THE EFFECT OF LOGIC BLOCK GRANULARITY ON DEEP-SUBMICRON FPGA PERFORMANCE AND DENSITY

by

Elias Ahmed

A thesis submitted in conformity with the requirements for the degree of Master of Applied Science Graduate Department of Electrical and Computer Engineering University of Toronto

Copyright © 2001 by Elias Ahmed

Abstract

The Effect of Logic Block Granularity on Deep-Submicron FPGA Performance and Density

Elias Ahmed

Master of Applied Science Graduate Department of Electrical and Computer Engineering University of Toronto

2001

The architecture of an FPGA has a significant effect on area and delay. In deep-submicron designs, the interconnect resistance and capacitance accounts for the majority of the circuit delay. In the first part of this thesis, we perform a detailed study of the FPGA logic block architecture to determine the impact of logic block functionality on performance and density. In particular, in the context of lookup table (LUT), cluster-based island style FPGAs we look at the effect of LUT size and cluster size (number of LUTs per cluster) on the speed and logic density of an FPGA. The second part of this thesis explores the area and delay properties of a hardwired logic block architecture. This involves a new packing algorithm.

Acknowledgements

I would like to thank my supervisor Professor Jonathan Rose for his technical guidance and moral support. Our weekly discussions were always interesting and very educational.

I would also like to thank Vaughn Betz and Alexander Marquardt for all their help with VPR, the CAD flow and SPICE modeling. Thanks to Steve Wilton for his advice concerning the 0.18 μ m SPICE FPGA routing models.

I'd also like to thank Guy Lemieux and all the students in Jonathan's research group, Rob, Andy, Ajay, Paul and William. Thanks to Vincent, Warren, Ted, Scott, Marcus, Brent, Jorge, Humberto, Kostas, Derek and all the rest of the students in the Computer and Electronics Group for making this a wonderful research environment.

Last but not least, I'm grateful to my family for their support and encouragement throughout the years and especially to my late father, Noor, for always believing in me.

Contents

1	Intr	oduction	a	1
	1.1	Motiva	ution	1
	1.2	FPGA	Logic Block Architecture	2
	1.3	Hardw	ired Logic Blocks	4
	1.4	Thesis	Organization	5
2	Bacl	kground	I	7
	2.1	CAD F	Plow	7
		2.1.1	Area Model	10
	2.2	FPGA	Packing Algorithms	11
		2.2.1	RASP	11
		2.2.2	VPACK	12
		2.2.3	Timing-Driven Packing (T-VPACK)	14
	2.3	FPGA	Logic Block Architecture	18
		2.3.1	LUT Size	18
		2.3.2	Cluster Size	20

	2.4	Summ	ary	20
3	FPG	A Logi	c Block Architecture	21
	3.1	FPGA	Architecture Modeling	22
		3.1.1	Logic Circuit Design and Delay Model	22
		3.1.2	Routing Architecture	24
	3.2	Experi	mental Results	25
		3.2.1	Cluster Inputs Required vs. LUT and Cluster Size	25
		3.2.2	Area as a Function of N and K	27
		3.2.3	Performance as a Function of N and K	33
		3.2.4	Area-Delay Product	42
		3.2.5	Summary	42
4	Har	dwired	Logic Blocks	45
	4.1	Hardw	ired Architecture	46
		4.1.1	Cluster Inputs (I)	46
		4.1.2	Tapping Buffers	47
		4.1.3	Logical Equivalence of Cluster Outputs	49
	4.2	HLB F	Packing	50
		4.2.1	HLB Packing Algorithm	52
		4.2.2	HLB Packing with Tapping Buffers	54
	4.3	Experi	mental Results	55
		4.3.1	Area Results	56
		4.3.2	Delay Results	59
	4.4	Area-I	Delay Results	63
	4.5	Summ	ary	64
5	Con	clusions	s and Future Work	65
	5.1	Summ	ary and Contributions	65

	5.2 Future Work	66
A	Total Area	67
B	Intra-Cluster (Logic) Area	73
С	Inter-Cluster (Routing) Area	79
D	FPGA Channel Width	85
E	Total Critical Path Delay	91
F	Intra-Cluster (Logic) Delay	97
G	Inter-Cluster (Routing) Delay	103
H	Number of BLE Levels on Critical Path	109
Ι	Number of Cluster Levels on Critical Path	115
Bi	bliography	115

List of Tables

3.1	Logic Cluster Delays for 4-input LUT Using 0.18 μ m CMOS process	23
3.2	LUT Delays Using 0.18 μ m CMOS process	24
3.3	MCNC Benchmark Circuit Descriptions	26
3.4	Channel Width vs. LUT and Cluster Size (1 to 5)	35
3.5	Channel Width vs. LUT and Cluster Size (6 to 10)	36
3.6	Critical Path Delay Comparison for K=4	38
3.7	Summary of Best Area, Delay, and Area-Delay Results	44
4.1	Percentage of Logic Block Area that is Occupied by Output Routing Crossbar .	50
4.2	HLB Cluster Utilization (with and without tapping buffers)	55
4.3	Number of Clusters with and without Tapping Buffers	55
4.4	Comparison of number of 4-LUT to 7-LUT blocks after technology mapping .	60
4.5	Area-Delay Product Comparison Between Cascaded 4-LUTs and Non-hardwired	
	Architectures	63
A.1	Total Area ($\times 10^6$) in Min. Width Trans. Area (Cluster Size = 1)	67
1 2	Total Area (1106) in Min. Width Trong, Area (Cluster Size - 2)	60
A.Z	Iotal Area $(\times 10^{-})$ in Min. Width Irans. Area (Cluster Size = 2)	08

A.3	Total Area ($\times 10^6$) in Min. Width Trans. Area (Cluster Size = 3)	68
A.4	Total Area ($\times 10^6$) in Min. Width Trans. Area (Cluster Size = 4)	69
A.5	Total Area ($\times 10^6$) in Min. Width Trans. Area (Cluster Size = 5)	69
A.6	Total Area ($\times 10^6$) in Min. Width Trans. Area (Cluster Size = 6)	70
A.7	Total Area ($\times 10^6$) in Min. Width Trans. Area (Cluster Size = 7)	70
A.8	Total Area ($\times 10^6$) in Min. Width Trans. Area (Cluster Size = 8)	71
A.9	Total Area ($\times 10^6$) in Min. Width Trans. Area (Cluster Size = 9)	71
A.10	Total Area ($\times 10^6$) in Min. Width Trans. Area (Cluster Size = 10)	72
B.1	Intra-Cluster Area (×10 ⁶) in Min. Width Trans. Area (Cluster Size = 1)	73
B.2	Intra-Cluster Area ($\times 10^6$) in Min. Width Trans. Area (Cluster Size = 2)	74
B.3	Intra-Cluster Area ($\times 10^6$) in Min. Width Trans. Area (Cluster Size = 3)	74
B.4	Intra-Cluster Area ($\times 10^6$) in Min. Width Trans. Area (Cluster Size = 4)	75
B.5	Intra-Cluster Area ($\times 10^6$) in Min. Width Trans. Area (Cluster Size = 5)	75
B.6	Intra-Cluster Area (×10 ⁶) in Min. Width Trans. Area (Cluster Size = 6)	76
B.7	Intra-Cluster Area (×10 ⁶) in Min. Width Trans. Area (Cluster Size = 7)	76
B.8	Intra-Cluster Area ($\times 10^6$) in Min. Width Trans. Area (Cluster Size = 8)	77
B.9	Intra-Cluster Area ($\times 10^6$) in Min. Width Trans. Area (Cluster Size = 9)	77
B.10	Intra-Cluster Area (×10 ⁶) in Min. Width Trans. Area (Cluster Size = 10)	78
C.1	Inter-Cluster Area ($\times 10^6$) in Min. Width Trans. Area (Cluster Size = 1)	79
C.2	Inter-Cluster Area ($\times 10^6$) in Min. Width Trans. Area (Cluster Size = 2)	80
C.3	Inter-Cluster Area ($\times 10^6$) in Min. Width Trans. Area (Cluster Size = 3)	80
C.4	Inter-Cluster Area ($\times 10^6$) in Min. Width Trans. Area (Cluster Size = 4)	81
C.5	Inter-Cluster Area ($\times 10^6$) in Min. Width Trans. Area (Cluster Size = 5)	81
C.6	Inter-Cluster Area ($\times 10^6$) in Min. Width Trans. Area (Cluster Size = 6)	82
C.7	Inter-Cluster Area ($\times 10^6$) in Min. Width Trans. Area (Cluster Size = 7)	82
C.8	Inter-Cluster Area ($\times 10^6$) in Min. Width Trans. Area (Cluster Size = 8)	83

C.9	Inter-Cluster Area ($\times 10^6$) in Min. Width Trans. Area (Cluster Size = 9)	83
C.10	Inter-Cluster Area (×10 ⁶) in Min. Width Trans. Area (Cluster Size = 10)	84
D.1	Channel Width (Cluster Size = 1)	85
D.2	Channel Width (Cluster Size = 2)	86
D.3	Channel Width (Cluster Size = 3)	86
D.4	Channel Width (Cluster Size = 4)	87
D.5	Channel Width (Cluster Size = 5)	87
D.6	Channel Width (Cluster Size = 6)	88
D.7	Channel Width (Cluster Size = 7)	88
D.8	Channel Width (Cluster Size = 8)	89
D.9	Channel Width (Cluster Size = 9)	89
D.10	Channel Width (Cluster Size = 10)	90
E.1	Total Delay in nano-seconds (Cluster Size = 1)	91
E.2	Total Delay in nano-seconds (Cluster Size = 2)	92
E.3	Total Delay in nano-seconds (Cluster Size = 3)	92
E.4	Total Delay in nano-seconds (Cluster Size = 4)	93
E.5	Total Delay in nano-seconds (Cluster Size = 5)	93
E.6	Total Delay in nano-seconds (Cluster Size = 6)	94
E.7	Total Delay in nano-seconds (Cluster Size = 7)	94
E.8	Total Delay in nano-seconds (Cluster Size = 8)	95
E.9	Total Delay in nano-seconds (Cluster Size = 9)	95
E.10	Total Delay in nano-seconds (Cluster Size = 10)	96
F.1	Intra-Cluster Delay in nano-seconds (Cluster Size = 1)	97
F.2	Intra-Cluster Delay in nano-seconds (Cluster Size = 2)	98
F.3	Intra-Cluster Delay in nano-seconds (Cluster Size = 3)	98
F.4	Intra-Cluster Delay in nano-seconds (Cluster Size = 4)	99

F.5	Intra-Cluster Delay in nano-seconds (Cluster Size = 5) $\dots \dots 99$
F.6	Intra-Cluster Delay in nano-seconds (Cluster Size = 6)
F.7	Intra-Cluster Delay in nano-seconds (Cluster Size = 7)
F.8	Intra-Cluster Delay in nano-seconds (Cluster Size = 8)
F.9	Intra-Cluster Delay in nano-seconds (Cluster Size = 9)
F.10	Intra-Cluster Delay in nano-seconds (Cluster Size = 10)
G.1	Inter-Cluster Delay in nano-seconds (Cluster Size = 1)
G.2	Inter-Cluster Delay in nano-seconds (Cluster Size = 2)
G.3	Inter-Cluster Delay in nano-seconds (Cluster Size = 3)
G.4	Inter-Cluster Delay in nano-seconds (Cluster Size = 4)
G.5	Inter-Cluster Delay in nano-seconds (Cluster Size = 5)
G.6	Inter-Cluster Delay in nano-seconds (Cluster Size = 6)
G.7	Inter-Cluster Delay in nano-seconds (Cluster Size = 7)
G.8	Inter-Cluster Delay in nano-seconds (Cluster Size = 8)
G.9	Inter-Cluster Delay in nano-seconds (Cluster Size = 9)
G.10	Inter-Cluster Delay in nano-seconds (Cluster Size = 10)
H.1	Number of BLEs on Critical Path (Cluster Size = 1)
H.2	Number of BLEs on Critical Path (Cluster Size = 2)
H.3	Number of BLEs on Critical Path (Cluster Size = 3)
H.4	Number of BLEs on Critical Path (Cluster Size = 4)
H.5	Number of BLEs on Critical Path (Cluster Size = 5)
H.6	Number of BLEs on Critical Path (Cluster Size = 6)
H.7	Number of BLEs on Critical Path (Cluster Size = 7)
H.8	Number of BLEs on Critical Path (Cluster Size = 8)
H.9	Number of BLEs on Critical Path (Cluster Size = 9)
H.10	Number of BLEs on Critical Path (Cluster Size = 10)

I.1	Number of Clusters on Critical Path (Cluster Size = 1)	•	•	•	• •	•	•	•	•	•	•	• •	. 1	15
I.2	Number of Clusters on Critical Path (Cluster Size = 2)	•	•		• •	•	•			•	•	• •	. 1	16
I.3	Number of Clusters on Critical Path (Cluster Size = 3)	•	•	•	• •	•	•		•	•	•	• •	. 1	16
I.4	Number of Clusters on Critical Path (Cluster Size = 4)	•	•	•	• •	•	•		•	•	•	• •	. 1	17
I.5	Number of Clusters on Critical Path (Cluster Size = 5)	•	•	•	• •	•	•		•	•	•	• •	. 1	17
I.6	Number of Clusters on Critical Path (Cluster Size = 6)	•	•	•	• •	•	•		•	•	•	• •	. 1	18
I.7	Number of Clusters on Critical Path (Cluster Size = 7)	•	•	•	• •	•	•		•	•	•	• •	. 1	18
I.8	Number of Clusters on Critical Path (Cluster Size = 8)	•	•	•	• •	•	•		•	•	•	• •	. 1	19
I.9	Number of Clusters on Critical Path (Cluster Size = 9)	•	•	•	• •	•	•		•	•	•	• •	. 1	19
I.10	Number of Clusters on Critical Path (Cluster Size $= 10$)						•				•	•	. 1	20

List of Figures

1.1	Island-Style FPGA [BRM99]	2
1.2	FPGA Cluster-style Logic Block Contents	3
1.3	Examples of Hardwired Logic Blocks	5
2.1	Grouping of LUTs and Flip-Flops	8
2.2	Architecture Evaluation Flow	9
2.3	Definition of a Minimum-Width Transistor Area [BRM99]	11
2.4	Packing of BLEs to Form Clusters	13
2.5	Original VPACK Algorithm	15
2.6	T-VPACK Algorithm [MBR99]	17
2.7	Structure of (a) Basic Logic Element (BLE) and (b) Logic Cluster [BRM99]	19
3.1	Structure and Speed Paths of a Logic Cluster [BRM99]	23
3.2	Number of Inputs Required for 98% Logic Block Utilization	28
3.3	Total Area for Clusters of Size 1 to 5	29
3.4	Total Area for Clusters of Size 6 to 10	30
3.5	Total Logic Block Cluster Area	31

3.6	Number of Clusters and Cluster Area Versus K (for N=1)	31
3.7	Intra-cluster Multiplexer Area and LUT Size	32
3.8	Routing Area	33
3.9	Number of Clusters and Routing Area Per Cluster Versus K (for N=1) \ldots	34
3.10	Total Delay for Clusters of Size 1 to 10	37
3.11	Total Intra-Cluster Delay for Clusters of Sizes 1 to 10	37
3.12	Number of BLEs on Critical Path and BLE delay vs K (for N=1) \ldots	39
3.13	Total Inter-Cluster Delay for Clusters of Size 1 to 10	39
3.14	Number of Cluster levels on Critical Path	40
3.15	Average BLE Fanout	41
3.16	Area-Delay Product for Clusters of Size 1 to 10	43
3.17	Close-up View of Area-Delay Product for Clusters of Size 1 to 10	43
4.1	Cascaded 4-LUTs	46
4.2	Cluster Description (with HLBs)	47
4.3	HLB Tapping Buffers	48
4.4	Comparison of HLBs with and without tapping buffers	48
4.5	HLB Cluster Contents with Full Routing Crossbar for Output Signals	49
4.6	HLB Packing Flow	51
4.7	Pseudo-code for HLB Timing Driven Packing	53
4.8	HLB with Cascaded 4-LUTs and Tapping Buffer	54
4.9	Total Area Comparisons for Hardwired Arch. vs. Non-Hardwired	56
4.10	Inter-Cluster Area Comparisons for Hardwired Arch. vs. Non-Hardwired	58
4.11	Intra-Cluster Area Comparisons for Hardwired Arch. vs. Non-Hardwired	59
4.12	Total Critical Path Delay Comparisons for Hardwired Arch. vs. Non-Hardwired	61
4.13	Number of BLEs on the Critical Path Comparisons for Hardwired Arch. vs.	
	Non-Hardwired	62

4.14	Number of Clusters on the Critical Path Comparisons for Hardwired Arch. vs.	
	Non-Hardwired	62
5.1	Various HLB architectures	66

CHAPTER 1

Introduction

1.1 Motivation

Field-Programmable Gate Arrays (FPGAs) have experienced tremendous growth in recent years and have become a multi-billion dollar industry. Shrinking device geometries resulting in larger gate capacity have provided for greater functionality. The instant programmability gives systems built with these devices a significant time-to-market advantage. However, this programmability comes at a price, since FPGAs are at least three times slower and demand more than ten times the silicon area when implementing the same function on a chip when compared to Standard Cells or Masked-Programmable Gate Arrays [BFRV92]. This happens because Standard Cells use simple wires to make interconnections between logic gates but in FPGAs, gates are connected with programmable switches. These switches have much larger resistance and capacitance and hence are slower than the wires in full-fabrication chips. Ideally, to improve the performance of an FPGA we would like to use as few switches as possible for any given circuit. In general, the three main factors affecting overall FPGA performance are the architecture of the FPGA, the quality of the CAD tools, and the electrical transistor level design of the FPGA. While this thesis explores all three issues, we focus primarily on the logic block FPGA architecture.

1.2 FPGA Logic Block Architecture

This thesis examines several aspects of FPGA logic block architecture and its impact on area and performance. A generic FPGA consists of numerous programmable logic blocks which have the capability to implement some digital logic functions. In between these logic blocks are programmable routing switches which connect the input and output pins of each logic block. This basic FPGA architecture is illustrated in Figure 1.1 and is known as an "islandstyle" structure in which a symmetric array of logic blocks is surrounded by routing channels (or tracks). The I/O pads are evenly distributed around the perimeter of the FPGA.

Figure 1.1: Island-Style FPGA [BRM99]

Figure 1.2 shows a typical logic cluster, which is a logic block that consists of one or more basic logic elements (BLEs) grouped together. BLEs are often composed of look-up tables (LUTs). The BLEs in the cluster are fully-interconnected meaning that a crossbar allows any BLE output to reach any BLE input and that all inputs to the cluster can reach any of the BLE inputs. The advantage of having a fully-connected internal routing crossbar is that physical routing becomes much easier since the router (the CAD tool which determines the paths of the wires in an FPGA) simply has to connect to any one of the cluster input pins. This added flexibility in the router results in a fewer number of tracks being used. However, there is a cost in terms of multiplexer area and delay to build the full crossbar. For large clusters, this area and delay can be quite significant.

Figure 1.2: FPGA Cluster-style Logic Block Contents

The focus of the first part of this thesis is to determine the effect of the number of inputs to the LUT (K) in a homogeneous architecture that employs all the same size of LUTs, and the number of such LUTs in a cluster (N) on the performance and density of an FPGA. Increasing either LUT size (K) or cluster size (N) increases the functionality of the logic block, which has two positive effects: it decreases the total number of logic blocks needed to implement a given function, and it decreases the number of such blocks on the critical path, typically improving performance. Working against these positive effects is that the size of the logic block increases with both K and N. The size of the LUT is exponential in K [RFLC90] and the size of the cluster is quadratic in N [BR97]. Furthermore, the area devoted to routing outside the block will change as a function of K and N, and this effect (since routing area typically is a large percentage of total area) has a strong effect on the results. The choice of the logic block granularity which produces the best area-delay product lies in between these two extremes. In exploring these trade-offs we seek to answer the following questions:

• For a cluster-based logic block with N LUTs of size K and I inputs to the cluster, what

should the value of I be so that 98 % of the LUTs in the cluster can be fully utilized? Certainly setting $I=K\times N$ will do this, but a value less than this, which is cheaper, may also suffice.

- What is the effect of K and N on FPGA area?
- What is the effect of K and N on FPGA delay?
- Which values of K and N give the best area-delay product?

Most importantly, we seek to clearly explain the results and thus perhaps leading to better architectures. Even though some of these questions were addressed some time ago in [RFCL89] [RFLC90] [KG91] [KG92b] [HW91] and [SRCL92], several reasons compelled us to revisit the issue. First, prior work on the appropriate size of the LUT focused on nonclustered logic blocks, which are known to have a significant impact on the area and delay [MBR99]. Second, most prior studies tended to look at area or delay, but not both as we will here. Third, prior results were based on IC process generations that are several factors larger than current process generations, and so do not take deep-submicron electrical effects into account. In the present work, we perform detailed spice-level simulations of circuits and perform appropriate buffer and transistor sizing for all the logic and routing elements, in the manner of [BRM99]. Fourth, the CAD tools available today for experimentation are significantly better than those available 10 years ago, when this question was first raised. This turned out to be significant because our new results show that the superior tools give rise to different trends in the explanation of the results.

1.3 Hardwired Logic Blocks

The second part of this thesis will explore the use of hardwired logic blocks (HLBs) within the context of logic clusters [Chu94]. HLBs consist of two or more BLEs connected together by wires. These wires do not have switches and lack any form of programmability. The low resistance and capacitance of the metal wires makes the connections between BLEs fast and cheap in terms of area. In a non-HLB architecture (shown in Figure 1.2) connections between BLEs must propagate through the local routing crossbar which connects all BLE outputs and inputs. The area requirements of the full-routing crossbar can be quite significant sometimes even larger than the BLE area. Also, there is a significant delay required for signals to reach from a BLE output to another BLE input. The use of HLBs alleviates the area and delay demands of local BLE connections and may improve FPGA density and performance. We explore the area and delay of one particular HLB based FPGA architecture, again in the context of clustered architectures.

a) Cascaded Hardwired LUTs

b) Tree Topology Hardwired LUTs

Figure 1.3: Examples of Hardwired Logic Blocks

1.4 Thesis Organization

This thesis is organized as follows: Chapter 2 describes the background required to understand this thesis and previous work relating to FPGA logic block architecture. Chapter 3 presents the results of an extensive study of LUT and cluster size on FPGA area and delay. Chapter 4 presents the area and delay results for a cascaded 4-LUT hardwired logic block-based FPGA and compares it to the non-hardwired results. Finally, we provide the conclusion in Chapter 5 along with possibilities for future work.

CHAPTER 2

Background

This chapter discusses several related works from the past in the area of FPGA architecture and CAD tools. There has been a significant amount of work in FPGA architecture over the last decade and we will attempt to summarize some of the key related results. Also, we will review the CAD flow and algorithms used in logical synthesis, placement and routing used to produce the results in the present work.

2.1 CAD Flow

The best-known and most believable method of determining the answers to the questions posed in Section 1.2 is to experimentally synthesize real circuits using a CAD flow into the different FPGA architectures of interest, and then measure the resulting area and delay [BFRV92] [BRM99] [KG91]. Figure 2.2 illustrates the CAD flow that was used in [BRM99] and [MBR99] to explore architectures and this is the one that we employ in this research. First, each circuit passes through technology-independent logic optimization using the SIS program [ea90]. It is worth noting that, from this point on, the entire CAD flow is fully timing-driven. Technology mapping (which converts the logic expressions into a netlist of K-input LUTs), was performed using the FlowMap and FlowPack tools [CD94]. At this stage, there exists a netlist of logic blocks (LUTs and registers). T-VPACK [MBR99] takes this netlist of logic blocks and first groups them into basic logic elements (BLEs) which consist of a single K-LUT and flip-flop. Any LUT with a fanout of one and feeding into a flip-flop (as shown in Figure 2.1) can be collapsed into a single BLE. Hence, BLEs can be composed of either a LUT, a LUT and a LATCH or simply a LATCH.

Figure 2.1: Grouping of LUTs and Flip-Flops

These BLEs are then packed into clusters optimizing for both logic density and speed. VPR [BRM99] is then used for timing-driven placement and routing. Placement is the process of determining the location of every cluster within the FPGA tile and routing determines which programmable switches to turn on in order to connect the nets. Note that the VPACK and VPR toolset was designed to explore FPGA architectures and each tool takes a number of parameters as input that describe an FPGA architecture. For example, the packer (VPACK) takes the LUT size (K), cluster size (N) and number of cluster inputs (I) as input parameters. The router takes a VPR ".arch" file [BRM99] which is a textual description of the routing architecture are extracted. VPR uses a transistor based area model to calculate the total FPGA area and the timing analyzer determines the critical path delay by extracting the Elmore delay of each net and performing a path based timing analysis.

In our approach to modeling the area of an FPGA required by any given circuit, we deter-

Figure 2.2: Architecture Evaluation Flow

mine the minimum number of tracks needed to successfully route each circuit, W_{min} . Clearly this isn't possible in real FPGAs, but we believe this is meaningful as part of a logic density metric for an architecture. The area model which makes use of this minimum track count is described more fully in Section 2.1.1. In order to determine the minimum number of tracks per channel to route each circuit we continuously route each circuit, removing tracks from the architecture until it fails to route. We call the situation where the FPGA has the minimum number of tracks needed to route a given circuit a "high stress" routing since the circuit is barely routable. We believe that measuring the performance of a circuit under these high-stress conditions is unreasonable and atypical, because FPGA designers don't like working just on the edge of routability. They will typically change something to avoid it, such as using a larger device, or removing part of the circuit.

For this reason, we add 30% more tracks to the minimum track count and then perform final "low stress" routing and use that to measure the critical path delay.

From the output of the router, and using the area models described in the next section along with the circuit delay parameters, we can compare different architectures.

2.1.1 Area Model

Betz' area modeling procedure [BRM99] was to create the detailed, transistor-level circuit design of all of the logic and routing circuitry in the FPGA. This includes circuits for the LUTs, flip-flops, intra-cluster muxes, inter-cluster routing muxes and switches and all of the associated programming bits. His basic assumption was that the total area of the FPGA was active-area limited, which tends to be true when there are many layers of metal (according to [BRM99]). Two commercial PLD vendors have confirmed this assumption.

This design process includes proper sizing of all of the gates and buffers, including the pass-transistors in the routing. Betz uses the number of "minimum-width transistor areas" as his area metric. The definition of a minimum-width transistor area is the smallest possible layout area of a transistor that can be processed for a specific technology plus the minimum spacing surrounding the transistor as shown in Figure 2.3. The spacing is dictated by the design rules for that particular technology. Any transistors in the circuit design that are sized larger than minimum are counted as a greater number of minimum-width transistors, taking into account the fact that a double size transistor takes less than twice the layout area. One advantage of this metric is that it is a somewhat process-independent estimate of the FPGA area.

Figure 2.3: Definition of a Minimum-Width Transistor Area [BRM99]

2.2 FPGA Packing Algorithms

In order to effectively study the feasibility of HLB architectures we need to have a packing algorithm capable of targeting such structures. However, we should first provide a brief overview of some of the general packing algorithms relevant to our work. This section will discuss three such packing algorithms: RASP, VPACK and T-VPACK. The input to all these packing algorithms is a nelist of LUTs and Flip-flops and the output is a clustered set of BLEs.

2.2.1 RASP

RASP [CPD96] is a general synthesis system for SRAM-based FPGAs. It has the capability to map circuits into various types of logic blocks. RASP is composed of a core which includes synthesis and optimization algorithms targeting technology-independent logic synthesis and mapping for LUT-based FPGAs. The packing algorithm uses a "closeness" metric to determine which LUTs to group together in the same cluster. It first creates a compatibility graph where the vertices represent the LUTs that require grouping and edges are formed between vertices

if they can be grouped together. There is no edge in the compatibility graph if two BLEs cannot be grouped together due to some hard constraint violation (for example, exceeding the maximum number of cluster inputs allowable). The next step is to assign weights to all the edges in the network. Weights are assigned depending on the design objective. If circuit performance is the main objective then a large weight is assigned to edges which produce a grouping that reduces the length of the critical path. Conversely, if FPGA area is the primary objective then large weights are given to those edges resulting in groupings that do not create complex interconnection patterns in the final mapping. The algorithmic complexity of the mapper is O(nm) where n is the number of LUTs and m is the number of edges. With the current benchmarks used in our experiments, the number of edges m in the compatibility graph is $O(n^2)$. This results in an overall algorithmic complexity of $O(n^3)$, which is excessive and somewhat impractical for modern day circuits which require in excess of 10,000 blocks.

2.2.2 VPACK

VPACK [BRM99] takes a netlist of LUTs and registers as input and outputs a netlist of logic clusters as illustrated in Figure 2.4. It groups BLEs together in order to maximize input sharing. The number of BLEs per cluster (N), inputs per cluster (I), LUT size (K) and clocks per cluster (M_{clk}) are all input parameters to the VPACK algorithm. VPACK accepts any combination of these parameters and creates optimized logic clusters. The complete pseudo-code for the VPACK algorithm is given in Figure 2.5.

VPACK attempts to pack as many BLEs into a given cluster without violating the following constraints:

- There can be no more than N BLEs in any given cluster.
- Each cluster must use I inputs or less.
- Every BLE contained in the cluster must have K-inputs per LUT (strictly homogeneous architecture).

Netlist of BLEs

Netlist of Clusters

Figure 2.4: Packing of BLEs to Form Clusters

• M_{clk} is the maximum number of clocks per cluster.

The basic algorithm consists of two stages. The first stage examines the input netlist and groups LUTs and registers together to form BLEs. Only LUTs with a fanout of one and whose output directly feeds a register are grouped together. All other structures such as LUTs with fanout greater than one and LUT to LUT connections require multiple BLEs.

The second stage of the VPACK algorithm groups BLEs together to form clusters. Clusters are created in a sequential manner one after the other. First, the algorithm is in a greedy mode and continues to add BLEs to the current cluster until the maximum cluster capacity has been reached. If the maximum number of BLEs, N, have been packed then the current cluster is "closed" and a new empty cluster is created and the packing process is repeated. The basic VPACK clustering starts by selecting a seed BLE to pack into the current open cluster. The unclustered BLE with the most number of used inputs is always selected as the next available seed. Once a seed BLE has been selected, an attraction function is applied to determine the next BLE to group within the current cluster. The attraction between a BLE, B, and the current cluster, C, are the number of common nets that are shared. A net is defined as any electrically equivalent wire connecting one or more logic blocks together.

$$Attraction(B) = |Nets(B) \cap Nets(C)|$$

If the greedy algorithm of the packer does not completely fill the cluster to its maximum capacity then there is the option to invoke the hill-climbing phase. Hill-climbing will continue to pack BLEs into the cluster even though the cluster uses more than the maximum I inputs that are allowable. Hill-climbing allows BLEs to be added even though the result is an infeasible cluster (too many inputs). It must be remembered that adding a BLE to a cluster in which all the inputs are already present in the cluster and having its output used by another BLE causes a reduction in the number of cluster inputs. This is the key driving force behind hill-climbing. That is, even though infeasiblities may occur early on during packing, it may become feasible at later stages and the result is an improvement in logic block density. The algorithmic complexity of VPACK is $O(k_{max} \cdot K \cdot n)$ where the maximum number of terminals on a net is represented by k_{max} , K is the number of inputs to each LUT and n is the number of LUTs + registers in the circuit.

2.2.3 Timing-Driven Packing (T-VPACK)

T-VPACK [MBR99] was an extension to VPACK that attempts to maximize logic cluster capacity while simultaneously working to reduce the critical path delay. The total delay is improved by reducing the number of inter-cluster connections on the critical path. Since the external cluster routing delay is much larger than the local routing inside the cluster this should have a positive impact on delay. The pseudo-code for the T-VPACK algorithm is shown in Figure 2.6.

Timing analysis is performed on the circuit before any packing begins. T-VPACK models three types of delays within an FPGA: the delay through a logic block, *Logic Block Delay*, the intra-cluster delay between logic blocks, *Intra Logic Delay* and the external delay between cluster input/output pins, *Inter_Block_Delay*. The external routing delays cannot be determined before placement and routing and so these must be approximated. It was experimentally demonstrated in [MBR99] [BRM99] that weighting the *Logic Block_Delay* and *In*-

```
Let: UnclusteredBLEs be the set of BLEs not contained in any cluster
  C be the set of BLEs contained in the current cluster
  LogicClusters be the set of clusters (where each cluster is a set of BLEs)
UnclusteredBLEs = PatternMatchToBLEs (LUTs, Registers);
LogicClusters = NULL;
while (UnclusteredBLEs != NULL) { /* More BLEs to cluster */
  C = GetBLEwithMostUsedInputs (UnclusteredBLEs);
  while (|C| < N) { /* Cluster is not full */
    BestBLE = MaxAttractionLegalBLE (C, UnclusteredBLEs);
    if (BestBLE == NULL) /* No BLE can be added to cluster */
       break;
    UnclusteredBLEs = UnclusteredBLEs - BestBLE;
    C = C \cup BestBLE;
  }
  LogicClusters = LogicClusters \cup C;
}
```

Figure 2.5: Original VPACK Algorithm

tra_Logic_Delay to 0.1 and *Inter_Block_Delay* to 1 produced the most accurate post-routing results.

All the net timing and slack information is stored after initial timing analysis has been completed. From this, the criticality of every connection can be calculated. Slack [HSC83] is defined as the amount of delay that may be added to a connection before it becomes critical. Slack(i) is the slack of a connection *i* and *MaxSlack* is the maximum possible slack for all connections in the circuit. The criticality of any connection, *i*, is expressed as:

ConnectionCriticality(i) =
$$1 - \frac{slack(i)}{MaxSlack}$$

Once the connection criticalities have been determined T-VPACK determines which BLE will be chosen as the seed for a new cluster by selecting the BLE attached to the net with the

highest criticality. Once a seed BLE has been selected, an attraction function is applied to calculate the next BLE that would be the best candidate for inclusion in the current cluster. The attraction function for a BLE, B, towards a cluster, C is given by:

$$Attraction(B) = \lambda \cdot Criticality(B) + (1 - \lambda) \cdot \frac{|Nets(B) \cap Nets(C)|}{MaxNets}$$

The BLE with the highest attraction will be the next candidate and λ is a parameter which determines whether T-VPACK should be fully timing driven or maximizes input sharing. If λ is 1 then T-VPACK attempts to minimize delay without regard to maximizing input pin sharing and if λ is 0 then T-VPACK will attempt to minimize the number of used inputs. [MBR99] demonstrated that setting λ to a range between 0.4 and 0.8 was best.

Let:**UnclusteredBLEs** be the set of BLEs not contained in any cluster **C** be the set of BLEs contained in the current cluster **LogicClusters** be the set of clusters (where each cluster is a set of BLEs)

```
UnclusteredBLEs = PatternMatchToBLEs (LUTs, Registers);
LogicClusters = NULL;
```

```
ComputeCriticalities();
BLEsSinceLastCriticalityRecompute = 0;
```

```
while (UnclusteredBLEs != NULL) { /* More BLEs to cluster */
```

```
C = GetMostCriticalBLE (UnclusteredBLEs);
BLEsSinceLastCriticalityRecompute ++;
```

```
while (|C| < N) { /* Cluster is not full */
```

```
if (BLEsSinceLastCriticalityRecompute >= RecomputeInterval) {
   ComputeCriticalities();
   BLEsSinceLastCriticalityRecompute = 0;
}
```

```
BestBLE = MaxAttractionLegalBLE (C, UnclusteredBLEs);
if (BestBLE == NULL) /* No BLE can be added to cluster */
break;
UnclusteredBLEs = UnclusteredBLEs - BestBLE;
C = C ∪ BestBLE;
BLEsSinceLastCriticalityRecompute ++;
```

```
}
LogicClusters = LogicClusters \cup C;
}
```

2.3 FPGA Logic Block Architecture

Now that the FPGA experimental methodology and design flows have been described, we discuss earlier work which examined logic block architecture and its impact on FPGA density and performance. This research and much of the relevant prior work was based on a cluster-based island style FPGA. The structure of the cluster-based logic block is illustrated in Figure 2.7. Each cluster contains N basic logic elements (BLEs) fed by I cluster inputs. The BLE, illustrated in Figure 2.7(a) typically consists of a K-input lookup table (LUT) and register, which feed a two-input multiplexer that determines whether the registered or unregistered LUT output drives the BLE output. For clusters containing more than one BLE, "full connectivity" is assumed. This means that all I cluster inputs and N outputs can be programmably connected to each of the K inputs on every LUT. These are implemented using the multiplexers shown in the figure, which are un-necessary for a cluster of size 1. The Altera Flex 6K, 8K, 10K [Inc98a] and Xilinx 5200 [Inc97] and Virtex [Inc98b] are commercial examples of such clusters (although the Xilinx logic clusters are not fully connected).

2.3.1 LUT Size

There have been several studies in the past which examined the effect of logic block functionality on the area and performance of FPGAs. The use of large LUTs generally produces good performance results since there are a fewer number of BLEs on any given critical path. However, because the logic block area grows exponentially with the number of LUT inputs, these larger blocks are very expensive. With this in mind, the key to any FPGA logic block study is to balance these two opposing factors and determine an appropriate LUT size which gives both good performance and logic density. For example, the work in [RFLC90] and [KG92a] showed that a LUT size of 4 is the most area efficient in a non-clustered context. One of the key observations from this study was that the FPGA area was mainly dominated by the inter-cluster routing area and even though increasing logic functionality resulted in fewer logic blocks this

Figure 2.7: Structure of (a) Basic Logic Element (BLE) and (b) Logic Cluster [BRM99]

could easily be offset by the increase in routing area due to the larger number of external pin to pin connections between blocks. Hence, it was concluded in [RFLC90] that logic blocks with high functionality per connected pin produced the best area results. Conversely, evaluation of FPGA performance was performed in [Sin91] [SRCL92] and [KG91]. It was observed that using a LUT size of 5 to 6 gave the best performance. The FPGA performance studies tended to favour larger LUTs since they resulted in fewer levels of logic on the critical path. Since the routing delay was larger than the logic delay, this generally lead to postive delay results. A recent publication [KBKC99] has suggested that using a heterogeneous mixture of LUT sizes of 2 and 3 was equivalent in area efficiency to a LUT size of 4. In addition [ACSG⁺99] states that a logic structure using two 3-input LUTs was most beneficial in terms of area. However, it must be noted that both these last two papers did not perform a full area or delay study where a range of LUT sizes was examined.

2.3.2 Cluster Size

In general, clusters can be classified using four parameters [BRM99]: the number of inputs that each BLE has (K), the number of BLEs within each cluster (N), the number of distinct cluster input pins feeding each cluster (I) and the number of distinct clocks per cluster (M_{clk}). It was experimentally shown in [BRM99] that given a cluster with a single clock and assuming a LUT size of 4, then clusters of size 4 to 10 produced the best area-delay results using non-timing driven packing (VPACK). Later on, a separate study [Mar99] [MBR99] based on a timingdriven packing algorithm (T-VPACK) found that clusters of sizes 7 to 10 were best in terms of area-delay product.

2.4 Summary

This chapter outlined some of the key results from the past in FPGA logic block architecture. Also, background information concerning logic synthesis, technology mapping and packing were provided. The rest of the thesis will elaborate on the area and delay results for various logic block architectures.

CHAPTER 3

FPGA Logic Block Architecture

This chapter explores the effect of logic block functionality on FPGA performance and density. In particular, in the context of lookup table, cluster-based island-style FPGAs [BRM99] we look at the effect of lookup table (LUT) size and cluster size (number of LUTs per cluster) on the speed and logic density of an FPGA.

We use a fully timing-driven experimental flow as described in Section 2.1 [BRM99] [Mar99] in which a set of benchmark circuits are synthesized into different cluster-based [BR97] [BR98] [Mar99] logic block architectures, which contain groups of LUTs and flip-flops. We look across all architectures with LUT sizes in the range of 2 inputs to 7 inputs, and cluster size from 1 to 10 LUTs. In order to judge the quality of the architecture we do both detailed circuit level design and measure the demand of routing resources for every circuit in each architecture.

3.1 FPGA Architecture Modeling

In this section we give a brief description of the FPGA architecture and delay modeling used in our work. The level of detail present in these models goes far beyond any modeling previously used in this kind of experimental analysis. All device parameters and circuits are modeled using SPICE simulations of a 0.18 μ m CMOS process.

We make the following assumptions about the basic island-style architecture:

- The number of routing tracks in each channel between logic blocks is uniform throughout the FPGA.
- All metal routing wires are placed on metal layer 3 with minimum width and spacing.
- Each circuit is mapped into the smallest square (MxM) grid possible given the number of logic clusters it requires.

However, it is important to note that the area metric we count is not the total area required by the square M x M block on the FPGA. Rather, we use the exact number of clusters required to implement the circuit. For example, a circuit which requires 800 logic blocks will be routed in 29 x 29 FPGA grid which results in 841 blocks. We use the area of the logic and routing surrounding 800 clusters as opposed to 841.

3.1.1 Logic Circuit Design and Delay Model

The circuit design process described above is also necessary to determine accurate delay measurements of the final placed and routed circuit. In deep-submicron IC design processes, the effect of wire resistance and capacitance becomes more prevalent. We account for these effects in this delay modeling. Figure 3.1 shows the detailed logic block circuit. All circuit design was done in TSMC's $0.18 \,\mu$ m, $1.8 \,V$ CMOS process. The paths have been simulated with their actual loads in place and the input driven by what would actually be driving it in a real FPGA. As the cluster size increases, the buffers shown in Figure 3.1 must be sized larger because of larger loading from the internal muxes, which results in an increase in the basic BLE delay. This is shown in Table 3.1 which gives the logic delays as the cluster size increases for the paths indicated in Figure 3.1 for a BLE based on a 4-input LUT.

Figure 3.1: Structure and Speed Paths of a Logic Cluster [BRM99]

Cluster Size (N)	A to B (ps)	B to C and D to C (ps)	C to D (ps)	B to D (ps)
1 (No local muxes)	377	180	376	556
2	377	221	385	606
4	377	301	401	702
6	377	332	397	729
8	377	331	396	727
10	377	337	387	724

Table 3.1: Logic Cluster Delays for 4-input LUT Using 0.18 µm CMOS process

Similarly, the design of the larger LUTs must be done carefully, with proper buffer sizing and, in some cases, insertion of buffers within the tree of pass-transistors. Table 3.2 gives the LUT delay as a function of the LUT size.

LUT Size (K)	C to D (ps)
2	199
3	283
4	401
5	534
б	662
7	816

Table 3.2: LUT Delays Using 0.18 μ m CMOS process

3.1.2 Routing Architecture

The target routing architecture of the CAD flow used in these experiments is one that Betz et. al [BRM99] indicate is a good choice. This architecture has the following parameters:

- Routing segments have a logical length of four (the logical length of a segment is defined as the number of logic block clusters that it spans)
- 50% of these segments use tri-state buffers as the programmable switch and 50% use pass transistors

The experiments conducted in [BRM99] were based on a LUT size of four and a cluster size of four. We will assume these results are valid for all the LUT sizes and cluster sizes that we are comparing.

However, the LUT and cluster size does affect the sizing of the buffers used to drive the programmable routing, both from the block itself and the tri-state buffers internal to the programmable routing. As the logic block cluster increases in size, the size of each logic tile is larger, and therefore the length of the wires being driven by each buffer increases. Since this increases the capacitive loading of each wire, the buffers must be sized appropriately. Betz [BRM99] indicates that for a cluster size of four and a LUT size of four, the best routing pass transistor width was ten times the minimum width, while the best tri-state buffer size was only five times the minimum. We size our buffers in direct proportion to the length of this tile. That is, if the tile length has doubled, then we double the size of the routing buffers.

3.2 Experimental Results

In this section we present the experimental results of synthesizing benchmark circuits through the CAD flow described in Section 2.1 with the area delay modeled as described in Section 3.1. The benchmark circuits used in these experiments were the 20 largest from MCNC [Yan91] along with 8 new benchmarks ¹. Table 3.3 gives a description of the circuits, including the name, number of 4 input-LUTs and number of nets.

Each circuit was mapped, placed and routed with LUT size varying from 2 to 7 and cluster sizes from 1 to 10. With 6 different LUT sizes and 10 different cluster sizes this gives a total of 60 distinct architectures.

3.2.1 Cluster Inputs Required vs. LUT and Cluster Size

Before answering the principal questions raised in the introduction, we need to determine an appropriate value for I, the number of logic block cluster inputs. The value of I should be a function of K (the LUT size) and N (the number of LUTs in a cluster). This is of concern since the larger the number of inputs the larger and slower the multiplexers feeding the LUT inputs will be, and more programmable switches will be needed to connect externally to the logic block. Indeed, one of the principal advantages of fully-connected clusters is that they require fewer than the full number of inputs (K \times N) to achieve high logic utilization. There are several reasons for this:

¹The 8 new benchmarks are from the University of Toronto from two computer vision applications. The 8 benchmarks are {display_chip, img_calc, img_interp, input_chip, peak_chip, scale125_chip, scale2_chip, warping}

Circuit	# of 4-Input BLEs	Number of Nets
alu4	1522	1536
apex2	1878	1916
apex4	1262	1271
bigkey	1707	1936
clma	8383	8445
des	1591	1847
diffeq	1497	1561
dsip	1370	1599
elliptic	3604	3735
ex1010	4598	4608
ex5p	1064	1072
frisc	3556	3576
misex3	1397	1411
pdc	4575	4591
s298	1931	1935
s38417	6406	6435
s38584.1	6447	6485
seq	1750	1791
spla	3690	3706
tseng	1047	1099
display_chip	1794	2419
img_calc	10141	10180
img_interp	2727	2769
input_chip	807	841
peak_chip	809	840
scale125_chip	2632	2654
scale2_chip	1189	1202
warping	1353	1394

Table 3.3: MCNC Benchmark Circuit Descriptions

- Some of the inputs are feedbacks from the outputs of LUTs within the same clusters, saving inputs.
- Some inputs are shared by multiple LUTs in the cluster
- Some of the LUTs do not require all of their K-inputs to be used. Indeed this is often the case, as pointed out in [KBKC99].

Betz and Rose [BR97] [BR98] showed that when K=4 and I is set to the value 2N+2, then 98% of all of the 4-LUTs in a cluster would typically be used. We would like to find a similar relation, but one that includes the variable K.

To determine this relation, we ran several experiments, using only the first three steps illustrated in Figure 2.2: logic synthesis, technology mapping and packing. For each possible value of N and K, we ran experiments varying the value of I (the maximum number of inputs to the cluster allowed by the packer) from 1 to K \times N. Following [BR97] we chose the lowest value of I that provided 98% utilization of all of the BLEs present in the circuit. Figure 3.2 is a plot of the relationship between the number of inputs (I) required to achieve 98% utilization and the cluster size (N) and the LUT size (K). Typically, the value of I must be between 50 and 60% of the total possible BLE inputs, I = K \times N.

By inspection we have generalized the relationship as:

$$I = \frac{K}{2} \times (N+1)$$

This equation provides a close fit to the results in Figure 3.2. The average percentage error across all possible data points is only 10.1 % with a standard deviation of 7.6 %.

3.2.2 Area as a Function of N and K

In this section we present and discuss the experimental results that show the area of an FPGA as a function of N and K. Note that I was set to the value determined in the previous section.

Figure 3.2: Number of Inputs Required for 98% Logic Block Utilization

These results are for the 28 benchmark circuits. Area, as discussed above, is measured in terms of the total number of minimum-width transistors required to implement all of the logic and routing.

Total Area

Figures 3.3 and 3.4 give a plot of the geometric average (across all 28 circuits) of the total area required as a function of cluster size and LUT size. Several observations can be made from this data:

- LUT sizes of 4 and 5 are the most area-efficient for all cluster sizes.
- There is a reduction in total area when the cluster size is increased from 1 to 3 for all LUT sizes. However, as clusters are made larger (N > 4) there is very little impact on total FPGA area. Figure 3.4 demonstrates this behaviour very well. It is generally expected that increasing logic block functionality should result in more BLEs being added to a cluster and connections that normally would have been routed externally are now ab-

sorbed internal to the cluster. This should reduce the inter-cluster area which is usually much higher than the intra-cluster area and thus having a positive impact on total area. However, the reason the total FPGA area doesn't decrease is because increasing logic capacity (more input & output pins) results in an increase in track count. It must also be remembered that the logic block area is also increasing due to the LUT area and the multiplexer area. So the area savings is not as significant as it appears and Figures 3.4 and 3.3 confirm this fact.

Figure 3.3: Total Area for Clusters of Size 1 to 5

It is instructive to break out the components of the data in Figures 3.3 and 3.4 in order to achieve both insight and inspiration on how to make more area-efficient FPGAs. The total area can be broken into two parts, the logic block area (including the muxes inside the clusters) and the routing area, which is the programmable routing external to the clusters. Throughout the rest of this paper, these will be referred to as the intra-cluster area and inter-cluster area respectively.

Figure 3.4: Total Area for Clusters of Size 6 to 10

We will first explore the intra-cluster area. Figure 3.5 shows the total intra-cluster area component of the total area (again, geometrically averaged over the 28 circuits) as a function of the LUT size. The data shows that the intra-cluster area increases as K increases. This area is the product of the total number of clusters times the area per cluster. A plot of these two components for a cluster size of 1 is given in Figure 3.6.

The logic block area grows exponentially with LUT size as there are 2^{K} bits in a K-input LUT. In addition, larger LUT sizes require larger intra-cluster multiplexers because the size of each multiplexer is (I + N) = (K/2 (N+1) + N). As K increases, though, the number of clusters decreases (because each LUT can implement more of the logic function) as shown by the downward curve in Figure 3.6.

However, the rate of decrease in the number of logic blocks is far outweighed by the increase in the size of the block as K increases, and hence the upward trend in Figure 3.5. Figure 3.7 decomposes the logic block area into two parts: a) intra-cluster multiplexer area and b) LUT area. The results illustrate that the local intra-cluster routing area cannot be ignored and

Figure 3.5: Total Logic Block Cluster Area

Figure 3.6: Number of Clusters and Cluster Area Versus K (for N=1)

can be quite significant for larger clusters.

Figure 3.7: Intra-cluster Multiplexer Area and LUT Size

Observing the absolute values in Figures 3.3 to 3.5, we see that the intra-cluster area typically takes up about only 25% to 35% of the total area, except when the LUT size reaches 6 and 7, at which point intra-cluster area becomes a dominant factor.

The key effect, as always in FPGAs, is with the routing area. Figure 3.8 is a plot of the total inter-cluster routing area as a function of the LUT size and cluster size. The Figure shows that the routing area decreases in a linear fashion with increasing LUT size. This particular result is interesting since previous work from [RFLC90] has shown that the routing area achieved a minimum between K=3 and K=4, and increased for values of K beyond this.

To explain this observed behavior, observe Figure 3.9 which decomposes the total routing area into two separate components: the number of clusters and the routing area per cluster. These curves are given for a cluster size of 1, but are representative for all cluster sizes. The product of these two curves gives the total inter-cluster routing area. The reason why the routing area decreases linearly with LUT size is that as we increase the LUT size, the number of clusters decreases much faster than the rate at which the routing area per cluster increases.

The routing area per cluster grows slightly with increasing LUT size since due to the fact that there is very little change in channel width as the LUT size is varied. This is shown in Tables 3.4 and 3.5 where it can also be seen that increasing cluster size leads to larger average channel widths. The channel width is the major determining factor in inter-cluster area. The difference in results from [RFLC90] and our current results can be attributed to the fact that we are now using better CAD tools with more sophisticated algorithms; in particular the quality of the placement tool and the routing tool is significantly better, and uses significantly less wiring. In addition, for clustered logic blocks, more of the routing is being implemented within the cluster itself.

Figure 3.8: Routing Area

3.2.3 Performance as a Function of N and K

The second key metric for FPGAs is their speed measured by the critical path delay. The total critical path delay is defined as the total delay due to the logic cluster combined with the routing delay. Figure 3.10 shows the geometric average of the total critical path delay across

Figure 3.9: Number of Clusters and Routing Area Per Cluster Versus K (for N=1)

all 28 circuits as a function of the cluster size and LUT size. Observing the Figure, it is clear that increasing N or K decreases the critical path delay. These decreases are significant: an architecture with N=1 and K=2 has an average delay of 45 ns while K=7 and N=10 has an average critical path delay of just 14 ns. There are two trends that explain this behavior. As the LUT and cluster size increases:

- the delay of the LUT and the delay through a cluster increases
- the number of LUTs and clusters in series on the critical path decreases

We will discuss these effects in more detail below.

It is instructive to break the total delay into two components: intra-cluster delay (which includes the delay of the muxes and LUTs), and inter-cluster delay.

Figure 3.11 shows the portion of the critical path delay that comes from the intra-cluster delay as a function of K and N. There are two key points to observe here. First, the intra-cluster delay decreases as the LUT size increases. This is due to the fact that there is a reduction in

Cluster Size (N)	LUT Size (K)	Channel Width (geometric avg.)
1	2	15.9
	3	16.5
	4	17.6
	5	17.9
	б	18.5
	7	18.5
2	2	23.7
	3	25.5
	4	27.7
	5	26.6
	б	26.9
	7	26.3
3	2	29.9
	3	31.7
	4	32.3
	5	32.1
	б	30.9
	7	30.9
4	2	34.3
	3	36.1
	4	36.8
	5	35.9
	6	34.3
	7	34.3
5	2	37.4
	3	39.6
	4	40.1
	5	39.6
	6	38.3
	7	38.0

Table 3.4: Channel Width vs. LUT and Cluster Size (1 to 5)

the number of BLE levels on the critical path and hence there will be fewer logic levels to implement. This will translate into a reduction in intra-cluster delay. Figure 3.12 illustrates this concept more clearly at the BLE level: it is a plot of BLE delay and number of BLEs on the critical path versus LUT size for a cluster size of 1. The number of BLE levels decreases quicker than the increase in BLE delay and hence the decrease in logic delay. The second behaviour that should be noticed is that the intra-cluster delay increases for any given LUT size as the cluster size is increased. This is because the intra-cluster muxes get larger and therefore

Cluster Size (N)	LUT Size (K)	Channel Width (geometric avg.)
б	2	40.9
	3	43.8
	4	43.8
	5	42.9
	б	41.0
	7	40.6
7	2	43.8
	3	46.4
	4	46.6
	5	45.5
	6	44.2
	7	43.0
8	2	46.3
	3	49.9
	4	49.5
	5	48.6
	б	45.3
	7	45.8
9	2	49.3
	3	50.6
	4	51.2
	5	50.4
	6	47.0
	7	47.4
10	2	50.6
	3	53.6
	4	54.7
	5	52.0
	б	50.5
	7	50.4

Table 3.5: Channel Width vs. LUT and Cluster Size (6 to 10)

slower. However, the delay through these muxes is still much faster than the inter-cluster delay, as shown in figure 3.11.

Figure 3.13 shows the portion of the critical path delay that comes from the inter-cluster routing delay as a function of K and N.

As K increases there are fewer LUTs on the critical path, and this translates into fewer inter-cluster routing links, thus decreasing the inter-cluster routing delay. Similarly, as N is increased, more connections are captured within a cluster, and again, the inter-cluster routing

Figure 3.10: Total Delay for Clusters of Size 1 to 10

Figure 3.11: Total Intra-Cluster Delay for Clusters of Sizes 1 to 10

In discussing these trade-offs, it's useful to follow an explicit example: Table 3.6 shows how the delay through one BLE and multiplexer stage (delay from B to D on Figure 3.1) rises from 0.556 ns to 0.702 ns when going from K=4 and N=1 to K=4 and N=4. Although the number of BLE levels on the critical path remains fairly constant since we have not modified K, the total logic delay increases from 5.58 ns to 6.65 ns due to the increase in the local cluster routing multiplexers. However, since there are now 4 BLEs in every cluster as opposed to a single BLE, more logic is implemented internally within the clusters. Nets that normally would have been routed externally are now internal to the clusters. This translates in a reduction in the inter-cluster routing delay from 19.48 ns when using K=4, N=1 to 11.72 ns for K=4 and N=4. The total critical path delay decreases from 25.91 ns to 19.35 ns as originally shown in Figure 3.10.

	N=1	N=4
BLE + Mux Delay	0.556 ns	0.702 ns
Avg # of BLEs on Critical Path	9.53	9.13
Total Intra-Cluster Delay	5.58 ns	6.65 ns
Total Inter-Cluster Delay	19.48 ns	11.72 ns
Total Delay	25.91 ns	19.35 ns

Table 3.6: Critical Path Delay Comparison for K=4

In general, inter-cluster routing delay is much larger than the intra-cluster delay, and hence the value of increasing the cluster or LUT size. However, it is interesting that increasing cluster size has little impact after a certain point (for N > 3). Figure 3.10 shows this clearly where for any fixed LUT size, the majority of the improvement in critical path delay occurs as the cluster size is increased from 1 to 3. Any further increases in cluster size results in a very minimum delay improvement. This behaviour suggests that clustering has little effect after a certain point. This is counter-intuitive to what we expect. That is, employing larger clusters

Figure 3.12: Number of BLEs on Critical Path and BLE delay vs K (for N=1)

Figure 3.13: Total Inter-Cluster Delay for Clusters of Size 1 to 10

should always reduce the critical path. Although, the total delay results from Figure 3.10 do not contradict this, what was surprising was how little of an improvement in total delay that was

achieved with larger clusters. To better understand this situation, it is sufficient to examine the number of logic block levels (ie: cluster levels). Figure 3.14 shows the number of cluster levels as a function of cluster and LUT size. The results clearly show the number of levels decreasing with increasing cluster and LUT sizes. But, for any given LUT size it can be seen that most of the reduction in the number of levels occurs as the cluster size is increased from 1 to 3. Also, recall that the majority of the critical path delay was reduced in this range (as shown in Figure 3.10). The direct relationship between the number of cluster levels on the critical path and the final total delay is no coincidence. Fewer logic blocks on the critical path leads to improved performance. The main reason that the total delay did not improve significantly as we varied the cluster size from 3 to 10 was that there was no significant reduction in the number of logic block levels. Without a reduction of the number of inter-cluster levels on the critical path we cannot possibly expect improvements in FPGA performance.

Figure 3.14: Number of Cluster levels on Critical Path

Another interesting trend to observe from figure 3.14 is that increasing the cluster size has less of an effect for architectures composed of larger LUTs. For example, increasing the cluster

size from 1 to 10 for a 2-input LUT architecture results in a 60% reduction in the number of cluster levels on the critical path. Conversely, employing BLEs with a 7-input LUT and varying the cluster size from 1 to 10 results in only a 22% reduction in logic levels. Hence, clustering proves to be more effective for smaller LUTs. To understand this more clearly, we should examine the average BLE fanout for every LUT size. Figure 3.15 shows this and as we can see larger LUTs correlate to larger average fanout. The reason smaller LUTs had a better response to larger cluster sizes was due to the fact that each LUT had a relatively small fanout and hence adding an extra BLE to a cluster usually guaranteed some reduction in the number of logic levels. The same cannot be said about larger LUTs since they have a much larger average block fanout and it becomes much more diffult to ensure that any subsequent BLE addition will result in fewer cluster levels on the critical path.

Figure 3.15: Average BLE Fanout

3.2.4 Area-Delay Product

So far, we have examined the effect of K and N on area and performance of FPGAs. As area can often be traded for delay, it is instructive to look at the area-delay product. Figures 3.16 and 3.17 illustrate the area-delay product versus K and N. This plot shows that using a LUT sizes of 4 to 6 and clusters of 3 to 10 appear to give the best area-delay results.

Notice that area-delay decreases significantly as the LUT size is increased from 2 to 4 for all cluster sizes. This is because their delay is poor due to the large amount of BLE levels on the critical path combined with the fact that the total area requirements are slightly larger (by about 20%), and so they are a bad choice.

The area-delay product jumps for K=7 on average by 10-15% principally because the huge area cost for 7-input LUT outweighs the modest performance gains it achieves.

This latter observation suggests that, if there was a way to achieve the depth properties of a 7-input LUT without paying the heavy area price, then such a 7-input input function may well be a good choice.

We have also observed that, for large clusters, a large portion of the delay is taken up by the intra-cluster muxes. If this delay could be reduced somehow, then significant speed wins could be achieved.

3.2.5 Summary

We have studied the effect that different logic block architectures have on FPGA area and performance. The main results are summarized in table 3.7. In addition, we experimentally derived a relationship between the number of cluster logic block inputs required to achieve 98% utilization as a function of the LUT size, K and the cluster size, N. This is $I = \frac{K}{2} \times (N+1)$, where I is the number of distinct cluster inputs.

Secondly, we have shown that small LUT sizes (2-input and 3-input LUTs) are not as area efficient as the 4 and 5-input LUTs and their performance characteristics are very poor. If area-

Figure 3.16: Area-Delay Product for Clusters of Size 1 to 10

Figure 3.17: Close-up View of Area-Delay Product for Clusters of Size 1 to 10

delay is the main criteria, then the use of clusters of between 3 and 10 and LUT sizes of 4 to 6 will produce the best overall results.

Finally, our work suggests two future directions: finding ways to reduce the number of levels of logic without the expense of large LUTs, and reducing the delay of intra-cluster multiplexers.

Criteria	LUT Size (K)	Cluster Size (N)
Area	4 to 5	4 to 9
Delay	7	3 to 10
Area-Delay	4 to 6	3 to 10

Table 3.7: Summary of Best Area, Delay, and Area-Delay Results

CHAPTER 4

Hardwired Logic Blocks

This chapter explores the hardwired logic block (HLB) architecture introduced in Chapter 1 with the expectation that it will lead to an improved area-delay product compared to the non-hardwired 2 to 7-input LUT clustered architectures. Recall that employing logic clusters consisting of 3-10 BLEs and LUT sizes of 4-6 produced the best area-delay results. However, we have shown that there was a 10-15% increase in the area-delay product when moving from a 6-input LUT to a 7-input LUT. The increase in area-delay was due to the fact that the LUT area grows exponentially with LUT size. Our main motivation for exploring HLB architectures was to find a coarse grain logic block which had almost the equivalent logic functionality and depth properties as a 7-input LUT but without the large area cost. The rest of this chapter will examine one such architecture, a cascade of two 4-input LUTs, as illustrated in Figure 4.1, and compare its area and performance to the non-hardwired architectures.

The HLB architecture in Figure 4.1 has several advantages over a 7-input LUT. First, there is a considerable logic area savings since the 7-LUT requires $2^7 = 128$ SRAM configuration bits while the cascaded 4-LUTs demands only $2 \times 2^4 = 32$ SRAM bits. Secondly, the LUT

Figure 4.1: Cascaded 4-LUTs

delay is slightly less since the output of the first LUT is fed directly into the fastest LUT input of the second stage LUT. This is possible because LUTs are implemented as a tree of transistors, and therefore the inputs have different delays. Our goal in this chapter is to determine the area and delay of the HLB structure shown in Figure 4.1 and compare it to the regular 4 to 7-input LUT-based logic clusters.

4.1 Hardwired Architecture

In general, HLB architectures consist of one or more fully-interconnected HLBs as illustrated in Figure 4.2. Each HLB is hardwired in a tree topology such that every LUT within the HLB can only fanout to at most one other LUT within the same HLB. The root BLE in the HLB is the only LUT that can implement sequential logic since its output can be registered by a D flip-flop. The finer points of an HLB architecture are presented below.

4.1.1 Cluster Inputs (I)

The number of distinct cluster inputs is an important architectural issue that needs to be addressed for HLBs. As discussed in Chapter 3 for non-hardwired architectures, just enough inputs were used to produce 98% utilization of the LUTs. However, such high logic block density is difficult to achieve in an HLB due to the inflexibility imposed by the hardwired connections. For that reason it is assumed that the cascaded 4-LUT structure, which has 7 inputs, requires the same number of inputs as a 7-LUT. This way, the same relationship that

Figure 4.2: Cluster Description (with HLBs)

was determined earlier in Chapter 3 for 98% logic utilization can be used:

$$I = \frac{K}{2} \times (N+1)$$

Here, *N* represents the number of HLBs per cluster and *K* is the number of input pins accessible externally from the HLB. For the cascaded 4-LUT, K=7 and therefore, $I = \frac{7}{2} \times (N+1).$

4.1.2 **Tapping Buffers**

The HLB structure in Figure 4.2 has 7 inputs and one output which can be registered or unregistered. Notice that only LUT B can have its output accessed externally from the cluster output pins. Since the output of LUT A is hardwired into LUT B, this restricts how and where subsequent LUTs are placed within the HLB. In Figure 4.2, LUTs A and B may be adjacent to each other as long as LUT A has a fanout of one and LUT B uses the output of LUT A as one of its inputs. If this pattern doesn't appear frequently enough in the netlist, many LUTs within HLBs will be unused. The result is a reduction in logic block density for the HLB-based FPGA. The use of *tapping buffers* [Chu94] will help alleviate this problem and improve the density of HLB-based FPGAs. Tapping buffers allow the LUT outputs within an HLB to be externally accessed. For example, in Figure 4.3 the output of A can be accessed without propagating it through LUTs B and C.

Figure 4.3: HLB Tapping Buffers

The tapping buffer saves two LUT delays and also allows other logic functions to be implemented in LUTs B and C rather than simply programming them to propagate the output of A and essentially wasting area. The possible benefits of tapping buffers are increased logic density and improvements in speed. For these reasons, tapping buffers are included in the HLB architecture studied in this chapter. Section 4.2.2 provides experimental justification for this decision. We should keep in mind that tapping buffer-enabled HLB architectures lead to more cluster output pins compared to HLBs without tapping buffers as illustrated in Figure 4.4.

Figure 4.4: Comparison of HLBs with and without tapping buffers

4.1.3 Logical Equivalence of Cluster Outputs

Logical equivalence on the cluster output pins means the router can connect to any one of the output pins and still reach any of the BLE or HLB outputs in the cluster. This added flexibility can reduce the track count by up to 50% compared to an architecture where the output pins are not logically equivalent. For clusters based on the non-tapping structure shown in Figure 4.4(a), the outputs *are* logically equivalent because they are identical and the full connectivity of the inputs allows them to be easily swapped. Figure 4.4(b) shows a tapping-buffer based HLB architecture and these outputs *are not* logically equivalent and the outputs of LUTs A and B cannot be swapped. Output pin logical equivalence for this structure can be achieved by creating a full-routing crossbar which connects all LUT and cluster outputs together as shown in Figure 4.5. The crossbar contains N N:1 multiplexers, where N is the number of LUTs in the cluster. The area cost of this output crossbar multiplexer is relatively small in comparison to the total logic block area.

Figure 4.5: HLB Cluster Contents with Full Routing Crossbar for Output Signals

Table 4.1 shows the percentage of the logic block area that this full crossbar routing multiplexer occupies for different cluster sizes. Even for large cluster sizes, the logic block area overhead is less than 8%.

Cluster Size	Multiplexer Area	Logic Block Area	%
1	16	766	2
2	72	1723	4.1
3	168	3089	5.4
4	256	4504	5.6
5	420	6274	6.6
б	552	8363	6.6
7	700	10441	6.7
8	864	12511	6.9
9	1152	15011	7.6
10	1360	17419	7.8

Table 4.1: Percentage of Logic Block Area that is Occupied by Output Routing Crossbar

4.2 HLB Packing

In order to explore HLBs, we need to synthesize circuits into HLB structures. This section outlines a packing algorithm aimed at hardwired logic blocks. However, it should be noted that there are several different ways of synthesizing circuits into HLBs.

• The entire HLB can be considered as a coarse grain target for technology mapping during logic synthesis. The basic procedure here is to translate the set of boolean equations that represent the circuit into logic gates and then perform technology mapping directly into the HLB structure. This was the approach taken in [CD94] since it was believed that technology mapping to HLBs focused more attention on optimizing hardwired connections which could possibly lead to better results than the alternatives listed below.

- HLB packing could be performed during layout synthesis as a separate step before placement and routing as is done in VPACK [BRM99]. [Chu94] also took this approach to HLB packing where the circuit would first be mapped to a netlist of basic blocks composed of LUTs and flip-flops. Afterwards, these LUTs and flip-flops are packed into HLBs.
- Finally, packing could be done simultaneously with placement. The placer would have the ability to move BLEs from one cluster to another in order to improve FPGA area and/or delay.

This thesis does HLB packing prior to placement but after logic synthesis, as illustrated in the flow given in Figure 4.6. Although the direct logic synthesis of gates into HLBs holds the promise of the best results, this can be very complex and we chose the layout synthesis approach due to time constraints.

Figure 4.6: HLB Packing Flow

4.2.1 HLB Packing Algorithm

The goal of the HLB packer is to minimize some combination of area and delay. The main priority is to pack highly critical LUTs into the same HLB to take advantage of the "zero-delay" hardwired links. If this is not possible then critically related LUTs should be packed into the same cluster. The HLB packing pseudo-code is illustrated in Figure 4.6. The first several steps in the HLB packing algorithm are identical to the T-VPACK [MBR99] algorithm described in Chapter 2. First, timing analysis is performed on the unclustered netlist of BLEs. After timing analysis, the BLE with the highest criticality ¹ is chosen as the seed of a new cluster. This BLE is placed at the root of any of the HLBs, however, it may be shifted within the HLB later on. With the seed BLE now packed, the next best BLE to pack into the HLB and cluster is determined. To do this, the attraction function described in Chapter 2 and originally defined in [MBR99] is used to find the next candidate BLE:

$$Attraction(B) = \lambda \cdot Criticality(B) + (1 - \lambda) \cdot \frac{|Nets(B) \cap Nets(C)|}{MaxNets}$$

The attraction function determines which unclustered BLE *B* should be added to the current cluster *C*. The parameter which controls the tradeoff between area and delay is λ . Setting λ to 1 results in a packing algorithm focuses only on criticality. Conversely, setting λ to 0 results in a packing algorithm which tries to maximize input sharing and hence FPGA logic density. Our work uses a λ value of 0.75 as suggested in [MBR99]. Once the next BLE (*BestBLE*) to be clustered has been determined we attempt to place it into one of the HLBs in the currently open cluster. At this stage, there are three choices which are evaluated in order:

- 1. Place BestBLE in one of the non-empty HLBs within the current cluster, or
- 2. Place BestBLE into the next empty HLB in the current cluster, or
- 3. Place BestBLE into the next empty cluster.

¹Refer to Chapter 2 for a definition of criticality

```
Let: UnclusteredBLEs be the set of BLEs not contained in any cluster
    C be the set of HLBs contained in the current cluster
    HLBs[i] be the set of HLBs in the cluster
    num_HLBs be the number of HLBs in the current cluster which are NOT empty
    N be the maximum number of HLBs in a cluster
    LogicClusters be the set of clusters (where each cluster is a set of HLBs)
UnclusteredBLEs = PatternMatchToBLEs (LUTs, Registers);
LogicClusters = NULL;
ComputeCriticalities();
num_HLBs = 1
while (UnclusteredBLEs != NULL) { /* More BLEs to cluster */
    C = GetMostCriticalBLE (UnclusteredBLEs);
    while (|C| < maximum_LUT_capacity) { /* Cluster is not full */
        if (BestBLE == NULL) /* No BLE can be added to cluster */
            break;
        BLE_SUCCESSFULLY_ADDED = FALSE; /* initilization */
        for (i=0; i < num_HLBs; i++) {
            if (BestBLE_can_be_inserted_into_HLB( BestBLE, HLB[i] )) {
                HLBs[i] = HLBs[i] \cup BestBLE;
                BLE_SUCCESSFULLY_ADDED = TRUE;
                break;
            }
        }
        if (BLE_SUCCESSFULLY_ADDED == FALSE) {
            /* Try placing BestBLE into an empty HLB if one exists */
            num_HLBs ++;
            if (|num_HLBs| > N) {
                break; /* No more empty HLB slots */
            } else {
                HLBs[num_HLB -1] = insert_into_HLB( BestBLE );
                HLBs[num_HLB -1] = HLBs[num_HLBs -1] \cup BestBLE;
            }
        }
        UnclusteredBLEs = UnclusteredBLEs - BestBLE;
        C = C \cup HLBs;
    }
    LogicClusters = LogicClusters \cup C;
}
```

This algorithm tries packing *BestBLE* into one of the non-empty HLBs to determine if it has a common net with any of the previously packed BLEs. The *BestBLE* can be added to one of the non-empty HLBs if a common net exists, the HLB is NOT full and only one of the LUTs makes use of the register. *BestBLE* can still be added to an HLB in which no common net exists as long as the logic block architecture contains tapping buffers. For example, Figure 4.8 shows a cascaded 4-LUT HLB where LUT F has been placed at the root. Due to the tapping buffer and the fact that F only used 3 of its 4 LUT inputs, it is now possible to add another LUT G which has no common connection with LUT F.

Figure 4.8: HLB with Cascaded 4-LUTs and Tapping Buffer

4.2.2 HLB Packing with Tapping Buffers

The example above illustrates how tapping buffers can improve FPGA density. We performed two separate studies which examined the effectiveness of tapping buffer-enabled HLBs for the cascaded 4-LUT structure shown in Figure 4.8. The first HLB architecture contained no tapping buffers and the second had tapping buffers between all the LUTs in the HLBs. The 28 benchmark circuits used in Chapter 3 were synthesized and packed into HLBs. The results in Table 4.2 show that that tapping buffered architectures had an average logic block utilization
2 rate of 88% compared to only 66% for non-tapping buffered architectures. This increased logic density lead to 26% fewer clusters on average as shown in Table 4.3.

Cluster Size	% Utilization (no tapping)	% Utilization (with tapping)
1	64	89
2	63	87
3	64	88
4	64	87
5	65	88
б	65	87
7	66	87
8	66	87
9	67	88
10	67	88

Table 4.2: HLB Cluster Utilization (with and without tapping buffers)

Table 4.3: Number of Clusters with and without Tapping Buffers

Cluster Size	<pre># of Clusters (no tapping)</pre>	<pre># of Clusters (with tapping)</pre>	% savings
1	1729	1233	-28.6%
2	869	631	-27.3%
3	573	418	-27.0%
4	428	315	-26.4%
5	337	251	-25.5%
6	280	210	-25.0%
7	239	179	-25.1%
8	207	157	-27.1%
9	183	139	-24.0%
10	165	125	-24.2%

4.3 Experimental Results

This section presents the area and delay results for the cascaded 4-LUTs after HLB packing, placement and routing through the full timing-driven CAD flow given in Figure 2.2. This time,

²Utilization refers to the percentage of LUTs within the cluster that are actually used

however, the new HLB packing algorithm is used. Although there are many different HLB structures, due to time constraints only the cascaded 4-LUT configuration was explored. The 20 largest MCNC [Yan91] circuits were used along with 8 new benchmarks as described in Chapter 3 and Table 3.3. Throughout this section, the results of the hardwired architecture in Figure 4.1 will be compared to those of the conventional non-hardwired architecture. All results are based on a 0.18 μ m CMOS design, including detailed circuit-level design for the HLB-based logic clusters was performed.

4.3.1 Area Results

This section presents the total FPGA area results (logic cluster + external routing) of the cascaded 4-LUT architecture in relation to the non-hardwired 4 to 7-LUTs shown in Figure $4.9.^3$ From this, two key observations about the data can be made:

Figure 4.9: Total Area Comparisons for Hardwired Arch. vs. Non-Hardwired

³The results for the small grain 2 and 3-input LUTs are not included due to their poor area-delay product. It is more important to compare the hardwired results with the best non-hardwired architectures.

- Increasing the cluster size from 4 to 10 in the cascaded 4-LUT architecture had a greater negative effect on total area compared to a similar increase for the non-hardwired 4 to 7-LUTs.
- The cascaded 4-LUT requires less total area than the 7-input LUT, as anticipated. Although it is not as efficient as the 4-LUT.

To further understand these observations, we have broken the total area results into two components: i) inter-cluster and ii) intra-cluster area. These components are shown in Figures 4.10 and 4.11. The inter-cluster area results show that the positive effects of clustering on reducing routing area are diminished after a certain point. More specifically, increasing the cluster size beyond 4 has very little impact on reducing inter-cluster area. The reason being that nets were no longer being absorbed within the cluster after this point. If nets are not being absorbed, then the BLEs attached to their terminals are in separate clusters and hence valuable routing resources must be used to make the connections. As a result, there was no reduction in inter-cluster area for any cluster size increase beyond 4.

The other component of the total area is the intra-cluster area shown in Figure 4.11. Here, the cascaded 4-LUT intra-cluster area demands more area than the 4 and 5-LUT non-hardwired architectures. The hardwired logic block architecture requires a larger intra-cluster area for several reasons:

Figure 4.10: Inter-Cluster Area Comparisons for Hardwired Arch. vs. Non-Hardwired

- 1. There are now twice as many LUTs per cluster for any given cluster size compared to the non-hardwired architectures.
- The intra-cluster multiplexer area is larger since there are now more LUTs which translates into more inputs. Also, these extra LUTs result in more outputs which require a full routing crossbar on the outputs to maintain logical equivalence on the cluster output pins.
- 3. There is only 88% logic block utilization for the hardwired architecture compared to 98% for the non-hardwired architectures.

All these factors contributed to the increase in total FPGA area of the cascaded 4-LUT architecture as the cluster size was increased from 4 to 10. Note, that even though the hardwired architecture demanded slightly more total area than the 4 to 6-LUTs, there was still up to 15% in area savings compared to the 7-LUTs. Recall that the initial motivation for exploring these hardwired structures was to reduce the large area requirements of the 7-LUT while still main-

Figure 4.11: Intra-Cluster Area Comparisons for Hardwired Arch. vs. Non-Hardwired

taining its desirable performance characteristics. The results indicate that our initial predictions were correct as far as area is concerned. The 15% area reduction could have been better had it not been for the 5 circuits in the benchmark suite which required significantly more 4-LUTs than 7-LUTs after technology mapping.⁴ A poor mapping would be any circuit that requires more than two 4-input LUTs for every 7-LUT after technology mapping. Table 4.4 presents the ratio of 7-LUTs to 4-LUTs after technology mapping for all the circuits with the inefficient ones marked in bold. The determination of why these circuits map inefficiently is left for future work.

4.3.2 Delay Results

The next step is to examine the hardwired logic block performance. Figure 4.12 compares the critical path delays of the cascaded 4-LUTs to the regular non-hardwired architectures. The results show that the cascaded 4-LUTs slightly out-perform the pure 4-LUTs but are worse

⁴The 5 circuits were bigkey, des, ex1010, s38417, img_calc

Circuit	# of 4-LUTs	# of 7-LUTs	$\frac{4-LUTs}{7-LUTs}$
alu4	1522	952	1.59
apex2	1878	1351	1.39
apex4	1262	847	1.48
bigkey	1707	463	3.6*
clma	8383	5539	1.51
des	1591	497	3.2*
diffeq	1497	800	1.87
dsip	1370	1357	1.01
elliptic	3604	2257	1.59
ex1010	4598	1827	2.51*
ex5p	1064	559	1.9
frisc	3556	2519	1.41
misex3	1397	1039	1.34
pdc	4575	3014	1.51
s298	1931	1141	1.69
s38417	6406	3099	2.06*
s38584	6447	3489	1.84
seq	1750	1198	1.46
spla	3690	2663	1.38
tseng	1047	877	1.19
display_chip	1794	1046	1.71
img_calc	10141	3771	2.68*
img_interp	2727	1430	1.9
input_chip	807	550	1.46
peak_chip	809	493	1.64
scale125_chip	2632	1808	1.45
scale2_chip	1189	775	1.53
warping	1353	859	1.57

Table 4.4: Comparison of number of 4-LUT to 7-LUT blocks after technology mapping

than the 5 to 7-LUTs.

Figure 4.12: Total Critical Path Delay Comparisons for Hardwired Arch. vs. Non-Hardwired

To understand this situation more clearly, we should examine the number of BLEs on the critical path and the number of cluster levels on the critical path. The number of BLEs simply represents the amount of BLEs in series traversed along the critical path. Similarly, the number of clusters represents how many inter-cluster levels that exist on the critical path. There is a direct relationship between the number of cluster levels and the critical path delay. Generally, the more levels there are the larger the delay. This is generally true since in modern FPGAs the majority of the delay is still due to the external cluster routing. Figures 4.13 and 4.14 illustrate the number of BLEs and cluster levels respectively as a function of LUT and cluster size. The trend shows that more coarse grain logic structures result in fewer BLE and cluster levels on the critical path. These larger BLEs tend to absorb more connections internally and produce a fewer number of logic blocks. It can be seen that the cascaded 4-LUTs have more cluster levels than the 5 to 7-LUTs and this the major reason for the increase in total delay.

Figure 4.13: Number of BLEs on the Critical Path Comparisons for Hardwired Arch. vs. Non-Hardwired

Figure 4.14: Number of Clusters on the Critical Path Comparisons for Hardwired Arch. vs. Non-Hardwired

4.4 Area-Delay Results

In FPGA studies, another metric for evaluating the quality of an architecture is by measuring its area-delay product. Since there is always the tradeoff between area and delay, a good architecture is one with a low value for area-delay product. This minimum represents the point where we are sacrificing the least amount of area for the most performance. Table 4.5 shows the areadelay product for the cascaded 4-LUTs and the non-hardwired architectures (4 to 7-LUTs). The 7-LUT architecture has the worst areadelay product but interestingly, the hardwired architecture does not perform any better despite the fact that there was a reduction in the total FPGA area. Unfortunately, the area reduction was not accompanied by a corresponding reduction in critical path delay. The improvement in total FPGA area was not enough to compensate for the slight increase in delay.

Cluster Size	4-LUT	5-LUT	6-LUT	7-LUT	Hardwired 4-LUTs
1	0.098	0.088	0.079	0.094	0.091
2	0.084	0.077	0.069	0.078	0.076
3	0.067	0.064	0.061	0.074	0.074
4	0.063	0.058	0.062	0.069	0.075
5	0.065	0.062	0.059	0.069	0.074
б	0.062	0.059	0.056	0.068	0.073
7	0.060	0.060	0.058	0.070	0.074
8	0.058	0.059	0.060	0.070	0.074
9	0.059	0.061	0.060	0.070	0.075
10	0.059	0.060	0.060	0.073	0.077

 Table 4.5: Area-Delay Product Comparison Between Cascaded 4-LUTs and Non-hardwired

 Architectures

4.5 Summary

This chapter examined the feasibility of employing hardwired logic blocks and how they compared to the non-hardwired architectures. We have found that the hardwired architecture required 10-15% less area than the 7-input LUT. However, there was a slight increase in critical path delay and this offset any positive gains we realized in area. The result was no improvement in the area-delay product.

CHAPTER 5

Conclusions and Future Work

5.1 Summary and Contributions

The goal of this thesis was to study the impact of different logic block architectures on FPGA density and performance. In chapter 3 we studied the effect of LUT and cluster size on FPGA area and speed. It was found that in terms of area, using LUT sizes of 4-5 and clusters of 4-9 were best. Also, a LUT size of 7 and clusters of 3-10 produced the lowest average critical path delay. However, for the area-delay product, LUT sizes of 4-6 and clusters of 3-10 were best. Another important contribution from Chapter 3 was an expression for the number of distinct cluster inputs (I) as a function of both LUT size (K) and cluster size (N). It had been previously shown in [BR97] [BR98] that when K=4 and I is set to 2N + 2 then 98% of all the 4-LUTs would be utilized. We found a more general expression for the 98% logic block utilization:

$$I = \frac{K}{2} \times (N+1)$$

Chapter 4 introduced a new HLB architecture and packing algorithm. We were specifically interested in the cascaded 4-LUT hardwired logic blocks. Our motivation for exploring such a hardwired architecture was that it may lead to an improvement in area-delay when compared to the non-hardwired logic blocks. However, we found that the use of the cascaded 4-LUT architecture did not improve our area-delay product. In fact, the hardwired area-delay results were quite similar to the 7-LUT logic block architectures.

5.2 Future Work

In the future it would be interesting to study the effect of larger LUT sizes (> 7) and larger cluster sizes (> 10) on FPGA area and performance. Also, our HLB study focused strictly on the hardwired 4-LUTs. However, the behaviour of different hardwired architectures such as those shown in Figure 5.1 would be an interesting topic.

Figure 5.1: Various HLB architectures

Finally, our packing algorithm was based on a layout synthesis approach where we first technology mapped to K-LUTs and then packed these logic elements to form HLBs. Another method that could possibly lead to better area and delay results would be to perform the HLB mapping at the logic synthesis level. That is, treat the entire HLB as a coarse grain target for technology mapping.

${\sf APPENDIX}\,A$

Total Area

Circuit	1	LUT Size					
	2	3	4	5	6	7	
alu4	4.063	3.140	2.775	2.576	2.623	3.040	
apex2	4.695	3.867	3.697	4.019	4.333	5.160	
apex4	3.470	2.870	2.698	3.026	3.026	3.406	
bigkey	3.811	3.502	2.264	2.051	1.370	1.301	
clma	20.771	17.854	18.191	17.565	19.632	23.726	
des	3.695	2.761	2.341	2.254	1.222	1.514	
diffeq	2.702	2.282	2.236	2.361	2.367	2.651	
dsip	3.023	2.124	2.150	1.376	1.409	4.142	
elliptic	6.941	6.403	6.809	6.060	6.435	8.806	
ex1010	11.751	10.337	8.663	10.213	10.303	7.783	
ex5p	2.821	2.703	2.384	2.228	2.071	1.799	
frisc	9.364	8.026	7.466	8.055	9.797	11.564	
misex3	4.027	3.146	2.682	2.768	3.137	3.431	
pdc	15.333	12.170	12.048	11.871	12.065	12.771	
s298	4.479	3.230	3.050	3.367	3.518	4.167	
s38417	14.137	11.727	9.372	10.317	7.814	10.123	
s38584	12.941	11.136	11.514	9.764	10.391	10.997	
seq	4.365	3.775	3.717	3.686	4.024	4.583	
spla	11.930	9.993	8.298	9.677	9.520	11.297	
tseng	1.979	1.365	1.575	1.516	1.879	3.059	
display_chip	5.663	3.588	2.397	2.610	2.853	3.224	
img_calc	35.386	22.918	15.696	11.832	13.281	12.949	
img_interp	7.784	5.265	4.281	4.182	4.163	4.705	
input_chip	2.243	1.501	1.097	0.991	1.281	1.612	
peak_chip	2.570	1.960	1.050	1.042	1.092	1.411	
scale125_chip	7.153	5.061	4.135	4.365	5.105	5.933	
scale2_chip	2.710	1.910	1.784	1.297	1.832	2.261	
warping	2.817	2.259	1.816	1.578	1.775	2.488	
Geom. Avg.	5.596	4.389	3.801	3.673	3.777	4.494	

Table A.1: Total Area ($\times 10^6$) in Min. Width Trans. Area (Cluster Size = 1)

Circuit			LUT	Size		
	2	3	4	5	6	7
alu4	3.484	3.318	2.786	2.819	2.844	3.176
apex2	3.680	3.929	3.910	4.050	4.204	5.042
apex4	2.947	2.741	2.649	3.019	2.900	3.494
bigkey	2.908	2.598	2.008	2.006	1.367	1.317
clma	19.447	18.681	20.308	19.479	21.269	24.957
des	2.795	2.581	2.287	2.412	1.286	1.521
diffeq	2.437	2.113	2.335	2.356	2.163	2.668
dsip	2.409	2.058	2.034	1.487	1.476	3.919
elliptic	6.148	5.920	6.917	5.946	5.920	8.542
ex1010	9.168	12.264	9.350	11.088	10.820	7.823
ex5p	2.335	2.633	2.281	2.273	2.063	1.931
frisc	7.657	6.988	7.939	8.433	9.435	10.959
misex3	3.348	3.022	2.726	2.846	3.021	3.688
pdc	13.294	12.313	12.658	12.366	13.300	13.923
s298	4.075	3.725	3.242	3.234	3.273	4.213
s38417	14.570	13.727	11.825	11.595	8.191	10.431
s38584	13.766	12.029	10.798	10.789	11.440	12.216
seq	3.770	3.689	3.713	3.765	4.014	4.621
spla	10.629	10.621	9.243	10.085	10.594	11.159
tseng	1.632	1.310	1.466	1.561	1.831	2.965
display_chip	4.516	3.814	2.395	2.713	2.710	3.297
img_calc	38.436	27.930	18.592	12.739	15.383	13.782
img_interp	6.350	5.065	3.712	4.037	4.026	4.415
input_chip	1.857	1.453	1.069	0.951	1.241	1.595
peak_chip	2.229	1.889	0.948	1.026	1.121	1.462
scale125_chip	6.368	4.956	3.582	4.211	4.627	5.835
scale2_chip	2.474	1.811	1.555	1.377	1.783	2.276
warping	2.568	2.233	1.761	1.355	1.908	2.504
Geom. Avg.	4.846	4.379	3.804	3.763	3.808	4.553

Table A.2: Total Area ($\times 10^6$) in Min. Width Trans. Area (Cluster Size = 2)

Circuit			LUT	Size		
	2	3	4	5	6	7
alu4	3.156	2.666	2.590	2.483	2.658	3.058
apex2	3.780	3.432	3.357	3.650	4.007	4.942
apex4	2.754	2.462	2.335	2.701	2.799	3.337
bigkey	2.587	2.526	2.219	2.130	1.379	1.432
clma	18.706	17.054	16.142	16.836	19.334	23.297
des	2.671	2.353	2.215	2.247	1.164	1.548
diffeq	2.244	1.936	2.176	2.139	2.063	2.673
dsip	2.100	1.954	1.964	1.398	1.386	4.347
elliptic	5.775	5.439	5.931	5.525	5.720	8.651
ex1010	9.568	11.169	8.555	9.467	9.701	7.484
ex5p	2.201	2.250	2.072	2.052	1.976	1.858
frisc	6.933	6.656	6.766	7.423	9.059	11.142
misex3	2.950	2.695	2.503	2.539	2.930	3.565
pdc	13.022	10.701	10.982	10.590	10.965	12.469
s298	3.475	3.044	2.741	2.860	3.118	3.971
s38417	14.056	11.739	9.817	10.077	7.910	10.625
s38584	12.169	11.546	9.863	10.022	10.682	12.131
seq	3.710	3.223	3.114	3.202	3.713	4.394
spla	10.457	9.492	8.319	8.597	8.887	10.321
tseng	1.450	1.249	1.430	1.392	1.791	2.925
display_chip	4.100	3.265	2.273	2.602	2.657	3.347
img_calc	36.277	26.150	17.409	12.863	14.364	13.488
img_interp	5.593	4.364	3.488	3.641	3.832	4.548
input_chip	1.694	1.350	0.940	0.949	1.255	1.669
peak_chip	2.024	1.647	0.913	0.964	1.089	1.433
scale125_chip	5.736	4.451	3.298	3.885	4.831	5.802
scale2_chip	2.025	1.608	1.389	1.235	1.660	2.328
warping	2.326	1.891	1.682	1.329	1.758	2.685
Geom. Avg.	4.475	3.917	3.457	3.433	3.598	4.518

Table A.3: Total Area ($\times 10^6$) in Min. Width Trans. Area (Cluster Size = 3)

Circuit		LUT Size					
	2	3	4	5	6	7	
alu4	2.851	2.507	2.365	2.297	2.653	2.961	
apex2	3.544	3.416	3.263	3.605	3.881	4.911	
apex4	2.524	2.364	2.313	2.587	2.688	3.320	
bigkey	2.258	2.342	1.983	1.917	1.353	1.319	
clma	17.251	16.294	15.806	16.153	19.397	23.058	
des	2.195	1.926	2.042	2.075	1.122	1.473	
diffeq	2.076	1.881	2.035	2.082	2.078	2.564	
dsip	1.749	1.454	1.593	1.262	1.378	4.224	
elliptic	5.371	5.106	6.202	5.346	9.606	8.459	
ex1010	9.405	10.544	8.295	9.187	9.212	7.132	
ex5p	2.029	2.094	2.004	1.871	1.904	1.878	
frisc	6.619	6.310	6.301	7.177	8.728	10.885	
misex3	2.880	2.669	2.350	2.421	2.930	3.503	
pdc	11.499	9.828	10.717	10.175	10.799	11.870	
s298	3.192	2.886	2.518	2.751	3.069	3.913	
s38417	14.108	11.589	9.926	9.574	7.867	10.355	
s38584	12.153	10.045	9.333	9.511	10.839	11.859	
seq	3.345	3.200	3.025	3.139	3.601	4.325	
spla	9.529	8.814	7.954	8.290	8.983	10.137	
tseng	1.384	1.100	1.402	1.313	1.724	2.963	
display_chip	3.799	2.976	2.228	2.655	2.611	3.308	
img_calc	34.379	24.689	16.297	12.610	14.393	13.552	
img_interp	5.491	4.085	3.389	3.523	4.005	4.593	
input_chip	1.616	1.285	0.934	0.932	1.216	1.635	
peak_chip	1.751	1.585	0.855	0.922	1.098	1.498	
scale125_chip	5.487	4.151	3.214	3.668	4.594	5.650	
scale2_chip	1.930	1.461	1.325	1.212	1.637	2.326	
warping	2.143	1.765	1.574	1.275	1.748	2.500	
Geom. Avg.	4.147	3.641	3.294	3.284	3.614	4.428	

Table A.4: Total Area ($\times 10^6$) in Min. Width Trans. Area (Cluster Size = 4)

Circuit	LUT Size					
	2	3	4	5	6	7
alu4	2.768	2.360	2.340	2.351	2.623	3.183
apex2	3.417	3.186	3.377	3.529	3.918	5.028
apex4	2.468	2.259	2.296	2.643	2.704	3.280
bigkey	2.307	2.161	2.008	2.002	1.415	1.427
clma	17.411	15.803	15.885	16.421	18.865	24.472
des	2.244	1.996	2.035	2.171	1.164	1.507
diffeq	2.005	1.891	2.122	2.195	2.095	2.790
dsip	1.898	1.516	1.687	1.386	1.428	4.353
elliptic	5.728	4.976	6.218	5.723	5.764	8.734
ex1010	9.081	10.045	8.130	9.177	9.329	7.473
ex5p	1.963	2.053	1.976	2.000	1.914	1.941
frisc	6.104	5.861	6.293	6.920	8.916	11.220
misex3	2.801	2.430	2.357	2.498	2.858	3.526
pdc	11.243	9.486	10.202	9.916	11.043	12.069
s298	2.808	2.519	2.516	2.818	3.024	3.982
s38417	13.440	11.118	9.355	10.091	8.027	10.821
s38584	11.764	10.138	9.802	9.834	10.631	12.237
seq	3.116	2.956	3.034	3.214	3.497	4.472
spla	9.377	8.156	7.310	7.860	9.074	9.998
tseng	1.348	1.114	1.452	1.367	1.805	3.053
display_chip	3.430	2.729	2.172	2.781	2.660	3.417
img_calc	31.044	23.093	15.734	12.772	14.730	13.709
img_interp	5.277	4.050	3.339	3.501	4.041	4.626
input_chip	1.584	1.234	0.942	0.942	1.269	1.690
peak_chip	1.606	1.534	0.909	0.993	1.121	1.558
scale125_chip	4.914	4.024	3.233	3.661	4.734	5.928
scale2_chip	1.813	1.439	1.331	1.224	1.739	2.359
warping	2.059	1.826	1.628	1.372	1.856	2.725
Geom. Avg.	4.000	3.506	3.298	3.370	3.601	4.579

Table A.5: Total Area ($\times 10^6$) in Min. Width Trans. Area (Cluster Size = 5)

Circuit			LUT	Size		
	2	3	4	5	6	7
alu4	2.646	2.316	2.161	2.335	2.621	3.075
apex2	3.297	3.259	3.323	3.603	4.023	5.014
apex4	2.387	2.370	2.442	2.471	2.762	3.326
bigkey	2.010	1.866	1.942	1.919	1.390	1.415
clma	16.178	15.392	15.761	16.376	19.020	24.193
des	2.110	2.003	1.950	2.064	1.156	1.542
diffeq	1.954	1.734	2.064	2.127	2.086	2.784
dsip	1.856	1.578	1.471	1.288	1.413	4.237
elliptic	5.138	5.036	6.130	5.655	5.770	8.756
ex1010	8.942	10.371	8.204	9.351	9.807	7.442
ex5p	2.030	2.112	1.971	1.948	1.962	2.000
frisc	6.275	5.974	6.203	6.903	8.661	11.220
misex3	2.625	2.470	2.243	2.440	2.923	3.601
pdc	10.730	9.462	10.434	10.178	10.894	12.019
s298	2.611	2.530	2.517	2.853	3.021	3.931
s38417	13.283	10.759	9.489	9.798	8.187	10.906
s38584	11.833	9.928	9.733	9.974	10.630	12.317
seq	3.132	2.946	2.886	3.173	3.540	4.513
spla	9.024	8.303	7.218	7.995	8.703	10.008
tseng	1.290	1.149	1.457	1.393	1.846	3.059
display_chip	3.225	2.864	2.330	2.817	2.791	3.489
img_calc	31.968	21.903	15.841	12.599	14.396	13.982
img_interp	4.879	3.892	3.486	3.673	3.949	4.733
input_chip	1.403	1.256	0.960	0.956	1.289	1.726
peak chip	1.563	1.497	0.891	1.001	1.145	1.557
scale125_chip	4.835	3.883	3.243	3.793	4.620	5.950
scale2_chip	1.727	1.466	1.381	1.264	1.759	2.414
warping	2.124	1.749	1.559	1.362	1.836	2.708
Geom. Avg.	3.852	3.484	3.267	3.355	3.614	4.598

Table A.6: Total Area ($\times 10^6$) in Min. Width Trans. Area (Cluster Size = 6)

Circuit	LUT Size					
	2	3	4	5	6	7
alu4	2.706	2.345	2.265	2.317	2.709	3.142
apex2	3.261	3.103	3.283	3.526	4.102	5.132
apex4	2.458	2.306	2.374	2.482	2.987	3.375
bigkey	1.986	2.223	2.200	2.044	1.499	1.521
clma	15.401	15.950	15.498	16.442	19.812	24.396
des	2.291	2.139	1.990	2.172	1.234	1.603
diffeq	1.847	1.793	1.986	2.159	2.185	2.870
dsip	1.787	1.837	1.561	1.394	1.499	4.451
elliptic	5.213	5.002	6.224	5.618	6.038	9.119
ex1010	8.741	10.084	8.386	9.219	9.550	7.592
ex5p	1.935	2.068	1.937	2.013	1.991	2.016
frisc	6.203	5.746	6.294	6.885	9.148	11.563
misex3	2.664	2.405	2.305	2.444	2.961	3.630
pdc	10.312	9.311	9.774	10.062	10.967	12.169
s298	2.723	2.497	2.373	2.751	3.164	4.021
s38417	13.121	11.032	9.321	9.830	8.479	11.289
s38584	11.168	10.013	9.457	10.252	11.118	12.691
seq	3.103	3.035	2.993	3.145	3.676	4.593
spla	8.624	8.234	7.134	7.619	9.012	10.229
tseng	1.267	1.207	1.440	1.410	1.869	3.279
display_chip	3.111	2.682	2.278	2.886	2.815	3.544
img_calc	29.804	22.082	15.766	12.964	14.963	14.545
img_interp	4.964	3.626	3.524	3.797	4.181	4.888
input_chip	1.518	1.261	0.976	0.961	1.345	1.846
peak_chip	1.486	1.585	0.928	1.013	1.212	1.603
scale125_chip	4.530	3.975	3.131	3.890	4.884	6.137
scale2_chip	1.770	1.508	1.414	1.390	1.902	2.559
warping	2.005	1.803	1.652	1.421	1.972	2.887
Geom. Avg.	3.799	3.530	3.284	3.404	3.765	4.750

Table A.7: Total Area ($\times 10^6$) in Min. Width Trans. Area (Cluster Size = 7)

Circuit		LUT Size					
	2	3	4	5	6	7	
alu4	2.653	2.315	2.293	2.368	2.673	3.159	
apex2	3.222	3.106	3.322	3.555	4.015	5.147	
apex4	2.455	2.342	2.312	2.498	2.922	3.483	
bigkey	1.980	2.201	2.089	2.021	1.530	1.484	
clma	15.373	15.642	15.742	16.679	19.807	24.507	
des	2.190	2.003	2.048	2.184	1.252	1.613	
diffeq	1.938	1.822	2.066	2.169	2.191	2.894	
dsip	1.706	1.583	1.590	1.359	1.525	4.428	
elliptic	5.465	5.063	5.965	5.662	6.069	9.225	
ex1010	8.675	10.377	8.581	9.337	9.680	7.463	
ex5p	1.917	2.116	1.945	2.193	2.052	2.102	
frisc	5.931	6.003	6.054	7.069	9.285	11.781	
misex3	2.717	2.411	2.306	2.410	3.004	3.637	
pdc	9.978	9.241	9.765	9.997	11.104	11.975	
s298	2.695	2.450	2.483	2.760	3.230	4.195	
s38417	12.931	10.235	9.415	9.732	8.562	11.219	
s38584	11.127	9.822	9.462	10.105	11.414	13.038	
seq	3.053	2.908	2.993	3.230	3.694	4.565	
spla	8.704	8.299	6.956	7.848	8.983	10.235	
tseng	1.218	1.165	1.483	1.453	1.944	3.229	
display_chip	3.188	2.829	2.262	2.890	2.955	3.637	
img_calc	27.935	21.432	15.576	13.180	15.300	14.566	
img_interp	4.780	3.797	3.522	3.774	4.142	4.896	
input_chip	1.434	1.260	0.959	1.018	1.405	1.839	
peak chip	1.551	1.593	0.942	1.044	1.252	1.655	
scale125_chip	4.731	3.934	3.085	3.818	5.009	6.104	
scale2_chip	1.753	1.466	1.368	1.304	1.864	2.551	
warping	1.986	1.822	1.610	1.425	1.983	2.878	
Geom. Avg.	3.765	3.497	3.279	3.430	3.810	4.776	

Table A.8: Total Area ($\times 10^6$) in Min. Width Trans. Area (Cluster Size = 8)

Circuit	LUT Size							
	2	3	4	5	6	7		
alu4	2.602	2.287	2.162	2.343	2.766	3.228		
apex2	3.211	2.995	3.298	3.672	4.117	5.178		
apex4	2.306	2.275	2.265	2.679	2.879	3.529		
bigkey	2.179	2.020	2.003	2.115	1.531	1.519		
clma	15.260	14.792	15.542	17.063	19.920	24.458		
des	2.155	1.964	2.009	2.177	1.261	1.646		
diffeq	2.013	1.729	2.021	2.228	2.272	2.881		
dsip	1.808	1.513	1.541	1.433	1.531	4.485		
elliptic	5.322	4.984	5.928	5.944	6.119	9.158		
ex1010	8.326	10.013	8.763	9.865	9.841	7.752		
ex5p	1.962	2.071	1.977	2.093	2.098	2.057		
frisc	6.025	5.934	6.093	7.226	9.091	11.580		
misex3	2.641	2.316	2.299	2.608	3.041	3.730		
pdc	10.340	8.934	9.594	10.399	10.913	12.134		
s298	2.713	2.438	2.431	2.904	3.320	4.237		
s38417	12.442	10.306	9.413	10.376	8.663	11.280		
s38584	10.868	10.158	9.778	10.744	11.709	13.297		
seq	2.986	2.986	2.912	3.273	3.671	4.644		
spla	8.481	7.813	6.821	8.226	8.931	10.301		
tseng	1.297	1.182	1.586	1.542	1.976	3.349		
display_chip	3.299	2.831	2.262	3.121	2.915	3.673		
img_calc	27.772	21.651	15.498	13.836	15.450	14.817		
img_interp	4.613	3.707	3.463	4.068	4.257	5.016		
input chip	1.395	1.236	0.949	1.093	1.410	1.885		
peak_chip	1.541	1.549	0.949	1.130	1.221	1.661		
scale125_chip	4.663	3.935	3.089	4.180	5.066	6.327		
scale2_chip	1.759	1.456	1.442	1.426	1.933	2.607		
warping	1.955	1.753	1.642	1.495	2.001	2.890		
Geom. Avg.	3.759	3.425	3.265	3.594	3.844	4.838		

Table A.9: Total Area ($\times 10^6$) in Min. Width Trans. Area (Cluster Size = 9)

Circuit	LUT Size							
	2	3	4	5	6	7		
alu4	2.659	2.296	2.327	2.463	2.842	3.284		
apex2	3.325	3.124	3.238	3.863	4.182	5.309		
apex4	2.386	2.407	2.484	2.764	3.027	3.521		
bigkey	2.277	2.117	2.111	2.260	1.619	1.569		
clma	15.307	14.984	15.844	17.695	20.526	24.997		
des	2.196	2.068	2.066	2.301	1.314	1.696		
diffeq	1.927	1.842	2.075	2.243	2.268	2.953		
dsip	1.951	1.618	1.621	1.504	1.596	4.565		
elliptic	5.331	5.045	6.209	5.937	6.416	9.240		
ex1010	8.698	10.410	8.797	9.787	9.877	7.964		
ex5p	1.923	2.086	2.033	2.200	2.138	2.188		
frisc	5.978	5.971	6.271	7.406	9.415	11.638		
misex3	2.495	2.469	2.407	2.555	3.085	3.685		
pdc	9.859	8.808	9.765	10.399	11.451	12.319		
s298	2.569	2.440	2.547	2.929	3.320	4.354		
s38417	12.466	10.517	9.428	10.512	8.992	11.832		
s38584	10.524	10.147	10.128	11.025	12.012	13.610		
seq	3.025	2.980	2.961	3.476	3.849	4.695		
spla	8.284	8.175	7.019	8.042	9.097	10.463		
tseng	1.279	1.274	1.623	1.565	2.004	3.421		
display_chip	3.096	2.797	2.363	3.145	3.075	3.782		
img_calc	26.454	22.238	15.690	13.820	16.033	14.925		
img_interp	4.757	3.644	3.718	4.046	4.425	5.303		
input_chip	1.406	1.217	0.971	1.072	1.459	1.860		
peak_chip	1.589	1.562	1.018	1.122	1.318	1.691		
scale125_chip	4.538	3.930	3.274	4.121	5.312	6.355		
scale2_chip	1.757	1.502	1.518	1.400	1.948	2.688		
warping	1.971	1.808	1.734	1.610	2.099	3.026		
Geom. Avg.	3.749	3.505	3.387	3.660	3.971	4.942		

Table A.10: Total Area ($\times 10^6$) in Min. Width Trans. Area (Cluster Size = 10)

${\sf APPENDIX}\,B$

Intra-Cluster (Logic) Area

Circuit	LUT Size							
	2	3	4	5	6	7		
alu4	0.287	0.279	0.391	0.576	0.992	1.520		
apex2	0.332	0.327	0.483	0.723	1.250	2.158		
apex4	0.231	0.233	0.324	0.507	0.821	1.353		
bigkey	0.313	0.345	0.439	0.590	0.585	0.739		
clma	1.497	1.490	2.154	3.019	5.281	8.846		
des	0.305	0.308	0.409	0.568	0.469	0.794		
diffeq	0.268	0.251	0.385	0.527	0.735	1.278		
dsip	0.266	0.265	0.352	0.396	0.582	2.167		
elliptic	0.575	0.576	0.926	1.176	1.805	3.604		
ex1010	0.842	0.858	1.182	1.862	2.617	2.918		
ex5p	0.187	0.193	0.273	0.380	0.626	0.893		
frisc	0.632	0.613	0.914	1.322	2.487	4.023		
misex3	0.268	0.265	0.359	0.530	0.980	1.659		
pdc	0.883	0.830	1.176	1.747	3.070	4.813		
s298	0.449	0.403	0.496	0.698	1.101	1.822		
s38417	1.434	1.319	1.646	2.350	2.865	4.949		
s38584	1.312	1.252	1.657	2.338	3.657	5.572		
seq	0.309	0.309	0.450	0.662	1.121	1.913		
spla	0.781	0.730	0.948	1.501	2.542	4.253		
tseng	0.195	0.167	0.269	0.373	0.676	1.401		
display_chip	0.502	0.448	0.461	0.715	1.033	1.670		
img_calc	2.973	2.592	2.606	2.699	4.684	6.022		
img_interp	0.692	0.587	0.701	0.991	1.451	2.284		
input_chip	0.234	0.212	0.207	0.278	0.518	0.878		
peak_chip	0.255	0.255	0.208	0.292	0.455	0.787		
scale125_chip	0.721	0.636	0.676	1.035	1.783	2.887		
scale2_chip	0.284	0.248	0.306	0.366	0.689	1.238		
warping	0.295	0.295	0.348	0.392	0.728	1.372		
Geom. Avg.	0.464	0.443	0.571	0.792	1.245	2.085		

Table B.1: Intra-Cluster Area ($\times 10^6$) in Min. Width Trans. Area (Cluster Size = 1)

Circuit	LUT Size						
	2	3	4	5	6	7	
alu4	0.376	0.470	0.565	0.833	1.275	1.808	
apex2	0.439	0.560	0.697	1.079	1.605	2.572	
apex4	0.308	0.386	0.486	0.797	1.076	1.675	
bigkey	0.416	0.510	0.617	0.828	0.750	0.877	
clma	1.934	2.395	3.056	4.366	6.769	10.476	
des	0.400	0.492	0.610	0.796	0.601	0.942	
diffeq	0.346	0.383	0.541	0.739	0.944	1.513	
dsip	0.342	0.389	0.573	0.555	0.746	2.568	
elliptic	0.742	0.827	1.305	1.670	2.314	4.270	
ex1010	1.116	1.606	1.702	2.911	3.407	3.635	
ex5p	0.249	0.339	0.417	0.572	0.816	1.070	
frisc	0.821	0.927	1.289	1.862	3.188	4.765	
misex3	0.351	0.439	0.514	0.784	1.256	1.982	
pdc	1.161	1.390	1.739	2.702	4.149	5.934	
s298	0.587	0.615	0.698	0.979	1.412	2.205	
s38417	1.844	1.947	2.313	3.297	3.674	5.862	
s38584	1.686	1.803	2.328	3.280	4.689	6.600	
seq	0.408	0.524	0.647	0.965	1.453	2.284	
spla	1.020	1.220	1.397	2.342	3.388	5.219	
tseng	0.264	0.251	0.378	0.524	0.868	1.660	
display_chip	0.653	0.655	0.648	1.004	1.325	1.978	
img_calc	3.854	3.998	3.661	3.786	6.006	7.133	
img_interp	0.890	0.875	0.985	1.390	1.861	2.704	
input_chip	0.301	0.309	0.292	0.390	0.664	1.040	
peak_chip	0.328	0.367	0.292	0.410	0.583	0.934	
scale125_chip	0.927	0.919	0.950	1.452	2.286	3.419	
scale2_chip	0.365	0.352	0.430	0.514	0.883	1.467	
warping	0.380	0.420	0.489	0.550	0.933	1.626	
Geom. Avg.	0.605	0.688	0.819	1.141	1.605	2.490	

Table B.2: Intra-Cluster Area ($\times 10^6$) in Min. Width Trans. Area (Cluster Size = 2)

Circuit	LUT Size						
	2	3	4	5	6	7	
alu4	0.379	0.464	0.628	0.859	1.365	1.949	
apex2	0.441	0.547	0.781	1.093	1.726	2.770	
apex4	0.307	0.391	0.535	0.786	1.139	1.734	
bigkey	0.412	0.559	0.691	0.872	0.802	0.950	
clma	1.952	2.452	3.415	4.515	7.255	11.325	
des	0.401	0.508	0.647	0.843	0.643	1.017	
diffeq	0.351	0.410	0.611	0.782	1.007	1.636	
dsip	0.346	0.430	0.568	0.587	0.799	2.776	
elliptic	0.751	0.937	1.452	1.743	2.487	4.614	
ex1010	1.117	1.515	1.932	2.829	3.650	3.818	
ex5p	0.250	0.328	0.452	0.581	0.861	1.152	
frisc	0.827	0.999	1.434	1.963	3.404	5.148	
misex3	0.354	0.442	0.580	0.801	1.358	2.145	
pdc	1.166	1.376	1.912	2.657	4.331	6.263	
s298	0.583	0.656	0.777	1.033	1.511	2.341	
s38417	1.869	2.144	2.573	3.477	3.921	6.330	
s38584	1.706	2.029	2.585	3.458	5.005	7.127	
seq	0.408	0.519	0.722	0.999	1.549	2.457	
spla	1.032	1.216	1.540	2.285	3.581	5.527	
tseng	0.259	0.274	0.421	0.552	0.927	1.796	
display_chip	0.656	0.729	0.719	1.058	1.414	2.139	
img_calc	3.896	4.218	4.073	3.993	6.411	7.703	
img_interp	0.903	0.951	1.095	1.467	1.987	2.923	
input_chip	0.305	0.343	0.324	0.412	0.708	1.128	
peak_chip	0.333	0.414	0.325	0.433	0.625	1.011	
scale125_chip	0.938	1.030	1.056	1.532	2.442	3.695	
scale2_chip	0.368	0.403	0.478	0.543	0.945	1.587	
warping	0.385	0.478	0.543	0.581	0.997	1.759	
Geom. Avg.	0.609	0.728	0.906	1.184	1.713	2.678	

Table B.3: Intra-Cluster Area ($\times 10^6$) in Min. Width Trans. Area (Cluster Size = 3)

Circuit			LU	Size		
	2	3	4	5	6	7
alu4	0.421	0.496	0.683	0.942	1.491	2.034
apex2	0.492	0.592	0.849	1.195	1.877	2.890
apex4	0.344	0.415	0.587	0.870	1.240	1.813
bigkey	0.455	0.577	0.748	0.950	0.868	0.983
clma	2.180	2.603	3.735	4.947	7.875	11.813
des	0.447	0.535	0.727	0.920	0.698	1.059
diffeq	0.392	0.427	0.664	0.850	1.094	1.695
dsip	0.387	0.444	0.601	0.636	0.863	2.881
elliptic	0.843	0.977	1.586	1.895	4.522	4.788
ex1010	1.256	1.666	2.103	3.096	3.965	3.983
ex5p	0.280	0.355	0.487	0.636	0.939	1.212
frisc	0.931	1.048	1.565	2.162	3.709	5.381
misex3	0.396	0.472	0.632	0.878	1.471	2.237
pdc	1.304	1.463	2.078	2.915	4.663	6.500
s298	0.652	0.693	0.858	1.137	1.641	2.432
s38417	2.091	2.245	2.817	3.785	4.251	6.567
s38584	1.907	2.114	2.826	3.760	5.426	7.398
seq	0.457	0.552	0.784	1.089	1.681	2.576
spla	1.151	1.288	1.672	2.493	3.860	5.703
tseng	0.290	0.291	0.466	0.600	1.004	1.864
display_chip	0.735	0.754	0.790	1.151	1.536	2.220
img_calc	4.351	4.382	4.444	4.344	6.951	7.991
img_interp	1.014	0.995	1.194	1.595	2.153	3.034
input_chip	0.342	0.355	0.354	0.447	0.768	1.169
peak_chip	0.371	0.428	0.355	0.470	0.678	1.051
scale125_chip	1.047	1.065	1.152	1.665	2.645	3.830
scale2_chip	0.412	0.416	0.522	0.589	1.024	1.644
warping	0.431	0.494	0.594	0.631	1.079	1.822
Geom. Avg.	0.680	0.766	0.988	1.292	1.893	2.785

Table B.4: Intra-Cluster Area ($\times 10^6$) in Min. Width Trans. Area (Cluster Size = 4)

Circuit	LUT Size						
	2	3	4	5	6	7	
alu4	0.438	0.510	0.756	1.040	1.554	2.107	
apex2	0.508	0.605	0.943	1.318	1.962	3.001	
apex4	0.355	0.429	0.653	0.939	1.297	1.876	
bigkey	0.474	0.616	0.840	1.055	0.915	1.026	
clma	2.265	2.704	4.166	5.447	8.248	12.259	
des	0.463	0.557	0.791	1.021	0.731	1.103	
diffeq	0.408	0.450	0.741	0.943	1.145	1.765	
dsip	0.401	0.475	0.673	0.711	0.908	3.001	
elliptic	0.873	1.032	1.773	2.111	2.811	4.987	
ex1010	1.298	1.655	2.342	3.418	4.167	4.127	
ex5p	0.290	0.362	0.545	0.700	0.987	1.258	
frisc	0.959	1.100	1.758	2.393	3.891	5.572	
misex3	0.411	0.485	0.707	0.970	1.540	2.306	
pdc	1.351	1.517	2.318	3.209	4.852	6.720	
s298	0.677	0.725	0.957	1.253	1.718	2.527	
s38417	2.171	2.373	3.157	4.210	4.463	6.841	
s38584	1.981	2.241	3.167	4.187	5.694	7.702	
seq	0.474	0.568	0.874	1.195	1.758	2.659	
spla	1.194	1.335	1.866	2.733	4.016	5.903	
tseng	0.299	0.306	0.520	0.669	1.053	1.942	
display_chip	0.760	0.802	0.884	1.280	1.613	2.317	
img_calc	4.508	4.646	4.981	4.832	7.294	8.331	
img_interp	1.048	1.050	1.340	1.774	2.258	3.156	
input_chip	0.355	0.378	0.398	0.499	0.810	1.214	
peak_chip	0.385	0.457	0.398	0.526	0.711	1.092	
scale125_chip	1.086	1.136	1.294	1.856	2.778	3.994	
scale2_chip	0.428	0.444	0.584	0.657	1.073	1.710	
warping	0.445	0.528	0.665	0.704	1.132	1.898	
Geom. Avg.	0.705	0.803	1.104	1.431	1.948	2.893	

Table B.5: Intra-Cluster Area ($\times 10^6$) in Min. Width Trans. Area (Cluster Size = 5)

Circuit	LUT Size						
	2	3	4	5	6	7	
alu4	0.454	0.563	0.803	1.093	1.630	2.192	
apex2	0.529	0.669	1.000	1.386	2.051	3.109	
apex4	0.369	0.477	0.694	0.986	1.357	1.959	
bigkey	0.491	0.674	0.891	1.113	0.960	1.068	
clma	2.353	2.976	4.397	5.740	8.628	12.683	
des	0.482	0.610	0.838	1.079	0.769	1.137	
diffeq	0.425	0.493	0.791	0.996	1.199	1.835	
dsip	0.417	0.519	0.716	0.747	0.951	3.109	
elliptic	0.904	1.134	1.884	2.226	2.945	5.164	
ex1010	1.350	1.856	2.487	3.631	4.359	4.273	
ex5p	0.302	0.404	0.575	0.747	1.042	1.301	
frisc	0.999	1.215	1.859	2.509	4.062	5.766	
misex3	0.426	0.534	0.744	1.020	1.613	2.397	
pdc	1.403	1.668	2.444	3.373	5.071	6.958	
s298	0.704	0.794	1.009	1.323	1.795	2.616	
s38417	2.256	2.598	3.344	4.432	4.674	7.081	
s38584	2.059	2.452	3.359	4.403	5.964	7.972	
seq	0.492	0.625	0.919	1.264	1.836	2.753	
spla	1.238	1.470	1.978	2.880	4.210	6.123	
tseng	0.311	0.336	0.550	0.703	1.108	2.013	
display_chip	0.790	0.879	0.934	1.347	1.687	2.397	
img_calc	4.687	5.089	5.284	5.091	7.635	8.615	
img_interp	1.088	1.153	1.422	1.869	2.366	3.274	
input_chip	0.368	0.414	0.422	0.527	0.844	1.260	
peak_chip	0.401	0.500	0.422	0.552	0.744	1.137	
scale125_chip	1.130	1.244	1.372	1.952	2.912	4.136	
scale2_chip	0.446	0.487	0.622	0.693	1.125	1.781	
warping	0.464	0.578	0.706	0.742	1.191	1.972	
Geom. Avg.	0.733	0.883	1.170	1.508	2.040	3.000	

Table B.6: Intra-Cluster Area ($\times 10^6$) in Min. Width Trans. Area (Cluster Size = 6)

Circuit	LUT Size						
	2	3	4	5	6	7	
alu4	0.476	0.632	0.848	1.153	1.705	2.315	
apex2	0.552	0.744	1.053	1.461	2.148	3.278	
apex4	0.385	0.534	0.736	1.045	1.422	2.061	
bigkey	0.512	0.767	0.941	1.178	0.999	1.132	
clma	2.453	3.341	4.650	6.051	9.007	13.399	
des	0.501	0.688	0.883	1.141	0.807	1.200	
diffeq	0.442	0.558	0.833	1.057	1.261	1.943	
dsip	0.435	0.590	0.756	0.791	0.999	3.278	
elliptic	0.942	1.285	2.001	2.361	3.086	5.458	
ex1010	1.406	2.027	2.645	3.817	4.559	4.511	
ex5p	0.315	0.451	0.609	0.785	1.079	1.352	
frisc	1.037	1.370	1.967	2.651	4.246	6.100	
misex3	0.445	0.599	0.783	1.075	1.684	2.518	
pdc	1.460	1.870	2.580	3.557	5.285	7.350	
s298	0.734	0.899	1.068	1.401	1.876	2.771	
s38417	2.352	2.944	3.536	4.698	4.882	7.485	
s38584	2.147	2.787	3.551	4.668	6.233	8.432	
seq	0.514	0.700	0.979	1.335	1.926	2.923	
spla	1.290	1.648	2.075	3.032	4.387	6.472	
tseng	0.326	0.379	0.586	0.749	1.160	2.129	
display_chip	0.825	0.998	0.991	1.431	1.765	2.535	
img_calc	4.881	5.778	5.587	5.393	7.988	9.107	
img_interp	1.133	1.307	1.504	1.981	2.471	3.464	
input_chip	0.383	0.471	0.447	0.556	0.888	1.335	
peak_chip	0.418	0.569	0.447	0.586	0.777	1.200	
scale125_chip	1.179	1.415	1.450	2.071	3.046	4.376	
scale2_chip	0.465	0.554	0.656	0.731	1.180	1.876	
warping	0.483	0.657	0.748	0.785	1.241	2.078	
Geom. Avg.	0.764	0.995	1.237	1.595	2.133	3.168	

Table B.7: Intra-Cluster Area ($\times 10^6$) in Min. Width Trans. Area (Cluster Size = 7)

Circuit	LUT Size						
	2	3	4	5	6	7	
alu4	0.548	0.664	0.893	1.214	1.822	2.372	
apex2	0.637	0.793	1.116	1.531	2.290	3.360	
apex4	0.446	0.562	0.767	1.091	1.527	2.135	
bigkey	0.592	0.806	0.995	1.235	1.071	1.146	
clma	2.836	3.520	4.900	6.335	9.616	13.699	
des	0.580	0.725	0.930	1.192	0.862	1.245	
diffeq	0.511	0.588	0.879	1.105	1.342	1.977	
dsip	0.503	0.621	0.800	0.831	1.059	3.360	
elliptic	1.091	1.349	2.111	2.471	3.288	5.594	
ex1010	1.625	2.174	2.785	3.995	4.839	4.586	
ex5p	0.364	0.478	0.646	0.831	1.157	1.384	
frisc	1.202	1.443	2.073	2.788	4.531	6.246	
misex3	0.515	0.637	0.828	1.127	1.798	2.589	
pdc	1.686	1.972	2.706	3.720	5.652	7.531	
s298	0.850	0.943	1.130	1.466	2.007	2.827	
s38417	2.715	3.085	3.728	4.920	5.221	7.670	
s38584	2.482	2.921	3.747	4.891	6.661	8.638	
seq	0.594	0.736	1.027	1.401	2.056	2.965	
spla	1.491	1.733	2.180	3.171	4.667	6.622	
tseng	0.373	0.403	0.618	0.780	1.231	2.174	
display_chip	0.950	1.048	1.046	1.503	1.884	2.589	
img_calc	5.641	6.056	5.895	5.649	8.533	9.330	
img_interp	1.310	1.370	1.585	2.073	2.647	3.538	
input_chip	0.443	0.494	0.470	0.585	0.948	1.364	
peak_chip	0.483	0.597	0.474	0.614	0.837	1.226	
scale125_chip	1.363	1.483	1.530	2.167	3.251	4.467	
scale2_chip	0.538	0.580	0.693	0.766	1.256	1.917	
warping	0.559	0.688	0.790	0.824	1.330	2.135	
Geom. Avg.	0.883	1.048	1.305	1.671	2.278	3.241	

Table B.8: Intra-Cluster Area ($\times 10^6$) in Min. Width Trans. Area (Cluster Size = 8)

Circuit	LUT Size							
	2	3	4	5	6	7		
alu4	0.574	0.704	0.941	1.318	1.890	2.447		
apex2	0.666	0.829	1.166	1.662	2.376	3.453		
apex4	0.466	0.594	0.798	1.185	1.575	2.195		
bigkey	0.621	0.855	1.045	1.344	1.102	1.189		
clma	2.966	3.717	5.144	6.889	9.949	14.087		
des	0.604	0.768	0.979	1.291	0.888	1.281		
diffeq	0.535	0.623	0.924	1.203	1.389	2.035		
dsip	0.527	0.659	0.842	0.902	1.102	3.453		
elliptic	1.143	1.433	2.212	2.688	3.407	5.740		
ex1010	1.692	2.249	2.938	4.333	4.967	4.734		
ex5p	0.380	0.495	0.677	0.902	1.188	1.441		
frisc	1.259	1.529	2.179	3.015	4.681	6.426		
misex3	0.539	0.665	0.875	1.220	1.861	2.653		
pdc	1.763	2.082	2.834	4.032	5.826	7.752		
s298	0.888	1.002	1.183	1.592	2.076	2.904		
s38417	2.842	3.274	3.923	5.350	5.397	7.889		
s38584	2.597	3.107	3.945	5.323	6.886	8.873		
seq	0.619	0.778	1.084	1.512	2.119	3.064		
spla	1.558	1.828	2.289	3.449	4.824	6.838		
tseng	0.391	0.427	0.649	0.849	1.274	2.241		
display_chip	0.995	1.115	1.100	1.636	1.947	2.676		
img_calc	5.902	6.432	6.201	6.146	8.818	9.582		
img_interp	1.371	1.455	1.667	2.255	2.734	3.636		
input_chip	0.464	0.527	0.495	0.637	0.973	1.418		
peak_chip	0.507	0.633	0.495	0.672	0.859	1.258		
scale125_chip	1.427	1.578	1.612	2.361	3.364	4.596		
scale2_chip	0.563	0.617	0.732	0.840	1.303	1.990		
warping	0.585	0.733	0.831	0.893	1.374	2.195		
Geom. Avg.	0.923	1.109	1.371	1.816	2.353	3.340		

Table B.9: Intra-Cluster Area ($\times 10^6$) in Min. Width Trans. Area (Cluster Size = 9)

Circuit	LUT Size							
	2	3	4	5	6	7		
alu4	0.599	0.734	0.982	1.371	1.948	2.489		
apex2	0.697	0.864	1.219	1.729	2.439	3.526		
apex4	0.484	0.622	0.847	1.238	1.620	2.230		
bigkey	0.647	0.902	1.097	1.401	1.146	1.219		
clma	3.100	3.890	5.402	7.171	10.230	14.391		
des	0.632	0.801	1.027	1.350	0.917	1.296		
diffeq	0.558	0.652	0.969	1.248	1.424	2.074		
dsip	0.551	0.689	0.879	0.941	1.129	3.526		
elliptic	1.201	1.498	2.329	2.793	3.503	5.860		
ex1010	1.772	2.388	3.080	4.521	5.123	4.823		
ex5p	0.397	0.522	0.699	0.941	1.228	1.478		
frisc	1.313	1.598	2.284	3.151	4.812	6.534		
misex3	0.562	0.697	0.911	1.279	1.915	2.723		
pdc	1.841	2.180	2.971	4.204	5.991	7.908		
s298	0.929	1.047	1.245	1.657	2.144	2.982		
s38417	2.970	3.420	4.119	5.565	5.549	8.038		
s38584	2.716	3.242	4.138	5.544	7.087	9.049		
seq	0.647	0.816	1.129	1.585	2.177	3.111		
spla	1.626	1.908	2.400	3.590	4.976	6.975		
tseng	0.410	0.443	0.687	0.890	1.309	2.282		
display_chip	1.040	1.163	1.155	1.698	2.013	2.723		
img_calc	6.163	6.722	6.512	6.393	9.068	9.801		
img_interp	1.433	1.520	1.752	2.353	2.815	3.708		
input_chip	0.486	0.548	0.520	0.665	1.015	1.426		
peak_chip	0.528	0.663	0.520	0.696	0.884	1.296		
scale125_chip	1.491	1.647	1.694	2.455	3.454	4.693		
scale2_chip	0.588	0.645	0.764	0.869	1.342	2.022		
warping	0.612	0.764	0.873	0.931	1.408	2.256		
Geom. Avg.	0.965	1.160	1.437	1.893	2.424	3.407		

Table B.10: Intra-Cluster Area ($\times 10^6$) in Min. Width Trans. Area (Cluster Size = 10)

${}_{\mathsf{APPENDIX}}\,C$

Inter-Cluster (Routing) Area

Circuit	LUT Size								
	2	3	4	5	6	7			
alu4	3.776	2.861	2.383	2.001	1.631	1.520			
apex2	4.363	3.540	3.214	3.296	3.083	3.003			
apex4	3.239	2.637	2.374	2.518	2.206	2.053			
bigkey	3.498	3.157	1.825	1.462	0.785	0.562			
clma	19.275	16.364	16.036	14.546	14.351	14.880			
des	3.390	2.453	1.932	1.687	0.753	0.720			
diffeq	2.434	2.031	1.852	1.835	1.632	1.373			
dsip	2.758	1.859	1.798	0.981	0.827	1.975			
elliptic	6.366	5.826	5.883	4.884	4.630	5.201			
ex1010	10.909	9.479	7.481	8.351	7.686	4.866			
ex5p	2.635	2.510	2.110	1.848	1.445	0.907			
frisc	8.732	7.413	6.552	6.733	7.310	7.541			
misex3	3.759	2.881	2.323	2.238	2.157	1.771			
pdc	14.451	11.340	10.873	10.124	8.995	7.958			
s298	4.030	2.827	2.554	2.669	2.417	2.345			
s38417	12.703	10.408	7.725	7.967	4.948	5.173			
s38584	11.629	9.884	9.858	7.427	6.734	5.425			
seq	4.057	3.467	3.268	3.024	2.904	2.670			
spla	11.149	9.263	7.350	8.175	6.978	7.044			
tseng	1.784	1.198	1.306	1.143	1.203	1.658			
display_chip	5.161	3.140	1.936	1.895	1.820	1.553			
img_calc	32.413	20.326	13.090	9.133	8.597	6.927			
img_interp	7.091	4.678	3.580	3.191	2.712	2.422			
input_chip	2.009	1.289	0.889	0.714	0.763	0.733			
peak_chip	2.315	1.705	0.842	0.750	0.636	0.624			
scale125_chip	6.432	4.425	3.458	3.330	3.322	3.046			
scale2_chip	2.426	1.661	1.479	0.932	1.143	1.023			
warping	2.522	1.964	1.469	1.187	1.048	1.116			
Geom. Avg.	5.124	3.935	3.219	2.860	2.506	2.372			

Table C.1: Inter-Cluster Area ($\times 10^6$) in Min. Width Trans. Area (Cluster Size = 1)

Circuit			LUT	Size		
	2	3	4	5	6	7
alu4	3.107	2.848	2.220	1.986	1.568	1.368
apex2	3.242	3.369	3.213	2.971	2.599	2.470
apex4	2.640	2.355	2.163	2.222	1.825	1.819
bigkey	2.492	2.087	1.392	1.178	0.616	0.439
clma	17.513	16.285	17.253	15.113	14.499	14.481
des	2.394	2.089	1.677	1.616	0.685	0.580
diffeq	2.091	1.730	1.794	1.617	1.219	1.155
dsip	2.067	1.668	1.461	0.931	0.730	1.351
elliptic	5.406	5.093	5.612	4.276	3.606	4.272
ex1010	8.052	10.658	7.648	8.177	7.412	4.188
ex5p	2.087	2.294	1.864	1.701	1.247	0.860
frisc	6.837	6.061	6.651	6.572	6.246	6.194
misex3	2.997	2.584	2.212	2.062	1.765	1.706
pdc	12.133	10.923	10.919	9.665	9.151	7.989
s298	3.488	3.110	2.544	2.254	1.861	2.008
s38417	12.727	11.780	9.513	8.298	4.516	4.569
s38584	12.079	10.227	8.470	7.510	6.751	5.616
seq	3.362	3.164	3.066	2.800	2.560	2.337
spla	9.609	9.400	7.846	7.744	7.206	5.940
tseng	1.368	1.058	1.087	1.038	0.963	1.305
display_chip	3.863	3.159	1.747	1.709	1.385	1.319
img_calc	34.582	23.932	14.931	8.952	9.377	6.649
img_interp	5.459	4.190	2.727	2.647	2.165	1.711
input_chip	1.556	1.144	0.777	0.561	0.578	0.555
peak_chip	1.901	1.522	0.655	0.616	0.538	0.528
scale125_chip	5.442	4.036	2.631	2.759	2.341	2.416
scale2_chip	2.108	1.459	1.126	0.863	0.900	0.809
warping	2.188	1.812	1.272	0.805	0.975	0.878
Geom. Avg.	4.231	3.678	2.957	2.590	2.165	2.013

Table C.2: Inter-Cluster Area ($\times 10^6$) in Min. Width Trans. Area (Cluster Size = 2)

Circuit	LUT Size							
	2	3	4	5	6	7		
alu4	2.777	2.202	1.962	1.625	1.293	1.109		
apex2	3.340	2.885	2.577	2.557	2.281	2.172		
apex4	2.446	2.071	1.800	1.915	1.660	1.603		
bigkey	2.175	1.967	1.529	1.258	0.577	0.482		
clma	16.754	14.602	12.727	12.321	12.079	11.972		
des	2.269	1.845	1.567	1.403	0.521	0.531		
diffeq	1.893	1.526	1.565	1.357	1.056	1.037		
dsip	1.753	1.525	1.396	0.811	0.587	1.571		
elliptic	5.024	4.502	4.479	3.782	3.234	4.036		
ex1010	8.452	9.654	6.623	6.637	6.051	3.666		
ex5p	1.951	1.922	1.619	1.471	1.115	0.706		
frisc	6.106	5.657	5.332	5.460	5.656	5.994		
misex3	2.597	2.253	1.923	1.738	1.572	1.420		
pdc	11.856	9.325	9.070	7.933	6.634	6.206		
s298	2.892	2.388	1.964	1.827	1.607	1.630		
s38417	12.187	9.595	7.244	6.600	3.989	4.295		
s38584	10.463	9.517	7.278	6.563	5.678	5.004		
seq	3.301	2.703	2.392	2.203	2.164	1.937		
spla	9.425	8.276	6.779	6.312	5.306	4.794		
tseng	1.191	0.975	1.009	0.840	0.863	1.130		
display_chip	3.444	2.536	1.554	1.544	1.244	1.209		
img_calc	32.381	21.932	13.335	8.869	7.953	5.785		
img_interp	4.690	3.413	2.393	2.174	1.845	1.625		
input_chip	1.389	1.007	0.616	0.536	0.547	0.541		
peak_chip	1.691	1.233	0.589	0.531	0.464	0.422		
scale125_chip	4.798	3.421	2.242	2.353	2.389	2.107		
scale2_chip	1.657	1.205	0.911	0.693	0.716	0.741		
warping	1.941	1.413	1.140	0.748	0.761	0.926		
Geom. Avg.	3.852	3.168	2.529	2.221	1.851	1.803		

Table C.3: Inter-Cluster Area ($\times 10^6$) in Min. Width Trans. Area (Cluster Size = 3)

Circuit	LUT Size							
	2	3	4	5	6	7		
alu4	2.430	2.011	1.682	1.355	1.163	0.927		
apex2	3.052	2.825	2.413	2.410	2.004	2.022		
apex4	2.180	1.949	1.727	1.717	1.449	1.506		
bigkey	1.803	1.764	1.235	0.967	0.485	0.336		
clma	15.071	13.692	12.071	11.206	11.522	11.246		
des	1.748	1.391	1.316	1.155	0.424	0.413		
diffeq	1.684	1.454	1.372	1.231	0.983	0.869		
dsip	1.362	1.010	0.992	0.625	0.515	1.342		
elliptic	4.528	4.128	4.616	3.451	5.084	3.671		
ex1010	8.149	8.879	6.192	6.091	5.247	3.149		
ex5p	1.749	1.740	1.517	1.234	0.966	0.666		
frisc	5.689	5.263	4.735	5.015	5.019	5.504		
misex3	2.484	2.196	1.718	1.543	1.459	1.265		
pdc	10.194	8.364	8.638	7.260	6.136	5.370		
s298	2.541	2.193	1.660	1.614	1.428	1.481		
s38417	12.017	9.344	7.108	5.789	3.616	3.788		
s38584	10.245	7.931	6.507	5.751	5.414	4.461		
seq	2.888	2.648	2.241	2.049	1.920	1.749		
spla	8.378	7.526	6.281	5.798	5.123	4.434		
tseng	1.094	0.809	0.936	0.713	0.721	1.099		
display_chip	3.064	2.222	1.439	1.504	1.075	1.087		
img_calc	30.028	20.307	11.853	8.266	7.442	5.561		
img_interp	4.478	3.090	2.195	1.928	1.852	1.559		
input_chip	1.275	0.930	0.580	0.484	0.448	0.466		
peak chip	1.379	1.157	0.499	0.452	0.421	0.447		
scale125_chip	4.440	3.085	2.062	2.003	1.949	1.820		
scale2_chip	1.518	1.045	0.803	0.623	0.613	0.682		
warping	1.713	1.271	0.981	0.645	0.668	0.678		
Geom. Avg.	3.449	2.850	2.277	1.959	1.681	1.600		

Table C.4: Inter-Cluster Area ($\times 10^6$) in Min. Width Trans. Area (Cluster Size = 4)

Circuit	LUT Size							
	2	3	4	5	6	7		
alu4	2.330	1.850	1.584	1.311	1.070	1.076		
apex2	2.909	2.581	2.434	2.211	1.957	2.026		
apex4	2.113	1.831	1.643	1.704	1.407	1.405		
bigkey	1.833	1.545	1.169	0.946	0.500	0.401		
clma	15.146	13.099	11.719	10.974	10.616	12.214		
des	1.781	1.439	1.244	1.151	0.433	0.404		
diffeq	1.597	1.441	1.381	1.252	0.949	1.024		
dsip	1.497	1.041	1.014	0.675	0.519	1.352		
elliptic	4.855	3.944	4.445	3.612	2.953	3.746		
ex1010	7.783	8.390	5.788	5.759	5.162	3.347		
ex5p	1.672	1.692	1.431	1.300	0.927	0.684		
frisc	5.146	4.760	4.535	4.527	5.025	5.648		
misex3	2.390	1.945	1.650	1.527	1.318	1.220		
pdc	9.892	7.968	7.885	6.707	6.191	5.349		
s298	2.131	1.795	1.558	1.565	1.306	1.456		
s38417	11.268	8.745	6.198	5.881	3.563	3.980		
s38584	9.783	7.898	6.635	5.647	4.937	4.535		
seq	2.642	2.388	2.160	2.020	1.739	1.812		
spla	8.184	6.821	5.444	5.127	5.058	4.094		
tseng	1.049	0.808	0.931	0.699	0.752	1.112		
display_chip	2.670	1.927	1.288	1.501	1.047	1.100		
img_calc	26.536	18.446	10.753	7.939	7.436	5.378		
img_interp	4.229	3.000	1.999	1.726	1.783	1.470		
input_chip	1.229	0.855	0.544	0.444	0.459	0.476		
peak chip	1.221	1.078	0.511	0.468	0.410	0.466		
scale125_chip	3.827	2.887	1.939	1.805	1.956	1.934		
scale2_chip	1.385	0.995	0.747	0.567	0.666	0.649		
warping	1.613	1.299	0.962	0.668	0.724	0.827		
Geom. Avg.	3.275	2.677	2.165	1.905	1.619	1.646		

Table C.5: Inter-Cluster Area ($\times 10^6$) in Min. Width Trans. Area (Cluster Size = 5)

Circuit			LUT	Size		
	2	3	4	5	6	7
alu4	2.192	1.754	1.358	1.242	0.991	0.883
apex2	2.769	2.590	2.323	2.217	1.972	1.905
apex4	2.018	1.893	1.748	1.485	1.406	1.367
bigkey	1.519	1.192	1.051	0.806	0.431	0.347
clma	13.824	12.416	11.364	10.636	10.393	11.510
des	1.628	1.393	1.113	0.985	0.387	0.405
diffeq	1.529	1.240	1.273	1.131	0.887	0.949
dsip	1.439	1.059	0.755	0.541	0.461	1.128
elliptic	4.234	3.902	4.246	3.429	2.825	3.592
ex1010	7.593	8.516	5.716	5.719	5.448	3.168
ex5p	1.727	1.708	1.396	1.201	0.920	0.699
frisc	5.277	4.759	4.344	4.394	4.599	5.453
misex3	2.199	1.936	1.499	1.420	1.310	1.204
pdc	9.327	7.793	7.990	6.805	5.823	5.061
s298	1.906	1.736	1.508	1.530	1.226	1.314
s38417	11.027	8.161	6.145	5.366	3.514	3.825
s38584	9.774	7.476	6.374	5.571	4.666	4.345
seq	2.640	2.321	1.967	1.909	1.704	1.760
spla	7.786	6.832	5.240	5.115	4.492	3.885
tseng	0.979	0.813	0.907	0.690	0.738	1.045
display_chip	2.434	1.986	1.396	1.470	1.103	1.092
img_calc	27.281	16.814	10.557	7.508	6.761	5.367
img_interp	3.792	2.739	2.064	1.804	1.583	1.460
input_chip	1.036	0.842	0.538	0.429	0.445	0.466
peak chip	1.161	0.997	0.470	0.449	0.401	0.420
scale125_chip	3.705	2.639	1.872	1.840	1.709	1.813
scale2_chip	1.282	0.979	0.759	0.571	0.634	0.634
warping	1.660	1.171	0.853	0.620	0.645	0.736
Geom. Avg.	3.095	2.570	2.063	1.809	1.535	1.555

Table C.6: Inter-Cluster Area ($\times 10^6$) in Min. Width Trans. Area (Cluster Size = 6)

Circuit	LUT Size							
	2	3	4	5	6	7		
alu4	2.230	1.713	1.416	1.164	1.004	0.827		
apex2	2.709	2.359	2.231	2.065	1.954	1.854		
apex4	2.073	1.773	1.637	1.437	1.565	1.313		
bigkey	1.474	1.457	1.259	0.867	0.501	0.389		
clma	12.948	12.610	10.848	10.391	10.806	10.997		
des	1.790	1.451	1.107	1.031	0.427	0.403		
diffeq	1.405	1.235	1.153	1.102	0.924	0.927		
dsip	1.352	1.247	0.805	0.603	0.501	1.173		
elliptic	4.271	3.718	4.223	3.256	2.952	3.661		
ex1010	7.334	8.057	5.741	5.403	4.991	3.081		
ex5p	1.620	1.617	1.328	1.228	0.912	0.665		
frisc	5.165	4.376	4.327	4.234	4.902	5.464		
misex3	2.219	1.806	1.522	1.369	1.276	1.112		
pdc	8.852	7.441	7.194	6.505	5.682	4.819		
s298	1.988	1.598	1.305	1.350	1.288	1.250		
s38417	10.769	8.088	5.785	5.132	3.597	3.804		
s38584	9.021	7.226	5.906	5.584	4.885	4.260		
seq	2.588	2.335	2.014	1.810	1.750	1.669		
spla	7.334	6.586	5.060	4.588	4.624	3.757		
tseng	0.941	0.828	0.854	0.661	0.710	1.150		
display_chip	2.286	1.684	1.287	1.454	1.050	1.010		
img_calc	24.923	16.304	10.178	7.572	6.975	5.438		
img_interp	3.830	2.319	2.020	1.816	1.710	1.424		
input_chip	1.134	0.790	0.529	0.406	0.457	0.511		
peak_chip	1.068	1.016	0.481	0.428	0.435	0.403		
scale125_chip	3.351	2.560	1.681	1.818	1.838	1.760		
scale2_chip	1.305	0.955	0.758	0.659	0.722	0.683		
warping	1.522	1.146	0.904	0.636	0.731	0.808		
Geom. Avg.	3.011	2.502	2.015	1.777	1.597	1.543		

Table C.7: Inter-Cluster Area ($\times 10^6$) in Min. Width Trans. Area (Cluster Size = 7)

Circuit	LUT Size							
	2	3	4	5	6	7		
alu4	2.105	1.651	1.401	1.154	0.850	0.787		
apex2	2.585	2.313	2.206	2.024	1.725	1.787		
apex4	2.008	1.780	1.545	1.407	1.395	1.348		
bigkey	1.388	1.395	1.094	0.786	0.459	0.337		
clma	12.537	12.122	10.842	10.343	10.191	10.808		
des	1.610	1.277	1.118	0.992	0.390	0.368		
diffeq	1.427	1.234	1.187	1.064	0.849	0.917		
dsip	1.202	0.962	0.790	0.528	0.466	1.067		
elliptic	4.374	3.714	3.854	3.191	2.781	3.631		
ex1010	7.050	8.203	5.796	5.343	4.841	2.877		
ex5p	1.553	1.638	1.299	1.363	0.895	0.719		
frisc	4.729	4.560	3.980	4.280	4.753	5.535		
misex3	2.203	1.774	1.479	1.283	1.206	1.047		
pdc	8.291	7.269	7.059	6.277	5.453	4.444		
s298	1.845	1.507	1.353	1.293	1.222	1.368		
s38417	10.215	7.151	5.687	4.812	3.342	3.549		
s38584	8.645	6.901	5.715	5.214	4.753	4.400		
seq	2.459	2.172	1.966	1.829	1.638	1.600		
spla	7.213	6.566	4.776	4.676	4.316	3.613		
tseng	0.845	0.762	0.865	0.673	0.712	1.055		
display_chip	2.239	1.781	1.216	1.388	1.071	1.047		
img_calc	22.295	15.376	9.681	7.531	6.767	5.236		
img_interp	3.470	2.427	1.937	1.701	1.494	1.357		
input_chip	0.991	0.766	0.489	0.433	0.457	0.475		
peak chip	1.068	0.997	0.468	0.430	0.415	0.430		
scale125_chip	3.368	2.451	1.555	1.651	1.758	1.637		
scale2_chip	1.215	0.886	0.675	0.538	0.608	0.633		
warping	1.427	1.134	0.819	0.601	0.653	0.743		
Geom. Avg.	2.854	2.413	1.940	1.720	1.495	1.492		

Table C.8: Inter-Cluster Area ($\times 10^6$) in Min. Width Trans. Area (Cluster Size = 8)

Circuit		LUT Size							
	2	3	4	5	6	7			
alu4	2.028	1.584	1.221	1.025	0.877	0.782			
apex2	2.545	2.167	2.132	2.010	1.741	1.725			
apex4	1.841	1.680	1.467	1.494	1.304	1.334			
bigkey	1.558	1.165	0.958	0.771	0.429	0.330			
clma	12.295	11.074	10.397	10.174	9.971	10.372			
des	1.551	1.196	1.029	0.886	0.374	0.365			
diffeq	1.478	1.106	1.097	1.025	0.884	0.846			
dsip	1.281	0.854	0.699	0.531	0.429	1.032			
elliptic	4.180	3.551	3.717	3.256	2.712	3.419			
ex1010	6.633	7.764	5.825	5.531	4.874	3.019			
ex5p	1.582	1.576	1.300	1.191	0.910	0.616			
frisc	4.766	4.404	3.914	4.210	4.410	5.154			
misex3	2.103	1.651	1.424	1.388	1.180	1.077			
pdc	8.577	6.852	6.761	6.367	5.087	4.381			
s298	1.824	1.436	1.248	1.313	1.244	1.333			
s38417	9.599	7.032	5.490	5.026	3.267	3.391			
s38584	8.271	7.052	5.833	5.420	4.824	4.425			
seq	2.367	2.209	1.828	1.761	1.552	1.579			
spla	6.923	5.985	4.533	4.777	4.107	3.464			
tseng	0.906	0.754	0.937	0.693	0.702	1.108			
display_chip	2.304	1.716	1.161	1.485	0.968	0.998			
img_calc	21.870	15.219	9.297	7.690	6.632	5.235			
img_interp	3.242	2.252	1.796	1.813	1.523	1.380			
input_chip	0.931	0.709	0.454	0.456	0.436	0.467			
peak chip	1.035	0.916	0.454	0.458	0.362	0.404			
scale125_chip	3.236	2.357	1.477	1.819	1.702	1.730			
scale2_chip	1.196	0.840	0.710	0.586	0.630	0.618			
warping	1.369	1.020	0.811	0.602	0.627	0.695			
Geom. Avg.	2.809	2.276	1.857	1.739	1.453	1.456			

Table C.9: Inter-Cluster Area ($\times 10^6$) in Min. Width Trans. Area (Cluster Size = 9)

Circuit	LUT Size								
	2	3	4	5	6	7			
alu4	2.059	1.562	1.345	1.093	0.894	0.795			
apex2	2.628	2.259	2.019	2.135	1.743	1.783			
apex4	1.902	1.785	1.637	1.526	1.407	1.291			
bigkey	1.630	1.215	1.014	0.859	0.474	0.351			
clma	12.207	11.094	10.442	10.524	10.296	10.607			
des	1.564	1.267	1.039	0.951	0.397	0.400			
diffeq	1.369	1.190	1.106	0.995	0.844	0.879			
dsip	1.400	0.929	0.742	0.563	0.467	1.038			
elliptic	4.130	3.547	3.880	3.144	2.913	3.380			
ex1010	6.926	8.022	5.718	5.266	4.754	3.141			
ex5p	1.526	1.564	1.334	1.259	0.910	0.711			
frisc	4.664	4.372	3.987	4.256	4.603	5.103			
misex3	1.933	1.772	1.496	1.276	1.170	0.962			
pdc	8.018	6.629	6.794	6.195	5.460	4.411			
s298	1.639	1.393	1.302	1.272	1.176	1.372			
s38417	9.496	7.097	5.309	4.948	3.443	3.794			
s38584	7.808	6.906	5.990	5.481	4.925	4.561			
seq	2.378	2.164	1.831	1.890	1.672	1.584			
spla	6.658	6.267	4.619	4.451	4.121	3.488			
tseng	0.869	0.831	0.937	0.676	0.694	1.139			
display_chip	2.056	1.635	1.208	1.447	1.062	1.059			
img_calc	20.291	15.516	9.177	7.427	6.965	5.124			
img_interp	3.324	2.124	1.967	1.694	1.610	1.595			
input_chip	0.920	0.669	0.452	0.407	0.444	0.434			
peak_chip	1.061	0.899	0.498	0.426	0.434	0.394			
scale125_chip	3.046	2.283	1.580	1.666	1.858	1.662			
scale2_chip	1.169	0.857	0.755	0.531	0.606	0.665			
warping	1.359	1.044	0.862	0.679	0.692	0.770			
Geom. Avg.	2.756	2.303	1.915	1.728	1.512	1.494			

Table C.10: Inter-Cluster Area ($\times 10^6$) in Min. Width Trans. Area (Cluster Size = 10)

APPENDIX D

FPGA Channel Width

Circuit	LUT Size							
	2	3	4	5	6	7		
alu4	19	19	19	17	15	16		
apex2	19	20	21	23	23	23		
apex4	20	21	23	25	25	25		
bigkey	16	17	13	12	12	12		
clma	19	21	24	25	26	29		
des	16	15	15	15	15	15		
diffeq	13	15	15	17	20	17		
dsip	15	13	16	12	13	15		
elliptic	16	19	20	21	24	24		
ex1010	19	21	20	23	28	28		
ex5p	20	24	24	24	21	16		
frisc	20	23	23	26	28	32		
misex3	20	20	20	21	20	17		
pdc	24	26	30	30	28	28		
s298	13	13	16	19	20	21		
s38417	13	15	15	17	16	17		
s38584	13	15	19	16	17	16		
seq	19	21	23	23	24	23		
spla	21	24	25	28	26	28		
tseng	13	13	15	15	16	19		
display_chip	15	13	13	13	16	15		
img_calc	16	15	16	17	17	19		
img_interp	15	15	16	16	17	17		
input_chip	12	11	13	12	13	13		
peak_chip	13	12	12	12	12	12		
scale125_chip	13	13	16	16	17	17		
scale2_chip	12	12	15	12	15	13		
warping	12	12	13	15	13	13		
Geom. Avg.	15.9	16.5	17.7	17.9	18.5	18.5		

Table D.1: Channel Width (Cluster Size = 1)

Circuit	LUT Size						
	2	3	4	5	6	7	
alu4	28	29	30	29	24	24	
apex2	25	29	36	34	33	32	
apex4	29	29	34	34	34	36	
bigkey	20	19	17	17	16	16	
clma	32	34	46	45	46	49	
des	20	20	21	25	23	20	
diffeq	20	21	25	26	25	24	
dsip	20	20	19	20	19	17	
elliptic	25	30	34	32	32	34	
ex1010	25	33	36	36	46	39	
ex5p	28	32	34	36	30	25	
frisc	29	32	41	45	41	45	
misex3	29	28	33	32	28	28	
pdc	37	39	51	46	47	47	
s298	20	24	28	28	26	30	
s38417	24	30	33	32	25	26	
s38584	25	28	29	29	30	29	
seq	28	29	37	36	36	34	
spla	33	38	45	42	45	39	
tseng	17	19	21	23	21	25	
display_chip	20	23	20	20	20	21	
img_calc	32	30	33	30	33	32	
img_interp	21	23	21	23	23	20	
input chip	17	17	19	16	16	16	
peak_chip	19	19	16	17	17	17	
scale125_chip	20	21	21	23	20	23	
scale2_chip	19	19	19	19	19	17	
warping	19	20	19	17	20	17	
Geom. Avg.	23.8	25.5	27.7	27.6	26.9	26.4	

Table D.2: Channel Width (Cluster Size = 2)

Circuit	LUT Size					
	2	3	4	5	6	7
alu4	34	34	36	32	26	25
apex2	36	39	39	41	39	37
apex4	37	38	39	42	42	43
bigkey	24	25	25	24	20	23
clma	43	46	46	51	52	54
des	26	26	28	29	23	24
diffeq	25	26	29	29	29	28
dsip	23	25	28	23	21	26
elliptic	32	36	37	39	39	43
ex1010	37	49	42	43	51	46
ex5p	36	42	41	43	36	26
frisc	36	43	45	50	51	58
misex3	34	37	38	37	33	30
pdc	50	52	59	55	47	49
s298	23	26	29	30	30	32
s38417	32	34	34	34	30	33
s38584	30	36	34	34	34	34
seq	38	38	39	38	41	37
spla	45	52	54	50	45	43
tseng	21	24	26	24	25	28
display_chip	25	25	24	24	24	25
img_calc	42	41	41	41	38	37
img_interp	25	26	25	25	26	25
input_chip	21	20	20	20	20	20
peak_chip	23	21	19	19	19	17
scale125_chip	24	24	24	26	28	26
scale2_chip	21	21	21	20	20	20
warping	23	21	23	21	21	23
Geom. Avg.	29.9	31.7	32.3	32.1	30.9	31.0

Table D.3: Channel Width (Cluster Size = 3)

Circuit		LUT Size					
	2	3	4	5	6	7	
alu4	39	39	39	33	29	26	
apex2	42	47	46	49	42	43	
apex4	42	45	47	47	45	50	
bigkey	26	29	26	24	21	20	
clma	50	55	56	59	63	64	
des	26	25	29	30	24	24	
diffeq	28	32	32	33	33	29	
dsip	23	21	26	23	23	28	
elliptic	37	42	49	45	47	49	
ex1010	46	55	50	50	55	50	
ex5p	41	47	49	45	38	30	
frisc	43	51	51	58	56	67	
misex3	42	45	43	41	38	33	
pdc	56	59	72	64	55	54	
s298	26	30	30	33	33	36	
s38417	41	43	43	38	34	36	
s38584	38	38	39	38	41	38	
seq	43	47	46	45	45	41	
spla	52	60	64	59	55	50	
tseng	24	25	30	26	26	34	
display_chip	28	28	28	30	26	28	
img_calc	51	49	46	49	45	45	
img_interp	30	30	29	28	33	30	
input chip	24	24	24	23	20	21	
peak_chip	24	25	20	20	21	23	
scale125_chip	29	28	28	28	28	28	
scale2_chip	24	23	23	23	21	23	
warping	26	24	25	23	23	21	
Geom. Avg.	34.4	36.2	36.8	35.9	34.3	34.4	

Table D.4: Channel Width (Cluster Size = 4)

Circuit	LUT Size					
	2	3	4	5	6	7
alu4	42	42	42	36	30	32
apex2	46	51	54	51	47	46
apex4	47	50	51	54	50	50
bigkey	30	29	28	26	25	26
clma	59	63	64	67	67	76
des	30	30	32	34	28	25
diffeq	30	36	37	38	36	37
dsip	29	25	30	28	26	30
elliptic	46	47	55	54	51	54
ex1010	51	65	55	55	62	58
ex5p	45	54	52	54	41	33
frisc	45	54	56	60	65	75
misex3	46	47	47	46	39	34
pdc	63	67	76	68	65	59
s298	25	29	32	36	34	38
s38417	45	47	43	45	39	41
s38584	42	45	46	43	43	42
seq	45	50	51	51	46	46
spla	59	65	64	60	63	50
tseng	26	29	34	29	30	37
display_chip	28	28	29	34	29	30
img_calc	52	52	49	54	52	47
img_interp	33	34	30	29	36	30
input_chip	26	25	25	23	23	23
peak_chip	24	26	23	23	23	25
scale125_chip	29	30	30	29	32	32
scale2_chip	25	25	24	23	26	23
warping	28	28	28	26	28	28
Geom. Avg.	37.5	39.7	40.2	39.7	38.3	38.0

Table D.5: Channel Width (Cluster Size = 5)

Circuit	LUT Size					
	2	3	4	5	6	7
alu4	46	46	41	39	32	30
apex2	51	59	59	59	54	49
apex4	52	59	62	54	56	54
bigkey	29	25	29	25	24	25
clma	62	69	72	75	75	82
des	32	34	33	33	28	29
diffeq	33	36	38	39	38	38
dsip	32	30	25	25	26	29
elliptic	47	54	60	59	55	59
ex1010	58	75	62	62	75	62
ex5p	54	62	59	56	46	38
frisc	54	62	62	67	67	82
misex3	49	54	49	49	43	38
pdc	69	76	90	80	69	63
s298	25	32	36	41	36	38
s38417	51	51	49	47	43	45
s38584	49	49	51	49	46	46
seq	52	56	54	55	51	51
spla	65	75	71	69	64	54
tseng	28	33	38	32	33	39
display_chip	30	33	36	38	34	34
img_calc	63	55	55	59	54	54
img_interp	34	36	36	34	36	34
input chip	25	28	28	25	25	25
peak_chip	26	28	24	25	25	25
scale125_chip	32	32	33	33	32	34
scale2_chip	26	28	28	26	28	25
warping	33	29	28	28	28	28
Geom. Avg.	40.9	43.9	43.9	43.0	41.0	40.6

Table D.6: Channel Width (Cluster Size = 6)

Circuit	LUT Size					
	2	3	4	5	6	7
alu4	51	49	46	39	33	29
apex2	55	59	62	59	55	50
apex4	58	60	63	56	64	56
bigkey	30	34	37	29	29	30
clma	65	78	76	81	82	85
des	38	38	36	37	32	30
diffeq	34	38	37	41	41	39
dsip	33	37	29	30	29	32
elliptic	52	56	65	60	60	64
ex1010	63	81	69	64	72	65
ex5p	55	64	60	62	47	38
frisc	58	63	68	71	75	88
misex3	55	55	55	51	43	37
pdc	73	80	89	84	71	64
s298	29	32	34	38	39	38
s38417	56	56	51	49	46	49
s38584	50	52	52	54	50	49
seq	56	62	59	56	54	51
spla	68	80	76	68	69	56
tseng	29	36	38	33	33	46
display_chip	30	30	36	41	34	34
img_calc	64	59	59	65	58	59
img_interp	38	33	38	37	41	36
input_chip	30	28	29	25	26	29
peak_chip	26	30	26	25	28	25
scale125_chip	32	34	33	36	36	36
scale2_chip	29	29	30	33	33	29
warping	34	30	32	30	33	33
Geom. Avg.	43.8	46.5	46.6	45.6	44.3	43.0

Table D.7: Channel Width (Cluster Size = 7)

Circuit		LUT Size					
	2	3	4	5	6	7	
alu4	55	52	50	42	30	30	
apex2	58	64	67	64	52	54	
apex4	63	67	65	60	63	62	
bigkey	32	36	36	29	29	29	
clma	71	84	84	89	85	93	
des	39	38	41	41	32	30	
diffeq	38	42	42	43	41	42	
dsip	32	32	32	29	30	32	
elliptic	60	63	65	65	62	71	
ex1010	67	90	77	71	77	67	
ex5p	58	72	64	75	49	47	
frisc	59	73	69	80	81	99	
misex3	60	59	58	52	45	39	
pdc	77	88	97	89	75	65	
s298	30	33	39	41	41	47	
s38417	59	55	56	50	47	49	
s38584	54	56	56	56	54	56	
seq	59	64	64	62	55	54	
spla	75	89	80	77	71	59	
tseng	29	37	42	37	36	46	
display_chip	33	36	37	42	38	39	
img_calc	65	63	62	72	62	63	
img_interp	39	39	41	39	39	38	
input chip	29	30	30	29	28	30	
peak_chip	29	33	28	28	29	29	
scale125_chip	36	36	33	36	38	37	
scale2_chip	30	30	29	29	30	29	
warping	34	33	32	32	32	33	
Geom. Avg.	46.3	49.9	49.5	48.7	45.4	45.9	

Table D.8: Channel Width (Cluster Size = 8)

Circuit	LUT Size					
	2	3	4	5	6	7
alu4	56	54	47	39	33	32
apex2	62	65	71	64	56	55
apex4	62	68	69	65	62	64
bigkey	39	32	34	29	29	30
clma	75	84	88	90	90	95
des	41	38	41	37	33	32
diffeq	43	41	43	43	45	43
dsip	37	30	30	30	29	33
elliptic	62	64	69	68	64	71
ex1010	69	95	84	75	84	75
ex5p	64	76	71	67	55	41
frisc	64	76	73	81	81	98
misex3	62	60	60	58	46	43
pdc	86	90	101	93	75	69
s298	32	34	38	43	45	49
s38417	60	58	58	54	49	50
s38584	56	62	62	59	59	60
seq	62	71	64	62	56	56
spla	78	88	82	81	72	60
tseng	34	39	50	38	38	51
display_chip	37	37	38	46	36	38
img_calc	69	67	64	75	65	67
img_interp	39	38	41	43	43	41
input_chip	29	29	29	32	29	30
peak_chip	30	33	29	30	26	29
scale125_chip	37	37	34	41	39	42
scale2_chip	32	30	33	32	33	30
warping	36	32	34	33	33	33
Geom. Avg.	49.3	50.7	51.3	50.5	47.1	47.5

Table D.9: Channel Width (Cluster Size = 9)

Circuit			LUT	Size		
	2	3	4	5	6	7
alu4	60	56	54	43	34	33
apex2	67	71	69	71	59	59
apex4	67	75	78	68	68	65
bigkey	43	34	37	34	33	33
clma	80	89	93	99	97	102
des	42	42	42	41	36	37
diffeq	41	46	45	43	45	45
dsip	42	34	33	33	33	34
elliptic	64	68	75	69	72	73
ex1010	76	102	86	75	85	81
ex5p	64	77	75	72	55	49
frisc	67	80	78	85	88	101
misex3	60	67	65	55	47	39
pdc	86	91	107	95	85	72
s298	30	34	41	42	43	51
s38417	63	62	59	56	54	60
s38584	56	64	67	63	63	65
seq	65	71	67	69	62	58
spla	80	98	88	78	75	63
tseng	33	45	51	39	38	55
display_chip	34	37	41	47	41	43
img_calc	68	73	67	76	72	69
img_interp	42	38	46	41	46	49
input_chip	30	29	29	29	29	29
peak_chip	32	33	32	29	33	29
scale125_chip	37	38	38	39	45	41
scale2_chip	32	32	36	30	32	33
warping	37	34	37	38	37	37
Geom. Avg.	50.6	53.6	54.8	52.0	50.5	50.5

Table D.10: Channel Width (Cluster Size = 10)

$\mathsf{APPENDIX} \; E$

Total Critical Path Delay

Circuit			LUT	Size		
	2	3	4	5	6	7
alu4	29.21	29.29	24.72	20.19	20.84	29.75
apex2	31.70	29.17	27.16	21.18	23.79	26.55
apex4	31.30	22.51	19.78	18.57	21.68	20.71
bigkey	20.66	14.84	13.77	25.20	14.90	11.53
clma	67.85	50.70	51.68	49.81	43.05	35.88
des	24.43	22.48	22.04	21.07	18.31	40.43
diffeq	49.68	28.05	22.30	17.16	16.51	14.21
dsip	20.81	15.57	12.73	13.39	12.92	29.67
elliptic	64.18	34.16	30.79	29.60	28.04	31.88
ex1010	46.61	54.44	40.75	75.00	49.52	25.53
ex5p	25.11	23.81	18.16	17.21	16.91	12.99
frisc	91.72	43.79	39.04	32.55	29.73	30.18
misex3	26.43	24.49	20.98	22.63	16.87	23.00
pdc	50.54	56.13	64.71	41.63	41.14	51.11
s298	58.92	49.18	39.87	37.00	33.10	31.76
s38417	45.75	27.67	29.16	20.98	16.63	15.22
s38584	37.85	21.43	19.82	21.16	19.68	16.80
seq	31.40	30.12	18.40	18.34	18.40	27.11
spla	43.63	46.38	47.29	38.92	36.18	34.23
tseng	51.32	28.25	20.31	18.25	16.21	14.27
display_chip	63.46	36.49	22.00	16.77	15.04	11.88
img_calc	143.91	91.46	49.79	37.72	34.71	28.57
img_interp	69.02	42.56	25.14	21.58	19.20	14.30
input_chip	54.20	34.91	19.12	18.52	14.16	12.49
peak_chip	68.92	38.17	24.03	17.71	14.58	13.78
scale125_chip	88.88	45.98	28.27	26.67	19.75	18.17
scale2_chip	57.26	32.82	22.65	26.73	15.50	15.09
warping	40.30	24.21	16.05	13.01	10.42	10.97
Geom. Avg.	45.84	32.89	25.91	24.11	20.97	21.08

Table E.1: Total Delay in nano-seconds (Cluster Size = 1)

Circuit	LUT Size						
	2	3	4	5	6	7	
alu4	24.72	20.19	22.14	18.77	17.75	15.69	
apex2	28.20	24.81	19.81	21.29	19.17	19.95	
apex4	24.33	20.12	20.47	21.35	17.40	18.52	
bigkey	14.81	12.42	12.32	13.05	8.47	10.67	
clma	59.52	45.28	40.56	37.07	37.02	32.60	
des	19.93	19.01	18.25	19.38	15.51	14.40	
diffeq	37.49	24.58	22.10	17.76	15.49	14.27	
dsip	14.58	12.27	10.55	9.37	10.54	9.35	
elliptic	48.08	38.04	28.68	28.76	27.40	31.44	
ex1010	39.30	47.16	30.64	38.01	28.84	22.61	
ex5p	22.47	18.81	21.16	15.82	14.66	12.61	
frisc	63.49	42.74	33.99	30.21	29.26	28.12	
misex3	22.43	21.62	18.61	18.39	18.51	15.16	
pdc	39.69	36.15	36.22	28.39	28.84	23.24	
s298	45.66	34.80	33.24	31.66	36.01	27.24	
s38417	35.63	25.54	21.59	20.12	15.67	14.58	
s38584	23.44	22.62	17.40	18.19	15.30	15.79	
seq	24.70	19.35	17.40	18.65	14.82	23.40	
spla	39.37	35.66	34.14	30.24	25.59	27.75	
tseng	34.92	26.11	20.32	17.73	15.48	15.05	
display_chip	45.40	31.21	18.69	16.11	13.87	12.22	
img_calc	106.03	74.97	46.08	34.86	30.05	28.63	
img_interp	49.52	35.33	24.32	19.92	18.06	15.31	
input_chip	42.33	30.90	15.97	15.94	13.83	12.16	
peak_chip	49.81	33.72	20.85	16.79	14.97	13.64	
scale125_chip	59.95	42.87	24.06	24.41	18.51	19.62	
scale2_chip	41.84	29.32	20.19	17.63	14.81	13.98	
warping	25.69	19.19	13.62	11.76	10.26	9.42	
Geom. Avg.	34.94	27.82	22.30	20.63	18.19	17.33	

Table E.2: Total Delay in nano-seconds (Cluster Size = 2)

Circuit	LUT Size						
	2	3	4	5	6	7	
alu4	22.08	23.25	14.48	15.12	14.49	15.51	
apex2	23.22	19.39	18.15	19.89	15.97	16.51	
apex4	22.16	19.29	16.69	20.40	16.52	18.33	
bigkey	13.53	10.81	8.25	8.97	7.82	8.36	
clma	55.09	39.16	37.01	33.95	32.24	34.24	
des	18.45	16.64	15.03	13.94	13.02	14.17	
diffeq	30.99	22.53	17.82	18.28	13.95	13.14	
dsip	13.26	10.98	8.44	8.90	8.55	9.23	
elliptic	39.00	32.93	26.94	28.11	23.24	25.23	
ex1010	35.02	38.75	28.10	24.86	32.63	19.38	
ex5p	20.55	18.02	15.95	14.94	13.19	13.18	
frisc	54.56	35.78	32.80	29.23	29.21	25.65	
misex3	19.50	19.21	15.07	14.46	13.90	13.87	
pdc	40.94	31.65	36.90	29.17	34.35	27.62	
s298	43.80	37.09	32.89	30.63	29.49	30.52	
s38417	32.49	28.50	19.43	20.44	15.51	13.88	
s38584	22.55	18.38	18.63	14.95	15.04	16.73	
seq	20.45	17.16	16.04	18.30	15.02	14.93	
spla	32.63	31.58	25.15	28.10	34.35	29.31	
tseng	32.29	22.19	17.24	16.54	15.67	14.74	
display_chip	38.61	28.75	18.03	14.57	12.99	11.66	
img_calc	91.80	71.02	40.62	31.73	27.73	27.15	
img_interp	45.72	32.93	23.79	22.82	16.15	13.66	
input_chip	35.22	22.97	15.78	13.96	12.24	12.71	
peak_chip	39.83	29.63	18.46	15.64	14.45	13.85	
scale125_chip	49.64	37.53	24.54	23.13	17.37	17.01	
scale2_chip	37.96	25.49	19.03	16.63	14.29	14.39	
warping	21.64	15.42	11.72	9.98	9.00	9.14	
Geom. Avg.	30.86	24.87	19.60	18.66	16.96	16.46	

Table E.3: Total Delay in nano-seconds (Cluster Size = 3)

Circuit	LUT Size						
	2	3	4	5	6	7	
alu4	35.20	19.83	15.96	14.32	13.85	14.22	
apex2	25.35	19.13	26.55	15.92	19.97	16.85	
apex4	22.22	22.53	17.85	22.10	19.00	14.66	
bigkey	13.97	12.67	8.50	8.06	8.03	8.75	
clma	50.94	37.58	34.78	35.10	33.90	33.73	
des	19.49	16.47	15.23	13.94	13.32	13.35	
diffeq	30.03	21.19	17.24	17.78	13.46	13.33	
dsip	12.92	12.40	11.10	7.53	10.97	8.08	
elliptic	39.47	33.25	25.72	28.85	36.48	23.64	
ex1010	34.49	40.17	24.44	24.14	28.74	21.24	
ex5p	20.10	18.87	15.26	16.87	15.11	12.13	
frisc	55.00	35.90	34.44	28.09	31.86	31.91	
misex3	21.42	17.71	15.65	15.22	13.16	14.74	
pdc	65.14	39.18	31.41	32.11	28.18	24.30	
s298	36.76	37.09	32.31	30.88	28.29	27.36	
s38417	30.19	23.70	19.31	18.62	14.20	15.89	
s38584	21.17	16.31	14.88	14.04	13.86	14.11	
seq	20.77	15.57	15.91	14.83	15.41	15.06	
spla	34.39	42.19	23.30	27.74	27.79	19.16	
tseng	35.42	21.27	17.29	16.17	15.04	14.60	
display_chip	36.25	27.39	15.81	14.24	12.22	10.88	
img_calc	90.66	68.51	38.11	30.56	27.61	26.77	
img_interp	41.77	30.22	22.83	17.28	18.15	14.25	
input_chip	33.93	25.18	14.36	13.23	12.26	12.50	
peak_chip	39.11	28.87	17.24	15.32	13.00	11.81	
scale125_chip	50.73	35.89	23.74	21.87	17.51	17.59	
scale2_chip	37.35	24.07	18.54	17.14	15.23	12.65	
warping	20.90	16.26	11.25	9.94	9.28	8.76	
Geom. Avg.	31.58	24.93	19.35	17.95	17.29	15.73	

Table E.4: Total Delay in nano-seconds (Cluster Size = 4)

Circuit	LUT Size						
	2	3	4	5	6	7	
alu4	25.77	16.69	14.68	14.12	13.33	13.56	
apex2	24.91	19.80	18.20	17.40	15.12	16.49	
apex4	22.52	16.86	16.42	15.74	16.31	15.88	
bigkey	12.57	10.03	8.29	7.94	8.18	6.33	
clma	49.83	38.27	32.06	37.76	33.01	28.24	
des	17.49	17.70	15.20	14.85	12.44	14.98	
diffeq	28.07	21.41	16.12	15.65	13.45	12.72	
dsip	13.28	9.66	9.98	8.20	7.99	7.24	
elliptic	35.90	28.88	25.66	24.48	20.04	22.26	
ex1010	50.02	58.34	41.92	35.00	32.30	19.89	
ex5p	19.19	20.42	15.67	17.21	14.93	11.75	
frisc	48.75	32.71	29.30	27.05	29.78	27.52	
misex3	18.46	28.36	16.48	20.34	13.95	13.75	
pdc	37.99	51.85	36.36	30.38	31.85	26.95	
s298	46.05	34.67	36.71	34.37	29.26	27.26	
s38417	39.37	21.37	21.52	20.42	14.42	13.64	
s38584	21.61	17.36	15.04	18.39	20.17	14.26	
seq	21.63	17.05	15.18	15.54	15.25	13.66	
spla	35.14	33.17	37.31	24.81	25.35	27.65	
tseng	32.18	22.45	17.39	17.05	14.29	14.29	
display_chip	37.06	25.33	16.53	13.91	12.30	10.62	
img_calc	93.33	68.72	38.88	30.77	26.09	25.49	
img_interp	41.51	28.46	24.08	20.39	15.72	13.30	
input_chip	32.40	25.10	14.69	13.57	11.79	13.01	
peak_chip	38.61	28.32	17.58	14.62	14.38	11.44	
scale125_chip	49.00	35.51	23.83	20.49	16.26	17.74	
scale2_chip	33.79	25.08	18.93	17.06	14.71	13.35	
warping	19.87	14.73	11.17	10.43	8.93	7.68	
Geom. Avg.	30.59	24.69	19.79	18.47	16.54	15.23	

Table E.5: Total Delay in nano-seconds (Cluster Size = 5)

Circuit			LUT	Size		
	2	3	4	5	6	7
alu4	19.46	17.55	17.45	14.79	13.71	14.99
apex2	24.17	19.96	16.93	17.40	14.40	16.53
apex4	28.51	20.74	16.52	17.77	14.00	14.09
bigkey	11.63	10.08	9.33	7.23	7.52	7.08
clma	44.16	41.97	35.98	32.48	31.30	25.57
des	16.72	15.65	15.52	13.76	12.03	13.58
diffeq	27.52	20.23	16.32	17.46	13.22	13.32
dsip	10.90	11.54	7.31	7.76	7.78	7.79
elliptic	36.72	27.37	22.57	27.58	27.96	20.20
ex1010	32.78	44.15	33.28	36.26	21.61	18.87
ex5p	19.87	18.25	17.31	18.39	14.22	11.36
frisc	52.84	33.57	30.86	29.48	26.31	26.21
misex3	19.00	15.62	16.77	13.03	12.41	13.09
pdc	39.09	38.42	31.67	24.83	35.91	27.12
s298	43.55	40.20	29.78	30.55	25.61	24.83
s38417	28.18	23.02	19.06	16.45	13.16	20.36
s38584	19.31	16.77	15.26	13.92	14.09	14.64
seq	21.09	17.84	15.86	13.86	12.82	13.45
spla	34.56	28.05	40.44	26.70	22.52	18.03
tseng	30.09	22.35	16.84	16.18	14.54	14.01
display_chip	35.71	24.61	14.94	15.15	11.87	10.31
img_calc	85.38	64.03	36.87	30.97	25.25	24.75
img_interp	42.31	29.98	22.33	19.19	14.77	13.04
input_chip	33.71	24.02	13.71	13.78	11.48	10.46
peak_chip	38.25	27.16	18.29	14.98	14.70	11.76
scale125_chip	49.86	32.51	21.74	20.61	17.46	15.81
scale2_chip	32.19	24.05	17.98	15.90	13.50	12.71
warping	20.53	13.85	11.62	10.39	9.52	8.04
Geom. Avg.	29.04	23.64	19.19	17.74	15.63	14.81

Table E.6: Total Delay in nano-seconds (Cluster Size = 6)

Circuit	LUT Size						
	2	3	4	5	6	7	
alu4	19.60	16.41	16.37	15.05	12.69	13.12	
apex2	28.65	17.72	17.39	17.32	17.03	15.04	
apex4	19.73	23.28	17.49	17.24	13.28	18.21	
bigkey	10.94	9.57	7.97	8.99	7.19	7.17	
clma	57.68	37.20	32.26	39.49	28.79	32.06	
des	16.52	15.77	14.97	12.96	10.62	12.46	
diffeq	27.04	21.07	16.02	14.15	12.77	11.92	
dsip	11.15	9.66	7.28	7.60	7.80	6.73	
elliptic	39.08	31.74	27.71	27.71	24.49	22.29	
ex1010	32.23	36.53	24.62	27.22	27.89	18.75	
ex5p	22.03	20.08	15.28	15.78	14.69	11.08	
frisc	49.02	35.79	30.09	29.91	28.02	25.61	
misex3	19.00	16.39	15.16	13.00	12.60	13.36	
pdc	34.41	38.14	31.53	38.90	31.39	28.13	
s298	39.61	36.92	33.20	29.17	25.49	22.13	
s38417	34.26	27.07	33.84	16.89	16.96	15.80	
s38584	19.67	18.62	14.45	16.17	14.13	16.88	
seq	23.29	15.33	14.25	16.37	13.52	13.12	
spla	33.97	30.37	26.85	30.05	19.99	19.59	
tseng	29.90	22.25	16.08	15.74	13.93	13.62	
display_chip	36.97	25.67	14.64	14.51	12.68	10.03	
img_calc	85.71	66.41	34.35	30.94	25.49	24.68	
img_interp	40.27	28.16	20.42	17.08	15.36	13.15	
input_chip	32.09	24.52	13.51	12.83	11.30	10.87	
peak_chip	36.55	26.86	17.11	15.31	13.61	13.31	
scale125_chip	43.06	35.46	20.76	18.54	18.01	16.78	
scale2_chip	31.77	23.19	17.87	14.68	12.65	12.30	
warping	19.66	14.15	10.68	9.94	9.14	7.82	
Geom. Avg.	28.88	23.63	18.53	17.79	15.60	14.79	

Table E.7: Total Delay in nano-seconds (Cluster Size = 7)

Circuit			LUT	Size		
	2	3	4	5	6	7
alu4	19.85	16.27	14.29	13.07	15.25	14.30
apex2	22.50	17.99	15.51	19.79	16.48	16.08
apex4	20.29	23.68	15.23	19.34	16.21	16.63
bigkey	11.40	9.09	8.05	8.34	8.82	7.40
clma	50.14	37.42	35.71	30.06	30.56	31.20
des	16.95	15.90	14.28	12.52	10.30	14.36
diffeq	30.04	20.19	14.68	15.81	13.38	13.01
dsip	11.63	11.21	8.06	7.05	7.44	7.10
elliptic	39.81	27.58	26.66	26.58	24.47	21.15
ex1010	33.65	39.82	24.45	24.55	23.43	19.53
ex5p	19.91	17.86	15.13	15.16	15.54	11.87
frisc	53.90	34.25	31.09	27.35	28.35	27.49
misex3	18.82	15.28	15.65	14.87	14.29	13.24
pdc	36.64	30.68	33.95	25.97	23.94	20.60
s298	47.79	34.60	29.86	33.81	34.25	23.23
s38417	31.24	24.21	18.20	15.62	13.48	13.57
s38584	21.48	16.20	15.85	15.31	13.63	14.25
seq	20.59	17.26	15.64	13.26	14.75	15.07
spla	32.91	28.46	27.06	34.51	23.96	19.72
tseng	32.38	22.44	15.61	16.18	14.21	14.72
display_chip	39.26	25.76	14.79	13.71	11.65	10.02
img_calc	93.20	65.57	33.97	30.89	24.81	25.07
img_interp	45.55	27.33	19.27	17.06	16.71	12.69
input_chip	37.74	21.93	12.50	12.40	11.51	11.19
peak_chip	41.00	27.00	17.31	14.66	13.46	12.04
scale125_chip	51.65	33.75	22.38	19.52	15.76	15.79
scale2_chip	36.47	24.00	17.08	14.46	14.28	11.96
warping	22.25	13.72	10.38	9.71	8.68	7.71
Geom, Avg.	30.01	22.92	17.93	17.20	15.92	14.75

Table E.8: Total Delay in nano-seconds (Cluster Size = 8)

Circuit	LUT Size							
	2	3	4	5	6	7		
alu4	24.12	16.29	14.24	13.24	13.33	13.33		
apex2	23.22	21.56	16.24	15.71	16.13	16.78		
apex4	21.16	17.65	19.21	15.05	19.50	15.46		
bigkey	10.94	9.18	8.71	7.66	8.03	7.56		
clma	44.73	34.76	35.22	39.36	31.61	28.17		
des	18.98	17.56	14.44	13.71	12.03	12.02		
diffeq	30.63	20.46	14.49	13.58	13.06	12.12		
dsip	11.28	9.73	7.71	9.77	7.74	7.01		
elliptic	37.17	30.67	25.51	24.68	20.16	22.75		
ex1010	30.37	38.77	23.20	23.93	23.94	17.20		
ex5p	20.65	20.57	17.73	14.21	12.63	11.21		
frisc	52.77	36.11	28.82	35.73	30.63	25.53		
misex3	21.88	15.11	14.77	12.21	13.17	16.11		
pdc	40.07	34.87	29.52	28.62	28.69	21.28		
s298	39.24	34.09	35.10	24.61	25.02	24.22		
s38417	31.92	24.59	26.23	17.01	13.65	14.80		
s38584	19.88	16.01	16.57	13.63	14.43	14.60		
seq	18.26	16.89	16.88	14.17	13.34	15.08		
spla	30.53	31.40	28.79	34.56	29.55	20.57		
tseng	37.21	21.47	14.03	16.87	14.88	12.38		
display_chip	38.79	24.39	14.78	13.58	11.94	9.85		
img_calc	90.25	63.70	32.61	31.42	25.72	24.89		
img_interp	43.85	27.71	18.42	18.35	15.65	12.83		
input_chip	36.10	22.62	13.39	12.20	11.90	10.80		
peak_chip	38.16	25.65	16.81	14.22	13.30	12.12		
scale125_chip	53.00	33.18	20.65	20.06	15.24	15.67		
scale2_chip	37.90	23.85	17.19	14.20	13.14	12.19		
warping	21.98	14.67	10.09	9.68	8.87	7.75		
Geom. Avg.	29.84	23.05	18.28	17.07	15.79	14.54		

Table E.9: Total Delay in nano-seconds (Cluster Size = 9)

Circuit			LUT	Size		
	2	3	4	5	6	7
alu4	26.30	14.93	16.17	13.21	12.95	12.96
apex2	21.63	20.20	15.31	18.36	15.74	15.76
apex4	25.39	17.16	16.41	15.24	14.92	17.19
bigkey	11.56	10.02	8.50	7.61	8.01	6.71
clma	42.64	35.37	29.38	30.24	28.21	27.68
des	17.26	14.53	12.48	12.77	12.28	12.21
diffeq	28.41	20.03	14.10	15.41	12.56	11.66
dsip	10.98	10.07	7.28	7.72	7.40	6.73
elliptic	36.80	31.86	25.17	26.50	24.50	20.11
ex1010	31.77	41.99	29.44	22.96	22.83	18.98
ex5p	21.30	19.90	14.90	15.78	12.81	11.74
frisc	53.61	35.92	28.11	28.95	30.85	30.21
misex3	21.18	15.64	13.11	13.98	12.79	13.41
pdc	32.76	34.24	26.99	24.06	20.62	28.48
s298	39.42	32.41	30.81	25.44	26.55	23.59
s38417	36.65	25.42	18.34	19.38	14.44	14.98
s38584	18.27	17.09	16.74	13.96	13.88	15.13
seq	18.02	15.78	14.54	13.98	12.94	14.82
spla	30.65	31.58	27.13	21.22	21.89	27.22
tseng	30.33	21.46	15.08	15.88	14.11	12.46
display_chip	37.73	23.57	14.52	14.01	11.49	10.51
img_calc	85.29	59.98	34.58	30.60	25.27	24.65
img_interp	42.65	27.30	19.25	16.76	15.87	12.59
input_chip	34.65	22.43	13.54	12.29	12.23	11.31
peak_chip	38.02	26.60	17.56	15.04	13.11	11.92
scale125_chip	48.04	31.95	19.38	19.54	16.46	14.58
scale2_chip	34.84	23.33	16.66	15.10	12.97	13.72
warping	21.42	13.64	9.99	9.99	8.93	7.95
Geom. Avg.	29.14	22.73	17.46	16.63	15.26	14.82

Table E.10: Total Delay in nano-seconds (Cluster Size = 10)

${}_{\mathsf{APPENDIX}}\,F$

Intra-Cluster (Logic) Delay

Circuit	LUT Size						
	2	3	4	5	6	7	
alu4	5.35	3.34	4.18	4.33	3.56	4.17	
apex2	5.71	3.34	3.62	5.00	5.18	5.13	
apex4	4.26	3.34	3.62	4.33	4.37	5.13	
bigkey	3.88	2.43	1.87	1.52	2.59	2.05	
clma	13.29	5.49	5.21	4.89	7.47	8.80	
des	4.99	3.78	3.62	3.65	2.74	3.21	
diffeq	14.38	8.99	7.99	6.90	4.22	5.91	
dsip	3.88	2.43	1.87	2.20	2.59	2.05	
elliptic	19.09	9.86	8.54	8.25	8.29	8.80	
ex1010	6.07	5.09	4.18	3.66	5.18	5.13	
ex5p	5.35	4.22	3.62	3.65	3.56	4.17	
frisc	24.52	13.35	12.99	10.93	10.73	10.73	
misex3	4.99	3.34	3.62	2.98	4.37	4.17	
pdc	6.07	4.22	4.74	5.00	5.18	5.13	
s298	11.48	9.42	7.99	8.92	9.10	9.77	
s38417	6.78	7.24	5.21	5.56	5.85	5.91	
s38584	9.31	5.53	5.29	4.33	4.37	6.10	
seq	3.90	3.34	3.62	4.33	4.37	5.13	
spla	5.35	5.09	4.74	3.65	4.37	5.13	
tseng	15.83	9.42	7.43	6.90	6.66	6.87	
display_chip	19.09	11.61	7.99	7.57	6.66	5.91	
img_calc	37.19	24.28	15.22	14.29	12.36	13.63	
img_interp	19.81	12.48	7.43	6.90	5.85	5.91	
input_chip	17.28	10.30	7.99	8.25	6.66	5.91	
peak_chip	18.36	11.61	8.54	6.90	6.66	6.87	
scale125_chip	21.62	14.67	11.33	10.93	7.48	8.80	
scale2_chip	16.55	10.73	8.54	4.21	6.66	6.87	
warping	11.12	6.36	5.76	4.89	4.22	2.24	
Geom. Avg.	9.65	6.43	5.58	5.26	5.34	5.51	

Table F.1: Intra-Cluster Delay in nano-seconds (Cluster Size = 1)

Circuit	LUT Size						
	2	3	4	5	6	7	
alu4	5.22	3.83	4.53	4.86	4.90	5.70	
apex2	5.63	4.84	5.14	5.62	5.82	5.70	
apex4	5.22	3.83	3.92	4.10	4.90	4.62	
bigkey	4.38	2.78	2.03	2.47	1.99	2.27	
clma	15.48	6.32	8.70	10.09	9.36	9.81	
des	5.22	4.84	3.92	2.58	3.06	3.54	
diffeq	15.48	10.37	8.70	7.04	7.52	6.58	
dsip	3.97	3.29	2.03	2.47	1.99	2.27	
elliptic	21.23	11.38	9.30	9.33	9.36	9.81	
ex1010	6.45	5.35	4.53	4.86	5.82	6.78	
ex5p	5.22	4.34	4.53	4.86	4.90	4.62	
frisc	25.75	14.92	12.33	12.37	13.04	11.97	
misex3	4.81	3.83	3.32	3.34	3.98	5.70	
pdc	6.45	5.35	5.74	5.62	5.82	6.78	
s298	13.42	10.88	9.30	10.09	10.28	10.89	
s38417	10.13	7.84	4.46	4.75	6.59	6.58	
s38584	7.68	7.33	1.43	4.86	5.82	6.78	
seq	5.63	3.83	4.53	4.86	4.90	5.70	
spla	6.45	5.35	5.14	5.62	4.90	4.62	
tseng	17.53	10.37	6.88	7.80	7.52	7.65	
display_chip	19.18	13.41	8.70	8.56	7.52	6.58	
img_calc	42.60	27.07	16.58	15.42	13.96	15.20	
img_interp	20.41	14.42	8.09	7.04	7.52	7.65	
input_chip	17.94	11.89	8.70	9.33	7.52	6.58	
peak_chip	17.53	12.90	9.30	7.80	7.52	6.58	
scale125_chip	25.75	16.95	12.33	12.37	9.36	9.81	
scale2_chip	17.94	11.89	9.30	8.56	7.52	7.65	
warping	11.78	6.83	5.67	5.52	4.75	2.46	
Geom. Avg.	10.47	7.43	5.84	6.16	6.11	6.19	

Table F.2: Intra-Cluster Delay in nano-seconds (Cluster Size = 2)

Circuit	LUT Size						
	2	3	4	5	6	7	
alu4	6.18	3.64	4.79	5.09	6.05	6.10	
apex2	5.76	5.87	5.43	5.89	6.05	7.26	
apex4	4.49	4.20	4.15	5.09	5.09	6.10	
bigkey	4.06	3.05	2.15	2.58	2.87	2.23	
clma	15.00	10.30	7.29	9.78	7.66	9.18	
des	4.49	5.32	4.15	3.49	3.17	3.79	
diffeq	14.16	9.74	9.22	6.58	5.74	6.86	
dsip	3.63	3.60	2.15	2.58	2.87	2.23	
elliptic	18.79	10.86	9.86	8.98	9.57	9.18	
ex1010	6.18	5.87	4.79	5.89	6.05	6.10	
ex5p	5.76	4.76	4.79	4.29	5.09	4.94	
frisc	23.42	17.00	12.43	12.18	11.49	11.50	
misex3	4.91	4.20	4.15	5.09	5.09	6.10	
pdc	6.18	5.32	4.79	5.89	6.05	6.10	
s298	13.74	11.42	9.86	8.98	9.57	10.34	
s38417	8.69	8.07	6.65	7.38	6.70	6.86	
s38584	5.76	2.52	5.43	5.89	6.05	6.10	
seq	4.91	3.64	3.50	4.29	5.09	6.10	
spla	6.60	5.87	5.43	4.29	6.05	6.10	
tseng	15.84	10.86	8.58	8.18	7.66	8.02	
display_chip	18.37	14.21	9.22	8.98	7.66	6.86	
img_calc	35.63	27.04	17.58	19.38	15.32	14.98	
img_interp	21.32	15.88	7.93	7.38	7.66	8.02	
input_chip	18.79	13.09	7.29	9.78	7.66	6.86	
peak_chip	20.05	14.21	9.86	8.98	7.66	6.86	
scale125_chip	24.68	18.11	13.08	12.98	9.57	10.34	
scale2_chip	17.95	13.09	9.22	8.98	7.66	8.02	
warping	11.21	8.07	6.00	4.98	3.83	4.55	
Geom. Avg.	9.99	7.72	6.35	6.55	6.35	6.55	

Table F.3: Intra-Cluster Delay in nano-seconds (Cluster Size = 3)

Circuit	LUT Size						
	2	3	4	5	6	7	
alu4	4.90	4.87	5.20	5.31	5.26	6.09	
apex2	5.82	6.02	5.20	6.14	6.26	4.93	
apex4	5.36	4.30	4.50	5.31	5.26	4.93	
bigkey	4.42	3.69	2.24	2.59	2.96	2.21	
clma	16.41	9.99	9.96	8.45	9.92	10.31	
des	6.29	5.45	3.80	3.64	1.29	3.77	
diffeq	15.48	11.71	9.96	7.61	6.94	6.84	
dsip	4.88	3.69	2.24	2.59	2.96	1.46	
elliptic	23.78	11.14	10.67	10.12	12.90	10.31	
ex1010	6.29	6.02	5.20	5.31	6.26	6.09	
ex5p	4.90	4.87	4.50	4.47	5.26	3.77	
frisc	29.78	15.15	14.18	12.62	12.90	8.00	
misex3	3.98	3.15	3.80	3.64	4.27	4.93	
pdc	7.67	6.02	6.61	6.14	6.26	6.09	
s298	15.02	12.28	9.96	10.95	10.91	10.31	
s38417	11.34	5.98	7.86	7.61	6.94	5.68	
s38584	4.90	4.87	6.61	5.31	6.26	7.24	
seq	5.36	4.87	3.10	4.47	4.27	4.93	
spla	4.90	4.87	5.90	5.31	6.26	6.09	
tseng	17.79	12.28	9.26	8.45	7.93	8.00	
display_chip	21.94	15.15	9.96	9.28	7.93	6.84	
img_calc	41.76	32.34	16.98	20.15	14.88	14.93	
img_interp	22.86	15.15	4.35	8.45	7.93	8.00	
input_chip	19.63	12.86	8.56	10.12	7.93	6.84	
peak_chip	21.02	14.00	9.96	8.45	7.93	6.84	
scale125_chip	27.47	19.16	12.77	13.46	9.92	9.15	
scale2_chip	20.09	13.43	10.67	9.28	7.93	8.00	
warping	13.18	5.41	7.16	5.10	4.95	4.53	
Geom. Avg.	10.80	8.01	6.65	6.71	6.44	6.09	

Table F.4: Intra-Cluster Delay in nano-seconds (Cluster Size = 4)

Circuit	LUT Size						
	2	3	4	5	6	7	
alu4	5.93	5.12	4.72	4.60	6.34	6.03	
apex2	5.93	4.52	5.46	5.47	6.34	6.03	
apex4	4.99	3.92	4.72	5.47	5.33	4.89	
bigkey	4.03	3.87	2.37	2.69	3.01	2.20	
clma	15.31	11.71	10.50	9.59	10.06	10.21	
des	6.40	4.52	3.98	4.60	3.32	3.74	
diffeq	17.19	11.71	10.50	8.72	7.04	6.78	
dsip	4.03	2.66	2.37	2.69	3.01	2.20	
elliptic	24.24	12.31	11.23	10.45	10.06	10.21	
ex1010	5.93	5.72	6.20	5.47	5.33	6.03	
ex5p	6.40	5.12	4.72	4.60	5.33	4.89	
frisc	28.47	17.14	14.19	13.03	13.08	10.21	
misex3	5.93	3.91	3.98	4.60	5.33	4.89	
pdc	7.34	6.93	6.20	5.47	6.34	6.03	
s298	13.90	12.92	10.50	10.45	11.06	11.36	
s38417	3.09	9.30	7.54	7.86	7.04	6.78	
s38584	8.28	6.93	6.94	5.47	6.34	7.17	
seq	6.40	4.52	4.72	4.60	4.33	4.89	
spla	6.40	5.72	4.72	5.47	6.34	6.03	
tseng	19.07	11.11	9.76	8.72	8.04	7.92	
display_chip	21.89	14.72	9.76	9.58	8.04	6.78	
img_calc	44.45	27.99	18.62	20.79	14.09	14.79	
img_interp	22.83	15.33	8.28	7.86	8.04	7.92	
input_chip	20.01	13.52	7.54	9.58	8.04	6.78	
peak_chip	22.36	14.72	11.23	8.72	8.04	6.78	
scale125_chip	27.53	20.15	14.19	13.89	10.06	10.21	
scale2_chip	20.95	14.12	10.50	8.72	8.04	7.92	
warping	12.49	9.30	7.54	5.28	5.02	4.49	
Geom. Avg.	10.89	8.41	7.06	6.87	6.73	6.38	

Table F.5: Intra-Cluster Delay in nano-seconds (Cluster Size = 5)

Circuit	LUT Size						
	2	3	4	5	6	7	
alu4	6.65	3.43	5.39	5.56	6.27	6.05	
apex2	7.14	5.94	6.12	6.44	5.27	6.05	
apex4	6.16	4.68	3.93	5.56	5.27	6.05	
bigkey	5.16	4.01	2.48	2.74	2.98	2.20	
clma	17.39	12.16	9.63	11.51	6.95	10.25	
des	6.65	5.31	4.66	4.68	3.28	3.75	
diffeq	16.90	12.16	10.36	7.12	5.96	6.80	
dsip	4.67	3.38	2.34	2.74	2.98	2.20	
elliptic	24.23	12.79	11.09	8.88	7.95	10.25	
ex1010	7.63	6.56	4.66	5.56	6.27	6.05	
ex5p	5.67	5.31	4.66	4.68	5.27	4.90	
frisc	30.59	17.80	14.01	14.14	12.92	11.40	
misex3	6.16	4.68	3.93	5.56	5.27	4.90	
pdc	8.12	6.56	6.85	6.44	7.26	6.05	
s298	15.43	14.04	11.09	10.63	10.93	11.40	
s38417	11.03	9.65	8.18	7.12	6.95	5.65	
s38584	6.16	6.56	6.85	6.44	6.27	7.20	
seq	5.67	4.68	5.39	4.68	5.27	4.90	
spla	7.14	5.94	5.39	5.56	5.27	7.20	
tseng	19.34	12.79	9.63	8.88	7.95	7.95	
display_chip	22.27	14.04	10.36	9.75	7.95	6.80	
img_calc	45.75	34.73	19.84	17.65	13.91	14.84	
img_interp	24.72	15.92	8.90	8.00	7.95	5.65	
input_chip	19.34	14.67	8.18	10.63	7.95	6.80	
peak_chip	23.74	16.55	11.09	8.88	7.95	6.80	
scale125_chip	26.68	19.69	14.74	14.14	8.94	10.25	
scale2_chip	21.79	14.04	10.36	9.75	7.95	7.95	
warping	13.96	10.28	7.45	5.37	4.97	4.50	
Geom. Avg.	12.01	8.93	7.21	7.11	6.49	6.39	

Table F.6: Intra-Cluster Delay in nano-seconds (Cluster Size = 6)

Circuit	LUT Size						
	2	3	4	5	6	7	
alu4	6.24	5.71	5.42	5.46	6.37	6.23	
apex2	7.24	7.07	5.42	3.74	5.36	6.23	
apex4	6.24	4.36	3.95	4.60	5.36	5.04	
bigkey	4.73	4.31	2.35	2.69	3.02	2.30	
clma	13.66	11.08	9.68	9.57	8.08	10.59	
des	6.74	5.71	4.68	4.60	3.34	3.86	
diffeq	18.12	13.11	8.95	8.71	7.06	7.04	
dsip	3.74	4.31	2.35	2.69	3.02	2.30	
elliptic	18.62	11.76	8.21	6.99	7.06	10.59	
ex1010	7.73	7.07	5.42	6.32	5.36	6.23	
ex5p	6.74	5.71	4.68	3.74	5.36	5.04	
frisc	33.00	19.20	13.35	10.44	13.14	11.77	
misex3	5.75	5.04	3.95	4.60	5.36	5.04	
pdc	7.73	7.75	6.15	6.32	6.37	6.23	
s298	13.66	11.76	9.68	10.44	11.11	11.77	
s38417	10.68	9.73	8.21	6.99	5.04	7.04	
s38584	7.24	6.39	6.88	5.46	6.37	7.41	
seq	5.75	5.04	3.95	3.74	5.36	6.23	
spla	8.72	7.07	5.42	5.46	6.37	7.41	
tseng	20.11	14.47	9.68	8.71	8.08	7.04	
display_chip	22.59	17.17	8.95	9.57	5.04	7.04	
img_calc	46.40	38.16	19.21	20.77	15.16	15.32	
img_interp	25.07	19.20	8.21	8.71	8.08	8.22	
input_chip	19.12	15.82	8.21	10.44	8.08	7.04	
peak_chip	24.08	17.17	9.68	8.71	8.08	7.04	
scale125_chip	30.03	21.91	14.81	13.88	9.09	10.59	
scale2_chip	22.09	15.82	11.15	9.57	8.08	8.22	
warping	9.20	10.40	7.48	5.27	5.04	4.67	
Geom. Avg.	11.76	9.72	6.87	6.63	6.43	6.69	

Table F.7: Intra-Cluster Delay in nano-seconds (Cluster Size = 7)

Circuit	LUT Size						
	2	3	4	5	6	7	
alu4	7.40	5.63	5.38	4.58	5.47	6.32	
apex2	8.58	6.30	5.38	6.30	5.47	6.32	
apex4	6.81	4.96	4.65	4.58	5.47	6.32	
bigkey	3.82	3.58	2.34	2.69	3.11	2.34	
clma	15.66	12.92	11.06	10.41	8.28	10.76	
des	7.40	5.63	4.65	4.58	3.40	3.92	
diffeq	22.18	13.59	8.15	7.83	8.28	7.15	
dsip	5.01	4.25	2.34	2.69	3.11	2.34	
elliptic	30.46	14.25	11.06	9.55	9.32	10.76	
ex1010	7.99	6.96	5.38	5.44	6.50	6.32	
ex5p	6.80	5.63	4.65	3.73	5.47	5.12	
frisc	39.34	18.26	13.97	13.84	13.45	13.17	
misex3	5.62	5.63	4.65	4.58	5.47	5.12	
pdc	10.95	6.30	3.92	6.30	6.50	6.32	
s298	18.62	12.92	10.33	8.69	11.39	11.97	
s38417	13.89	9.59	7.43	7.83	7.25	7.15	
s38584	9.17	6.30	6.83	1.83	6.50	7.52	
seq	6.21	5.63	5.38	5.44	5.47	6.32	
spla	9.17	6.30	5.38	5.44	6.50	6.32	
tseng	22.77	12.92	9.61	8.69	8.28	5.95	
display_chip	28.10	16.26	9.61	8.69	7.25	7.15	
img_calc	58.29	37.60	18.33	19.85	14.49	15.57	
img_interp	30.46	18.92	8.88	8.69	7.25	8.36	
input_chip	23.95	15.59	10.33	10.41	8.28	7.15	
peak_chip	29.28	17.59	9.61	8.69	8.28	7.15	
scale125_chip	32.83	21.59	14.70	13.84	9.32	10.76	
scale2_chip	25.73	14.92	10.33	9.55	6.21	8.36	
warping	16.85	10.92	3.79	5.26	5.18	3.54	
Geom. Avg.	14.03	9.66	6.88	6.59	6.72	6.72	

Table F.8: Intra-Cluster Delay in nano-seconds (Cluster Size = 8)

Circuit	LUT Size						
	2	3	4	5	6	7	
alu4	7.82	5.15	5.35	4.82	5.60	6.41	
apex2	8.98	7.23	5.35	5.72	5.60	7.64	
apex4	6.08	5.15	4.63	5.72	5.60	5.19	
bigkey	3.75	3.71	2.34	2.83	3.18	2.37	
clma	18.22	13.41	10.29	10.07	8.48	10.93	
des	7.24	5.84	4.63	4.82	3.48	3.97	
diffeq	21.70	13.41	8.12	7.35	7.42	7.26	
dsip	4.91	3.71	2.34	2.83	3.18	2.37	
elliptic	29.80	15.49	8.85	10.97	8.48	10.93	
ex1010	8.40	6.53	5.35	4.82	5.60	6.41	
ex5p	7.82	5.84	4.63	4.82	5.60	5.19	
frisc	37.33	21.03	13.91	13.69	12.72	12.15	
misex3	7.82	4.46	3.91	4.82	5.60	6.41	
pdc	9.56	6.53	5.35	6.63	5.60	7.64	
s298	18.22	14.10	11.02	10.97	11.66	10.93	
s38417	11.85	10.64	6.68	7.35	7.42	7.26	
s38584	10.71	6.53	6.07	6.63	6.66	7.64	
seq	7.82	5.15	3.91	4.82	5.60	6.41	
spla	8.98	7.23	6.07	6.63	6.66	6.41	
tseng	25.17	14.80	9.57	9.16	8.48	7.26	
display_chip	26.91	16.88	9.57	9.16	5.30	7.26	
img_calc	57.02	39.05	20.41	20.93	15.90	17.04	
img_interp	28.64	19.65	8.85	9.16	8.48	8.48	
input_chip	24.01	16.18	10.29	10.97	8.48	7.26	
peak_chip	28.07	18.26	9.57	9.16	8.48	7.26	
scale125_chip	32.70	22.42	13.91	14.59	9.54	10.93	
scale2_chip	24.01	14.80	10.29	10.07	8.48	8.48	
warping	16.48	11.33	5.23	5.54	5.30	4.81	
Geom. Avg.	14.22	9.91	6.83	7.23	6.75	6.99	

Table F.9: Intra-Cluster Delay in nano-seconds (Cluster Size = 9)

Circuit	LUT Size						
	2	3	4	5	6	7	
alu4	6.03	5.73	4.63	5.73	5.59	6.48	
apex2	8.90	7.08	5.36	6.64	6.65	6.48	
apex4	6.61	5.05	4.63	4.83	5.59	6.48	
bigkey	5.44	4.32	2.34	2.84	3.19	2.41	
clma	16.92	13.14	6.68	11.00	10.60	9.83	
des	6.03	5.73	3.91	4.83	3.47	4.01	
diffeq	18.07	13.82	9.58	7.37	7.42	7.35	
dsip	4.87	3.64	2.34	2.84	3.19	2.41	
elliptic	29.55	11.79	11.02	11.00	4.25	11.06	
ex1010	7.75	7.08	6.08	5.73	5.59	7.72	
ex5p	7.18	5.05	4.63	5.73	4.53	5.25	
frisc	38.16	20.61	13.92	12.81	13.77	12.30	
misex3	6.61	5.05	4.63	5.73	4.53	5.25	
pdc	8.90	6.41	6.08	6.64	6.65	6.48	
s298	18.07	14.50	11.02	11.00	11.66	11.06	
s38417	13.47	8.39	7.41	7.37	7.42	6.12	
s38584	11.20	6.41	6.08	6.64	6.65	7.72	
seq	6.61	5.05	4.63	5.73	4.53	6.48	
spla	8.90	7.08	5.36	4.83	6.65	6.48	
tseng	24.38	13.82	8.85	9.18	8.48	8.59	
display_chip	28.97	17.22	9.58	10.09	7.42	6.12	
img_calc	55.95	38.27	18.26	20.07	15.89	16.01	
img_interp	28.97	19.25	8.85	11.00	8.48	8.59	
input_chip	23.23	15.86	10.30	11.00	7.42	7.35	
peak chip	26.68	17.22	11.02	9.18	8.48	7.35	
scale125_chip	34.71	21.97	13.92	14.63	9.54	11.06	
scale2_chip	25.53	14.50	10.30	10.09	8.48	8.59	
warping	15.77	11.11	5.23	5.56	5.31	4.88	
Geom. Avg.	13.90	9.71	6.87	7.44	6.63	6.93	

Table F.10: Intra-Cluster Delay in nano-seconds (Cluster Size = 10)

${}^{\text{APPENDIX}}\,G$

Inter-Cluster (Routing) Delay

Circuit	LUT Size						
	2	3	4	5	6	7	
alu4	23.87	25.94	20.54	15.86	17.29	25.58	
apex2	25.99	25.83	23.53	16.18	18.60	21.42	
apex4	27.04	19.17	16.16	14.24	17.31	15.57	
bigkey	16.77	12.41	11.89	23.67	12.31	9.48	
clma	54.56	45.21	46.47	44.92	35.57	27.08	
des	19.44	18.70	18.42	17.42	15.56	37.23	
diffeq	35.30	19.07	14.31	10.26	12.29	8.30	
dsip	16.93	13.14	10.85	11.19	10.33	27.62	
elliptic	45.09	24.30	22.24	21.36	19.76	23.08	
ex1010	40.54	49.35	36.57	71.35	44.33	20.40	
ex5p	19.76	19.59	14.54	13.55	13.36	8.82	
frisc	67.21	30.44	26.04	21.61	19.00	19.44	
misex3	21.44	21.15	17.35	19.65	12.50	18.83	
pdc	44.47	51.91	59.98	36.63	35.96	45.97	
s298	47.44	39.76	31.88	28.08	23.99	21.99	
s38417	38.98	20.43	23.95	15.42	10.78	9.31	
s38584	28.54	15.91	14.53	16.83	15.31	10.70	
seq	27.50	26.78	14.77	14.01	14.03	21.97	
spla	38.29	41.29	42.56	35.27	31.81	29.09	
tseng	35.49	18.83	12.87	11.35	9.55	7.40	
display_chip	44.37	24.88	14.01	9.19	8.38	5.98	
img_calc	106.72	67.18	34.57	23.43	22.35	14.94	
img_interp	49.21	30.08	17.71	14.68	13.36	8.39	
input_chip	36.93	24.61	11.13	10.27	7.50	6.58	
peak_chip	50.56	26.56	15.49	10.81	7.92	6.91	
scale125_chip	67.26	31.31	16.94	15.74	12.27	9.36	
scale2_chip	40.71	22.09	14.11	22.52	8.84	8.22	
warping	29.18	17.85	10.28	8.12	6.20	8.73	
Geom. Avg.	35.63	25.66	19.48	17.80	14.97	14.47	

Table G.1: Inter-Cluster Delay in nano-seconds (Cluster Size = 1)

Circuit	LUT Size						
	2	3	4	5	6	7	
alu4	19.50	16.35	17.61	13.90	12.85	9.99	
apex2	22.57	19.97	14.67	15.66	13.34	14.25	
apex4	19.11	16.28	16.55	17.25	12.49	13.90	
bigkey	10.42	9.64	10.29	10.58	6.48	8.41	
clma	44.04	38.96	31.86	26.98	27.67	22.79	
des	14.71	14.17	14.32	16.81	12.45	10.86	
diffeq	22.01	14.21	13.41	10.72	7.97	7.69	
dsip	10.61	8.98	8.52	6.90	8.55	7.08	
elliptic	26.85	26.65	19.38	19.44	18.04	21.63	
ex1010	32.85	41.81	26.11	33.14	23.01	15.84	
ex5p	17.25	14.47	16.63	10.95	9.76	7.99	
frisc	37.73	27.81	21.66	17.83	16.22	16.15	
misex3	17.62	17.78	15.29	15.05	14.53	9.46	
pdc	33.23	30.80	30.48	22.76	23.02	16.47	
s298	32.24	23.92	23.94	21.57	25.74	16.35	
s38417	25.50	17.70	17.13	15.37	9.07	8.00	
s38584	15.75	15.29	15.97	13.33	9.48	9.02	
seq	19.07	15.52	12.87	13.79	9.91	17.70	
spla	32.92	30.31	29.00	24.62	20.68	23.13	
tseng	17.38	15.74	13.44	9.92	7.96	7.39	
display_chip	26.23	17.80	9.99	7.55	6.36	5.64	
img_calc	63.42	47.90	29.51	19.44	16.09	13.43	
img_interp	29.11	20.91	16.23	12.88	10.55	7.65	
input_chip	24.39	19.01	7.27	6.61	6.31	5.58	
peak_chip	32.28	20.82	11.55	8.99	7.45	7.06	
scale125_chip	34.20	25.92	11.73	12.04	9.15	9.81	
scale2_chip	23.90	17.43	10.89	9.07	7.29	6.32	
warping	13.91	12.36	7.95	6.24	5.51	6.96	
Geom. Avg.	23.59	19.67	15.61	13.69	11.49	10.62	

Table G.2: Inter-Cluster Delay in nano-seconds (Cluster Size = 2)

Circuit	LUT Size					
	2	3	4	5	6	7
alu4	15.91	19.61	9.69	10.03	8.44	9.41
apex2	17.46	13.52	12.72	14.00	9.92	9.25
apex4	17.67	15.09	12.54	15.31	11.43	12.22
bigkey	9.48	7.77	6.10	6.39	4.95	6.13
clma	40.09	28.86	29.72	24.17	24.59	25.05
des	13.96	11.33	10.88	10.45	9.84	10.39
diffeq	16.83	12.79	8.60	11.70	8.21	6.28
dsip	9.62	7.37	6.29	6.32	5.69	7.00
elliptic	20.21	22.07	17.08	19.13	13.66	16.05
ex1010	28.84	32.88	23.31	18.97	26.58	13.28
ex5p	14.80	13.26	11.16	10.65	8.10	8.23
frisc	31.14	18.78	20.37	17.05	17.72	14.15
misex3	14.58	15.01	10.93	9.37	8.81	7.77
pdc	34.76	26.33	32.11	23.28	28.30	21.51
s298	30.06	25.67	23.02	21.65	19.91	20.18
s38417	23.81	20.43	12.78	13.06	8.81	7.01
s38584	16.80	15.85	13.20	9.06	8.99	10.63
seq	15.54	13.51	12.54	14.01	9.93	8.83
spla	26.03	25.70	19.72	23.81	28.30	23.21
tseng	16.44	11.33	8.66	8.36	8.02	6.72
display_chip	20.24	14.54	8.82	5.59	5.33	4.80
img_calc	56.17	43.98	23.04	12.35	12.41	12.17
img_interp	24.41	17.05	15.86	15.44	8.49	5.63
input_chip	16.42	9.88	8.49	4.18	4.59	5.84
peak_chip	19.78	15.42	8.60	6.66	6.80	6.98
scale125_chip	24.95	19.42	11.47	10.15	7.79	6.67
scale2_chip	20.02	12.40	9.81	7.65	6.63	6.37
warping	10.43	7.35	5.71	5.00	5.17	4.60
Geom. Avg.	19.84	16.14	12.61	11.30	10.05	9.38

Table G.3: Inter-Cluster Delay in nano-seconds (Cluster Size = 3)

Circuit			LUT	Size		
	2	3	4	5	6	7
alu4	30.29	14.95	10.76	9.01	8.59	8.13
apex2	19.53	13.11	21.35	9.77	13.71	11.92
apex4	16.86	18.22	13.35	16.80	13.74	9.73
bigkey	9.55	8.98	6.26	5.46	5.06	6.54
clma	34.54	27.59	24.81	26.66	23.98	23.43
des	13.20	11.02	11.44	10.31	12.03	9.57
diffeq	14.55	9.48	7.28	10.17	6.53	6.49
dsip	8.04	8.71	8.86	4.93	8.00	6.61
elliptic	15.68	22.11	15.05	18.74	23.59	13.34
ex1010	28.21	34.15	19.24	18.83	22.49	15.15
ex5p	15.20	13.99	10.76	12.39	9.84	8.35
frisc	25.22	20.75	20.27	15.46	18.96	23.92
misex3	17.44	14.55	11.85	11.59	8.89	9.81
pdc	57.48	33.16	24.81	25.97	21.93	18.21
s298	21.73	24.81	22.35	19.93	17.38	17.05
s38417	18.85	17.72	11.46	11.01	7.26	10.21
s38584	16.26	11.43	8.27	8.73	7.61	6.87
seq	15.41	10.69	12.82	10.36	11.14	10.13
spla	29.49	37.32	17.40	22.43	21.53	13.07
tseng	17.63	8.99	8.03	7.72	7.11	6.61
display_chip	14.31	12.25	5.85	4.96	4.29	4.04
img_calc	48.90	36.17	21.13	10.41	12.73	11.84
img_interp	18.91	15.07	18.48	8.84	10.22	6.26
input_chip	14.30	12.33	5.80	3.11	4.33	5.66
peak_chip	18.09	14.86	7.28	6.88	5.07	4.97
scale125_chip	23.25	16.73	10.97	8.40	7.60	8.44
scale2_chip	17.25	10.64	7.88	7.86	7.30	4.65
warping	7.72	10.85	4.09	4.84	4.33	4.23
Geom. Avg.	18.82	15.80	11.72	10.32	10.05	9.06

Table G.4: Inter-Cluster Delay in nano-seconds (Cluster Size = 4)

Circuit	LUT Size							
	2	3	4	5	6	7		
alu4	19.84	11.57	9.96	9.52	6.99	7.53		
apex2	18.98	15.29	12.74	11.93	8.78	10.46		
apex4	17.53	12.95	11.70	10.28	10.98	10.99		
bigkey	8.53	6.16	5.93	5.25	5.17	4.13		
clma	34.52	26.56	21.57	28.18	22.95	18.02		
des	11.09	13.18	11.22	10.24	9.12	11.24		
diffeq	10.88	9.70	5.62	6.93	6.41	5.94		
dsip	9.24	7.00	7.62	5.51	4.99	5.04		
elliptic	11.66	16.56	14.43	14.03	9.98	12.05		
ex1010	44.08	52.62	35.73	29.53	26.97	13.86		
ex5p	12.79	15.30	10.95	12.60	9.59	6.86		
frisc	20.28	15.57	15.11	14.02	16.70	17.30		
misex3	12.52	24.44	12.50	15.74	8.62	8.87		
pdc	30.65	44.92	30.16	24.92	25.51	20.92		
s298	32.15	21.76	26.21	23.92	18.19	15.90		
s38417	36.28	12.07	13.98	12.55	7.38	6.86		
s38584	13.32	10.43	8.10	12.92	13.82	7.08		
seq	15.23	12.53	10.46	10.94	10.92	8.77		
spla	28.74	27.45	32.59	19.34	19.01	21.62		
tseng	13.11	11.34	7.64	8.33	6.25	6.37		
display_chip	15.16	10.60	6.77	4.33	4.26	3.84		
img_calc	48.88	40.73	20.25	9.98	12.00	10.70		
img_interp	18.68	13.13	15.80	12.53	7.67	5.38		
input_chip	12.38	11.59	7.15	3.98	3.74	6.23		
peak_chip	16.24	13.59	6.34	5.89	6.34	4.66		
scale125_chip	21.47	15.36	9.64	6.60	6.20	7.52		
scale2_chip	12.84	10.96	8.44	8.33	6.67	5.42		
warping	7.38	5.43	3.63	5.15	3.91	3.19		
Geom. Avg.	17.42	14.87	11.61	10.57	9.14	8.34		

Table G.5: Inter-Cluster Delay in nano-seconds (Cluster Size = 5)

Circuit			LUT	Size		
	2	3	4	5	6	7
alu4	12.81	14.12	12.06	9.23	7.45	8.94
apex2	17.03	14.02	10.81	10.96	9.12	10.48
apex4	22.35	16.06	12.58	12.21	8.73	8.04
bigkey	6.47	6.07	6.86	4.50	4.54	4.87
clma	26.77	29.81	26.35	20.97	24.35	15.32
des	10.07	10.34	10.86	9.08	8.74	9.82
diffeq	10.62	8.07	5.96	10.34	7.26	6.52
dsip	6.23	8.16	4.97	5.02	4.80	5.59
elliptic	12.49	14.58	11.48	18.71	20.01	9.95
ex1010	25.16	37.59	28.62	30.71	15.34	12.82
ex5p	14.20	12.94	12.64	13.70	8.95	6.46
frisc	22.26	15.77	16.85	15.34	13.39	14.82
misex3	12.84	10.94	12.83	7.47	7.14	8.18
pdc	30.98	31.85	24.82	18.39	28.65	21.07
s298	28.12	26.15	18.69	19.92	14.68	13.44
s38417	17.16	13.37	10.88	9.32	6.20	14.71
s38584	13.15	10.21	8.41	7.48	7.82	7.44
seq	15.42	13.15	10.47	9.18	7.55	8.55
spla	27.42	22.12	35.04	21.14	17.24	10.83
tseng	10.75	9.56	7.21	7.30	6.59	6.06
display_chip	13.44	10.57	4.58	5.39	3.93	3.51
img_calc	39.63	29.29	17.03	13.32	11.34	9.91
img_interp	17.59	14.06	13.43	11.19	6.82	7.39
input_chip	14.37	9.35	5.53	3.15	3.53	3.66
peak_chip	14.51	10.61	7.20	6.10	6.75	4.96
scale125_chip	23.18	12.82	7.01	6.47	8.52	5.56
scale2_chip	10.40	10.01	7.62	6.15	5.56	4.76
warping	6.57	3.57	4.17	5.02	4.55	3.54
Geom. Avg.	15.46	13.31	10.81	9.79	8.59	7.93

Table G.6: Inter-Cluster Delay in nano-seconds (Cluster Size = 6)

Circuit	LUT Size							
	2	3	4	5	6	7		
alu4	13.35	10.70	10.96	9.59	6.32	6.89		
apex2	21.42	10.65	11.98	13.58	11.67	8.81		
apex4	13.49	18.92	13.54	12.64	7.92	13.17		
bigkey	6.21	5.26	5.62	6.31	4.17	4.87		
clma	44.02	26.12	22.58	29.92	20.71	21.47		
des	9.78	10.06	10.29	8.36	7.29	8.60		
diffeq	8.91	7.96	7.08	5.44	5.71	4.89		
dsip	7.41	5.35	4.92	4.91	4.79	4.43		
elliptic	20.46	19.98	19.49	20.71	17.42	11.70		
ex1010	24.50	29.46	19.20	20.90	22.53	12.52		
ex5p	15.29	14.37	10.60	12.04	9.33	6.04		
frisc	16.02	16.59	16.74	19.48	14.88	13.84		
misex3	13.26	11.35	11.21	8.40	7.24	8.32		
pdc	26.68	30.39	25.38	32.58	25.02	21.91		
s298	25.95	25.16	23.52	18.73	14.38	10.36		
s38417	23.57	17.35	25.63	9.90	11.92	8.76		
s38584	12.44	12.23	7.57	10.72	7.76	9.47		
seq	17.54	10.29	10.30	12.64	8.16	6.89		
spla	25.24	23.30	21.43	24.59	13.61	12.17		
tseng	9.79	7.78	6.39	7.03	5.85	6.58		
display_chip	14.38	8.50	5.69	4.93	7.63	2.99		
img_calc	39.32	28.25	15.14	10.17	10.33	9.35		
img_interp	15.20	8.96	12.20	8.37	7.28	4.93		
input_chip	12.97	8.70	5.29	2.40	3.22	3.83		
peak_chip	12.47	9.68	7.43	6.59	5.53	6.27		
scale125_chip	13.03	13.55	5.95	4.66	8.92	6.19		
scale2_chip	9.68	7.37	6.72	5.11	4.58	4.08		
warping	10.46	3.75	3.20	4.67	4.10	3.15		
Geom. Avg.	15.40	12.40	10.61	9.83	8.60	7.58		

Table G.7: Inter-Cluster Delay in nano-seconds (Cluster Size = 7)

Circuit			LUT	Size		
	2	3	4	5	6	7
alu4	12.46	10.63	8.91	8.48	9.78	7.97
apex2	13.92	11.69	10.13	13.49	11.01	9.76
apex4	13.49	18.72	10.58	14.76	10.74	10.31
bigkey	7.58	5.51	5.71	5.65	5.71	5.05
clma	34.48	24.50	24.65	19.65	22.27	20.44
des	9.55	10.27	9.62	7.93	6.90	10.45
diffeq	7.87	6.60	6.52	7.97	5.09	5.86
dsip	6.62	6.96	5.72	4.36	4.33	4.75
elliptic	9.35	13.32	15.60	17.03	15.16	10.39
ex1010	25.66	32.85	19.07	19.11	16.92	13.21
ex5p	13.10	12.23	10.48	11.43	10.07	6.75
frisc	14.56	15.99	17.12	13.51	14.90	14.32
misex3	13.20	9.65	11.00	10.28	8.82	8.12
pdc	25.69	24.38	30.03	19.67	17.43	14.28
s298	29.17	21.68	19.53	25.12	22.87	11.26
s38417	17.36	14.62	10.77	7.78	6.24	6.41
s38584	12.30	9.90	9.02	13.48	7.12	6.73
seq	14.37	11.63	10.26	7.81	9.28	8.75
spla	23.74	22.16	21.68	29.07	17.45	13.40
tseng	9.61	9.52	6.01	7.49	5.92	8.77
display_chip	11.16	9.50	5.19	5.02	4.40	2.86
img_calc	34.91	27.97	15.64	11.04	10.33	9.49
img_interp	15.08	8.40	10.39	8.37	9.46	4.34
input_chip	13.79	6.34	2.17	1.99	3.23	4.04
peak_chip	11.72	9.41	7.70	5.97	5.18	4.88
scale125_chip	18.82	12.16	7.68	5.68	6.45	5.02
scale2_chip	10.74	9.08	6.75	4.91	8.07	3.61
warping	5.40	2.80	6.59	4.45	3.50	4.16
Geom. Avg.	13.89	11.76	10.01	9.37	8.64	7.51

Table G.8: Inter-Cluster Delay in nano-seconds (Cluster Size = 8)

Circuit	LUT Size							
	2	3	4	5	6	7		
alu4	16.30	11.15	8.89	8.42	7.73	6.92		
apex2	14.25	14.34	10.89	9.98	10.53	9.14		
apex4	15.07	12.50	14.58	9.33	13.90	10.26		
bigkey	7.20	5.47	6.37	4.83	4.85	5.19		
clma	26.51	21.35	24.93	29.29	23.13	17.25		
des	11.74	11.72	9.81	8.90	8.55	8.05		
diffeq	8.93	7.05	6.37	6.22	5.64	4.87		
dsip	6.38	6.02	5.37	6.94	4.56	4.64		
elliptic	7.36	15.18	16.66	13.70	11.68	11.82		
ex1010	21.97	32.24	17.85	19.12	18.34	10.78		
ex5p	12.83	14.73	13.11	9.40	7.03	6.01		
frisc	15.44	15.08	14.91	22.05	17.91	13.38		
misex3	14.06	10.66	10.86	7.39	7.57	9.70		
pdc	30.51	28.33	24.17	22.00	23.09	13.65		
s298	21.02	19.99	24.09	13.64	13.36	13.30		
s38417	20.07	13.96	19.55	9.65	6.23	7.54		
s38584	9.16	9.48	10.49	7.00	7.77	6.96		
seq	10.44	11.74	12.97	9.35	7.74	8.66		
spla	21.55	24.17	22.72	27.93	22.89	14.16		
tseng	12.04	6.67	4.46	7.71	6.40	5.12		
display_chip	11.88	7.52	5.21	4.42	6.64	2.59		
img_calc	33.23	24.65	12.19	10.49	9.82	7.85		
img_interp	15.21	8.07	9.58	9.18	7.17	4.35		
input_chip	12.08	6.43	3.10	1.23	3.42	3.54		
peak_chip	10.09	7.39	7.25	5.06	4.82	4.86		
scale125_chip	20.31	10.76	6.74	5.47	5.70	4.74		
scale2_chip	13.89	9.05	6.90	4.13	4.66	3.71		
warping	5.50	3.34	4.86	4.13	3.57	2.94		
Geom. Avg.	13.74	11.45	10.30	8.65	8.38	7.02		

Table G.9: Inter-Cluster Delay in nano-seconds (Cluster Size = 9)

Circuit	LUT Size							
	2	3	4	5	6	7		
alu4	20.26	9.20	11.54	7.48	7.36	6.47		
apex2	12.72	13.11	9.95	11.72	9.10	9.27		
apex4	18.79	12.12	11.78	10.41	9.34	10.71		
bigkey	6.12	5.70	6.17	4.78	4.81	4.30		
clma	25.72	22.23	22.70	19.24	17.61	17.85		
des	11.23	8.80	8.57	7.94	8.81	8.20		
diffeq	10.34	6.20	4.52	8.04	5.14	4.31		
dsip	6.11	6.43	4.94	4.88	4.21	4.32		
elliptic	7.25	20.07	14.14	15.50	20.25	9.05		
ex1010	24.02	34.91	23.36	17.23	17.24	11.26		
ex5p	14.12	14.86	10.27	10.05	8.28	6.50		
frisc	15.45	15.31	14.19	16.14	17.08	17.91		
misex3	14.57	10.60	8.47	8.24	8.25	8.16		
pdc	23.85	27.83	20.91	17.42	13.97	22.00		
s298	21.35	17.91	19.79	14.44	14.89	12.52		
s38417	23.18	17.03	10.94	12.01	7.01	8.86		
s38584	7.07	10.68	10.66	7.32	7.24	7.41		
seq	11.41	10.73	9.91	8.24	8.41	8.34		
spla	21.74	24.50	21.77	16.40	15.24	20.73		
tseng	5.95	7.63	6.23	6.70	5.63	3.87		
display_chip	8.75	6.35	4.95	3.92	4.06	4.40		
img_calc	29.34	21.71	16.31	10.53	9.38	8.64		
img_interp	13.67	8.05	10.40	5.76	7.39	4.00		
input_chip	11.42	6.57	3.24	1.29	4.81	3.96		
peak_chip	11.34	9.38	6.53	5.86	4.63	4.56		
scale125_chip	13.33	9.98	5.46	4.92	6.92	3.51		
scale2_chip	9.32	8.83	6.36	5.00	4.49	5.13		
warping	5.65	2.53	4.76	4.44	3.62	3.07		
Geom. Avg.	12.87	11.30	9.56	8.18	8.04	7.27		

Table G.10: Inter-Cluster Delay in nano-seconds (Cluster Size = 10)

${\sf APPENDIX}\, H$

Number of BLE Levels on Critical Path

Circuit	LUT Size						
	2	3	4	5	6	7	
alu4	14	7	7	6	4	4	
apex2	15	7	6	7	6	5	
apex4	11	7	6	6	5	5	
bigkey	10	5	3	2	3	2	
clma	36	12	9	7	9	9	
des	13	8	6	5	3	3	
diffeq	39	20	14	10	5	6	
dsip	10	5	3	3	3	2	
elliptic	52	22	15	12	10	9	
ex1010	16	11	7	5	6	5	
ex5p	14	9	6	5	4	4	
frisc	67	30	23	16	13	11	
misex3	13	7	6	4	5	4	
pdc	16	9	8	7	6	5	
s298	31	21	14	13	11	10	
s38417	18	16	9	8	7	6	
s38584	25	12	9	6	5	6	
seq	10	7	6	6	5	5	
spla	14	11	8	5	5	5	
tseng	43	21	13	10	8	7	
display_chip	52	26	14	11	8	6	
img_calc	102	55	27	21	15	14	
img_interp	54	28	13	10	7	6	
input_chip	47	23	14	12	8	6	
peak_chip	50	26	15	10	8	7	
scale125_chip	59	33	20	16	9	9	
scale2_chip	45	24	15	6	8	7	
warping	30	14	10	7	5	2	
Geom. Avg.	25.72	13.97	9.53	7.43	6.26	5.46	

Table H.1: Number of BLEs on Critical Path (Cluster Size = 1)

Circuit	LUT Size						
	2	3	4	5	6	7	
alu4	12	7	7	6	5	5	
apex2	13	9	8	7	6	5	
apex4	12	7	6	5	5	4	
bigkey	10	5	3	3	2	2	
clma	37	12	14	13	10	9	
des	12	9	6	3	3	3	
diffeq	37	20	14	9	8	6	
dsip	9	6	3	3	2	2	
elliptic	51	22	15	12	10	9	
ex1010	15	10	7	6	6	6	
ex5p	12	8	7	6	5	4	
frisc	62	29	20	16	14	11	
misex3	11	7	5	4	4	5	
pdc	15	10	9	7	6	6	
s298	32	21	15	13	11	10	
s38417	24	15	7	6	7	6	
s38584	18	14	2	6	6	6	
seq	13	7	7	6	5	5	
spla	15	10	8	7	5	4	
tseng	42	20	11	10	8	7	
display_chip	46	26	14	11	8	6	
img_calc	103	53	27	20	15	14	
img_interp	49	28	13	9	8	7	
input_chip	43	23	14	12	8	6	
peak_chip	42	25	15	10	8	6	
scale125_chip	62	33	20	16	10	9	
scale2_chip	43	23	15	11	8	7	
warping	28	13	9	7	5	2	
Geom. Avg.	24.64	14.06	9.16	7.73	6.37	5.53	

Table H.2: Number of BLEs on Critical Path (Cluster Size = 2)

Circuit	LUT Size						
	2	3	4	5	6	7	
alu4	14	6	7	6	6	5	
apex2	13	10	8	7	6	6	
apex4	10	7	6	6	5	5	
bigkey	9	5	3	3	3	2	
clma	35	18	11	12	8	8	
des	10	9	6	4	3	3	
diffeq	33	17	14	8	6	6	
dsip	8	6	3	3	3	2	
elliptic	44	19	15	11	10	8	
ex1010	14	10	7	7	6	5	
ex5p	13	8	7	5	5	4	
frisc	55	30	19	15	12	10	
misex3	11	7	6	6	5	5	
pdc	14	9	7	7	6	5	
s298	32	20	15	11	10	9	
s38417	20	14	10	9	7	6	
s38584	13	4	8	7	6	5	
seq	11	6	5	5	5	5	
spla	15	10	8	5	6	5	
tseng	37	19	13	10	8	7	
display_chip	43	25	14	11	8	6	
img_calc	84	48	27	24	16	13	
img_interp	50	28	12	9	8	7	
input_chip	44	23	11	12	8	6	
peak_chip	47	25	15	11	8	6	
scale125_chip	58	32	20	16	10	9	
scale2_chip	42	23	14	11	8	7	
warping	26	14	9	6	4	4	
Geom. Avg.	22.93	13.23	9.43	7.87	6.48	5.58	

Table H.3: Number of BLEs on Critical Path (Cluster Size = 3)

Circuit			LUT	Size		
	2	3	4	5	6	7
alu4	10	8	7	6	5	5
apex2	12	10	7	7	6	4
apex4	11	7	6	6	5	4
bigkey	9	6	3	3	3	2
clma	35	17	14	10	10	9
des	13	9	5	4	1	3
diffeq	33	20	14	9	7	6
dsip	10	6	3	3	3	1
elliptic	51	19	15	12	13	9
ex1010	13	10	7	6	6	5
ex5p	10	8	6	5	5	3
frisc	64	26	20	15	13	7
misex3	8	5	5	4	4	4
pdc	16	10	9	7	6	5
s298	32	21	14	13	11	9
s38417	24	10	11	9	7	5
s38584	10	8	9	6	6	6
seq	11	8	4	5	4	4
spla	10	8	8	6	6	5
tseng	38	21	13	10	8	7
display_chip	47	26	14	11	8	6
img_calc	90	56	24	24	15	13
img_interp	49	26	6	10	8	7
input_chip	42	22	12	12	8	6
peak_chip	45	24	14	10	8	6
scale125_chip	59	33	18	16	10	8
scale2_chip	43	23	15	11	8	7
warping	28	9	10	6	5	4
Geom. Avg.	22.64	13.42	9.13	7.77	6.31	5.14

Table H.4: Number of BLEs on Critical Path (Cluster Size = 4)

Circuit	LUT Size						
	2	3	4	5	6	7	
alu4	12	8	6	5	6	5	
apex2	12	7	7	6	6	5	
apex4	10	6	6	6	5	4	
bigkey	8	6	3	3	3	2	
clma	32	19	14	11	10	9	
des	13	7	5	5	3	3	
diffeq	36	19	14	10	7	6	
dsip	8	4	3	3	3	2	
elliptic	51	20	15	12	10	9	
ex1010	12	9	8	6	5	5	
ex5p	13	8	6	5	5	4	
frisc	60	28	19	15	13	9	
misex3	12	6	5	5	5	4	
pdc	15	11	8	6	6	5	
s298	29	21	14	12	11	10	
s38417	6	15	10	9	7	6	
s38584	17	11	9	6	6	6	
seq	13	7	6	5	4	4	
spla	13	9	6	6	6	5	
tseng	40	18	13	10	8	7	
display_chip	46	24	13	11	8	6	
img_calc	94	46	25	24	14	13	
img_interp	48	25	11	9	8	7	
input_chip	42	22	10	11	8	6	
peak_chip	47	24	15	10	8	6	
scale125_chip	58	33	19	16	10	9	
scale2_chip	44	23	14	10	8	7	
warping	26	15	10	6	5	4	
Geom. Avg.	22.40	13.39	9.22	7.72	6.54	5.50	

Table H.5: Number of BLEs on Critical Path (Cluster Size = 5)

Circuit	LUT Size						
	2	3	4	5	6	7	
alu4	13	5	7	6	6	5	
apex2	14	9	8	7	5	5	
apex4	12	7	5	6	5	5	
bigkey	10	6	3	3	3	2	
clma	35	19	13	13	7	9	
des	13	8	6	5	3	3	
diffeq	34	19	14	8	6	6	
dsip	9	5	3	3	3	2	
elliptic	49	20	15	10	8	9	
ex1010	15	10	6	6	6	5	
ex5p	11	8	6	5	5	4	
frisc	62	28	19	16	13	10	
misex3	12	7	5	6	5	4	
pdc	16	10	9	7	7	5	
s298	31	22	15	12	11	10	
s38417	22	15	11	8	7	5	
s38584	12	10	9	7	6	6	
seq	11	7	7	5	5	4	
spla	14	9	7	6	5	6	
tseng	39	20	13	10	8	7	
display_chip	45	22	14	11	8	6	
img_calc	93	55	27	20	14	13	
img_interp	50	25	12	9	8	5	
input_chip	39	23	11	12	8	6	
peak_chip	48	26	15	10	8	6	
scale125_chip	54	31	20	16	9	9	
scale2_chip	44	22	14	11	8	7	
warping	28	16	10	6	5	4	
Geom. Avg.	23.86	13.72	9.52	7.87	6.39	5.49	

Table H.6: Number of BLEs on Critical Path (Cluster Size = 6)

Circuit			LUT S	Size	LUT Size					
	2	3	4	5	6	7				
alu4	12	8	7	6	6	5				
apex2	14	10	7	4	5	5				
apex4	12	6	5	5	5	4				
bigkey	9	6	3	3	3	2				
clma	27	16	13	11	8	9				
des	13	8	6	5	3	3				
diffeq	36	19	12	10	7	6				
dsip	7	6	3	3	3	2				
elliptic	37	17	11	8	7	9				
ex1010	15	10	7	7	5	5				
ex5p	13	8	6	4	5	4				
frisc	66	28	18	12	13	10				
misex3	11	7	5	5	5	4				
pdc	15	11	8	7	6	5				
s298	27	17	13	12	11	10				
s38417	21	14	11	8	5	6				
s38584	14	9	9	6	6	6				
seq	11	7	5	4	5	5				
spla	17	10	7	6	6	6				
tseng	40	21	13	10	8	6				
display_chip	45	25	12	11	5	6				
img_calc	93	56	26	24	15	13				
img_interp	50	28	11	10	8	7				
input_chip	38	23	11	12	8	6				
peak_chip	48	25	13	10	8	6				
scale125_chip	60	32	20	16	9	9				
scale2_chip	44	23	15	11	8	7				
warping	18	15	10	6	5	4				
Geom. Avg.	23.01	13.88	9.04	7.45	6.22	5.57				

Table H.7: Number of BLEs on Critical Path (Cluster Size = 7)

Circuit		LUT Size						
	2	3	4	5	6	7		
alu4	12	8	7	5	5	5		
apex2	14	9	7	7	5	5		
apex4	11	7	6	5	5	5		
bigkey	6	5	3	3	3	2		
clma	26	19	15	12	8	9		
des	12	8	6	5	3	3		
diffeq	37	20	11	9	8	6		
dsip	8	6	3	3	3	2		
elliptic	51	21	15	11	9	9		
ex1010	13	10	7	6	6	5		
ex5p	11	8	6	4	5	4		
frisc	66	27	19	16	13	11		
misex3	9	8	6	5	5	4		
pdc	18	9	5	7	6	5		
s298	31	19	14	10	11	10		
s38417	23	14	10	9	7	6		
s38584	15	9	9	2	6	6		
seq	10	8	7	6	5	5		
spla	15	9	7	6	6	5		
tseng	38	19	13	10	8	5		
display_chip	47	24	13	10	7	6		
img_calc	98	56	25	23	14	13		
img_interp	51	28	12	10	7	7		
input chip	40	23	14	12	8	6		
peak_chip	49	26	13	10	8	6		
scale125_chip	55	32	20	16	9	9		
scale2_chip	43	22	14	11	6	7		
warping	28	16	5	6	5	3		
Geom. Avg.	23.08	14.00	9.12	7.42	6.35	5.50		

Table H.8: Number of BLEs on Critical Path (Cluster Size = 8)

Circuit	LUT Size					
	2	3	4	5	6	7
alu4	13	7	7	5	5	5
apex2	15	10	7	6	5	6
apex4	10	7	6	6	5	4
bigkey	6	5	3	3	3	2
clma	31	19	14	11	8	9
des	12	8	6	5	3	3
diffeq	37	19	11	8	7	6
dsip	8	5	3	3	3	2
elliptic	51	22	12	12	8	9
ex1010	14	9	7	5	5	5
ex5p	13	8	6	5	5	4
frisc	64	30	19	15	12	10
misex3	13	6	5	5	5	5
pdc	16	9	7	7	5	6
s298	31	20	15	12	11	9
s38417	20	15	9	8	7	6
s38584	18	9	8	7	6	6
seq	13	7	5	5	5	5
spla	15	10	8	7	6	5
tseng	43	21	13	10	8	6
display_chip	46	24	13	10	5	6
img_calc	98	56	28	23	15	14
img_interp	49	28	12	10	8	7
input_chip	41	23	14	12	8	6
peak_chip	48	26	13	10	8	6
scale125_chip	56	32	19	16	9	9
scale2_chip	41	21	14	11	8	7
warping	28	16	7	6	5	4
Geom. Avg.	23.95	13.83	9.09	7.74	6.23	5.64

Table H.9: Number of BLEs on Critical Path (Cluster Size = 9)

Circuit			LUT	Size		
	2	3	4	5	6	7
alu4	10	8	6	6	5	5
apex2	15	10	7	7	6	5
apex4	11	7	6	5	5	5
bigkey	9	6	3	3	3	2
clma	29	19	9	12	10	8
des	10	8	5	5	3	3
diffeq	31	20	13	8	7	6
dsip	8	5	3	3	3	2
elliptic	51	17	15	12	4	9
ex1010	13	10	8	6	5	6
ex5p	12	7	6	6	4	4
frisc	66	30	19	14	13	10
misex3	11	7	6	6	4	4
pdc	15	9	8	7	6	5
s298	31	21	15	12	11	9
s38417	23	12	10	8	7	5
s38584	19	9	8	7	6	6
seq	11	7	6	6	4	5
spla	15	10	7	5	6	5
tseng	42	20	12	10	8	7
display_chip	50	25	13	11	7	5
img_calc	97	56	25	22	15	13
img_interp	50	28	12	12	8	7
input_chip	40	23	14	12	7	6
peak_chip	46	25	15	10	8	6
scale125_chip	60	32	19	16	9	9
scale2_chip	44	21	14	11	8	7
warping	27	16	7	6	5	4
Geom. Avg.	23.60	13.83	9.14	7.96	6.12	5.52

Table H.10: Number of BLEs on Critical Path (Cluster Size = 10)

APPENDIX

Number of Cluster Levels on Critical Path

Circuit	LUT Size						
	2	3	4	5	6	7	
alu4	14	7	7	6	4	4	
apex2	15	7	6	7	6	5	
apex4	11	7	6	6	5	5	
bigkey	10	5	3	2	3	2	
clma	37	12	9	7	10	9	
des	13	8	6	5	3	3	
diffeq	40	21	15	11	6	7	
dsip	10	5	3	3	3	2	
elliptic	53	23	16	13	11	10	
ex1010	16	11	7	5	6	5	
ex5p	14	9	6	5	4	4	
frisc	68	31	24	17	14	12	
misex3	13	7	6	4	5	4	
pdc	16	9	8	7	6	5	
s298	32	22	15	14	12	11	
s38417	19	17	10	9	8	7	
s38584	26	13	10	6	5	7	
seq	10	7	6	6	5	5	
spla	14	11	8	5	5	5	
tseng	44	22	14	11	9	8	
display_chip	53	27	15	12	8	7	
img_calc	102	55	27	22	15	14	
img_interp	54	28	14	10	7	6	
input_chip	48	24	15	13	9	6	
peak_chip	51	26	16	11	9	7	
scale125_chip	59	34	21	17	9	9	
scale2_chip	46	25	16	6	8	8	
warping	31	14	10	7	5	2	
Geom. Avg.	26.05	14.23	9.85	7.67	6.50	5.69	

Table I.1: Number of Clusters on Critical Path (Cluster Size = 1)

Circuit		LUT Size					
	2	3	4	5	6	7	
alu4	8	7	7	6	5	5	
apex2	10	9	8	6	6	5	
apex4	9	7	6	5	4	4	
bigkey	6	4	3	3	2	2	
clma	28	12	15	14	10	8	
des	9	9	6	3	3	3	
diffeq	26	20	15	10	8	7	
dsip	7	5	3	2	2	2	
elliptic	34	21	16	12	11	9	
ex1010	10	10	7	6	5	6	
ex5p	9	8	6	6	5	4	
frisc	45	29	20	17	13	12	
misex3	9	7	3	3	4	5	
pdc	12	9	7	7	5	5	
s298	24	21	16	13	12	11	
s38417	20	14	8	7	8	7	
s38584	14	14	3	7	6	7	
seq	11	6	5	6	5	5	
spla	13	9	7	7	5	4	
tseng	24	19	11	11	9	8	
display_chip	33	24	13	10	8	7	
img_calc	81	53	27	19	13	12	
img_interp	42	27	13	9	8	8	
input_chip	32	24	11	9	8	6	
peak_chip	33	21	14	9	9	6	
scale125_chip	48	32	17	14	11	9	
scale2_chip	33	23	14	11	9	7	
warping	17	12	8	6	6	2	
Geom. Avg.	18.28	13.42	8.74	7.45	6.40	5.65	

Table I.2: Number of Clusters on Critical Path (Cluster Size = 2)

Circuit	LUT Size					
	2	3	4	5	6	7
alu4	8	5	5	5	5	4
apex2	9	6	6	5	4	5
apex4	7	6	5	4	5	4
bigkey	6	4	3	2	2	2
clma	26	15	12	11	7	7
des	8	7	5	4	3	3
diffeq	23	16	13	9	7	7
dsip	6	4	3	2	2	2
elliptic	28	14	10	9	9	7
ex1010	10	9	6	6	6	4
ex5p	9	7	7	4	4	4
frisc	41	20	17	12	12	8
misex3	9	6	6	5	5	4
pdc	12	7	5	6	5	5
s298	21	17	13	12	11	10
s38417	15	13	10	10	8	6
s38584	11	4	9	6	6	4
seq	8	6	5	4	4	4
spla	9	8	6	4	4	4
tseng	20	14	12	10	8	7
display_chip	30	19	11	8	7	6
img_calc	59	40	25	19	14	12
img_interp	34	20	11	8	6	8
input_chip	27	15	9	7	6	6
peak_chip	27	17	13	8	7	6
scale125_chip	35	26	14	12	10	7
scale2_chip	28	16	14	9	8	6
warping	16	12	6	5	4	3
Geom. Avg.	15.75	10.52	8.21	6.48	5.77	5.08

Table I.3: Number of Clusters on Critical Path (Cluster Size = 3)

Circuit		LUT Size						
	2	3	4	5	6	7		
alu4	7	4	6	4	4	4		
apex2	9	7	6	5	4	4		
apex4	6	7	4	4	4	4		
bigkey	6	3	2	3	3	2		
clma	22	10	13	11	8	8		
des	8	6	5	4	1	3		
diffeq	20	15	12	9	7	7		
dsip	6	5	2	2	2	1		
elliptic	20	11	10	8	8	7		
ex1010	8	8	7	6	4	3		
ex5p	7	6	6	5	5	2		
frisc	30	24	16	15	14	7		
misex3	7	5	5	4	4	3		
pdc	7	7	6	6	5	4		
s298	20	17	15	11	12	9		
s38417	16	10	11	9	8	5		
s38584	10	8	7	5	6	5		
seq	8	6	4	4	3	3		
spla	8	5	5	5	4	5		
tseng	19	14	11	10	9	7		
display_chip	23	16	8	7	5	6		
img_calc	55	46	22	18	11	11		
img_interp	29	19	5	8	6	8		
input_chip	21	18	8	6	6	6		
peak_chip	22	19	9	7	7	5		
scale125_chip	33	24	12	11	8	9		
scale2_chip	23	15	10	12	7	6		
warping	13	9	4	7	6	5		
Geom. Avg.	13.57	10.01	7.11	6.52	5.37	4.73		

Table I.4: Number of Clusters on Critical Path (Cluster Size = 4)

Circuit		LUT Size					
	2	3	4	5	6	7	
alu4	8	6	6	5	3	4	
apex2	6	4	7	3	5	4	
apex4	8	5	4	5	3	4	
bigkey	8	3	2	3	3	2	
clma	20	16	10	10	8	8	
des	7	5	5	5	3	3	
diffeq	16	14	9	9	6	6	
dsip	6	3	2	3	2	2	
elliptic	16	9	10	8	8	7	
ex1010	6	5	5	6	4	4	
ex5p	11	7	6	4	4	4	
frisc	27	21	15	12	12	10	
misex3	8	5	3	4	3	3	
pdc	11	6	6	5	5	5	
s298	20	14	13	10	10	9	
s38417	7	11	11	9	7	7	
s38584	10	9	6	7	5	5	
seq	6	5	6	4	3	4	
spla	7	8	6	5	4	3	
tseng	18	15	9	10	7	6	
display_chip	22	14	9	5	6	5	
img_calc	53	30	22	16	13	10	
img_interp	29	18	9	8	6	7	
input_chip	20	18	9	6	5	7	
peak_chip	22	15	9	6	8	5	
scale125_chip	30	22	12	10	8	7	
scale2_chip	20	15	10	10	8	6	
warping	13	10	3	6	5	4	
Geom. Avg.	12.91	9.31	6.93	6.30	5.26	4.95	

Table I.5: Number of Clusters on Critical Path (Cluster Size = 5)

Circuit			LUT	Size		
	2	3	4	5	6	7
alu4	8	4	4	3	3	3
apex2	7	6	5	5	5	4
apex4	7	6	5	4	4	4
bigkey	3	2	3	2	2	2
clma	18	18	11	11	5	8
des	8	7	6	5	3	3
diffeq	17	13	10	8	6	6
dsip	4	4	2	3	2	2
elliptic	17	10	9	7	6	6
ex1010	8	8	5	5	5	3
ex5p	7	7	5	3	4	4
frisc	29	22	15	12	12	8
misex3	7	5	4	4	4	4
pdc	7	6	5	6	4	4
s298	16	14	13	12	11	8
s38417	14	13	11	8	7	5
s38584	9	7	6	5	7	6
seq	9	6	4	5	4	4
spla	10	8	6	5	4	4
tseng	16	15	11	10	7	6
display_chip	20	14	7	7	6	4
img_calc	48	42	20	16	11	10
img_interp	28	17	12	9	7	4
input_chip	23	14	6	5	6	4
peak_chip	22	13	10	8	7	5
scale125_chip	35	17	10	9	9	6
scale2_chip	16	14	11	10	8	7
warping	7	7	3	6	5	4
Geom. Avg.	12.16	9.43	6.80	6.15	5.32	4.58

Table I.6: Number of Clusters on Critical Path (Cluster Size = 6)

Circuit	LUT Size						
	2	3	4	5	6	7	
alu4	10	6	4	4	3	3	
apex2	7	5	7	3	5	4	
apex4	7	6	5	5	4	3	
bigkey	4	2	3	3	2	2	
clma	15	11	12	9	5	9	
des	6	7	6	4	3	3	
diffeq	14	14	7	9	6	6	
dsip	5	3	3	2	3	2	
elliptic	11	9	7	7	6	7	
ex1010	8	5	5	5	4	4	
ex5p	8	5	6	3	5	4	
frisc	22	21	14	10	12	11	
misex3	7	6	4	4	3	3	
pdc	8	6	5	4	5	5	
s298	15	10	11	9	9	8	
s38417	13	13	8	6	6	7	
s38584	10	7	7	7	6	6	
seq	8	6	5	3	3	3	
spla	7	7	5	6	4	4	
tseng	16	11	9	10	7	6	
display_chip	21	13	7	8	5	4	
img_calc	45	41	18	18	10	10	
img_interp	24	13	9	9	6	5	
input_chip	23	13	7	4	4	5	
peak_chip	20	13	11	7	8	5	
scale125_chip	20	18	11	8	10	6	
scale2_chip	15	12	8	8	8	5	
warping	12	6	3	6	5	3	
Geom. Avg.	11.64	8.55	6.67	5.75	5.12	4.64	

Table I.7: Number of Clusters on Critical Path (Cluster Size = 7)

Circuit	LUT Size						
	2	3	4	5	6	7	
alu4	8	6	4	5	3	3	
apex2	9	8	7	4	4	3	
apex4	7	5	4	4	3	3	
bigkey	4	2	3	3	3	2	
clma	16	12	12	11	8	7	
des	7	7	6	5	3	3	
diffeq	11	12	5	5	5	5	
dsip	4	3	3	2	2	2	
elliptic	13	9	8	8	5	7	
ex1010	10	7	5	5	4	4	
ex5p	10	7	6	4	4	3	
frisc	20	21	16	12	14	11	
misex3	6	6	4	4	3	3	
pdc	7	8	4	4	3	4	
s298	14	15	14	10	11	7	
s38417	13	12	8	9	7	7	
s38584	10	9	7	3	5	5	
seq	7	7	4	4	3	3	
spla	9	9	5	5	4	4	
tseng	16	14	9	10	7	6	
display_chip	16	14	8	7	7	4	
img_calc	41	42	12	13	10	10	
img_interp	23	13	10	9	5	5	
input chip	23	10	4	4	3	4	
peak_chip	19	14	10	9	7	6	
scale125_chip	29	17	12	7	9	7	
scale2_chip	17	12	10	8	6	4	
warping	7	4	5	6	5	3	
Geom. Avg.	11.46	9.14	6.55	5.78	4.86	4.38	

Table I.8: Number of Clusters on Critical Path (Cluster Size = 8)

Circuit	LUT Size					
	2	3	4	5	6	7
alu4	5	6	4	4	5	2
apex2	5	4	5	5	4	4
apex4	7	4	4	3	4	3
bigkey	3	3	3	3	2	2
clma	17	14	11	10	6	9
des	7	8	6	5	3	2
diffeq	12	12	9	7	6	5
dsip	4	5	3	3	3	2
elliptic	11	7	8	7	7	7
ex1010	7	9	7	3	5	3
ex5p	8	5	6	4	3	3
frisc	20	16	15	11	11	10
misex3	5	5	5	5	2	3
pdc	8	7	5	4	5	4
s298	18	17	11	12	10	10
s38417	11	12	9	9	6	7
s38584	9	6	7	5	5	5
seq	6	4	4	4	3	3
spla	7	7	4	5	4	3
tseng	19	10	8	10	8	6
display_chip	18	11	9	7	5	3
img_calc	34	39	14	15	10	9
img_interp	24	14	9	9	5	5
input_chip	21	10	6	3	4	4
peak_chip	16	11	9	6	7	5
scale125_chip	32	16	10	8	8	5
scale2_chip	22	13	9	6	8	6
warping	6	4	6	5	4	5
Geom. Avg.	10.54	8.35	6.74	5.71	4.97	4.29

Table I.9: Number of Clusters on Critical Path (Cluster Size = 9)

Circuit	LUT Size					
	2	3	4	5	6	7
alu4	5	4	4	4	4	2
apex2	8	5	6	4	4	4
apex4	7	5	4	5	4	3
bigkey	4	2	2	3	3	2
clma	16	15	6	7	8	8
des	7	5	5	5	2	3
diffeq	17	10	5	9	5	6
dsip	4	5	3	3	3	2
elliptic	11	7	9	8	5	7
ex1010	8	5	5	6	5	4
ex5p	8	5	5	3	4	3
frisc	20	17	16	14	11	10
misex3	5	6	4	3	3	2
pdc	9	7	7	5	4	5
s298	17	15	14	12	10	10
s38417	10	9	10	8	7	6
s38584	9	7	8	5	5	5
seq	9	6	4	4	4	3
spla	7	8	5	5	3	5
tseng	10	12	9	9	7	5
display_chip	14	11	8	6	7	6
img_calc	43	35	11	12	10	9
img_interp	22	12	9	6	7	6
input_chip	20	10	6	3	4	4
peak_chip	15	15	9	7	6	4
scale125_chip	21	15	6	8	7	4
scale2_chip	15	13	9	6	7	6
warping	11	4	6	5	4	5
Geom. Avg.	10.73	8.10	6.30	5.67	5.02	4.47

Table I.10: Number of Clusters on Critical Path (Cluster Size = 10)

Bibliography

- [ACSG⁺99] O. Agrawal, H. Chang, B. Sharpe-Geisler, N. Schmitz, B. Nguyen, J. Wong, G. Tran, F. Fontana, and B. Harding. "An Innovative, Segmented High Performance FPGA Family with Variable-Grain-Architecture and Wide-gating Functions". In ACM Symp. on FPGAs, Monterey, CA, USA, 1999.
- [AR00] E. Ahmed and J. Rose. "The Effect of LUT and Cluster Size on Deep-Submicron FPGA Performance and Density". In ACM Symp. on FPGAs, pages 3–12, 2000.
- [BFRV92] S. Brown, R. Francis, J. Rose, and Z. Vranesic. "Field-Programmable Gate Arrays". Kluwer Academic Publishers, 1992.
- [BR96] S. Brown and J. Rose. "FPGA and CPLD Architectures: A Tutorial". In IEEE Design and Test of Computers, pages 42–57, Summer 1996.
- [BR97] V. Betz and J. Rose. "Cluster-Based Logic Blocks for FPGAs: Area-Effeciency vs Input Sharing and Size". In IEEE Custom Integrated Circuits Conference, pages 551–554, Santa Clara, CA, 1997.
- [BR98] V. Betz and J. Rose. "How Much Logic Should Go in an FPGA Logic Block?". In IEEE Design and Test Magazine, pages 10–15, 1998.
- [BRM99] V. Betz, J. Rose, and A. Marquardt. "Architecture and CAD for Deep-Submicron FPGAs". Kluwer Academic Publishers, New York, 1999.
- [CD94] J. Cong and Y. Ding. "FlowMap: An Optimal Technology Mapping Algorithm for Delay Optimization in Lookup-Table Based FPGA Designs". In IEEE Trans. on CAD, pages 1–12, Jan 1994.

	<i>FPGAs with Application to Architecture Evaluation</i> ". In <i>ACM Symp. on FPGAs</i> , Monterey, CA, 1998.
[Chu94]	K. Chung. "Architecture and Synthesis of Field-Programmable Gate Arrays with Hardwired Connections". PhD thesis, University of Toronto, 1994.
[CPD96]	J. Cong, J. Peck, and Y. Ding. "RASP: A General Logic Synthesis System for SRAM-based FPGAs". In ACM Symp. on FPGAs, pages 137–143, 1996.
[ea90]	E.M. Sentovich et al. "SIS: A System for Sequential Circuit Analysis". Technical report, University of California, Berkeley, 1990.
[HSC83]	R. Hitchcock, G. Smith, and D. Cheng. <i>"Timing Analysis of Computer-Hardware"</i> . Technical report, IBM Journal of Research and Development, Jan. 1983.
[HW91]	D. Hill and N-S Woo. "The Benefits of Flexibility in Look-up Table FPGAs". In International Workshop on FPGAs, 1991.
[Inc97]	Xilinx Inc. "XC5200 Series of FPGAs". 1997.
[Inc98a]	Altera Inc. "Data Book". 1998.
[Inc98b]	Xilinx Inc. "Virtex 2.5 V Field Programmable Gate Arrays". 1998.
[KBKC99]	S. Kaptanoglu, G. Bakker, A. Kundu, and I. Corneillet. "A new high density and very low cost reprogrammable FPGA architecture". In ACM Symp. on FPGAs, Monterey, CA, 1999.
[KG91]	J. Kouloheris and A.El Gamal. "FPGA Performance vs. Cell Granularity". In Proc. of Custom Integrated Circuits Conference, pages 6.2.1 – 6.2.4, May 1991.
[KG92a]	J. Kouloheris and A.El Gamal. "FPGA Area vs. Cell Granularity - PLA Cells". In Proc. of Custom Integrated Circuits Conference, 1992.
[KG92b]	J. Kouloheris and A.El Gamal. "FPGA Area vs. Cell Granularity - Lookup tables and PLA Cells". In First ACM Workshop on FPGAs, Berkeley, CA, 1992.
[Mar99]	A. Marquardt. "Cluster-Based Architecture, Timing-Driven Packing, and Timing- Driven Placement for FPGAs". Master's thesis, University of Toronto, 1999.

J. Cong and Y. Hwang. "Boolean Matching for Complex PLBs in LUT-based

[CH98]

- [MBR99] A. Marquardt, V. Betz, and J. Rose. "Using Cluster-Based Logic Blocks and Timing-Driven Packing to Improve FPGA Speed and Density". In ACM/SIGDA FPGA, 1999.
- [RFCL89] J. Rose, R.J. Francis, P. Chow, and D. Lewis. "The Effect of Logic Block Complexity on Area of Programmable Arrays". In Proc. of Custom Integrated Circuits Conference, pages 5.3.1 – 5.3.5, 1989.
- [RFLC90] J. Rose, R.J. Francis, D. Lewis, and P. Chow. "Architecture of Field-Programmable Gate Arrays: The Effect of Logic Functionality on Area Efficiency". In IEEE Journal of Solid-State Circuits, 1990.
- [Sin91] S. Singh. "*The Effect of Logic Block Architecture on FPGA Performance*". Master's thesis, University of Toronto, 1991.
- [SRCL92] S. Singh, J. Rose, P. Chow, and D. Lewis. "The Effect of Logic Block Architecture on FPGA Performance". In IEEE Journal of Solid-State Circuits, 1992.
- [SS91] A. Sedra and K. Smith. "Microelectronic Circuits: Third Edition". Oxford University Press, 1991.
- [WE93] N. West and K. Eshraghian. "Principles of CMOS VLSI Design; A System Perspective; Second Edition". Addison Wesley, 1993.
- [Yan91] S. Yang. "*Logic Synthesis and Optimization Benchmarks, Version 3.0*". Technical report, Microelectronics Centre of North Carolina, 1991.