. ACM.

W. Zhang, V. Betz, and J. Rose. Portable and scalable
fpga-based acceleration of a direct linear system solver. In
International Conference on Field-Programmable Technology,
FPT 2008., pages 17 —24, dec. 2008.

http://www.altera.com/literature/hb/stratix-iv/stx4_siv51001.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds150.pdf
http://www.eecs.berkeley.edu/alanmi/abc

	Introduction
	Odin II: Elaboration
	Compilation
	Multipliers
	Memories
	Generic Hard Blocks

	Pre-processor
	Verification

	ABC: Logic Synthesis
	VPR: Physical Synthesis
	Timing-Driven Packing
	Timing Specification

	Benchmarks and Flow Run
	The Circuits
	Running the Flow

	Example: Floating-Point Blocks
	Architecture of Floating-Point Block
	Architecture Description in VTR
	Experiment
	Comparison of Effort

	Release
	Future Work
	Conclusions
	References

