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ABSTRACT 

 

The proteins in living organisms perform almost every significant function that governs 

life. A protein's functionality depends upon its physical structure, which in turn depends 

on its constituent sequence of amino acids as specified by its gene of origin. While many 

protein sequences are known, many remain to be discovered. Recent advances in mass 

spectrometry are capable of determining unknown protein sequences but the process is 

very slow. We review a new method of de-novo protein sequencing that requires a fast 

search of the genome. In this thesis, we present the design of FPGA-based hardware that 

can perform this search in a very fast and cost-effective manner. This hardware solution 

is between 3 to 60 times more cost effective than an equivalent software platform. In 

addition, we provide a framework to estimate the cost of the hardware at a desired level 

of performance. 
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Glossary 
 

TERM DEFINITION 

Alternative Splicing Process by which a single DNA strand could be transcribed into several different RNA 
sequences 

Amino Acid Subunit of a protein/peptide 
Base nucleotide,a DNA moelcule, can be one of A,T,C,G 

Codon Set of three bases in an RNA strand; used as a template for amino acids 
De novo Novel or hitherto unknown 

Digestion The process of breaking amino acid bonds in a protein 
DNA Deoxyribonucleic Acid 

FPGA Field-Programmable Gate Array 
Gene A hereditary unit of DNA that is responsible for the synthesis of proteins in an organism

Genome All the genes of an organism 
In silico On a computer 

Nucleotide base, a DNA moelcule, can be one of A,T,C,G 
Peptide Chain of amino acids; piece of a protein 
Protein Chain of amino acids that serves a specific function 

Proteome The set of all proteins encoded by a Genome 
RNA Ribonucleic Acid 
SAC System Administration Cost, the cost of maintaining and upgrading a computer cluster

Sequence The order of bases in a DNA strand or amino acids in a protein 
Trypsin Enzyme that digests proteins at the Argnine( R) and Lysine(K) amino acids 

Tryptic peptide Peptide formed from digestion of protein by trypsin 
VHDL VHSIC Hardware Descrition Language 
VHSIC Very High Speed Integrated Circuit 
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Chapter 1. Introduction 

 

1.1. Introduction to Proteins and Protein Identification 
 

Proteins and their interactions regulate the majority of processes in the human 

body. From mechanical support in skin and bones to enzymatic functions, the operation 

of the human body can be characterized as a complex set of protein interactions. Over the 

past fifty years thousands of proteins have been studied [5], but despite the efforts of 

scientists, many proteins and their functions have yet to be discovered [4]. The wealth of 

information that lies in these unknown proteins may well be the key to uncovering the 

mysteries that govern life. The subject of this research is to investigate the use of digital 

hardware to aid in a specific technique used to discover new proteins. 

 

A protein is composed of a long chain of molecules known as amino acids, and the order 

of these amino acids is known as the sequence of the protein [2]. Protein sequencing – 

the process of identifying the sequence of a given protein – is a means of establishing the 

protein's identity, from which its functionality can be inferred. In the past, sequencing 

was a slow, manual process in which individual amino acids of a protein were analyzed 

chemically [15]. The nature of these methods meant that sequencing took many weeks, 

even for relatively small proteins. Advances in technology over the past two decades 

introduced the concept of protein sequencing by mass spectrometry [10]. A mass 

spectrometer (MS) is a device that takes a biological or chemical sample as input and 

measures the masses of the constituent particles of the sample. This information, in 

combination with molecular mass databases, can be used to identify the molecules in the 

sample. Proteins, however, are large molecules and cannot be analyzed in their intact 

form; they must be digested or broken up into smaller subunits known as peptides. It is 

these peptides that are analyzed to determine the identity of the protein. 
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Mass Spectrometry for protein analysis can be divided into 4 distinct steps: 

 

1. An MS takes the peptides from a set of digested proteins and measures the mass 
of each peptide. It then selects an individual peptide, using its mass to 
discriminate it from the others. 

 
2. The selected peptide is fragmented and a second MS then analyzes the peptide; 

this is followed by a complex computation that produces the sequence of the 
selected peptide.  

 
3. After a short delay (approx 1 sec.), Step 2 is repeated for another peptide. This is 

done for each peptide from every protein in the sample. 
 

4. The peptide sequences from individual proteins are grouped together and ordered 
to obtain the full sequence of the each protein. 

 

These MS techniques greatly reduce the sequencing time, but protein identification still 

requires several days. With a few hundred peptides in a sample, a great deal of the delay 

in the MS process comes from having to repeat the sequencing process (step 2) for each 

peptide [6]. Judicious analysis of the sample shows that not every peptide needed 

sequencing to obtain the full protein sequence [8]. However, this analysis needs to be fast 

to maintain a high-throughput mass spectrometry flow. This need for faster sample 

analysis coupled with the availability of cheap computing power has given rise to several 

techniques to accelerate protein sequencing. In the following section we describe the 

latest techniques for protein sequencing and motivate our work to accelerate one kind of 

sequencing with the use of digital hardware. 

 

1.2. Thesis Motivation 
 

Recent revolutions in biology and computing have sought to alleviate the analysis 

bottleneck described above. As stated above, the major hurdle in sample analysis is the 

number of peptides in the protein sample. However, it is possible to identify a protein 

using only a few of its peptides. There are many characterized proteins (proteins whose 

sequence is known) in biological databases. Using a small set of peptides as queries to 

these databases, the intact protein sequence that they originated from can be identified. 
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Using this technique, a few peptides from any protein can act as a unique fingerprint for 

that protein. Once the intact protein sequence has been obtained, all its constituent 

peptides can be eliminated from further analysis. This technique greatly reduces the 

number of times Step 2 has to be repeated before all proteins in the sample are identified. 

This technique of peptide mass fingerprinting (PMF) can be used to identify proteins in 

mere fractions of a second [9].  

The limitation of PMF, however, is that it requires that the intact protein sequence 

already be present in the database. In de-novo sequencing experiments, researchers 

attempt to sequence a hitherto unidentified or novel protein. By definition, these proteins 

do not exist in a protein database, making direct PMF infeasible.  

 

However, information about the sequence of novel proteins can be obtained elsewhere. 

Cells use the information contained in genes as a template to create proteins [2]. With the 

recent successful sequencing of the Human Genome, the set of all human genes is now 

available to researchers. It is possible to obtain the sequence of a protein if its gene can be 

identified. In effect, the genome can be interpreted as a complete protein database, thus 

overcoming the barrier presented by standard PMF searches [1]. 

 

Due to physical limitations of the instrument, it takes approximately 1 second before the 

second MS step can be repeated. To make an efficient high throughput protein 

identification system, it is crucial to be able to perform the genome database search 

within this 1-second interval. If the MS is forced to wait in excess of this delay, it incurs a 

non-productive downtime, which reduces its throughput and is considered both 

inefficient and expensive. Software techniques to perform this interpretation of the 

genome have thus far been slow requiring approximately 1 minute on a modern processor 

[1]. 

 

Over the past two decades, the benefits of custom hardware for computation have been 

seen in various applications [18][19][20]. For tasks such as database searching, where the 

search space is large and the operations are simple and parallelizable, custom hardware 

implementations of the algorithm show significant performance gains over software [18]. 
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 Thus the focus of this thesis is the design of a practical hardware system capable of 

accelerating the de-novo sequencing process using the genome. Our goal is to develop 

hardware that is both cheaper and faster than equivalently functional software. Note also, 

that there are myriad applications that search the human genome for diverse purposes 

from tracking human evolution to complex drug design. There are many fields of 

research that will benefit from the ability to search rapidly through the Human Genome. 

 

1.3. Thesis Organization 
 

This thesis is organized as follows: The second chapter provides details of the 

background biology and the technology in which the hardware is implemented. The third 

chapter describes the design and implementation of the hardware and the fourth chapter 

provides the results of this work in comparison with software running comparable 

algorithms on commodity processors. We also provide a framework to help the interested 

reader calculate the cost of this high-speed search based on the cost and density of the 

FPGAs available at the time. The fifth chapter will describe the conclusions of this work 

and avenues for future research.  
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Chapter 2. Background 
 

In this chapter we survey the details of protein sequencing, and some aspects of the 

underlying biology and instrumentation necessary to understand this research. In 

addition, we describe the programmable hardware platform used in our research. Section 

2.1 provides an introduction to basic genetics and protein synthesis. Section 2.2 outlines 

the process of Mass Spectrometry as it applies to the protein sequencing approach that 

our work is based on. Section 2.3 describes some of the complexities of the biological 

systems that must be handled in our work. This ordering of biological concepts is done in 

hopes of allowing the reader to get an understanding of the core concepts of protein 

sequencing before considering issues of practicality. This is followed by a description of 

prior work in genome-based protein sequencing and hardware acceleration of biological 

algorithms in Section 2.4. Section 2.5 concludes the chapter with a description of the 

structure and relevant details of our implementation platform.  

 

2.1. Introductory Biology 
 

A theme of this work is the interaction between DNA and proteins. DNA is the 

template for protein formation. To better understand how the details of the two are 

related, the following sections present the key concepts behind DNA and protein 

interaction. 

 

2.1.1. Deoxyribonucleic Acid (DNA) 
 

Often described as the blueprint or life, Deoxyribonucleic Acid (DNA) is the core of 

genetic content passed between generations of organisms. DNA is a determining factor in 

almost all aspects of life, from appearance to health. The importance of DNA is related 

directly to its role in the production of proteins. 
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Figure 2-1: DNA Double Helix [24] 

 

DNA is contained within the nucleus of a cell and exists in the double stranded structure 

shown in Figure 2-1 [24]. Each strand consists of a chain of nucleic acid molecules (also 

known as bases) linked by a phosphate backbone. There are four possible bases in DNA: 

Adenine (A), Thymine (T), Guanine (G), and Cytosine (C). Figure 2-1 shows that the 

bases on one strand bond to the other. This bonding can only occur between certain pairs. 

A will always bond with T while G will only bond with C; these pairings are referred to 

as complementary pairs or base pairs. Thus knowledge of the bases in one strand implies 

knowledge of the bases in the complementary strand [2], which is oriented in the opposite 

direction. 

A strand of DNA can be represented as a string of ordered bases. The order of bases in 

the strand is important as DNA is used as a template in the creation of proteins and a 

change in the order of bases may result in the malformation of proteins. The DNA 

template is interpreted in units of three bases at a time – this set of three bases is known 

as a codon. Therefore DNA can also be thought of as a string of codons and it is these 

codon strands that act as templates for the creation of proteins. DNA strands within a cell 

are ordered into structures known as genes. Genes are DNA strands that are usually 

several thousands of bases long and each gene codes one or more proteins. Several genes 

are grouped together into larger structures known as chromosomes, and it is the set of 

chromosomes that is passed on as hereditary information between generations of 
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organisms [3]. The DNA sequence of all the chromosomes in an organism is known as its 

genome [24]. The hierarchical view of DNA in Figure 2-2 illustrates the relationship 

between these units. 

 

 

 

Figure 2-2 Genetic Hierarchy [24] 

 
 

2.1.2. Protein Formation 
 

The information stored in DNA governs the synthesis of proteins in an organism. 

Proteins are chemicals that provide both structural and enzymatic functions within a cell. 

They are required for everything from the formation of muscles and ligaments to the 

synthesis of various digestive enzymes. Almost every reaction within the body is some 

form of protein interaction, and so a better understanding of protein functions is clearly 

beneficial to biologists. It is the structure of a protein that determines its functionality and 

thus a great deal of effort has been directed towards determining the structure of every 

protein. Biologists can infer function from protein structure by comparing the structure of 

novel proteins with well-characterized proteins whose functions have already been 
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determined [7]. An understanding of how proteins are produced is essential to appreciate 

how their structure is determined.  

 

Proteins are synthesized from DNA by a combination of processes known as 

transcription and translation. Transcription is the conversion of DNA to RNA 

(Ribonucleic Acid). RNA, like DNA, also consists of four bases, but Uracil (U) in RNA 

replaces Thymine (T) in DNA. For the purposes of this discussion we will treat Thymine 

and Uracil as equivalent molecules and only refer to Thymine. In essence, transcription 

results in the creation of a copy of the original DNA strand as shown in Figure 2-3. 

 

 

Figure 2-3: Transcription of RNA 

The example in Figure 2-3 is simplified for clarity. The RNA strand that is transcribed 

from a DNA strand actually consists of the complementary bases, i.e., A is transcribed to 

U, C is transcribed to G etc. The key point to note is that the bases in the RNA strand can 

be inferred from the original DNA strand. 

 

The RNA strands are then translated into proteins. This is done by structures known as 

ribosomes and transfer RNA (tRNA) that bond to the RNA strand converting groups of 

bases into molecules known as amino acids. Recall that the DNA (or RNA) strand is 

interpreted in codon blocks. Each codon, or set of three bases, represents a specific amino 

acid and the rules for translation are standard for most organisms including homo sapiens.  

 

A table of codons and their corresponding amino acids is given in Table 2-1. To convert 

an RNA strand into a protein, it can first be thought of as a set of codons. The first base 

of a codon identifies the major row (T, C, A or G on the left side of Table 2-1), the 

second base identifies the major column, and the last base of a codon identifies the 
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specific codon and its corresponding amino acid. Consider the example of the codon 

TAC. The first base (T) indicates the first row, and the second base (A) indicates the third 

column. The final base (C) identifies the specific codon and its corresponding amino acid 

Tyrosine (Y). In this manner, any RNA codon strand can be translated to its 

corresponding set of amino acids, or protein strand. 

 

 

Second base of codon 
  T C  A  G  

TTT Phenylalanine (F)  TCT Serine (S)  TAT Tyrosine (Y)  TGT Cysteine (C)  T 
TTC F  TCC S  TAC Y  TGC C  C 
TTA Leucine (L)  TCA S  TAA STOP  TGA STOP  A 

T 

TTG L  TCG S  TAG STOP  TGG Tryptophan (W)  G 
CTT Leucine (L)  CCT Proline (P)  CAT Histidine (H)  CGT Arginine (R)  T 
CTC L  CCC P  CAC H  CGC R  C 
CTA L  CCA P  CAA Glutamine (Q)  CGA R  A 

C 

CTG L  CCG P  CAG Q  CGG R  G 
ATT Isoleucine (I)  ACT Threonine (T)  AAT Asparagine (N)  AGT Serine (S)  T 
ATC I  ACC T  AAC N  AGC S  C 
ATA I  ACA T  AAA Lysine (K)  AGA Arginine (R)  A 

A 

ATG Methionine (M) or START  ACG T  AAG K  AGG R  G 
GTT Valine (V)  GCT Alanine (A)  GAT Aspartic acid (D)  GGT Glycine (G)  T 
GTC V GCC A  GAC D  GGC G  C 
GTA V  GCA A  GAA Glutamic acid (E)  GGA G  A 

Fi
rs

t b
as

e 
of

 c
od

on
 

G 

GTG V  GCG A  GAG E  GGG G  G 

Th
ird

 b
as

e 
of

 c
od

on
 

Table 2-1: The Genetic Code – Mapping DNA to Amino Acids 

 

 Note that there is redundancy in the coding, as there are 64 codons and only 20 amino 

acids. In some of these cases the last base in the codon can be treated as a wildcard. For 

example the codon set GC* codes for Alanine, regardless of the last base. Recall that 

genes are simply long strands of DNA that can be grouped into codons and proteins are 

amino acid chains. Using this table, it is possible to translate genes to proteins and vice 

versa. An example of this process is presented in Figure 2-4. 
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C G A A T G T T A A 

  ..…… 
M L 

Protein translated from codons in RNA 

codon 

Amino acid chain

C G 

T 

 

C 

Figure 2-4: Translation to protein strand 

 

The ribosome unit traveling down an RNA strand physically carries out the nucleic acid 

to amino acid translation process and synthesizes the protein by adding the amino acid 

corresponding to the codon being processed. In the example in Figure 2-4, the tRNA 

reads A as the first base, T as the second, and G as the third base of the codon. The tRNA 

adds the amino acid Methionine (M) to the current protein chain. The ribosome proceeds 

along the RNA strand until a STOP codon is reached, and a full protein is synthesized. 

 

2.2. Mass Spectrometry Based Methods of Protein Sequencing 
 

Recall that our ultimate goal is to sequence a protein, i.e. to identify the order of 

the constituent amino acids in a protein sample. Over the last few decades mass 

spectrometry has become the method of choice for high throughput protein sequencing 

[10]. A Mass Spectrometer (MS) is a tool that takes a chemical or biological sample as 

input and measures the masses to charge ratio of the sample’s constituent molecules. The 

mass to charge is used to calculate the masses of the molecules in the sample and these 

masses are then used to determine the identity of the molecules. A more detailed 

description of this process is presented in Figure 2-5.  

The MS identifies particles in the input sample by ionizing them and allowing the 

charged ions to fly over a detection plate. Identification of the ions relies on the fact that 
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heavier ions will not travel as far lighter ions and will thus fall to the detection plate 

sooner, as illustrated in Figure 2-5. Based on the ion’s charge and position along the 

detection plate, the mass of the ion can be resolved [11]. 

 

Sample ionizer 

Heavy Ions 

 

 

 

 Light Ions Detection plate

Figure 2-5: Mass Spectrometer 

 

These measured masses are compared against known molecular masses to establish the 

identity of the molecules in the sample.  

There are several different types of mass spectrometry, many of which are used for 

protein sequencing [9] [21]. One such approach, which will be the focus of this research, 

is the technique of tandem mass spectrometry [6]. An overview of this approach is 

presented in the following section to help understand the capabilities and limitations of 

the process. 

 

2.2.1. Tandem Mass Spectrometry 
 

Tandem Mass Spectrometry (often abbreviated as MS/MS as it uses two MS ion 

separation chambers) is a common technique used in protein identification studies. In 

preparation for MS/MS analysis, protein samples are treated to ensure that the MS 

devices can operate on them. 

Since proteins are large chains that are several hundred amino acids in length, they are 

heavy (on a molecular scale) and most MS instruments cannot analyze them in their 

intact form. For this reason, proteins are usually broken down into smaller fragments 

known as peptides by a process known as digestion [42]. Digestion occurs by treating the 

protein sample with a proteolytic or digestive enzyme, which will cut the proteins in the 
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sample at certain known amino acid bonds. One such enzyme is trypsin, which is known 

as a specific enzyme for its property of cleaving proteins at specific amino acids (trypsin 

cleaves after the positively charged amino acids Arginine (R) and Lysine (K) provided 

that neither is immediately followed by Proline (P) in the protein sequence). The peptides 

created by trypsin digestion are referred to as tryptic peptides.  An example of protein 

digestion is shown below in Figure 2-6. For simplicity, only a single protein is shown, but 

a real biological sample may have as many as 40 proteins in it [60]. 

 

MAVRAKPCOKLHNWF 
Original protein in sample 
 
MAV A CO      LHNWF R   K

K and R but not 
KP

KP) After digestion – 3 smaller tryptic peptides (note cleavage after 
 

Figure 2-6:  Trypsin Digestion of Proteins 

 

This group of tryptic peptides is now passed to the tandem MS for analysis. An overview 

of this process is given in Figure 2-7. The tandem MS or MS/MS consists of two MS 

units [12]. The first MS is used to measure the masses of the tryptic peptides and select 

individual peptides to send to the second MS (step 2 in Figure 2-7).  The first MS 

produces a list of masses of all the tryptic peptides, which is known as the list of 

precursor or parent ions and will hereafter be referred to as the precursor ion scan (PIS) 

[12]. However, note that the first MS stage also contains peptides that were not in the 

original tryptic peptide set. These unwanted peptides might originate from a number of 

sources, such as proteins from the MS operator’s skin through careless handling, 

contaminant proteins that could not be separated from the sample during preparation and 

other sources of contamination. This noise appears on the PIS list and makes it difficult to 

distinguish the interesting peptides from the contaminants.  

The second MS breaks the peptide selected by the first MS into groups of amino acids. 

These groups consist of chains of one, two or more amino acids, effectively generating 

the substrings of the selected peptide. These groups are then ionized and the ion masses 

are used to deduce the identity and sequence of the amino acids in the peptide [43]. The 
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details of this process are described in Appendix A for the interested reader. Once the 

sequence for a single peptide is obtained, the user selects another peptide from the first 

MS and the sequencing step (step 3) is repeated. An important detail to note is that it 

takes between 500 ms to 1 second before the next peptide can be selected for sequencing 

[49]. Caution must be exercised in choosing the subsequent peptide; if a contaminant is 

chosen instead of a peptide of interest, both the sample and sequencing time will be 

wasted. Note that typical samples contain many proteins that must be analyzed [60]. 

After all the peptides from each of the proteins of interest are sequenced, they must be 

assembled to obtain the full protein sequence. This is a computationally intensive step, 

often requiring the manual intervention of an MS technician with experience in protein 

sequencing. 
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AKPCK

LHNWF
AKPCKLHNWF

Step 1: Protein digested to its tryptic peptides 

476.26 Da 

674.37 Da 

716.35 Da 

337.96 Da 

466.48 Da 

Step 2: Noisy sample analyzed by first MS. PIS list saved 

Step 3: Single peptide ionized by second MS. Amino acid sequence produced 

MS1 

MS2 

MS2 

MS1 

 

MAVR

MAVR  

M A V R 

Figure 2-7: Tandem Mass Spectrometry Flow 

 

There are three key limitations to this process: 

 

1. The sequencing step has to be repeated for each peptide in the PIS. In the simple 

example shown in Figure 2-7 there are only two additional peptides to sequence 

after the first sequence is obtained. However, proteins can have between 50-900 

tryptic peptides each [59] and the sequencing process in the second MS will have 
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to be repeated for each peptide. With multiple proteins in a sample, there may be 

thousands of peptides that have to be individually sequenced. Also, multiple 

sequencing steps will consume larger volumes of the sample. Since it is difficult 

to acquire large volumes of purified biological samples for medical experiments, 

conservation of the sample is critical [47]. 

 

2. Sample preparation, as any chemical process, is subject to contamination. It is 

impossible to prepare a protein sample that does not contain trace amounts of 

contaminants from the environment. These “noisy” samples will also appear in 

the MS output and there is no means of distinguishing them from the peptides to 

be sequenced. Further, a real protein sample will contain a great deal of noise, 

making it harder to identify relevant target peptides [47]. Therefore, in the cycle 

between step 3 and step 2 in Figure 2-7 there is no information that aids us in 

picking subsequent peptides to sequence. Any time spent accidentally analyzing 

these noisy data elements wastes more of the input protein sample. 

 

3. The peptides, once sequenced, must be placed in order. Once all the sequences are 

obtained, a final step is needed to place the peptides in the correct order. As 

mentioned above, this is a demanding process, which frequently requires manual 

intervention. 

 

As mentioned in Chapter 1, it is not strictly necessary to sequence every peptide in a 

protein to identify it. If the sequence of the protein is known and stored in a protein 

database, a few peptides can be used as a fingerprint to uniquely identify their parent 

protein [9]. However, this approach requires that the protein sequence exist in the 

database. As mentioned, our aim is to accelerate de-novo sequencing experiments, i.e. 

experiments where the goal is to sequence a hitherto unknown protein. By definition, a 

protein that has not been studied before cannot exist in a protein database; therefore the 

fingerprint approach cannot be implemented directly. 

Large computer clusters are now available to improve analysis thereby lessening the 

restrictions imposed by the other two limitations, namely sample contamination and 
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peptide ordering. Regardless, de-novo protein sequencing still cannot be performed as a 

real time operation.  

The input protein sample is usually difficult to obtain and small in quantity [48] 

especially in de novo experiments. The ionization process described above is destructive 

and consumes the sample rapidly. Thus being able to quickly distinguish between noise 

and interesting peptides would allow researchers to minimize the amount of sample 

required. In addition one could greatly improve the throughput of protein sequencing by 

reducing the need for manual intervention and reducing the number of peptides that have 

to be retrieved and sequenced from the first MS. With these goals in mind we consider a 

different approach to protein sequencing. 

2.2.2. A New Search Strategy 
 

With the recent successful sequencing of the human genome, the set of all human 

genes is now available to researchers [58][59]. Section 2.1.2 described how genes act as 

templates for the creation of proteins. In theory it is possible to derive the sequence of all 

the possible proteins of an organism given its genome [1] [16]. This implies that a 

complete protein database can be built, which then reopens the possibility of performing 

a peptide mass fingerprint (PMF) search. The PMF technique as described earlier, uses a 

few peptides as a fingerprint to uniquely identify its protein of origin. 

To see how this approach works, let us consider the sequence that is output by the second 

MS (step 3 of Figure 2-7). This peptide was part of an intact protein before it was 

digested by trypsin and analyzed by the mass spectrometer. Since every protein must be 

synthesized from a gene, the human genome must contain the gene that originally coded 

the sample protein. Once this gene is located, it can be translated to its amino acid 

sequence using the codon translations given in Table 2-1. Consider the example in Figure 

2-8: If the sequence produced by the second MS is "MAVR", it can be reverse-translated 

as follows: 
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Figure 2-8:  Reverse Translation 

 

Note that the amino acids A, V and R can be synthesized by multiple different codons; 

thus there are many possible DNA strands that can create this peptide. The gene that 

coded the protein in the sample must have one of these DNA strands as its substring. If 

the possible DNA coding strands in Figure 2-8 are submitted as queries to a genome 

database, the true coding gene can be located. Then, using the information in Table 2-1, 

this gene can then be translated to a protein. However the human genome is a sequence of 

approximately 3.3 billion base pairs and a search for 3 strings of 12 bases (including 

wildcards) as shown above will likely yield multiple matches. If there are numerous 

locations in the genome that match the coding strands, we must resolve them to see which 

the true coding gene is. To this end we can utilize more information from the MS. From 

the first MS we have the precursor ion scan (PIS) list. Recall that the PIS is a list of the 

masses of the tryptic peptides in the protein sample. We will refer to this as the true PIS, 

as it is the set of masses that have been positively identified by the MS. 

The true PIS contains mass information about every peptide in the protein sample and its 

can be used to resolve the problem of multiple matches described above. If each of the 

matching genes is translated to its corresponding protein, and each of these proteins is 

cleaved into its tryptic peptides, the masses of these tryptic peptides can now be 

calculated. In essence, we generate a hypothetical PIS for every matching gene. The 

hypothetical PIS that shows the greatest similarity to the true PIS corresponds to the 

original protein. Variations of this approach have been proposed by several researchers 

[1],[8]. An algorithm that implements this searching strategy is outlined in Figure 2-9. 
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Reverse translate Peptide 
query to DNA query. 

Identify all tryptic peptides 
masses (hypothetical PIS) 
for each translated protein.

(H1,H2,...Hn) 

Digest 

Compare and Evaluate

Compare  each 
of H1,H2,..Hn  to 

TP

MS1 
provides 
true PIS  

(TP) 

MS2 provides 
peptide sequence

Return Pi as protein 
sequence 

If Hi, shows best match to TP 

 

Locate all genes that 
contain this DNA query. 

(G1,G2,...Gn)

Search 

Translate each matching 
gene to a protein. 

(P1,P2,...,Pn)

Translate 

Figure 2-9:  Algorithm Outline 

 

To clarify the steps of the algorithm consider the example in Figure 2-10. The second MS 

produces the sequence of a single peptide (magtr) and the algorithm attempts to identify 
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the full sequence of the protein that this peptide originated from. To do this, the peptide is 

first reverse translated using the information in Table 2-1.  

 

 

Figure 2-10:  Searching the Genome Database 

 

The DNA queries thus generated are located throughout the genome. Note in Figure 2-11, 

that we locate two possible genes in the database that contain the DNA query. Both of 

these genes are translated from DNA to amino acids, once again using the information in 

Table 2-1. We know that digestion by trypsin cleaves a protein at the K and R amino 

acids (if they are not followed by P). Using this rule, we identify all tryptic peptides from 

both of the translated proteins and calculate their masses. This generates two hypothetical 

PIS sets. This corresponds to the translation and digestion steps in Figure 2-9. 
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Figure 2-11:  Translate genes and digest translated proteins 

 

Each hypothetical PIS is then compared to the true PIS and it is clear that the gene 

corresponding to the protein “MAGTRQGGAKVILT” matches the true PIS more closely 

and is thus identified as the true coding gene, as shown in Figure 2-12. 

 

True  
PIS 

112.5 

151.9 

89.1 

 

 

 

True 
PIS 

Hypothetical 
PIS 

112.5 

151.9 

89.1 

112.5  

94.4

53.8 

 

Hypothetical 
PIS 

112.5 

152.1 

89.2 

  

 

Figure 2-12: Compare digested peptides to PIS 

 

Observe that identifying the coding gene in this manner implies that the protein sequence 

can be obtained by simply translating the gene. Unlike the traditional approach described 
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in Section 2.2.1 only one peptide from a protein (or two or three at most [36]) need be 

analyzed to obtain the full protein sequence. 

 

There are a number of advantages to the technique described above: 

 

• Less sample is consumed: If only a few peptides have to be identified, a smaller 

quantity of protein can be analyzed. 

 

• Sequencing time is shorter: Using this approach, the multiple sequencing steps 

and final peptide ordering phase described above can be avoided allowing the 

sequencing speeds and overall MS throughput to be greatly increased. 

 

• We can make better decisions: Given that we identify the full protein sequence, 

we can generate a list of peptide masses we expect to see if this is the protein 

being analyzed by the MS.  When this list is compared against the PIS it will be 

easier to distinguish between true proteins in the sample and artifacts generated by 

noise from contaminant proteins as we now know what peptide masses should 

appear in the PIS. The cycle between step 2 and step 3 in Figure 2-7 is now a 

feedback path containing information in the form of the hypothetical PIS. This 

information can be used to identify masses in the true PIS and eliminate them 

from further analysis. Thus only peptides that we cannot identify with the 

hypothetical PIS need to be considered, drastically reducing the overall number of 

sequencing repetitions (step 3 in Figure 2-7) that have to be performed.  
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2.2.3. Requirements of the New Approach 
 
 
To implement this approach to peptide sequencing four key features are required: 

• A method of locating potential coding genes within the genome. A database search 

engine capable of locating query DNA strands within the genome is crucial to the 

functioning of this algorithm.  

• A method of translating the genes to find the masses of tryptic peptides they 

generate. Once potential genes have been located, they must be translated and 

digested in silico (by computation) to obtain the masses of the tryptic peptides. 

• A method of comparing calculated tryptic peptide masses with masses detected by 

the first MS. The tryptic peptides generated from each gene must now be 

compared with the PIS list of masses. Using a scoring algorithm, every matching 

mass can be ranked and thus a score for each gene match can be generated to help 

the user to quickly identify the true coding gene. 

• Fast overall processing time. Since we will have to sequence multiple proteins in 

any realistic sample, we must be able to identify proteins in the time that the 

second MS generates a sequence. From [49] we know that the average time before 

the second MS can be reused to sequence another peptide is between 0.5 and 1 

second. Therefore, any useful implementation of the above algorithm using the 

feedback path described in Section 2.2.2 must be able to produce a protein 

sequence within this timeframe. 

 

Searching through the 3.3 billion base human genome [58] in a fraction of second 

requires enormous throughput. Fortunately this kind of search is highly parallelizable in 

both software and hardware. Applications of this nature are good candidates for custom 

hardware implementation, thus our goal in this research is to design a hardware system 

that meets the requirements of the sequencing algorithm as described above. 
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2.3. Practical Considerations 
 

In Section 2.1 the basics of protein formation were explained. The methods of DNA 

translation described are true for simple organisms. However, for more complex 

organisms such as humans there are additional processes that affect protein formation. In 

addition, there are peculiarities of the genome database that must be addressed if it is to 

be used in the manner described in Section 2.2.2.  

 
 

2.3.1. Reading Frames and Complementary Strands 
 

In Section 2.1.2 an example of protein formation was shown. In it, the tRNA unit 

started at the codon ATG and moved in units of one codon (3 bases) along the RNA 

strand. In this simple example, the tRNA started at the beginning of the strand. However 

the genome is stored as a large set of DNA strands and while the translation starting 

points of many genes are known, many remain to be discovered. In short, it is extremely 

difficult to predict at which base protein translation actually begins [41]. Consider the 

example below. 

 

 

 

 

A T G G A

T G

Frame 2 

Frame 3 

T A

 

M Frame 1 

Figure 2-13:  Reading Frames 
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Three different possibilities are shown in Figure 2-13. If protein translation starts at the 

first A, the first amino acid will be M (Methionine) and every subsequent codon will be 

processed with reference to ATG as the first codon (i.e. in this case the next codon will 

be GAT). If however, translation began one base ahead at the first T (using TGG as the 

first codon) the first amino acid would be T. The next codon would then be taken from 

this reference point (i.e. it would be ATA). Each of these possibilities is known as a 

reading frame. If translation begins at the first base in the sequence it is designated as 

Frame 1, if it begins at the second base it is designated as Frame 2 and so on. Note that in 

a given strand there are only three frames to consider. If translation began at the fourth 

base, it begins reading at Frame 1 with the difference that one codon (or amino acid) has 

been skipped [40].  

Another detail to consider is that the Human genome is stored as single strands of DNA, 

i.e. the complement of a strand is not stored since it can be inferred from the original 

strand. A protein may be synthesized from either the original strand or its complement, 

and to account for this we must generate the proteins for both the strand stored in the 

genome database and its complement. It must be noted that the direction of translation is 

reversed for the complementary strand. The effect of this is illustrated in Figure 2-14. 

 

 

ATG TCA CCT AGA CCA

translation direction 

Original  
DNA Strand

Complementary 
DNA Strand 

 

TAC AGT GGA TCT GGT

translation direction 

Figure 2-14: Translation of a Complementary DNA Strand 

 

As stated in Section 2.1.1, the complementary DNA strand is a copy of the original with 

the Adenine (A) replaced by Thymine (T) and the Guanine (G) replaced by Cytosine (C). 

Figure 2-14 also shows that the direction in which protein translation proceeds is reversed 
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for the two strands. Note that the presence of the complementary strand implies that there 

are an additional 3 frames. The three frames of the complementary strand are designated 

Frame 4, Frame 5 and Frame 6 respectively [40]. Each of these frames must also be 

included with the original three in any calculations that occur as a result of gene to 

protein translation. 

2.3.2. Alternative Splicing 
 

In Section 2.1.2 the process of protein translation was described. It was implied that 

the tRNA unit traveled down the gene and based on the codons, it created a specific 

amino acid chain. This is the basis for translation, but in complex organisms, an 

additional process known as splicing occurs. Consider the earlier example from Figure 

2-4, reprised in Figure 2-15. 

 

 
T A G T T A A C G C C G A T 

RNA strand is spliced – several bases removed

Different protein translated from spliced RNA 

T A G T T C G A T 

T A T G T T G 

  ..…… 
M F 

codon 

A 

A 

C 

 

Figure 2-15: Alternative Splicing 

 

After the original gene is transcribed from the DNA to an RNA strand, when splicing 

occurs, a small subsection is removed. In Figure 2-15, five bases are removed from a 

region of the RNA strand. The new strand is joined at the spliced bases (in this case T 
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and C) to form a new shorter strand. The mechanism behind splicing is not fully 

understood by biologists and is an active area of research. Since there is no way of 

determining splice sites a priori, it is not currently possible to translate a gene using only 

a codon table. However, only 30% of all genes produce alternatively spliced proteins 

[61][62]. It should be noted that this figure is an assumption based on current knowledge 

and that several genes exhibit far more splicing. For example 55% of all genes in 

chromosome 7 are alternatively spliced [52]. The approach we use in this work relies on 

direct translation of genes to identify proteins without accounting for splicing. However, 

an average protein is not spliced at many locations along its structure. If a spliced protein 

is chemically digested as described above, only tryptic peptides formed from a splice site 

will not have a corresponding coding sequence in a gene. The majority of tryptic peptides 

will not be from splice sites and thus can be detected by this approach. This is sufficient 

to confidently identify the gene of origin. Once the coding gene has been identified, more 

complex analysis may be done to attempt identification of the splice locations. The key 

notion here is to identify the true coding gene as rapidly as possible. It should be noted 

however, that of the 30% of genes that alternatively spliced, 98% follow canonical rules 

and many of these splice variants can be determined [62]. 

 

2.3.3. Unknown Bases in the Genome 
 

One key detail that should be stated at the outset is the presence of ambiguities in the 

genome databases. In addition to the A, T C and G molecules of DNA, genomic 

databases also consist of an ambiguous base character ‘N’ which stands for aNy of the 

four bases. These unresolved bases exist in genome databases as a result of the high 

throughput sequencing techniques that are commonly used, and while they will ultimately 

be resolved, the fact remains that ambiguous regions exist in biological databases [35]. 
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2.3.4. Repeat Sequences in the Genome 
 

Another biological reality is the presence of repeated DNA sequences throughout the 

genome. These repeats, as their name implies are merely sections of the genome that 

have a sequence of bases repeated continuously for a long stretch within a chromosome. 

Usually a 6 to 10 nucleotide sequence is repeated several thousand or even a million 

times. [37][38]. If such a DNA sequence is translated to amino acids, the peptide string 

will produce a set of repeating tryptic peptides upon digestion. Recall that we will be 

comparing the masses of calculated peptides to those detected by the MS. If a reasonable 

number of the calculated masses within a gene match those detected by the MS we regard 

the gene as good candidate coding gene for the sample protein. In a purely random DNA 

string (without repeats) one would not expect many matches to a query. However, 

consider the effect of a repeat sequence on the matching process. If a mass detected by 

the MS matches the mass produced by a repeat sequence it will produce a great number 

of matches simply due to the repetitive nature of the DNA in this region. It is apparent 

that an erroneous high score may be generated for a match due to repeats. One common 

solution to reduce these false positives in current biological database system is to remove 

or mask repetitive DNA sequences in the genome database. This simple approach is 

reasonable, as repeats generally do not code proteins. However, a great deal remains 

unknown about the genome and it would be ideal to search the genome in its 

unadulterated form. For this reason, we use the entire genome including repeats and 

provide an extension to the third requirement in Section 2.2.3 The comparison method 

should calculate scores that do not merely indicate the number of matching masses, but 

also reflect whether the match was made to peptide that appeared very frequently within a 

gene (for example by a repeat) or to a peptide that appeared relatively infrequently. 

 

Various database-searching algorithms such as MOWSE use the frequency of occurrence 

of a peptide as a measure of its significance [9]. Since the probability of a real match 

between a query and the genome is considered statistically improbable [9], a match that 

occurs frequently can be treated as insignificant or a random match. The match scoring 

system will incorporate both the frequency of occurrence of individual peptides and the 

number of matches in the final score. 
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2.3.4.1. Significance of Matches 
 

The concept of significance described above can best be understood by the example 

illustrated in Figure 2-16 

 

MS1 PIS 
 

10 
50 

100 

PIS generated for protein 

 

Figure 2-16:   PIS of protein is generated by MS 

 

In Figure 2-16, the protein sample in the MS is digested to 3 peptides whose masses are 

listed in the PIS. Peptide masses are usually defined in Daltons (Da) where 1 Da is the 

mass of a single Hydrogen atom. The PIS in Figure 2-16 indicates that peptide 1 has a 

mass of 10 Da, peptide 2 has a mass of 50Da and peptide 3 has a mass of 100 Da. For 

simplicity, we ignore any contaminants in the sample and only consider a single pure 

protein sequence. 
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Gene A =

Gene B = 

Protein A = 

Protein B = 

Multiple genes located as potential coding regions and translated to 
proteins 

 

 ATGGCGATACTAGGCAGATCGA…

MVRHANNGQTILKCI….. 

ATGCCACGGAGCTATTCAGCGA

MERGVAKVLFWNRSQ….. 

Figure 2-17:  Two Potential Coding Genes are Located in the Genome 
 

The sequence of a single peptide is generated and used as a query to the genome 

database. Figure 2-17 shows two candidate genes that may have coded the query peptide. 

Each of these genes is translated to a protein that is then split into its tryptic peptides.  

The masses of these peptides are then calculated and a histogram of peptide masses is 

built. The histogram illustrates how frequently a peptide within a certain mass range 

occurs in a given protein. This is the "frequency of occurrence" referred to in the previous 

section.  
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Protein A =  Protein B =  
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Protein A only matches high frequency peptides. Protein B match is more realistic 

 

MVR-HANNGQTILK-CI….. MER-GVAK-VLFWNR-SQ….. 

Figure 2-18:  Identification of Significant Match 
 

Gene A translates to a protein (protein-A) with a wide distribution of masses. There are 

100 tryptic peptides that range in mass from 0 Da to 10 (the range of peptide 1), 200 in 

the 40-60 range (the range of peptide 2) and 58 in the 80-100 range (the range of peptide 

3). Clearly the unknown protein in the MS may exhibit a mass match to some of the 

peptides in protein-A. However consider protein-B, which has only 3 fragments in the 0–

10 range, 2 fragments in the 40-60 range and 2 in the 80-100 range. The distribution of 

mass is shown in Figure 2-18. Note that only the mass ranges into which the MS masses 

fall are considered, since these are the only ranges in which a true match can occur. 

 With a large number of peptides in the matching range, protein-A is hardly significant, 

as a mass match could have occurred simply by chance due to the overwhelming number 

of peptides that fell into the matching mass ranges. Protein-B on the other hand, has very 

few masses that fall into the matching range. If the calculated masses in this range meet 

the user specified threshold, this is a significant result as these matches are far less likely 

to have occurred by chance. Consequently the definition of a significant match hinges on 
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the frequency of occurrence described in Section 2.3.3. We define a match as a mass 

match that occurs between an MS detected peptide and a calculated peptide. A significant 

match occurs if the mass of the calculated peptide does not appear frequently within its 

constituent protein. A number of techniques to compute significance exist for biological 

database search algorithms. We adapt the approach proposed by the MOWSE algorithm 

for our purposes [9]. Note that scoring functions such as MOWSE are extremely sensitive 

to the data they operate on [46]. Biologists often spend a great deal of time developing 

scoring schemes for specific comparisons and warn that even advanced scoring schemes 

will suffer high rates of false positives when used with highly random data [63]. However 

the MOWSE algorithm used in peptide database searches suits our requirements well, 

and can be tuned by trial and error to work with the approach proposed in this work. 

 

2.3.4.2. The MOWSE Algorithm 
 
A number of algorithms that compare peptides from MS/MS expriments to protein 

databases are commercially available. For example the Sequest [68] MS/MS search 

attempts to correlate the theoretical spectra of proteins in a database with those identified 

by the MS. A protein match is ranked by using a count of the number of matching 

peptides and the sum of the intensities of these peptides. The Sonar MS/MS algorithm 

[67] also uses intensity information in ranking matching peptides. The algorithm 

described in Section 2.2.2 relies only on the masses and ignores the intensity information 

provided by the MS. Thus we adapt the MOWSE algorithm, in our implementation as it 

mostly closely meets our requirements. The MOWSE algorithm is targeted towards 

peptide mass databases that are used in Peptide Mass Fingerprinting (PMF) experiments. 

However, this is comparable to the approach described in Section 2.2.2, which is 

essentially a peptide mass search. The difference is that the approach in Section 2.2.2 

obtains its protein database by translating the genome, while PMF experiments used 

databases of sequenced proteins. 

 

The traditional MOWSE algorithm accepts a list of peptide masses detected by the MS 

and searches through a protein database to find a protein that may generate the same 
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peptide masses. However, MOWSE does more than just count the number of matching 

peptides. It also assigns a statistical weight to each peptide match by using the MOWSE 

factor matrix M [9]. In our approach M can be thought of as an array representing a 

histogram of masses. Each element of the array is a bin representing a range of masses. 

The bins record the number of peptides that fall into their mass range; in effect they 

record the frequency of occurrence of peptides of a certain mass. These frequencies are 

normalized by dividing them by the most frequent range to produce the final M. 
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where fi is the frequency of element i. 

 

This is then used to calculate the score of an individual peptide match as: 
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where K is a scaling factor that can be set by the user, and n is the number of matches 

 

This is not the traditional MOWSE scoring function, as the original was designed to 

operate on peptide sequences and not on translated DNA sequences. Nevertheless, this 

formula still captures the essence of the scoring algorithm, which is the frequency 

information provided by the MOWSE factor matrix. 

 

To realize the scoring function above for a gene window, certain aspects of the 

computation must be adapted for hardware implementation.  
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∏=  where n is the number of matches. 

Thus, three key components define the score: the product term, the maximum frequency 

and the number of matches. For every mass range [1...n] in which we detect a match, we 
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take the product of the normalized frequency of the range. If a match occurs in a highly 

frequent range, the ∏  term (and correspondingly the score) will be higher. 

Conversely, a match to an infrequent range will produce a low score. This “smaller-is-

better” value for  can be used to assign a significance value to a match.  

m
f

m
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2.4. Prior Work in Software and Hardware Based Genome 
Searching 
 

Researchers have considered using the genomes of organisms for protein sequencing 

in the past [1]. As mentioned in Chapter 1 custom hardware has also been used to 

accelerate various applications. However, we believe that this is first time the hardware 

implementation of the sequencing scheme described in Section 2.2.2 has been published. 

It is instructive to look at past attempts to use genomic data in both software and 

hardware contexts. 

2.4.1. Software Searches of the Genome 
 

Choudary et. al. have performed searches of the human genome using mass 

spectrometry data in the manner described above. Their research showed it to be a time 

consuming method prone to errors due to the quality of the genomic sequence and the 

immense volume of random data in an organism’s genome [1]. Nevertheless, they note 

that with high quality MS data the genome could prove a useful tool in identifying novel 

coding sequences. However the size of the genome, coupled with memory bandwidth 

limitations on conventional processors restricted the speed of this method. The study in 

[1] showed search times of 3.5 minutes on a 600 MHz Pentium processor. This can be 

optimistically extrapolated to a search time of approximately 1 minute on a 2.4 GHz 

processor assuming that memory speeds scale with the processor. Recall that a practical 

implementation of the algorithm in Section 2.2.2 must be able to identify the coding gene 

within 1 second to avoid costly instrument downtime. 
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Despite the challenges posed above, complete high quality drafts of the human genome 

have been produced since the work in [1] and many of the errors due to erroneous and 

incomplete genomic data can now be resolved. Furthermore other studies such as those 

conducted by Kumar et. al [26] suggest that a wealth of information will go overlooked in 

protein sequencing studies if an organism’s genome is not analyzed. 

Note that our goal is to determine novel protein sequences. A number of techniques exist 

to characterize well-known protein sequences [8][9][10], but our challenge is to 

accelerate real-time de-novo protein sequencing. Therefore the ability to search the 

genome at high speed is crucial. 

 

 

2.4.2. Hardware Searches of the Genome 
 

The continuous growth of biological databases has created the demand for intensive 

computational power if these databases are to be analyzed within a practical timeframe. 

Several biological algorithms have already benefited from custom hardware acceleration, 

some of which are reviewed in this section.  

Among the most well known algorithms that show improvement when implemented in 

hardware are those used for sequence alignment. These methods search through 

biological databases to look for strings similar to those provided by a user. Hoang and 

Lopresti describe hardware implementations of alignment algorithms that perform several 

orders of magnitude faster than their software counterparts [17][18]. The alignment 

algorithms in their work compute the edit distance between strings. The edit distance 

between two strings is the weighted cost of the operations required to convert one string 

to the other. The distance is computed using the common Smith-Waterman dynamic 

programming algorithm, which lends itself to hardware due to its parallelizable nature. 

Commercial hardware units such as BioXL, which perform sequence alignment, are 

also available to researchers [20]. BioXL is capable of performing the Smith Waterman 

calculations in addition to several proprietary algorithms that perform similarity searches. 

The BioXL package is designed as a scalable system, which can grow based on the user’s 

budget and requirements. Depending on cost concerns, the user can have a hardware 
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system that outperforms an identical software algorithm by a factor of 198. The core of 

the BioXL unit is a set of FPGAs containing hardware implementations of various search 

algorithms. Other algorithms, such as BLAST [23], which search both gene and protein 

databases, have been commercially implemented in systems such as DeCypher [19], 

which also use FPGA-based hardware searches. These searches are commonly used in 

similarity studies to establish the relationship between groups of proteins or groups of 

genes. The DeCypher hardware was created in response to the massive growth of 

genomic databases. The DeCypher system provides an economical alternative to 

purchasing large server farms to search large genomic databases. A number of biological 

search algorithms in addition to BLAST have been implemented in DeCypher, most of 

which seek to group similar genes and proteins into families. These hardware 

implementations show between 50 to 200-fold increase in speed with a 10 to 100-fold 

reduction in price-performance ratios when compared to equivalent software platforms. 

 

2.5. Programmable Hardware Platform 
 

Our goal in this work is to implement the genomic search engine, tryptic mass 

calculator and scoring algorithm in hardware to accelerate the de-novo protein 

sequencing process. 

The hardware upon which the system is prototyped is the University of Toronto’s 

Transmogrifier 3A (TM3A) reconfigurable platform [13]. The core of the system is a set 

of four interconnected reprogrammable chips known as Field-Programmable Gate Arrays 

(FPGAs). These allow the user to implement a new design by simply downloading it to 

the board from a PC. A brief description of FPGAs in general and the architecture of the 

TM3A are presented in the following sections. This is followed by a description of how a 

design is specified using a Hardware Description Language (HDL). 

2.5.1. Field-Programmable Gate Arrays 
 

FPGAs are reprogrammable chips that can have their logic functionality modified by 

a user. There are two key features of an FPGA that enable this programmable behaviour: 

programmable logic blocks and programmable routing. In Figure 2-19 the simplified 
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view of an FPGA is depicted. It can be seen that there are a number of columns of 

connected Configurable Logic Blocks (CLBs). The Configurable Logic Blocks often 

contain multiple Lookup Tables (LUTs) and flip flops. These LUTs implement any 

Boolean expression with a fixed number of inputs. In Figure 2-20, a 4-LUT (four input 

lookup table), which can implement any Boolean function of 4 inputs, is shown.  The 

outputs of these functions can then be passed to various other LUTs or the input/output 

blocks (IOBs) of the FPGA. In the architecture depicted, there is also a flip-flop 

associated with each LUT, which is used to store the LUT output. Another feature of 

modern FPGAs is the embedded block RAM (BRAM) that is also connected to the 

routing racks [22]. This additional RAM provides greater storage capacity within the 

FPGA. The FPGAs in the TM3A are Xilinx Virtex 2000E FPGAs that have 38,000 LUTs 

and flip-flops and 64Kbits of RAM per chip. 

 

 

CLBs 

Block RAM 

I/O pads 
 

 

Figure 2-19:  FPGA Architecture 
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4
LUT

a) Single CLB 
b) LUT and Logic 

 

Figure 2-20: CLB and LUT details 

 

 

2.5.2. Hardware Description Languages (HDLs) 
 

To implement a circuit in an FPGA, the designer needs to describe it with a Hardware 

Description Language (HDL). The designs in this work were created using VHDL, 

(VHSIC• Hardware Description Language). VHDL is commonly used to describe a 

circuit at various levels. At a high level of abstraction it can describe how circuit 

components are connected together. Conversely it can be used at a detailed level to 

specify the behaviour of each of the individual circuit components. An illustrative 

example is provided below. 

 

 

 

 

 

 
                                                 
• Very High Speed Integrated Circuit 
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ENTITY and2 IS 
PORT 

 ( 
 input1 : IN STD_LOGIC ; 
 input2 : IN STD_LOGIC ; 
 and2_out : OUT STD_LOGIC 
 ); 
END and2; 
 
ARCHITECTURE and2_behv OF and2 IS  
BEGIN 
 

and2_out <= input1 AND input2 ; 
 
END and2_behv; 

 
 

Figure 2-21: VHDL definition of 2 input AND gate 

 

The example in Figure 2-21 shows the VHDL specification for a 2 input AND gate. The 

boldface type highlights keywords reserved by the language. The AND gate is described 

as an ENTITY that has two input ports and a single output port. The behaviour of the 

entity is described in the architecture section, where the logical AND of the two inputs is 

assigned to the output of the circuit. 

This simple example illustrates how a circuit component can be described in VHDL. A 

compiler then synthesizes this code into the hardware structures such as the LUTs 

described in Section 2.5.1. 
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2.5.3. Transmogrifier 3-A (TM3A) 
 

 

Figure 2-22: Transmogrifier 3-A 

 

The TM3A (shown in Figure 2-22) is a reconfigurable hardware platform with 4 Xilinx 

Virtex 2000E FPGA chips that are interconnected to each other by a 98-bit bus [13]. This 

allows designs that are too large for a single FPGA to be spread over multiple chips. Each 

FPGA also has 2 megabytes of SRAM attached and various IO connectors. Data is read 

from the SRAM in 63-bit words. Each chip is also connected to a central housekeeping 

chip, which performs the configuration of the FPGAs and ensures that they are 

functioning within their operational limits. The housekeeping chip also interfaces the 

board with a PC.  

The PC allows the user to download designs into the onboard FPGAs and to 

communicate with the board to provide input and receive output. A convenient software 

interface to connect circuit on the FPGAs to a C program running on the host PC has 

been developed, called the ports package [14].  
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2.6. Summary 
 

In this chapter, we have described the requisite biology to understand the design 

presented in our work. The challenges of conventional de novo protein sequencing by 

mass spectrometry have been examined. The advantages and shortcomings of using the 

human genome database to infer the sequence of novel proteins have been presented. The 

limitations of implementing these sequencing approaches in software and the appeal of 

custom hardware for similar algorithms have also been considered. A description of the 

implementation platform has also been provided as the architecture of this platform 

guides our design choices.  

In the following chapter we describe the design of the hardware units that the device is 

comprised of. For each of the requirements listed in Section 2.2.3, we design hardware 

units that are optimized to perform specific calculations that are optimized to both 

accelerate the algorithm, and target the architectural features of the hardware. 
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Chapter 3. Design of a Hardware Search Engine, 
Mass Calculator and Scoring Unit 

 
 

 

Overview 
 

Any useful implementation of the sequencing approach described in the previous 

chapter demands the capacity for high-speed searches. This speed can only be achieved in 

software at high cost, as mentioned in Section 2.4.1. Custom hardware, as seen in Section 

2.4.2, is often a practical solution for applications that process large volumes of data and 

can be easily parallelized. The core of the algorithm in Section 2.2.2 is a search through 

the genome that must be completed in approximately 500 ms to 1 s. Since a database 

search is intrinsically parallelizable and the search space is large, we implement the key 

units described in section 2.2.3 in hardware to achieve the speed requirements and avoid 

the costs of a large computing cluster.  

The design takes three primary inputs, namely: 

1. A peptide query from the MS, which is a string of 10 amino acids or less,  

2. A genome database, 

3. A list of peptide masses detected by the MS. (the true PIS described in Section 

2.2.2) 

The design produces a set of outputs for a given peptide query: 

1. A set of gene locations, which can code the input peptide query 

2. A set of scores for each gene location. The scores rank the genes based on the 

likelihood that they coded the protein in the sample. 

The hardware identifies all locations in the genome that can code the peptide query and 

then translates these gene locations into their protein equivalents. It then compares the 

peptides in the translated proteins to the peptides detected by the MS and provides a 

ranking for each gene location based on how well it matches the masses detected by the 

MS. These gene locations can be translated to their protein sequence in a matter of a few 

milliseconds by using Table 2-1 or by using existing software packages [44][45]. 
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The design is divided into three major subunits: 

1. A search engine that locates all possible coding strands for a peptide query. 

2. A tryptic mass calculator that translates all matching genes and produces the 

masses of all the corresponding tryptic peptides from the translated gene. 

3. A scoring unit that compares calculated peptides against those stored in the PIS 

of the MS and ranks the matching gene locations. 

 

This architecture is depicted in Figure 3-1. In the following sections we describe the 

inputs and explain how they are encoded within the system. We then describe each of the 

units in Figure 3-1 as we detail the flow of data through the system. 

 

Tryptic 
Mass 

Calculator

Search 
Engine 

Scoring 
Unit 

Score Gene 
Locations 

Matching 
genes 

Calculated 
peptide 
masses 

OUTPUTS

 

Genome 
Database 

Peptide 
Query 

MS detected 
masses 

(PIS) 
INPUTS

Figure 3-1: Device Architecture 
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3.1. Genome Database Coding and Compression 
 

The genome database is one of the primary inputs to the system. To better understand 

the nature of operations performed on this database, a description the data encoding 

schemes used to store this database is provided.  

The genome database is stored as an ASCII file of bases, and is available for download 

from several different institutions. The ASCII representation uses 8 bits per character, 

which allows for 256 unique characters to be stored. However, since there are only 5 

different characters (the four bases A, T, C, G and the wildcard N) in the genome 

database 98% of the storage spaces is wasted. We thus encode this ASCII file using a 

different scheme that allows for better compression of the data. Each codon in the 

genome file is encoded using a 7-bit value that allows for 27=128 unique codons. Each 

codon consists of 3 characters and the characters themselves can be one of five values. 

Therefore there are 53=125 unique codons in the actual genome database. For example 

AAA = 0000000, AAT = 0000001, AAC = 0000010 etc. This encoding uses 2.3 bits per 

base wasting only 2.3% of the storage space (125 of 128 possibilities used).  

Since the genomes of most organisms are large (15 million to 3.3. billion characters), it is 

not practical to store the genome database directly on-chip. Instead we store the genome 

database in RAM external to the FPGAs.  

 

As the genome is read from external RAM into the device, it first passes through the 

decoder units illustrated in Figure 3-2. Each decoder takes in a 7 bit “compressed” codon 

from memory and produces a 9 bit “uncompressed” codon using the original 3-bit 

encoding scheme. The decoders themselves are BlockRAM units that are configured as 

ROMs. They accept the compressed string as an address and produce and produce an 

uncompressed bit-string as their output.  
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Decompressed DNA word sent to rest of hardware 

D 

Compressed DNA string read in  

D D D D D D D D 

D Decoder unit 

 

7 7 7 7 7 7 7 7 7 

9 9 9 9 9 9 9 9 9 

Figure 3-2: Genome Decompression 

 

The uncompressed bit-string uses 3 bits per base that allows for eight possible 

characters, five of which are used (A = 000, T = 001, C = 010,G = 011 and N =100 for 

ambiguities). Thus a single codon is represented by a 9-bit value within our hardware as 

shown in Figure 3-2. The rest of the hardware units described in the following sections 

also use the 3-bit encoding scheme described above. 

 

3.2. Peptide Query 
 

Recall that the output of the second MS in an MS/MS experiment is a peptide 

sequence (i.e. a string of amino acids). This must be converted to an equivalent DNA 

representation to be compared against a genome database. This process was outlined in 

Section 2.2.2. Consider for example the case when the MS outputs the peptide sequence 

"MAVR". The goal of the algorithm is to locate all genes that can create this peptide. 
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Therefore we reverse translate each amino acid into the codons that it could have 

originated from. 

ATG   GC*   GT*   AGA 
ATG   GC*   GT*   AGG 
ATG   GC*   GT*   CG* 

MAVR 

Peptide query DNA/codon query 

000 001 011    011 010 100… 
000 001 011    011 010 100… 
000 001 011    011 010 100… 

Encoded DNA query 

 

Figure 3-3: Query Reverse Translation 

 

The peptide query is a string of no more than 10 amino acids (including wildcards). We 

chose this query size based on the average size of the sequencable portion of a tryptic 

peptide (approx. 10 amino acids) and the fact that a very short sequence of amino acids 

(often less than 7) can uniquely identify the protein it originated from [25]. 

 

Note that we allow the wildcarding of searches by the inclusion of a wildcard character 

in the query. This also serves to compress the query, as some amino acids with multiple 

codons will not need each codon explicitly enumerated (for example the amino acid 

Alanine (A) in the query above is expressed as GC*). This reverse translation is done on 

the host PC when the peptide query is received from the MS. Inspection of Table 2-1 

shows that no more than three codons are needed to encode any amino acid when 

wildcards are employed. Thus we reverse translate each amino acid in the peptide to 

generate a codon, or DNA query that encapsulates all the possible coding strands for the 

peptide query as shown in Figure 3-3. Each of these DNA/codon queries are then 

encoded using the 3-bit scheme described above. 

It was mentioned in Section 2.3.1 that genetic sequences are stored as either original 

DNA strands or their complements, but never both, since this is redundant. In the 3-bit 

encoding scheme, no information is stored to indicate the type of strand. Therefore we 

must also consider the complement of every strand in the database to ensure that all 

possible coding patterns within an organism’s genome are examined. For this purpose, 
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the complement of the query is also generated. Thus the original peptide query is 

translated into six binary strings, three for the original DNA strand representation and 

three for its complement. The query, thus encoded, is submitted to the search engine, 

which locates all instances of the coding stands in the genome. 

 

3.3. Search Engine 
 

Recall that the primary objective of the search algorithm is to identify all possible 

locations in the genome from which a peptide may have originated. To accomplish this, 

the user provides a peptide query (inferred from the MS data), which is simply a string of 

amino acids. To compare these amino acids to a genome (DNA) database they must be 

reverse translated to codons as described in Section 3.2. The search engine takes these 

strings of codons as input, and outputs all positions within the genome that match the 

strings.  

The purpose of implementing the search in hardware is to maximize speed. This speed is 

governed by the frequency with which the memory containing the genome can be 

clocked through the search engine. We define the parameter MEM_WIDTH to be the 

width of a memory word that is read into the search engine, i.e. the number of bits read 

into the system in every clock cycle.  Thus the total number of clock cycles required to 

search through a genome in memory (with a size defined by SIZE_OF_GENOME) is 

given by 
WIDTH_MEM
GENOME_OF_SIZE .  

Consequently the total time to search through the database is given by: 

Frequency_SystemWIDTH_MEM
GENOME_OF_SIZETime_Search_Total 1×=  

 

Note that the total search time must be less than 1s for the search engine to be useful in 

the de-novo sequencing method described in Chapter 2. Furthermore, we speculate that 

there may be other applications that require high-speed searches of the genome. In 

Chapter 4 we will describe versions of this system capable of achieving search speeds in 

the order of a few hundred milliseconds. 
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3.3.1. Search Engine Operation 
 

The search engine accepts queries, which consist of a set of DNA strings and their 

complements, and locates every position within the genome that matches any of these 

strings. The genome, which is stored in the RAM, is clocked in as a series of 

MEM_WIDTH-bit memory words. On every clock cycle the controller reads a new 

memory word into the system. This word is compared to the set of queries provided by 

the user. If a match is detected, the search engine controller returns the current memory 

address, which the user can then use to locate the coding gene. The VHDL description of 

the search engine controller is provided in Appendix B1 (control.vhd). A depiction of the 

architecture of this device is provided in Figure 3-4. 

 

Memory Word  

Controller 

memory 
address 

External 
RAM 

match found 
match location 

 

Complementary 
query 

match_found 

Original 
Query 

Figure 3-4:  Full Search Engine Architecture 
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Memory 
 1        2          3        4         5      6       7 
 T     T       T      A     T     C    G 

  A      T      C     G 

Query 4 A     T      C     G 

 

Query 1 A      T       C     G 

Query 2 A       T      C     G 

A    T      C     G 

 A     T      C     G 

Query 3 

Query 5 

Query 6 

Query 7 

 A      T      C     G 

Figure 3-5: Searching the Genome 

 

Once reset, the search engine controller enters initialization state in which the six DNA 

queries are read into the search engine. This is done in two clock cycles: one for the 

original DNA query, and one more for the complementary query described in Section 3.2. 

In the example in Figure 3-5, a simplified view of the architecture is presented, in which 

a single DNA query is performed. Note that the complementary query shown in Figure 

3-4 is removed for simplicity, however the search operations performed on both strings 

are identical. The controller then moves into the comparison state in which memory 

words are continuously read into the search engine from external RAM. With a new word 

entering the engine in each cycle, every substring within the memory word must be 

compared to the query in a single cycle. To do this, multiple copies of the query are 

registered in hardware, and each one is simultaneously compared against the memory 

word. Note that we need as many copies of the query as there are bases in the memory 

word. This is apparent in the architecture shown in Figure 3-5 as each copy of the query 

is aligned with a successive base in the memory word. 

 Using the compression scheme of 7 bits per codon described in Section 3.1, the number 

of bases in a single memory word is parameterized as: 
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3
7

×= WIDTHMEMMEMWORDINBASESNUM ____  

 

Each copy of the query is stored in a peptide unit, and if any peptide units signal a match 

(as query 4 in the example in Figure 3-5), the controller exits the comparison state and 

returns the current memory address to the user, to be interpreted as a coding region for 

the query strand. The search engine then returns to the comparison state and the process 

continues until all the memory has been read. 

 It is apparent that the peptide units mentioned above are responsible for the core 

functionality of the search engine. To elucidate the details of the design, a description of 

the peptide unit follows. 

3.3.2. Peptide Comparison Unit 
 

The search process described above compares several identical copies of the query to 

a memory word to maximize throughput. Each query is stored in an individual peptide 

unit, which is depicted below. 

 

 

PIPELINED AND

memory 

Codon Units 

 

Figure 3-6:  Peptide Unit Structure 

 57 
 

 



  
 

 

A peptide comparison unit takes two inputs  

a. A set of query codons (corresponding to the amino acids in the query)  

b. A set of 10 codons from memory.  

 

Figure 3-6 represents the general architecture of a peptide comparison unit. The query 

codons are stored in a set of codon units. Each of these units then receives codons from 

the memory word, which are compared against the query codons. Each unit produces a 

single match output that signals whether the codon from memory matches any of the 

query codons. If all of these match signals are activated simultaneously, a string of 

codons from memory that matches a set of query codons has been found. The VHDL 

description that instantiates the peptide comparison unit is presented in Appendix B 2 

(protein.vhd) 

 

ACG 

AC* 

AC* 

AC* 

ATC 

ATT 

CC*

CC*

CC*

ATA CCG

ATA

Query 
Codons 

Peptide 
Match 

Memory 
Codons 

 

Figure 3-7: Peptide Unit Operation 

 

In Figure 3-7 a simplified peptide comparison unit is depicted in operation. There are 3 

sets of query codons, which are compared to the codons from memory. In Figure 3-7 the 

matching codons are highlighted. If at least one codon from each set shows a match to 

memory, the query has been found in the genome, or equivalently, a coding strand for the 

peptide query has been found.  

Thus each of the codon sets signals a pipelined logical AND unit, and if all sets indicate a 

match, the peptide unit signals a match. A wide AND operation (logical AND with many 
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inputs) will incur significant delay if is to be completed in a single cycle. To avoid this 

delay and ensure fast circuit operation, we register the match signals from the units, then 

AND them as a pipelined operation.  

 

intermediate 
registers 

AND 
inputs 

Pipelined 
AND 

output 

AND 
inputs 

AND 
output 

a) Non-pipelined Wide AND 

b) Pipelined Wide AND 

long logic delay 

short logic delay short logic delay 

 

Figure 3-8: Pipelined AND Operation 
 

Figure 3-8 contrasts a simple wide AND implementation with the pipelined version 

described above. In the non-pipelined unit, there is a comparatively long logic delay as 

the input pass through multiple gates to produce the output AND signal. If this delay is 

sufficiently high, it will constrain the maximum clock frequency of the circuit. In the 

pipelined implementation, the inputs are divided into two groups.  Each of these groups is 
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individually ANDed in a single clock cycle. The results of this operation are stored in 

intermediate registers and ANDed together in the next clock cycle. This technique 

reduces the delay through logic and allows faster circuit operation. Note that the output of 

the pipelined AND is delayed by an additional clock cycle, but this is usually acceptable 

as the clock frequencies are sufficiently high, and the penalty of an extra cycle is 

negligible. 

 

Figure 3-6 depicts the peptide unit as a set of codon units, as described above. It is the 

match signals from each of these codon units that are ANDed together to verify that all 

codons have detected a match in memory. These codon units are the building blocks upon 

which the search engine is built. 

 

3.3.3. Codon Unit 
 

The smallest fundamental unit of the search is the codon unit, which takes a set of 

three query codons and a single codon from memory as its input. It produces a match 

signal as its output. If any of the three query codons matches the memory codon, the 

match signal is activated. The set of three codons corresponds to the translation defined 

in Section 3.1. Recall than any amino acid can be represented as set of three codons or 

less. Thus a codon unit essentially determines whether a codon from memory is capable 

of coding a query amino acid. 
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Figure 3-9: Codon Unit Operation 

 

The operation of the codon unit is shown Figure 3-9. Assuming that the query amino acid 

is Arginine (R), it is translated to its equivalent codons AGA, AGG and CG* using Table 

2-1. This is done in software before the query is submitted to the search engine hardware 

as described in Section 3.2. These three query codons are stored in the codon unit, and at 

every clock cycle, a new base from the genome in memory is read in and compared 

against the queries.   

 

Delving deeper into the implementation, Figure 3-10 illustrates a detailed view of the 

codon unit. The bases in the three query codons are divided by position, i.e. the first base 

in every query codon is ANDed with the first base for a codon from memory, the second 

query base is ANDed with the second memory base and so on. From Figure 3-10, it is 

apparent that the codon unit only signals a match if each base from memory matches at 

least one query base in its corresponding position. The VHDL code that describes this 

architecture can be found in Appendix B 3 (amino.vhd) 

 61 
 

 



  
 

T 

G 

A 

match 

 

A A C

G G G

A G *

Figure 3-10: Implementation Details of Codon Unit 

 
It is the match signal shown in Figure 3-10 that is passed into the pipelined AND in the 

peptide comparison unit, and ultimately to the controller, which then detects a hit and 

returns the corresponding memory address to the user.  
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3.3.4. Interpreting Search Engine Outputs 
 

The search engine identifies memory addresses that contain a section of DNA capable 

of synthesizing the query peptide. In a biological sense, this corresponds to identifying 

coding genes within the genome. Figure 3-1 indicates that the gene at the hit location is 

then sent to the tryptic mass calculator for further processing.  

 

However the stream of DNA from the genome database, which passes through the search 

engine, has no markers to indicate the start or end points of a gene. To overcome this lack 

of information, we use the average size of a gene to delineate the gene under 

consideration.  

 

ACGGAT ACGATC
query 

 Hit located in genome. Genes on either side of hit window are translated 

GENE_SIZE

…GATCGAGC
TACG
GAGCATCAG
TCAGCGGTT
GAACACG… 

Genome 

Gene Window 

GENE_SIZE 

 
Figure 3-11: Selection of Gene 

 
Defining the size of a gene as GENE_SIZE bases, we send a 2 x GENE_SIZE window 

of bases surrounding the hit to the calculator. This approach, as shown in Figure 3-11, 

allows the consideration of one gene preceding the hit and one gene following it. In 

practise, this window is implemented as a GENE_SIZE sized shift register. The input 

data to this shift register is obtained from the output of the decoder blocks described in 

Section 3.1. This data is in the uncompressed 3-bit form; therefore the depth of the shift 

register is GENE_SIZE x 3 bits. Data from the decoder is continually passed into the 

gene window register, which acts like a delay element, as its outputs are delayed by 

GENE_SIZE (its depth) relative to its input. When the search engine detects a hit, the 
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output of the gene window is sent to the tryptic mass calculator, which continues to read 

the gene window until it has processed 2 x GENE_SIZE bases. 

This technique ensures that the calculator processes a reasonable amount of genomic data 

on either side of the hit location. However, the fixed size of the gene window adds an 

inherent error to further operations, as most genes will be of a different size. Regardless, 

if a reasonable portion of the gene is processed, it will still be possible to identify many 

of the peptides from the translated protein. 

 

3.3.5. Summary of Search Engine Design and Operation 
 

The original peptide query is translated from amino acids to sets of codons as 

described in Section 3.2. These codon strings are stored in the codon units that make up a 

peptide unit. Multiple identical copies of the peptide unit are instantiated to maximize the 

throughput of the search as described in Section 3.3.1. The search engine progresses 

incrementally through the address space of the genome stored in RAM, looking for a 

match to the queries. If a match is found, the current memory address is sent to the user 

as a gene location that codes the peptide query. Genomic data surrounding the hit 

location is then sent to the Tryptic Mass Calculator as illustrated in Figure 3-1. 
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3.4. Tryptic Mass Calculation 

 

Overview 
 

Referring back to Figure 3-1, we see that the search engine locates genes matching the 

peptide query and sends the corresponding addresses to the user. It remains to translate 

all matching genes to their protein equivalent, digest these proteins to peptides and 

calculate the masses of the peptides. Peptide masses from each translated protein are then 

compared with the PIS list described in Section 2.2.1 to determine which translated 

protein most closely matches the protein sample in the MS.  

  

Note that the tryptic mass calculator receives matching genes as its input, and performs 

the translation, digestion and calculation operations described above to provide the 

peptide masses as outputs. To do this the calculator unit must translate the matching 

genes from the search engine into amino acids and locate the tryptic cut-sites as described 

in Section 2.2.1. To obtain tryptic peptide masses, the sum of masses of the amino acids 

from cut-site to cut-site is accumulated. These masses are then sent to the Scoring Units 

as illustrated in Figure 3-1. 

 

As an overview of the mass calculation process, an example of the steps involved is 

presented. 

…..CATAGG AAGGCT…

Translation

…..    H     R    M     D      K     A…… 

Gene window translated from DNA to amino acid sequence 

 

ACGGAT

Figure 3-12: Translation of Gene to Protein 
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The DNA data from the gene window, i.e. the matching genes, are interpreted as a 

stream of codons, or equivalently, as an amino acid string. We are, in effect, translating 

the gene to its corresponding protein as shown Figure 3-12. 

 

…..    H     R    M     D      K     A…… 

…H 225.32 Da 
MD 127.11 Da 

Tryptic peptides detected in amino acid sequence. Peptide masses calculated 

Digestion

Calculation

 

R  
K  

Figure 3-13: Digestion of Protein and Calculation of Tryptic Peptide Masses 

Once a protein is translated, its tryptic peptides must be compared to those detected by 

the MS. To identify the tryptic peptides and digest the protein, the calculator detects the 

tryptic cut-sites (Lysine (K) and Argnine (R) amino acids) and calculates the 

accumulated mass of all amino acids between these cut-sites as illustrated in Figure 3-13. 

 

3.4.1. Calculator Architecture 
 

An architectural view of the calculator as depicted in Figure 3-14 shows a pipelined 

design that performs the translation, digestion and peptide mass calculations described 

above.  

At every clock cycle, the controller for the calculator reads a new set of 

NUM_BASES_IN_MEMWORD bases from the gene window into the calculator. The 

calculator operates on this data in codon-sized units. Note that each stage of the 

calculator in Figure 3-14 has a single active codon attached to a detection unit and mass 

lookup table. The first stage of the calculator translates its first codon into the mass of its 

corresponding amino acid, which in turn is passed to a mass accumulator. In the next 

clock cycle the controller reads a new set of codons from the gene window into the 

calculator, and the remaining unprocessed codons from first stage are passed down. In the 
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second calculator stage, the second codon is processed in parallel with the first codon 

from the new set. Note also that the accumulator from the first stage passes its calculated 

mass to the second stage. Thus the mass of the first amino acid can be added to the mass 

of the second to calculate the mass of the peptide. If the detection units identify a tryptic 

cut-site (Argnine or Lysine amino acids not followed by Proline), digestion occurs and 

the accumulated peptide is output from the calculator. Observe that each stage of the 

calculator operates in an identical manner by receiving a set of codons, performing 

calculations on only a single codon and buffering the rest. These remaining codons are 

passed to the next stage in the subsequent clock cycle and the process is repeated until the 

entire gene has been processed. The VHDL representation of the behaviour of the 

calculator is given in Appendix B 4 (mod_calc.vhd). 

 

 

Gene window 

Active Codon

Detection Units and Mass LUTs 

Mass Accumulators 

 

Tryptic 
Peptide 
Masses 

Figure 3-14:  Calculator architecture 
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The matching gene is passed as input to the calculator, 

NUM_BASES_IN_MEMWORD at a time to match the memory throughput. The 

calculator operates on these bases in codon-sized units; therefore 

NUM_BASES_IN_MEMWORD/3 codons (defined as NUM_CODONS) are clocked 

into the calculator in every cycle. To maintain this throughput, the calculator needs at 

least NUM_CODONS stages operating in parallel, as there could be at most 

NUM_CODONS peptides in a single memory word. However, if a peptide spans more 

than a single memory word, the accumulated mass from the first memory word will have 

to be saved until the tryptic cut-site is detected in one of the following memory words. 

Thus an extra pipeline stage is required to accumulate intra-word peptides, resulting in a 

total of NUM_CODONS +1 stages operating in parallel to ensure that the calculator can 

meet the memory throughput. 

For every hit detected by the search engine, the calculator processes a full gene window 

of bases. Thus for every hit, the calculator operates for a total of 

MEMWORD_IN_BASES_NUM
SIZE_GENE  corresponding to one cycle for every memory word 

in the genome. Note that an additional NUM_CODONS+1 cycles are required to process 

the codons that will remain the pipeline of the calculator. The following sections provide 

a detailed description of the architecture of the hardware used to perform the mass 

calculations. 
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3.4.2. Mass Calculation 
 

For a detailed account of the operations performed by the calculator, consider Figure 

3-15. 

Active Codon

Next Stage 

Previous Codon Mass 

Mass 
Lookup 
Table 

Detection 
Units 

Next Codon

demux  

Calculator Output 

Figure 3-15: Single Stage of Calculator 

 

Each stage of the calculator only processes its active codon, which is fed into a lookup 

table of masses and a set of detection units. The mass lookup table reads the codon and 

produces the mass of the corresponding amino acid effectively translating the codon. The 

detection unit looks for tryptic cut-sites in the codon stream. If no cut-site is detected, the 

mass of the previous codon is added to the mass of the active codon. However, if a cut-

site is detected, i.e. we reach the end of a tryptic peptide, the accumulated mass is sent to 

the calculator output instead. Thus the detection units and mass accumulators control the 

digestion and calculation operations of the calculator. 
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3.4.3. Mass LUTs and Detection Units 
 

Mass LUT 
Current 
Codon Mass 

a) Mass Lookup Table(LUT) 

Cut-site Detector Cut found 

b) Detection Units 

Current 
Codon 

Proline Detector Pro found 
Next 
Codon 

Wildcard Detector Irresolvable 
‘N’ found 

Current 
Codon 

NUM_MASS_BITS 

6 

6 

6 

4 

 

Figure 3-16:  Calculator Subunits 

 

The mass LUTs are implemented as ROM tables which accept a 6-bit codon as input 

and provide a mass value, which is NUM_MASS_BITS bits wide, as output. A codon 

size of 6 bits implies that only 2 bits are used to represent each of the 3 bases in contrast 

to the 3-bit per base scheme described thus far. To explain this disparity, consider the 

binary representation of the codons as described in 3.1. With only four real bases A,T,C 

and G, a two bit representation is sufficient to encapsulate all possibilities. Recall that the 

third bit is used to represent the wildcard character. Thus every mass is represented by 

two data bits and a single wildcard bit. As the mass lookup table is instantiated in 

BlockRAM, using a 9-bit input for every codon (3-bits per base) would require 29 = 512 

storage locations of NUM_MASS_BITS size in the BlockRAM. By using only the two 

data bits of a base, a codon can be represented in 6 bits. Such an implementation requires 

only 26 = 64 storage locations. The controller for the mass calculator uses the wildcard bit 

in combination with the wildcard detector to determine whether there is sufficient 
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information to translate the codon into its amino acid mass.  

 The cut-site detection unit looks for the presence of a Lysine (K) or Argnine (R) amino 

acid in the codon stream. Recall that trypsin cleaves the protein at these amino acids 

provided that they are not followed by Proline. Thus the Proline detection unit looks 

ahead to the next codon (see Figure 3-15) to detect the presence of any codon that can 

synthesize the amino acid Proline. Both the cut-site and Proline detection units take a 6-

bit codon as input and output a single bit indicating whether a cut-site or Proline codon 

was found in the input codon. 

The wildcard detection unit looks for the presence of an irresolvable codon in the data 

from memory. Recall from Section 2.1.2, that the presence of a wild card or 'N' character 

in a codon does not automatically imply that the resultant amino acid cannot be resolved. 

In some of these cases, it is still possible to identify amino acid. The wildcard detection 

unit takes a 4-bit input (corresponding to the last two bases in a codon) and provides a 1-

bit output, which is combined with the wildcard bits described above. The controller for 

the calculator uses this information to determine whether to save or discard the mass 

produced by a mass lookup table.  

3.4.4. Complementary Strand Calculations 
 

As with the search engine, the complementary DNA strand must be accounted for. 

The tryptic masses for both the strand stored in the genome, and its complement must be 

calculated. With the hardware above, the masses of tryptic peptides from the original 

strand can be calculated. For the complementary strand, a copy of this hardware is built 

which transposes and complements the codons. In Figure 3-17(a) an example string is 

shown alongside its reverse complement. Likewise, implementations of the cut-site, 

Proline and wildcard detection units for the complementary strand are instantiated within 

the calculator. 
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ATG ACT CCA GAC

GTC TGG AGT CAT

Original strand 

Complementary strand 

ATG CAT 

ACT AGT 

CCA TGG 

GAC GTC 

Original Complement
A   T   G

C   A    

A   C   T

A   G    

… 

a) DNA Strand and its Complement 

a) Mapping codons to their complements 
 

 T T

Figure 3-17: Complementary Strand Calculation 
 

Note that to obtain the reverse complement, the original strand is transposed and the 

bases are replaced with their complements. This corresponds to the reversed translation 

direction described in Section 2.3.1. However, the codons read from memory arrive in the 

order of the original strand and do not follow the transposed order depicted in Figure 

3-17(a). Thus the codons are accumulated in the forward direction for the original strand 

(as read from memory), but backwards for the complementary strand.  

 

This merely implies that, for the complementary strand, tryptic mass calculations will 

begin at the end of the protein. Mass accumulation is an associative process which is 

unaffected by the direction in which its input codons arrive.  
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3.4.5. Six Frame Mass Calculation 
 

Each calculator unit computes the masses of one strand and its complement. This 

accounts for one frame and its complement. To account for the other two frames and their 

complements, two more calculator units are instantiated; each starts calculations at one 

base position ahead of its predecessor (see Section 2.3.1 for explanation) and operates 

identically to the structure described above. To implement this, output of the gene 

window shift register is read at different base locations by each of the three calculators as 

shown in Figure 3-18. 

 

 

T C G A G C T A G C G C T

Frame 2,5
 Frame 1,4

Gene Window

Peptide masses (frame 2,5) 

Peptide masses (frame 1,4) 

Peptide masses (frame 3,6) 

3 sets of two-frame 
calculators  

Frame 3,6

Figure 3-18:  Parallel Six-Frame Calculations 
 

3.4.6. Summary of Tryptic Mass Calculator Operations 
 

The search engine identifies locations in the genome that can code the query peptide. 

The genes surrounding these locations are sent to the tryptic mass calculator to be 

translated into proteins and digested into tryptic peptides. The calculator then calculates 

the masses of these tryptic peptides. In the event that there are multiple matching genes, 

we now have a list of tryptic peptide masses that correspond to each gene. These masses 

are compared with the peptide masses detected by the MS to uniquely identify the true 

coding gene. 
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3.5. Scoring unit 
 

Overview 
 

From Figure 3-1 we see that the calculator described in Section 3.4 produces the 

masses of tryptic peptides for all genes that coded the peptide query. These calculated 

masses are then compared with the masses detected by the MS to determine which gene 

actually codes the protein in the sample. Figure 3-19 elaborates the representation of the 

scoring unit shown in  Figure 3-1. The interested reader can find the VHDL description 

of this unit in Appendix B 5 (scorer.vhd) 

 

Calculated 
Peptide 
Masses 

MS detected 
masses 

(PIS) 

Score 

PIS 
Storage 

Mass 
Matching

Histogram

Significance 
Calculator 

matching masses 

frequency

 
Figure 3-19: Scoring Unit Architecture 

 

Observe that the inputs to the scoring unit are the calculated tryptic masses and the PIS 

list from the MS. After comparing the two sets of masses, the unit produces a score 

indicating the quality match. Thus, the scoring unit serves to rank each hit (or gene 

window) in order of significance. Significance here is defined as the likelihood that a 

given gene window contains the gene that actually codes the protein in the input sample. 

Section 2.3.4.2 describes how the significance is computed using a histogram that records 

the frequency of occurrence of mass ranges. To compute this score, the hardware 
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operates in three distinct states: True PIS storage, histogram construction and score 

calculation. In the first state the scoring unit merely saves the masses from the true PIS, 

which are primary inputs to our device. In the histogram construction state, peptide 

masses from the tryptic mass calculator are used to initialize the histogram. Once 

initialization is complete, the controller moves into the score calculation state in which it 

identifies matches between the calculated masses and those in the stored PIS. The 

matching masses are used in conjunction with the frequencies stored in the histogram to 

generate a score for the gene window.  

 

Recall from Section 2.3.4.2, that the score consists of three major components: the 

product term, the maximum frequency and the number of matches. In the following 

sections, we explain the how operations performed in the three states listed above 

produce these three key components of the score. 

3.5.1. True PIS Storage  
 

Upon initialization, the masses detected by the MS (the true PIS as defined in Section 

2.2.2) are sent as inputs to the scoring unit, which saves them in on-chip RAM. Later, as 

the calculator generates masses, each must be compared with the stored masses from the 

PIS. If they fall within a user-defined threshold of each other, a match is signaled.  

 

The first step in this process is to store the mass values from the MS in the on-chip RAM. 

The storage uses a data-associative indexing scheme similar to Content Addressable 

Memory (CAM). A subset of the most significant bits of the mass value is used to divide 

the masses into specific ranges as illustrated in Figure 3-20. 
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1011100…

address (0..ADDR_BITS –1) 

…11001 

data

mass (0..NUM_MASS_BITS-1) 

On Chip RAM 

 

Figure 3-20: Data Associative Mass Storage 

 

In Figure 3-20 a NUM_MASS_BITS sized mass value from the true PIS is sent to the 

on-chip RAM for storage. ADDR_BITS of the most significant bits from the mass value 

are used as an address into the on-chip RAM at which to store the mass. This storage 

method divides the masses into ranges; the range that a particular mass falls into is 

defined by its address. In the example in Figure 3-20, the mass will be stored at address 

46 (101110). 

 

 It is clearly possible for two different masses to be stored at the same address if 

ADDR_BITS of their most significant bits are identical. To avoid this situation, we 

constrain the design such that ADDR_BITS must be sufficiently large enough to ensure 

that data will not be overwritten. Upon device initialization, each of the PIS masses from 

the MS is stored in the on-chip RAM using this technique. 

 

3.5.2. Histogram Construction 
 

In the second state, the scoring unit initializes a histogram with NUM_BINS bins. As 

the mass calculator operates, its outputs are passed into the scoring unit. Recall from 

Section 2.3.4.1, that the histogram records the frequency of occurrence of peptides in 
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different mass ranges. To this end, decoders are used to identify which range a given 

mass falls into and a set of counters is used to determine how many masses fall into a 

given range.  

Figure 3-21 illustrates how the decoders and counters described are used to update the 

histogram. Refer to Appendix B 6 for the VHDL description of controller that 

implements this process (mod_frequency_table.vhd). 
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Figure 3-21: Building the Frequency Histogram 

 

Firstly note that the bins in Figure 3-21 are simply a set of NUM_BINS registers that are 

NUM_FREQ_BITS bits in width. Each resister, or bin, represents a range of mass and 

contains the number of peptides in the current gene window that fall into this range. The 

counters at the inputs of these registers identify how many of the peptides from the 

calculator fall into a given range. The counter then updates the bin appropriately. Recall 

that the calculator is capable of producing NUM_CODONS + 1 masses in a single cycle. 

Thus in every clock cycle, any bin in the histogram can be incremented by a maximum of 

NUM_CODONS + 1 peptides. 

 

As mentioned, binary decoders are used to determine the range into which a calculated 

mass falls. The decoder has log2(NUM_BINS) inputs and NUM_BINS outputs. Each 
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output signal of the decoder corresponds to one of the NUM_BINS bins. Therefore 

log2(NUM_BINS) bits of the mass (defined as HIST_ADDR_BITS) are required to 

determine the range a given mass falls into. There are NUM_CODONS + 1 decoders, 

each corresponding to single output of the calculator. 
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000001110

Decoder
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Figure 3-22: Updating the Histogram 
 

An example of a histogram update is presented in Figure 3-22 for clarity. In this example 

two calculator outputs are shown. While both masses are different, HIST_ADDR_BITS 

of their most significant bits (6 bits in this example) are the same, thus both fall into the 

same bin (bin 1). Both decoders activate the output corresponding to bin 1, and the bin 1 

counter correspondingly indicates that the histogram should increment the value in bin 1 

by 2. Using this approach, we can record the frequency of occurrence for each calculated 

peptide mass. Once a full gene window has been processed, the bins are passed through a 

shift register, which identifies the mass range that occurs most frequently. The maximum 

frequency is one of the key components of the score and is returned to the user. The 

entire histogram update process occurs in parallel with the operation of the calculator, but 

an additional NUM_BINS cycles are required to identify the maximum frequency. The 

next phase uses this histogram to calculate the significance of the matching masses as 

shown in Figure 3-19. 
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3.5.3. Score Calculation 
 

Once the masses from the PIS have been stored and the histogram has been 

initialized, the score calculation process begins. This process consists of two operations 

that occur in parallel: mass matching and significance computation. The mass matching 

operation compares every calculated mass to the PIS values saved in the on-chip RAM to 

identify any matches. The significance computation uses these matching masses to 

determine the significance of the gene window at a hit location. The two remaining 

components of the final score, namely the number of matches and the product term are 

calculated by these operations. The following sections describe the architecture and 

operation of the hardware that implements these operations. 

3.5.3.1. Mass Matching 
 

Once the histogram has been initialized, the masses from the tryptic peptide calculator are 

once again sent to the scoring unit. In this state however, the masses are not used to 

update the histogram. Instead, the calculated masses are compared with the true PIS 

masses that were stored earlier to identify any matches between the tryptic peptides in the 

current gene window and those detected by the MS. Figure 3-23 represents the 

architecture implemented to perform the mass matching operations.  

 

The goal of the mass matching hardware is to identify calculated masses that fall within a 

user defined threshold of a value in the true PIS. Given a tryptic peptide mass from the 

calculator, we identify its closest corresponding mass in the true PIS by once again using 

data associative techniques. To see how the closest matches are identified, recall the 

storage scheme used to save the true PIS. 
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Figure 3-23: Mass Matching 

 

The on-chip RAM, in which the true PIS masses are stored, is set into a read only mode 

and ADDR_BITS of the most significant bits of the masses from the calculator are used 

as addresses. Doing so retrieves the PIS mass that was stored at the same address, i.e. the 

retrieved PIS mass falls into the same range as the calculated mass.  

The difference between the calculated mass and the stored PIS mass is then calculated. 

This difference is passed to a comparator along with a user-defined threshold. If the 

difference is less than or equal to the threshold, the comparator signals a match as 

illustrated in Figure 3-23. The match signal is passed to the controller, which increments 

a counter to keep track of the total number of matches found in a window. Recall that 

this is one of the key components of the final score for the current gene window. 

The matching masses identified here are used in the significance calculation step where 

the final component of the score, namely the product term, is computed. This process is 

detailed in the following section. 
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3.5.3.2. Significance Calculation for Matching Masses 
 

In addition to the number of matches, the scoring algorithm described in Section 

2.3.4.2 ranks the matches by significance. Figure 3-19 shows that the significance 

calculator receives frequency values from the histogram in addition to the matching mass 

values. The purpose of the significance calculator then, is to determine the ranges into 

which matching masses fall, and compute the product of the frequencies of these ranges. 

This corresponds to the product term defined in Section 2.3.4.2.  

 

Recall that the peptide mass calculator can produce a maximum of NUM_CODONS+1 

matching masses (i.e. every output of the calculator matches a mass value in the true 

PIS). To account for this event, the most significant HIST_ADDR_BITS bits of 

matching masses are used to identify the range the mass falls into. The frequency of this 

range is read from the appropriate bin of the histogram and placed in a pipeline as shown 

in Figure 3-24. As with the tryptic mass calculator, the pipeline is used to ensure that the 

product of the frequencies of multiple matching masses can be computed per cycle to 

meet the throughput of the calculator. Each of the NUM_CODONS+1 stages of the 

pipeline processes a single frequency value per cycle. In the subsequent cycle, the 

unprocessed frequencies from every stage are passed to the following stage. However, the 

processing units depicted in Figure 3-24 do not directly compute the product of the 

frequencies. 
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Figure 3-24: Calculation of the Product Term 
 

To calculate the product of the frequencies in the pipeline, the technique of logarithmic 

addition is employed as represented by the log and accumulator blocks in Figure 3-24. 

This method relies on the fact that log( , where f∏ ∑
= =

=
n

i

n

i
mm )flog()f

ii
1 1

m corresponds to 

the frequency of a matching range and n is the total number of matches. Thus, instead of 

explicitly calculating the product of the frequencies, we take the sum of the logarithms of 

these values. The actual product can be determined by taking the inverse of the logarithm 

of the accumulated value. We use this approach primarily to ensure that the product term 

can span a large range. The logarithm units are NUM_FREQ_BITS bits wide allowing 

for values between 0 to 2NUM_FREQ_BITS to be represented. These values are calculated in 

hardware by lookup tables, which take a NUM_FREQ_BITS sized frequency value as 

input and produce log10(frequency) as its output. Since the frequencies themselves are 

integer values from 0 to 2NUM_FREQ_BITS, this simple scheme is sufficient to calculate the 
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logarithms. The sum of these logarithms is computed by a set of accumulators to obtain 

the logarithm of the product term. This value is returned to the user, where the logarithm 

is inverted to obtain the final product term. This product term, along with the maximum 

frequency and the total number of matches between the hypothetical PIS and the MS 

detected values, is returned to the user to calculate the final score given by. 

matches_of_number_total)encyimum_frequ(max
term_productScore 1=  

 

This corresponds to the scoring method described in Section 2.3.4.2.  

 

A small product term indicates a match to an infrequent mass range, which corresponds 

to a high score as explained in Section 2.3.4.1. In practice, the actual score values 

produced by this formula vary in orders of magnitude i.e. high and low scores are 

typically several orders of magnitude apart. Therefore it is common for these scoring 

schemes to use 10 log(Score) as the final score value. In the results presented in Section 4 

we adopt this notation. 

3.5.4. Six Frame Score Calculations 
 

Section 3.4.5 states that the calculators generate six frames of masses simultaneously. 

Each of these frames can be treated as an independent gene as each encodes a different 

set of tryptic peptides. Thus six corresponding scoring units, are instantiated in the 

hardware, each of which computes the score of an individual frame of the gene under 

consideration. Therefore each hit in the database is returned to the user with 6 sets of 

scoring information. Since only one of these six frames is the true coding region, the 

frame that generates the maximum final score for a given gene window is considered to 

be the true coding frame. 
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3.6. Design Summary 
 

We have presented the design of a hardware system that meets the key requirements 

stated in Section 2.2.3. Figure 3-1 illustrates an overview of the key subunits of the 

device.  

 

1. A search engine that accepts a peptide query from the MS and locates all coding 

regions of the peptide in the genome. 

 

2. A tryptic peptide mass calculator that translates and digests the genes around the 

located coding regions to produce the mass of the tryptic peptides that are 

contained in the proteins encoded by these genes. 

 

3. A scoring unit that accepts the calculated tryptic peptide masses (the hypothetical 

PIS as described in Section 2.2.2) and compares the calculated masses to the true 

PIS from the MS. The scoring unit assigns a score to each set of tryptic masses 

based on their significance. Each location identified by the search engine is 

associated with its score and returned to the user to determine the true coding 

region. 

 

The final requirement presented in Section 2.2.3 was the ability to perform all the 

operations above within 1 second.  In the following chapter, we look at the performance 

and cost of the hardware presented in this chapter in comparison to software running a 

similar algorithm. The results show that this design meets the speed requirements of 

current mass spectrometry at a significantly lower cost than an equivalent algorithm 

implemented in software. 
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Chapter 4. Implementation Details & Results 

4.1. Overview 
 

The protein identification system described in Chapter 3 performs a reverse 

translated peptide query search through a Genome database. It locates all genes that can 

potentially code the query peptide and translates them into proteins. It then uses a variant 

of the MOWSE algorithm to compare the masses of these translated proteins to the 

masses in the PIS of a tandem mass spectrometer. This technique identifies and ranks 

potential coding regions for a protein or set of proteins in an MS sample. The coding 

regions can be sent to gene finding programs [44][45] or homology search tools [31] to 

obtain the protein sequence. In this chapter, we specify the implementation parameters 

for the design presented in Chapter 3. We then demonstrate the functionality of the 

design by providing input data obtained from biological experiments. This is followed by 

an evaluation of the speed and area of the design as realized on several modern FPGAs. 

Finally, we present the cost of the hardware system in comparison to a software 

implementation capable of similar performance. 

4.2. Assumptions and Approximations 
 

In implementing the design described in Chapter 3, a number of design decisions 

were made based on constraints imposed by the hardware and knowledge of the 

biological attributes of the problem. This section describes the dataset used to obtain our 

results, and details the assumptions that governed our design decisions. 

4.2.1. Using Simpler Organisms 
 

Ideally the algorithms described here should be tested on the Human Genome, since 

most studies ultimately target human proteins. Unfortunately it is difficult to obtain MS 

data from human subjects for research purposes. However, biologists often capitalize on 

the similarity of the genomes of various organisms. The genomes of simple organisms 

ranging from flies to yeast have been used to infer the behaviour of more complex 
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organisms such as humans [33][34]. For our study we use MS data from the organism 

Saccharomyces cerevisiae, commonly known as baker’s yeast. The yeast genome is an 

excellent model for the human genome since both are eukaryotes and thus share several 

similar proteins [34]. Further studies must be conducted with human MS data to verify 

the results presented here, but the insights gained from yeast can be used to identify the 

strengths and weaknesses of the algorithm. We define the operational parameters for the 

device in the following section, bearing in mind that the data in the yeast genome acts as 

the basis for our assumptions. 

4.2.2. Implementation Parameters 
 

The parameters defined in Chapter 3 are governed by physical constraints of the 

implementation platform and the particular biology of the organism under consideration. 

In this section, we detail the biological assumptions and hardware constraints that help us 

resolve the optimal values for the design parameters. 

 

Input Data 
The first key parameter is the size of the genome. The yeast genome [27] consists of 

12070522 bases, which defines the parameter SIZE_OF_GENOME as 3.4 megabytes 

using the compression described in Section 3.1.  For comparison, the human genome is 

918 megabytes. 

 
Search Engine 

In the search engine, the most crucial parameters are MEM_WIDTH and 

NUM_BASES_IN_MEMWORD, as they dictate the throughput of the system at a given 

operating frequency. The memory word read from the TM3A is 64 bits wide, but the 

compression scheme operates on multiples of 7 bits; therefore we use a MEM_WIDTH of 

63 bits. The compression scheme uses 7 bits to encode a codon (or 3 bases) resulting in a 

NUM_BASES_IN_MEMWORD of 27 bases. 
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Gene Window 

After passing through the search engine, the uncompressed memory word enters the 

gene window before it is sent to the calculator. Recall from Section 3.3.4, that the size of 

the organism's gene governs the size of the gene window upon which the calculator 

operates. Studies of the genes in yeast have shown the average gene size to be 

approximately 1450 bases [32].  The gene window is thus implemented as 18-word 81-bit 

shift register (corresponding to a GENE_SIZE of 1458 bases). In contrast, the average 

gene size in human chromosome 7 is 70,000 bases with 10% of the genes as large as 

500,000 bases. This expansion in size is due to more alternative splicing (55% of 

chromosome 7 genes are spliced as opposed to 4% in yeast) [52]. 

 
Mass Calculator 

 The bases from the gene window are read and translated by the calculator into 

peptide masses. Measurements on the dataset showed that tryptic peptides range in mass 

from 0 to 10 KDa a 20-bit mass value ((220 = 1048576) allows for masses between 0 and 

10,485.76 Da. However for an additional level of precision, 5 more bits are used to 

further divide these masses into 0.0003125 Da ranges. Thus NUM_MASS_BITS is set to 

25 bits.  

 

Scoring Unit 
The masses from the calculator are passed to the scoring unit, which ranks them 

in a similar manner to the MOWSE algorithm. MOWSE defines bins of 100 Da, which 

we approximate by setting NUM_BINS to 128 bins. In the mass range between 0 and 

10,485.76 Da, this translates to bins of approximately 82 Da. The choice of 128 bins in 

turn defines HIST_ADDR_BITS as 7 bits, as 7 bits of the mass are needed to identify 

127 bins. 

 

For convenience, these design parameters are listed in Table 4-1. 
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Parameter 
Values 

(Yeast) 

Values 

(Human) 

MEM_WIDTH 63 bits 63 

SIZE_OF_GENOME 3.4 Megabytes 917 Megabytes 

NUM_CODONS 9 codons 9 codons 

GENE_SIZE 1458 bases 35000 bases 

ADDR_BITS 9 bits 9 bits 

NUM_MASS_BITS 20 bits 20 bits 

NUM_BASES_IN_MEMWORD 27 bases 27 bases 

HIST_ADDR_BITS 7 bits 7 bits 

NUM_BINS 128 bins 128 bins 

NUM_FREQ_BITS 8 bits 8 bits 

 
Table 4-1:  Design Parameters 

 
The parameter values in Table 4-1 are chosen for a design with sufficient resources to 

perform the scoring operations accurately. In the following section we present the 

implementation details of a device designed with these parameter values. 

4.3. Implementation Details 
 

In this section, the particulars of the design implemented with the values in Table 4-1 

are presented.  Firstly, the functionality of the design when used with MS data is shown. 

In the subsequent sections, hardware and software platforms implementing the design at 

varying levels of performance are considered. Finally the costs of these systems are 

compared in an attempt to identify a practical solution. 

 

4.3.1. Functionality 
 

The following tests were performed to gauge the performance of the system with real 

MS data. The data used were obtained from the study performed in [60]. The study 

utilized Liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis using a 
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Finnigan LCQ Deca ion trap mass spectrometer fitted with a Nanospray source. Protein 

identification was performed by the search engines Mascot [39], Sonar [67], Sequest [68] 

and PepSea [69]. Interested readers can find the PIS masses reproduced in Appendix D. 

The input sample used in the experiment contains two well-characterized proteins from 

Saccharomyces cerevisiae (baker’s yeast):  

 

1. A Rab Escort Protein (REP) [ACCESSION: NP_015015] 

2. A heat shock protein from the SSB2 variant of the HSP70 family [ACCESSION: 

NP_014190] 

 

Rab Escort Protein (REP) 

The REP in the protein sample is from the MRS6 family of proteins created by the MRS6 

gene, located in yeast chromosome 15. A full gene map is located on the Saccharomyces 

Genome Database (SGD) [30]. 

Its coordinates in our database (i.e. the bases that the gene spans) are:  

• from 1025599 to 1026956. (located in Chromosome 15 [30]) 

 

Heat Shock Protein (HSP70) 

The HSP70 family is coded by the SSB1 and SSB2 genes located on chromosomes 4 and 

14 respectively. Our sample contains the SSB2 subfamily variant coded by the gene in 

chromosome 14. 

Each of these chromosomes codes a different subfamily of the HSP70 proteins but both 

have extremely similar sequences (BLAST [31] of the 2 sequences shows 551 out of 613 

matching amino acids (89% identity)). A full gene map is located on the SGD. (located in 

Chromosome 4 [28], located in Chromosome 14 [29]) 

 

Its coordinates in our database are: 

• from 1427427 to 1429279. SSB1 variant (located in Chromosome 4) 

• from 9661724 to 9663575. SSB2 variant (located in Chromosome 14) 
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Table 4-2 lists the some of the peptides that were provided as queries to the search engine 

alongside the hit locations reported by the search engine.  

 

Protein Query Sequences 
(minimal query)2 

Hit Location(s) 

vpealqr 
(vpealq) 1025938 

REP saavggptyk 
(saavg) 1026060 

nttvptik 
(nttvpt) 

1428705 
9663002 

llsdffdgk 
(llsdff) 

1428495 
9662792 

tgldisddar 
(tgldis) 

1428190 
9662487 

HSP70 

fedlnaalfk 
(fedlna) 

1428352 
9662648 

 

 Table 4-2:  Query peptides and hit locations for HSP70 and REP 

 

The first important observation is that any query sequence greater than 5 amino acids in 

length always uniquely identifies a single coding region, eliminating the need for a 

scoring function. Note that the peptides from HSP70 are shown as originating from two 

hit locations. Recall that there are two variants of this family encoded by different genes, 

but having highly similar sequences. However the 11% difference in sequence guarantees 

that the set of tryptic peptides generated by both variants is not the same. The scoring 

system helps resolve the two hits and uniquely identify the protein in the sample. 

 

 

 

 

                                                 
2 The minimal query (in italics under the query) is the shortest peptide sequence that still identifies a unique 
coding region 
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Protein Query Sequences 
 

Hit Location(s) 
(Gene) 

Score 

nttvptik 1428705 (SSB1) 
9663002 (SSB2) 

62 
89* 

llsdffdgk 1428495 (SSB1) 
9662792 (SSB2) 

65 
89* 

tgldisddar 1428190 (SSB1) 
9662487 (SSB2) 

67 
88* 

HSP70 

fedlnaalfk 
1428352 (SSB1) 
9662648 (SSB2) 

 

66 
88* 

Table 4-3:   Score identifies subfamily variant in HSP70 

 

In Table 4-3, the HSP70 peptide queries are shown alongside their scores. In each case, 

the SSB2 encoding (indicated by the * next to the score) has a higher score, 

corresponding to the variant that is in the sample. 

 

Each of the queries shown above is 5 amino acids or greater in length. An average 

sequence detected from a tryptic peptide may be up to 10 amino acids in length, but 

shorter sequences are common. Further, it is possible that only a short sequence can be 

determined for a long tryptic peptide due to instrument limitations, sample contamination 

etc. These shorter peptide queries to the genome have lower resolution and will result in 

multiple matches.  

We consider a few smaller peptides to test the resolution of the scoring function. These 

peptides were also identified by the mass spectrometer, but are shorter than the average 

peptide length, thus they are likely to encounter multiple matches within the genome. 
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Protein Query Sequences Hit Location(s) Score 

eyvpr 
1026605 
6672335 
2264445 

79* 
76 
66 

REP 

ilfak 

1938133 
1323971 
5006575 
6224783 
1025581 
5231459 
9309092 
3108258 

96 
90 
89 
84 
72* 
71 
70 
61 

Table 4-4:   Queries with multiple matches in REP 

 

In Table 4-4 the queries “iflak” and “eyvpr” both generate false positives as expected. The 

query "eyvpr" in Table 4-4 is ranked correctly, and the true coding location gets the 

highest score. However, the second query is ranked incorrectly, with the true hit being 

ranked fifth. Recall that scoring functions are highly sensitive to the data that they 

operate on [46] and the MOWSE algorithm that we use was not intended for genome 

wide searches [9]. 

In cases where the query sequence is short and cannot be resolved to a unique gene 

location, multiple peptide queries may be used to identify the true coding region. This 

approach relies on the assumption that multiple matches are random, which may not 

always be true. For example, Table 4-3 showed multiple matches due to the fact that the 

two hit locations coded proteins that were similar or homologues. These matches were 

clearly not random, however most of the cases with multiple matches are random and 

occur due to the volume of data contained in the genome [1]. 

To see how multiple sequences can resolve the random false positive matches, such as 

those in Table 4-4, observe the distribution of match locations. Each match corresponds 

to a gene location that codes the query peptide. In non-homologous proteins it is unlikely 

that several proteins will share common peptide sequences. Peptide mass fingerprinting 

(PMF) techniques make use of this fact to use a few peptides to discriminate between 

tens of thousands of proteins in protein databases. 
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Any short peptide query will match the true gene location and may produce several false 

positives. Thus if several peptide queries are used, the matches will be clustered together 

(within the true coding gene) while the false positives will be randomly distributed 

throughout the genome. 

This can easily be seen in the data in Table 4-4. The two true matches are only 1024 

bases apart, which is within the size of a single gene. The next closest match occurs 

between the hit at 1026605 and 1323971, but these locations are 297366 bases apart. It is 

thus easy to identify the true hits as they are clustered together.  

 

"ilfak" hit 
locations 

Closest Match 
in "eyvpr" 

Distance to closest 
match 

1025581 1026605 1024 
1323971 1026605 297366 
1938133 2264445 326312 
3108258 2264445 843813 
5006575 6672335 1665760 
5231459 6672335 1440876 
6224783 6672335 447552 
9309092 6672335 2636757 

Table 4-5:  Closest Distances between Match Locations 

 

Table 4-5 shows the distance between the closest matches using the two peptide queries 

from Table 4-4. Using this information, we deduce that matches that are close to each 

other indicate the presence of peptides being coded by the same gene, which in turn 

corresponds to the true hit location. Thus, the inverse of the difference between match 

locations is used to identify the true coding gene. 

In Figure 4-1 a scaled representation of the distance between the two queries is presented. 

The inverse of the distance between matches - which we define as "closeness" - is 

presented across all bases in the genome in Figure 4-1. Note that the closeness value is 

scaled by a factor of 1  for better visualization. 710×
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Closest matches between "ilfak" and  "eyvpr"
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Figure 4-1: Visualizing "iflak" and "eyvpr" Hits Across the Genome 

 

Note in Figure 4-1 that the true hit can be clearly distinguished from the other matches. 

Thus by using two peptides we can identify hits that cluster around a single gene and 

thereby discriminate a coding gene from random matches. 

 

The short query peptides in Table 4-4 above are natural, i.e., the peptides occur naturally 

via trypsin digestion. However, similar cases arise if the quality of the sample is poor and 

only a few amino acids can be sequenced. In these cases, the MS may only be able to 

resolve a short length of full tryptic peptide, forcing the MS operator to search the 

database with a shorter query. 

To replicate the effect of these low quality samples we search using queries that are 

smaller than the minimal query. In effect, we are using substrings of the queries in Table 

4-2 to simulate the behaviour of “dirty” samples.  

 

In the following example the two queries "saavggptyk" and "eyvpr" from Table 4-2 and 

Table 4-4 respectively are considered. To simulate low-quality sequences, we use the 

substrings "saav" and "eyvp" of these peptide sequences. For brevity the full set of 
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matches are deferred to Appendix C. However, the true hits are ranked 65th of 128 hits 

and 13th out of 48 hits for the queries "saav" and "eyvp" respectively. It is clear that the 

MOWSE scoring algorithm cannot distinguish the true coding locations from false 

positives. However, using the technique summarized in Table 4-5, we can look for the 

distance between hits. 

The 5 closest matches are presented in Table 4-6. 

 
"saav" Hit 
Locations 

Closest Match in 
"eyvp" 

Distance to Closest 
Match 

1026060 1026605 545 
7486943 7488841 1898 
8964661 8965326 2305 
10170118 10165117 5001 
9383697 9378467 5230 

 

 

 

 

 

Table 4-6:   Distance Between Hits in "eyvp" and "saav" 

 

As before, the inverse of the distance to the closest match – the closeness - between hits 

produces a map of the genome in which the true coding gene is easily identifiable. 
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Figure 4-2: Visualizing Matches Between "saav" and "eyvp" across the genome 
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Note, that the true hit can easily be distinguished from 127 false positives, even when the 

query is only four amino acids long.  

 

The results in Appendix C show that in many cases, the true coding region can be easily 

identified by using multiple queries. With a query of five amino acids, the true coding 

location was always correctly identified using two peptide queries to the database. When 

using a query length of four amino acids, the number of hits per query increases. With 

more hits, more queries are required to accurately identify the true coding region. 

Appendix C shows that using two queries of length four identifies the true hit in eight of 

12 searches. Of the four erroneous cases, the true hit location is ranked 2nd in three of 

these and 3rd in the remaining case. In each of these cases, the distance between hits can 

be calculated in a few milliseconds, without significant impact on the speed of the search 

and score process. 

 

 

4.3.2. Design Implementation on the TM3A 
 

The TM3A described in Section 2.5.3, was the primary implementation platform for 

our design. Considering the architecture of the TM3A, the device was partitioned across 

four FPGAs as shown in Error! Reference source not found.. 
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PIS

FPGA 3 

PIS

FPGA 2 

PIS 

FPGA 1 

FPGA 0 

SEARCH 
ENGINE 

6 FRAME CALCULATOR 
AND SCORING  

Figure 4-3   Device Partitioned Across TM3A 

 

The design is partitioned as follows: 

• FPGA 0: Search Engine and Gene Window 

• FPGA 1: Mass Calculator and Scoring Units (for Frames 1 and 4) 

• FPGA 2: Mass Calculator and Scoring Units (for Frames 2 and 5) 

• FPGA 3: Mass Calculator and Scoring Units (for Frames 3 and 6) 

 

Note that FPGAs 1, 2 and 3 have identical units implemented on them. The 

distinction lies in the data that they receive from the gene window. FPGA1 receives the 

data from the gene window directly, and produces the scores from Frame 1 and its 

complement (Frame 4). FPGA2 and FPGA3 receive the data from the gene window 

shifted by 1 base and 2 bases respectively, and correspondingly produce the scores of 

Frames 2 and 3 and their complements. Using this structure, the individual FPGAs can be 

classified by the units they implement. Therefore our design will be described in terms of 

search engine FPGAs and calculator and scoring unit FPGAs. 

 

Unfortunately, compiling the design with the parameter values described in the 

previous section resulted in an implementation that did not fit on the TM3A due to 
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insufficient resources. The 25-bit mass and 128-bin histogram force the calculator and 

scoring units to occupy more area than is available on a Xilinx Virtex 2000E FPGA. In 

combination, these units occupy 44338 LUTs and flip-flops, but Table 4-7 shows that the 

Virtex 2000 E chips on the TM3A only have 38,400 LUTs and flip-flops. 

 

 

FPGA 
Number of 

LUTs and FFs 
Block RAM 

(bits) 
User IO pins 

Virtex 2000E 38,400 655,360 804 
Virtex II 8000 93,184 3,024,000 1,108 

Stratix EP1-S20 18,460 1,669,248 586 
Stratix EP1-S40 41,250 3,423,744 822 
Stratix EP1-S80 79,040 7,427,520 1,238 

Table 4-7: FPGA resource comparison 

 

In an attempt to fit the device on the TM3A, the design was modified to use 18-bit 

masses with a 64-bin histogram thus reducing the area occupied by the calculator and 

scoring units. This modification enabled the units to fit on the TM3A, and the speed and 

area results for the individual FPGAs are presented below. 

 

Design 
Platform 

LUTs FFs Memory (bits)
Operating 
Frequency 

(MHz) 

Search Time 
through Human 

Genome 
(s) 

TM3A - Virtex 
2000E 8,622 1,858 8,786 89 1.4 

Table 4-8: Total Resources and Speed for Search Engine on Virtex 2000 E 

 

Design 
Platform 

LUTs FFs 
Memory 

(bits) 

Operating 
Frequency 

(MHz) 

Processing 
Time for Human 

Genome 
(s) 

TM3A - Virtex 
2000E 27,925 12,475 34,816 58 2.1 

Table 4-9:  Total Resources and Speed for Combined 2-Frame Calculator and Scoring Units on Virtex 
2000E 
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Note that the searching and scoring times shown are for the human genome, and not 

yeast, as presented in Section 4.2.1. Recall that the ultimate goal of these sequencing 

experiments is to identify human proteins; the search times presented in Table 4-9 are 

more relevant when evaluating the practicality of our tool in useful biological 

experiments. The functionality of the device is not dependent upon the organism under 

consideration; indeed the only parameter affected is the value of SIZE_OF_GENOME, 

which is set to 918 megabytes (approximately 1 GB) when using the human genome. 

From the tables above, it is apparent that the calculator and scoring units limit, and thus 

define, the system speed. Table 4-9 shows that it takes 2.1 seconds to identify and score 

all gene locations that match a single peptide query. This speed however is not achievable 

on the TM3A due to the limited speed of the SRAM. The operating frequencies in Table 

4-8 and Table 4-9 apply only to the FPGA under consideration and are independent of 

memory speeds. The SRAM on the TM3A operates at a maximum frequency of 50 MHz 

making it the system bottleneck. Taking the memory speed into account, we restrict the 

operating frequency of the system to 50 MHz and calculate the operating time for a single 

query to be 2.4 seconds. 

In addition to the memory bottleneck, further problems arise as a result of the reduction 

in accuracy mentioned above. Using the less accurate 18-bit mass representation and 

coarser 64-bin histogram severely lower the performance of the scoring algorithm, thus 

the area and system speed presented above are not representative of a practical design. 

Note that this limitation only applies to the calculator and scoring units. The search 

engine fits on a Virtex 2000E FPGA and is not affected by the reduced parameters. 

Regardless, it is obvious that the TM3A, while a practical prototyping tool, is not 

adequately equipped to implement this design. 

To obtain realistic figures for area and speed, the design was recompiled with the 

parameters in Table 4-1 to target a set of modern FPGAs with more resources. These 

results are presented in the following section. 
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4.3.3. Design Implementation on Modern FPGAs 
 

The limitations of the TM3A impose unacceptable constraints on the speed and 

accuracy of the design. To overcome these constraints, we describe the implementation of 

our design using modern FPGAs and high-speed commercial memory. The FPGAs under 

consideration are listed in Table 4-7. 

 

Note that the newer FPGAs, namely the Xilinx Virtex II 8000 FPGA [56] and the Altera 

Stratix S40 and S80 FPGAs [57], all have more resources than the Virtex 2000E FPGAs 

on the TM3A. The Stratix S20 is included in Table 4-8 as it is the smallest FPGA upon 

which a search engine will fit. 

 

The speed and resource utilization tables are once again partitioned into individual 

FPGAs. The implementation of the search engine on each of the FPGAs is shown in 

Table 4-10. Correspondingly the implementation of the calculator and scoring units upon 

the Virtex II 8000 and Stratix S40 and S80 FPGAs is shown in Table 4-11. Due to the 

lack of resources on the Stratix S20, the calculator and scoring units do not fit on it. 

 
Search Engine 
 

FPGA LUTs 
Flip 

Flops 
Memory 

Bits 

Operating 
Frequency 

(MHz) 

Search 
Time 
(s) 

Stratix S20 10,605 1,694 7,938 163 0.7 
Stratix S40 10,605 1,694 7,938 152 0.8 
Stratix S80 10,605 1,694 7,938 148 0.8 

Table 4-10: Total Resources and Speed for Search Engine using Current Technology 

 
The reduced operating frequency on the larger devices in Table 4-10 can be attributed to 

the fact that the smaller devices have shorter wires, which have less capacitance, and are 

thus faster.  
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Two Frame Calculator and Scoring Unit 
 

FPGA LUTs Flip Flops
Memory 

Bits 

Operating 
Frequency 

(MHz) 

Search 
Time 
(s) 

Virtex II 
8000 28,786 15,552 204,800 62 1.97 

Stratix S40 30,684 13,814 205,244 75 1.63 
Stratix S80 30,684 13,814 205,244 75 1.63 

Table 4-11: Total Resources and Speed for Combined 2-Frame Calculator and Scoring Units using 
Current Technology 

 
The difference between the number of flip flops and memory bits between the Virtex and 

Stratix FPGA can be attributed to the different synthesis and mapping tools used to 

implement the circuits. Various parts of the circuit are mapped to different structures 

(LUTs or BlockRAM) by the tools, which are tailored to find the best possible 

implementation of a circuit on a given device. 

 

Note once again that the operating frequencies reported in the tables are independent of 

memory speeds and are based on a 63-bit memory word as indicated in Table 4-1. 

However, as we are not constrained by the SRAM as in the TM3A, we choose 

commercial DDR SDRAM, which operates in excess of 266 MHz [53], well above the 

system frequencies listed above, ensuring that memory will not be the bottleneck in the 

system. 

Note that the calculator and scoring units constitute the critical subsection of the design. 

From Table 4-11, we see that a peptide query can be located and its coding regions 

ranked within 1.63 seconds, slightly over the 1 second requirement presented in Section 

2.2.3. To meet this speed requirement, consider the nature of the algorithm. The entire 

search and score process is highly parallelizable. By simply partitioning the genome into 

subsections and instantiating multiple copies of the hardware, the design can operate on 

each section simultaneously. Thus with two copies of the hardware, the entire search and 

score can be completed in 820
2
631 .. =  seconds to meet the requirements of Section 2.2.3. 
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The data in Table 4-10 and Table 4-11 show that a hardware system capable of searching 

the genome at very high speeds can be designed using current FPGA technology in 

combination with existing commercial RAM. Capitalizing on the intrinsically parallel 

nature of the algorithm, hardware units at various levels of performance can be designed 

to meet a user's cost and performance requirements. However, the parallel nature of this 

algorithm lends itself to software implementation as easily as hardware. In the following 

section we examine a software implementation of a similar algorithm and consider the 

resources required to implement it. This information will then be used to determine the 

most cost effective platform for this design. 

 

4.3.4. Software 
 

The software speeds and resources described here are taken from the study in [1]. The 

scoring algorithm in the study is MASCOT, which is based on MOWSE. The operations 

in [1] were performed on a 600 MHZ Pentium III PC, resulting in search and score times 

of 3.5 minutes (210 s) per query. To scale these values to current processor speeds, while 

presenting the software in the most favorable light, we assume a linear increase in speed 

if the algorithm is implemented on a modern processor. Based on this assumption, we 

state that the software can complete the task in 52.5 seconds on a 2.4 GHz processor. 

This claim implies that the process will experience a speedup factor of 4 when run on a 

processor that is four times as fast. Such a scaling in speed is unlikely, as memory 

bandwidth does not scale with processor speed, but this optimistic assumption presents 

the ideal performance of this algorithm in software. Regardless, a single modern 

processor still cannot achieve the 1-second search and score time defined in Section 

2.2.3. 

 

As with the hardware, the algorithm is highly parallelizable and indeed MASCOT is a 

threaded program, designed to be implemented in a multiprocessor environment [39]. To 

meet the 1-second operation time, we assume that processing time scales perfectly with 

cluster size, i.e. to halve the time, the cluster size must be doubled. Table 4-12 shows the 
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number of processors required to achieve performance that is comparable to the 

hardware. 

 

Number of 
Processors 

Processing 
time 
(s) 

1 52.5 

32 1.6 

64 0.8 

 
Table 4-12: Processing Time for Computing Cluster 

 

Table 4-12 shows that a cluster of 64 processors can achieve the performance delivered 

by two copies of the hardware as described in the previous section. Thus both systems are 

capable of offering the same level of performance.  

In the next section, the system is parameterized based on the resources required to 

achieve a user-defined level of performance. The required resources allow us to estimate 

and compare the costs of the hardware and software systems to evaluate the most cost-

effective solution. 

 

4.3.5. System Cost and Resource Estimation 
 

The goal of this thesis was to design cost-effective hardware to accelerate the 

sequencing process. The previous sections have presented hardware and software 

approaches to solving this problem. In this section, we evaluate the cost of these systems 

at various levels of performance to determine the most practical platform for final 

implementation. In addition, to providing the cost of the hardware system described in 

Chapter 3, we detail the cost of a hardware system designed only to search the genome 

and locate coding regions for a peptide. Numerous biological algorithms require the 

ability to search through the genome without the scoring function detailed in Section 3.5. 

We hope that readers will find the cost to performance comparisons of the standalone 

search engine useful even outside of the scope of this work. 
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4.3.5.1. Cost of Software Platform 
 

The processors described here are ASL Lancelot C 1851 blades [54]. Each blade is a 

2.4 GHz Xeon Dual processor with 2 gigabytes of RAM and an 80-gigabyte hard disk. 

Table 4-13 shows the price of the system for various scan times. 

 

Number of 
Processors 

Scan time 
(s) 

Number of 
Blades 

Acquisition Cost 
(USD) 

1 52.5 1  $1,962 

32 1.6 16  $31,392 

64 0.8 32  $62,784 

512 0.1 256  $502,272 

Table 4-13: Prices of Computer Clusters for Varying Performance 

 

Since the blades are dual processor boards, 32 blades can implement the 64-processor 

search system described in the previous section at a cost of approximately $ 62,700. 

In Section 3.3 the concept of high-speed genome searching outside the context of this 

work is mentioned. A plethora of biological applications require the ability to search 

through the genome at high speed. Table 4-13 shows the cost of computer clusters 

capable of searching the human genome at varying speeds from a minute to a hundred 

milliseconds. 

 

Table 4-13 only lists the price of the system or its acquisition cost, but computer clusters 

usually suffer a system administration cost (SAC). The SAC includes cost of installation, 

maintenance and upgrading by a professional administrator. The work in [64] considers 

several different clusters with 23 nodes (processors) and identifies an average annual 

SAC that is equivalent to the acquisition cost. Table 4-14 shows the total operational cost 

of a computer cluster over a four-year lifetime. 
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Number of 
Processors 

Scan time 
(s) 

Acquisition  
Cost 
(USD) 

Total Cost 
Acquisition + 

Administration 
(USD) 

1 52.5 $1,962 $9,810 

32 1.6 $31,392 $156,960 

64 0.8 $62,784 $313,920 

512 0.1 $502,272 $2,511,360 

Table 4-14: Total Cost of Computer Cluster Over Four-year Lifetime 

 

In addition to the SAC described above, the power consumption of a computer cluster 

may be quite significant. The average power consumption of a 2.4 GHz Pentium is 

approximately 57.8 W [66]. Table 4-15 lists the power consumption of clusters of various 

sizes. 

 

Number of 
Processors 

Scan time 
(s) 

Power 
Consumed 

(W) 

1 52.5 58 

32 1.6 1,850 

64 0.8 3,700 

512 0.1 29,594 

Table 4-15: Power Consumption of Computer Clusters 

 
 
It is clear from Table 4-15 that a large cluster will draw a significant amount of power 

during its operation. In high throughput MS experiments, where the cluster is constantly 

in use, the cost of power will not be negligible. 

 

Having identified the cost of using software to search and score through the genome, the 

next section presents the cost of hardware systems capable of offering similar levels of 

performance. 
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4.3.5.2. Cost of Hardware Platform for Full System 
 

The design presented in Chapter 3 was implemented using the parameter values from 

Table 4-1 on a set of FPGAs to identify the optimal hardware system. Section 4.3.3 

identifies the Stratix S20 as the smallest FPGA upon which a search engine can be 

implemented and further identifies the Stratix S40 as the smallest FPGA upon which the 

calculator and scoring units can be implemented. Therefore the most cost effective 

implementation for the entire system is achieved on a set of 4 FPGAs: one S20 for the 

search engine and three S40 FPGAs for the 6 frames of calculation and corresponding 

scoring units. Such a system requires sufficient RAM and a suitable PCB to act as a 

motherboard. We therefore make the following design decisions:  

• Each set of 4 FPGAs requires a 10.5" x 14" – 14 layer PCB as its motherboard. 

• Every search engine in the system has 2 GB of memory. 

The second decision reflects practical issues in acquiring memory. We can use multiple 

hardware units to search subsections of the genome in parallel. Clearly a subsection of 

the genome will not require the storage space of the full genome. However, small 

memory modules are difficult to acquire commercially, and large memory modules can 

be purchased relatively inexpensively [53]. Thus each hardware unit contains a full 2 GB 

of memory even though this is unnecessary for the design. The costs of such a hardware 

system at various speeds are presented in Table 4-16. Note that a 50% margin has been 

added to the total cost as an estimate for the final purchase price. 

 

Scan Time  
(s) 

Number 
of S20  
FPGAs 

Number of 
S40  

FPGAs 

Cost of 
RAM 
(USD) 

Cost of PCB 
(USD) 

Cost of FPGAs 
(USD) 

Purchase  
Price  
(USD) 

1.6 1 3 $344 $131 $6,950 $11,137 
0.8 2 6 $689 $262 $13,900 $25,426 
0.1 16 48 $5,512 $2,100 $111,200 $225,469 

Table 4-16:   Price of Full System in Hardware 

 

Table 4-16 lists the cost and resources required to implement the full system at different 

levels of parallelism corresponding to different speeds. Note that the prices for the FPGA 

[50] and PCB [51] are based on volume pricing for 500 units. A hardware system that 

meets the requirements defined in Chapter 2, i.e. a system that takes under 1 second to 
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search and score using a single peptide query, can be implemented for less than half of 

the acquisition cost of an equivalent software system.  

 

For a fair comparison to software, we assume that the annual system administration costs 

(SAC) in hardware are equal to the acquisition cost. Table 4-17 shows the total cost of 

operating the hardware systems in Table 4-16. Recall that an individual hardware unit 

consists of 1 Stratix S20 FPGA and 3 Stratix S40 FPGAs. 

  

Number of 
Hardware 

Units 

Scan Time  
(s) 

Total Cost 
Acquisition + Administration 

(USD) 
1 1.6 $55,685 

2 0.8 $127,130 

16 0.1 $1,127,345 

Table 4-17: Total Cost of Hardware-Clusters Over Four-year Lifetime 

 

Table 4-17 shows that the total cost of the custom hardware implementation is less than 

half that of a software platform of equivalent performance. 

 

The Stratix Power Calculator [65] is a tool that allows the designer to estimate the total 

power consumed by a design on a Stratix FPGA. Using the resource values from Table 

4-10 and Table 4-11 the power consumed by the full hardware system is estimated as 7.6 

W (1 W for a Stratix S20 containing search engine and 2.2 W for each of the three Stratix 

S40 containing the calculator and scoring units). The majority of the power is dissipated 

in the IO pins.  

 

Number of 
Hardware Units

Scan Time  
(s) 

Power Consumed
(W) 

1 1.6 7.6 

2 0.8 15.2 

16 0.1 121.6 

Table 4-18: Power Consumption of Hardware-Clusters 
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All the FPGAs are running at 75 MHz and a 25% toggle rate is assumed for every flip 

flop and memory bit in the design. The results in Table 4-18 show that our custom 

hardware implementation consumes 200 times less power than general-purpose processor 

cluster. This reduction in total power consumption translates into a significantly lower 

operational cost over the lifetime of the cluster. 

 

The speed of the search engine operating as an individual unit unencumbered by the 

calculator and scoring units may prove to be of greater interest to the reader. In the 

following section, we consider the cost of implementing the search engine as a standalone 

hardware unit. 

 

4.3.5.3. Cost of Hardware Platform for Standalone Search Engine 
 

The search engine operating as an isolated unit does not require the same number of 

FPGAs or a PCB of the same complexity as the full system described in the previous 

section. Therefore the following design decisions are made for the standalone search 

engine: 

 

• A 10"x 4" - 8 layer PCB is required as the motherboard and can contain two 

FPGAs 

• Every search engine in the system has 2 GB of memory 

 

Using these constraints, we find that the Stratix S20 is the most cost effective FPGA upon 

which to implement the search engine as shown in Table 4-19 

 

 

 

 

 

 108 
 

 



  
 

Search 
Time 
(s) 

Number of 
Stratix S20 

FPGAs 

Cost of 
FPGAs 
(USD) 

Cost of RAM 
(USD) 

Cost of PCB 
(USD) 

Purchase 
Price 
(USD) 

0.8 1 $650 $344 $25.5 $1,530 
0.4 2 $1,300 $689 $25.5 $3,021 
0.2 4 $2,600 $1,378 $51 $6,044 
0.1 8 $5,200 $2,756 $102 $12,087 

Table 4-19: Cost of Standalone Search-Engine in Hardware 

 

Note once again that a 50% margin is added to the total cost as an estimate for the final 

purchase price. As before, we estimate the total cost of the system over a four-year 

operational lifetime. Note that each hardware unit in Table 4-20 can contain two FPGAs. 

 

Number of 
Hardware 

Units 

Scan Time  
(s) 

Total Cost 
Acquisition + Administration 

(USD) 
1 0.8 $7,650 

4 0.1 $60,435 

Table 4-20: Total Cost of Hardware Search Engine Over Four-year Lifetime 

 

Table 4-20 shows the total cost of the hardware based search engine assuming that the 

annual administration cost is equal to the purchase price. The hardware searching system 

costs approximately 40 times less than a software platform of comparable performance.  

 

Intuitively, the power consumed by the hardware search engine is significantly lower 

than either the fully hardware system or the processor cluster. 

 

Number of 
Hardware Units

Search Time 
(s) 

Power Consumed
(W) 

1 0.8 1.8 

4 0.1 7.2 

Table 4-21: Power Consumption of Hardware Search Engine 

 
 
Table 4-21 lists the power consumption of the hardware search engine for various search 

times. These power estimates were obtained from the Stratix Power Calculator assuming 
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a clock speed of 162 MHz and a 25% toggle rate for every flip flop an memory bit in the 

design. The power savings are even more significant in this case, with the hardware 

providing over 2000 times the power to performance ratio of a software cluster. These 

results indicate that there are significant advantages to performing genomic searches in 

hardware. 

 

In the following section, the hardware and software cost are directly contrasted to 

ascertain the most economical solution for a desired level of performance.  

4.3.5.4. Cost Comparison 
 

This section summarizes the costs of the system, by dividing the solution into two 

broad categories, namely, low-performance and high performance. Here, low 

performance indicates search times in excess of a minute, which may be acceptable in 

many applications. However, as detailed in Section 2.2.3, our design must be able to 

identify and rank the coding locations for a peptide query in less than 1 second, thus 

demanding a high performance system. The ratio of software to hardware costs for 

different system speeds is given in Table 4-22. Note once again that the costs are based 

on a four-year operation lifetime for the both the software and hardware platforms. 

 

 

Time 
(s) 

Cost of 
Software 
Platform 

Cost of 
Hardware 

Search and 
Score Platform

Cost of 
Hardware 

Search 
Engine 

Software  
/Hardware Cost 

Ratio  
(Search + Score) 

Software  
/Hardware 
Cost Ratio 
(Search) 

60 $750 $10335 $7650 0.07 0.1 

0.8 $313,920 $127135 $7650 2.5 41 

0.1 $2,511,360 $1127350 $60435 2.2 41 

Table 4-22: Ratio of Software to Hardware Cost for Different Processing Speeds 

 

For slower searches of the genome, i.e. search times in excess of 1 minute, software is a 

far more cost effective solution than hardware. The software cost is based the quoted 

price on a 2.4 GHz Dell Dimension Desktop [55]. The cost of its hardware counterpart is 
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based on the cost of a single hardware board capable of implementing the full system, as 

described in Table 4-16. It is possible to design a hardware system using cheaper, slower 

FPGAs but if real time performance is not required, a PC is likely a far more flexible 

solution with a greater capacity for reuse in other applications. Moreover, a PC at half the 

price of the hardware system it is clearly a better choice. Therefore, at the low end of the 

performance spectrum, software is more practical vehicle for the searching and scoring 

process. 

 

However, using the current cost and performance of the system as a measure of quality, 

hardware is clearly a better solution for a laboratory seeking the ability to search through 

genomes in real-time. At the high-performance end of the cost spectrum, hardware is 

more than three times as economical for equivalent level of performance as seen in Table 

4-22. For a standalone search engine, hardware is more than 40 times as economical, 

making it an ideal platform for genomic studies.  

 

The costs in Table 4-22 do not take power consumption into account. Section 4.3.5.2 

showed that the performance to power ratio is far more favourable for hardware, than a 

cluster of general-purpose processors. Over the operational lifetime of the hardware 

platform, the power savings will likely translate to a substantial reduction in operational 

cost when compared with software. 

 

In the following section, we present a means of estimating these costs based on the 

resources required to attain a given level of performance in hardware. Using these 

methods, designers in the future can estimate the cost of a hardware system using the 

technology available to them at the time. 

  

4.3.5.5. Framework for estimating system cost 
 

Table 4-19 and Table 4-16 list the current costs of designing such a hardware system. 

The key resources that determine this cost are: the FPGAs, the RAM and the PCB. The 

FPGA [50], RAM [53] and PCB [51] costs are obtained from current vendor and 
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manufacturer quotes. System designers in the future will likely have access to FPGAs 

with far more resources for which prices cannot be accurately predicted. As such we 

define the resources required for a given level of performance. Knowledge of the required 

resources will allow designers in the future to choose the most practical platform upon 

which to build their hardware. This section provides a framework to estimate the 

resources required to implement a hardware system at a given level of performance. 

 

In general, to design a system that meets a specific level of performance, the required 

resources can be estimated by the three elements listed above: FPGAs, RAM and PCBs. 

The total cost of the hardware is then given by the number of FPGAs (defined as 

NUM_FPGAs), the total amount of RAM (TOTAL_EXT_RAM) and the number of PCBs 

(NUM_PCBs). Note that this cost is a function of the desired level of performance 

specified by the designer. The performance is specified by the time required to process an 

entire genome, thus the two variables that determine the hardware resources for the 

system are size_of_genome (in GB) and search_time (in seconds). Thus we define the 

performance factor P  = 







time_search

genome_of_size . The designer can use the desired value of 

P to determine the cost of the system in the future. This cost is given by: 
 

COST (P) = (NUM_FPGAs(P) x FPGA_PRICE) + (TOTAL_EXT_RAM(P) x RAM_PRICE) + 

(NUM_PCBs(P) x PCB_PRICE) 

 

The number of FPGAs that contain a given amount of resources can only be evaluated for 

current technology. Any speculation on device capabilities in the future would likely be 

inaccurate. Therefore we classify an FPGA in terms of its key components, namely the 

LUTs, flip-flops and memory and user IO pins. Given these parameters, designers will be 

able to determine the most cost-effective FPGA or set of FPGAs at their time. 

We define the total number of LUTs and flip-flops in a given FPGA as 

FPGA_LUTs_FFs, and the total on-chip RAM as FPGA_RAM, and the number of user 

IO pins as FPGA_IO_PINS. Using these parameters, a designer can determine the 

optimal FPGA for the device.  
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Again, the following results are divided into two units: one to provide resource estimates 

for the full search and score system and the other for the search engine as an independent 

unit. 

 
Resources Required for Full Search and Score System: 
 

The values for each of these parameters depend on the performance factor P described 

above. From Table 4-9, we see that a full implementation of the device requires 12,299 

LUTs and flip-flops for the search engine and 3  LUTs and flip-flops 

for the calculator and scoring functions. Thus, with FPGA_LUTs_FFs  = 145313, a 1 GB 

genome can be processed in 1.6 seconds. To generalize this we state that:  

13304144338 =× )(

FPGA_LUTs_FFs =  P ×232500

Correspondingly, the device in Table 4-10 requires 7938 on-chip memory bits for the 

search engine and bits for the 3 calculators and the associated 

scoring functions. Thus 623670 on-chip memory bits are required to process the 1 GB 

genome in 1.6 seconds. Once again we generalize this to: 

6157322052443 =× )(

FPGA_RAM = 997872 P ×

The design requires a total of 1014 pins to process the genome as described. This enables 

us to define: 

FPGA_IO_PINS = 1623 P ×

 

Note that these assumptions are pessimistic, as we do not account for improvements in 

process technology, which will undoubtedly result in faster FPGAs. 

 

Using these three parameters, designers in the future can determine the value of 

NUM_FPGAs based on the most cost effective devices available at the time. To 

determine the optimal number of FPGAs, a designer must compare the cost and resources 

of a few large FPGAs with those on many smaller FPGAs.  This information can be 

easily obtained from datasheets and vendor price lists for the chosen device. The most 
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favourable solution implements the required resources at the minimum cost, thus defining 

the ideal value for NUM_FPGAs. 

 

The next significant parameter is the amount of external RAM required. A single copy of 

a 1 GB genome can be searched in 1.6 seconds. As the level of parallelism increases and 

additional copies of the device are used to increase the system speed, multiple copies of 

the genome must be processed. This is generalized as: 

TOTAL_EXT_RAM = ×
6250
1

.
P 

 

Using the design presented in this work as a reference, we estimate that four FPGAs and 

the RAM can be connected on a single PCB without prohibitive complexity. This leads to 

the formula: 

NUM_PCBs = 
4
FPGAs_NUM   

The value of NUM_PCBs clearly hinges on an assumption of 4 FPGAs per board as 

defined in our design. The trend towards larger FPGAs implies that our design will 

eventually be able to fit on a single FPGA. When such technology becomes available, the 

size of the PCB can be scaled down correspondingly. 

Note that each of these formulas is based on the design of the full search and score 

algorithm that operates on a 1 GB genome in 1.6 seconds. The formulas are intended to 

provide a sense of the required resources as the speed, and correspondingly the level of 

parallelism, within the system increase. If the required search time is less than 1.6 

seconds, or the size of the genome is significantly less than 1 GB, the approximations 

provided here will be of little value, as the formulas encapsulate the trend in resource 

requirements for increasing levels of parallelism.  
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Resources Required for Standalone Search Engine: 
 

As in the previous section, we distinguish the search engine from the full design as it may 

be of interest to the reader. For the standalone search engine, we define the resource 

requirements as a function of search_time and size_of_genome to allow the user to 

estimate system costs in the future. The formulas given below are based on the data in 

Table 4-10 and Table 4-11, and assume a standalone search engine can search a 1 GB 

genome in 0.8 seconds. 

 

FPGA_LUTs_FFs = 9839 × P 

 

FPGA_RAM = 6350 × P 

 

FPGA_IO_PINS = 313 × P 

 

Once again, the actual value for NUM_FPGAs hinges on the technology available to the 

designer and can be determined based on the cost of devices in the future. 

 

TOTAL_EXT_RAM = ×
251
1
.

P 

As in Section 4.3.5.3, we constrain the design to two FPGAs per PCB resulting in the 

formula: 

NUM_PCBs = 
2

FPGAsNUM _  

 

The caveats from the first set of formulas apply equally well to the approximations 

above. The formulas convey the trends in resource usage based on the search of a 1 GB 

genome in 0.8 seconds and any attempt to use them to approximate resource utilization 

for a system with lower performance will be fraught with error. 
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The formulas above model the resources required for various levels of parallelization, 

which in turn correspond to different levels of performance. As stated the performance is 

dictated by the time taken to process a genome of a given size. Using the resources 

estimation models above, designers in the future can estimate the resources required to 

implement either the full search and score system described in Chapter 3 or the search 

engine as an independent unit. These resources can then be used to determine the cost of 

the optimal solution based on the prices of devices available at the time. 

 

4.4. Summary 
 

From the above results, we see that with a sufficiently high quality sequence, a 

scoring function will not even be necessary. If the sequence is sufficiently large, it can act 

as a “fingerprint” by uniquely identifying its true coding region. In such an event, only 

the search engine hardware is required. Recall that the standalone search engine is 

considerably faster and cheaper than the full system and as MS technology improves, this 

will likely be a more cost-effective solution.  

If, however, the protein sample is contaminated, it may be hard to obtain a large peptide 

query. In these cases, multiple hits need to be resolved to identify the true coding gene. It 

is clear from our results that the scoring function is limited to resolving differences 

between proteins and has difficulty identifying the false positives in the genome. This 

was expected due to the volume of random information contained in the genome and the 

fact that MOWSE was designed to target protein databases. Observations from prior 

work [1] also suggest that the genome should only be used as a search database for novel 

proteins due to the number of false positive matches that are found in unannotated 

genomic sequence [63].  

Despite the difficulty of assigning accurate scores, we see that one can easily isolate the 

true coding region by using additional queries.  

The approach presented here accelerates the sequencing process for novel proteins. Using 

either high or low quality peptides as a query to the database, the device is capable of 

rapidly locating the peptide's true coding location in the genome. Furthermore, it delivers 
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this performance at a significantly lower cost than a software implementation of 

equivalent functionality. 
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Chapter 5. Conclusions & Future Work 
 

5.1. Thesis Summary 
 

In this work we have studied the design of a hardware system designed to 

accelerate MS/MS based de-novo protein sequencing. The objective of this work has 

been to study the feasibility of a custom hardware implementation of a protein-

sequencing algorithm. We believe that this is the first published hardware implementation 

of the sequencing approach described here. The results of this work show that hardware 

implementations of certain key features of the system provide significant improvements 

in speed at a lower cost than equivalently functional software. 

 

5.2. Thesis Contributions 
 

This thesis provides the following significant contributions: 

1. The design of an FPGA-based hardware system capable of locating and ranking 

the coding regions of a peptide in an organism's genome. The hardware is 

between 3 and 60 times as cost-effective as an equivalent software platform. 

2. The design of a fast comparison scheme based on data associativity (as described 

in Section 3.5.3.1). This hardware can be used to identify similar values in a 

single clock cycle. 

3. A framework for estimating the cost of the hardware design in the future. The 

models presented in Section 4.3.5.5 allow designers to estimate the cost of the 

system at various levels of performance. 
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5.3. Future Work 
 

The first and most practical extension to this work is to interface the system with 

a real mass spectrometer. Our prototype was tested using data from real MS experiments, 

but these data were used offline. It would be instructional to integrate the system with 

different mass spectrometers to see what other improvements could be made to the 

sequencing process. Also, as described in Appendix A, there is additional information in 

the MS output (for example intensity) that is often used for noise rejection. We have only 

used the masses from the MS output but it is likely that incorporating the intensity 

information into the scoring system will be beneficial. 

 

 In addition, a study using protein data from human samples would allow us to truly 

evaluate the benefits of this system as a tool for medical researchers. While the yeast 

genome is a good foundation on which to begin a study, further insight into the 

complexities of human biological systems can only be achieved by studying the human 

genome. 

 

The scoring algorithm used in this work needs to be tuned to fit the dataset. We chose the 

MOWSE [9] algorithm, as it seemed best suited to our needs. However, there is a 

plethora of scoring algorithms, each of which must be considered before the best ranking 

scheme can be determined. 

 

Another interesting area is exposed by the complexities of biological systems. In 2.3.2 we 

described the process of alternative splicing and mentioned that 98% of splice variants 

are canonical – i.e. they follow a recognized pattern of rules defining their start and end 

points. The current implementation of the design does not deal with the splice variants in 

hardware. If the splice variants and their masses could be calculated in hardware, they too 

could be compared to the PIS list to obtain a further degree of confirmation for the 

generated score.  
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Appendix A. Mass Spectrometry for Protein Identification 
 

Mass Spectrometry is a process in which an input sample is ionized and the ions thus 

generated are separated according to their mass to charge ratio. The general mass 

spectrometry flow used in protein identification is depicted in Figure A-1 below. 

 

Sample 
Preparation 

Peptide 
Resolution 

(MS1) 

Peptide 
Analysis 
(MS2) 

Data Analysis 
& Sequence 
Generation 

 

Figure A-1: Tandem Mass Spectrometry Flow 

 

Once a biological sample is prepared for analysis, it is fed into a mass spectrometer (MS). 

Tandem mass spectrometry, as the name implies, involves two mass spectrometers (MS1 

and MS2 shown in Figure A-1). The first MS provides a coarse analysis of the sample, 

and allows the user to select elements of the sample that can then be sent to the second 

MS for more detailed analysis. 

 

Sample Preparation: 
A protein sample being prepared for mass spectrometry should ideally only contain 

proteins of interest. However, current protein separation techniques cannot achieve this 

level of accuracy and most protein samples contain several contaminant proteins. 

The purified samples are usually digested from their intact form into smaller peptides. 

Digestion is frequently performed using the enzyme trypsin, which is known as a specific 

enzyme for its property of cleaving proteins specifically after the Arginine (R) and 

Lysine (K) amino acids. However if a Proline (P) molecule follows the K or R amino 

acids, the bond will be stronger, preventing cleavage. Thus a protein is digested into 

tryptic peptides. An example is presented in Figure A-2 below. 
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MAVRAKPCOKLHNWF 
Original protein in sample 
 
MAV      LHNWF 
After digestion – 3 smaller tryptic peptides (note cleavage after ut not 
 

 

R   A K
K and R b

KPCO
KP) 

Figure A-2: Protein Digestion 

The intact protein is cut after every instance of a K or R amino acid except when 

followed by P. This process occurs to every protein in the sample, which is then fed into 

the mass spectrometer. 

 

Peptide Resolution: 
 

The next step of a conventional mass spectrometry experiment is Peptide Resolution. 

Here, the peptides in the sample are ionized and the mass to charge ratio of each ionized 

peptide is measured, and saved in a list known as the Parent Ion Scan (PIS). In addition to 

mass, the MS can also identify the concentration or intensity of a given substance in the 

sample. Individual parent ions (or ionized peptides) are selected by mass and moved to 

the next stage of analysis. 

 

Peptide Analysis: 
 

Each parent ion is then analyzed by a second mass spectrometer (MS2) to obtain its 

sequence. This is usually done through a technique known as Collision Induced 

Dissociation (CID). In CID, the parent ions are dissociated into their daughter fragments 

by collision with an inert gas. Consider the ion from the peptide "mavr" in the example 

above. 
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a) Collision points along peptide backbone 

b) Daughter fragments generated from parent ion 
 

Figure A-3: Collision Induced Dissociation of Peptide 

 

The molecules of the collision gas strike the peptide backbone i.e. the bonds that hold the 

amino acids together thus breaking the peptide into smaller fragments. 

Note that the figure indicates two terminals present in every protein, the N and C terminal 

on either end of the peptide. Any daughter fragment induced by collision is either an N-

terminal or C-terminal fragment, and referred to as a 'b-ion' or 'y-ion' respectively. These 

fragments are also identified by a subscript, which indicates the number of amino acids 

from their terminal they contain. For example, 'y3' in the example above contains the first 

three amino acids starting at the C terminal of the peptide. 
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Set of all 
Daughter 

Ions 
Ion Type Mass of ion 

M 131 
MA 202 b-ions 

MAV 301 
R 

RV 255 y-ions 
(read backwards)

RVA 326 

156 

Figure A-4: Daughter Ions of "MAVR" 

 
The set of daughter ion fragments consists of all substrings of the parent peptide as 

shown in Figure A-4. 

Data Analysis and Sequence Generation: 
 
 

 
Figure A-5: Interpretation of Sequence from CID Sprectrum 
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From the CID spectrum in Figure A-5, each of the daughter ion fragments can be 

identified. The difference in mass between the peaks corresponds to the mass of a single 

amino acid and thus the sequence of individual fragments can be reconstructed. 

There are various algorithms that then overlap the reconstructed fragment sequences and 

determine the full sequence of the original peptide. 

 

In this manner each peptide from the original protein can be sequenced. Once the 

sequence of each tryptic peptides is known, a number of approaches can be used to 

deduce the sequence of the full protein. Several genetic algorithms have been used to 

match peptide sequences with those of existing proteins to look for common structures. 

Other heuristic approaches involve using physical chemistry to evaluate peptide 

configurations to determine a likely protein sequence. 
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Appendix B. VHDL Source Code 
 

1. Search Engine Controller (control.vhd) 
 
library ieee; 
use ieee.std_logic_1164.all; 
use ieee.std_logic_arith.all; 
use ieee.std_logic_unsigned.all; 
 
 
entity control is  
port ( 
 
 
   tm3_clk_v0  : in std_logic; 
   tm3_sram_adsp   : out std_logic; 
   tm3_sram_data  : inout std_logic_vector(63 downto 0); 
   tm3_sram_addr  : out std_logic_vector(18 downto 0); 
   tm3_sram_we  : out std_logic_vector(7 downto 0); 
   tm3_sram_oe  : out std_logic_vector(1 downto 0); 
 
   main_reset  : in std_logic; 
   mem_scanned  : out std_logic;    
   match_address  : out std_logic_vector(18 downto 0); 
   codonin   : in std_logic_vector(269 downto 0); 
   tm3want   : out std_logic; 
   sunready   : in std_logic;      
   reset   : out std_logic; 
   mem_for_frame  : out std_logic_vector(63 downto 0); 
   freq_enable   : out std_logic; 
   calc_enable  : out std_logic; 
   score_sent  : in std_logic    
 
 
); 
end control; 
 
 
architecture ctrl_behv of control is  
 
 
 component genebuffer 
  port ( 
  clock: IN std_logic; 
  data: IN std_logic_VECTOR(62 downto 0); 
  q: OUT std_logic_VECTOR(62 downto 0); 
  load: IN std_logic); 
 end component; 
 
 
 
 
  component fullprot  
  port ( 
    fpClk   : in std_logic;    
    codonInp   : in std_logic_vector(0 to 269); 
    memwindow  : in std_logic_vector(0 to 149); 
    foundHit   : out std_logic 
    );   
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  end component; 
 
 
 
 
 
  type ctrlStates is 
(rst,load1,load2,save,meminit1,meminit2,meminit3,hand1,hand2,reenter,madematch,returnscore,memstate1,done); 
     
 
  signal memory_word    : std_logic_vector(0 to 188); 
  signal dataword       : std_logic_vector(63 downto 0); 
 
 
  signal query1       : std_logic_vector(0 to 269); 
  signal query2       : std_logic_vector(0 to 269); 
 
   
  signal stored_data   : std_logic_vector(62 downto 0); 
  signal freq_window_out_buffer : std_logic_vector(62 downto 0); 
  signal mass_window_out_buffer : std_logic_vector(62 downto 0); 
  signal mem_to_frames  : std_logic_vector(0 to 125); 
  signal freq_mem_to_frames  : std_logic_vector(0 to 125); 
  signal mass_mem_to_frames  : std_logic_vector(0 to 125); 
  signal load_gene_window  : std_logic;  
  signal load_mass_window  : std_logic; 
 
  signal calc_operation  : std_logic_vector(8 downto 0); 
  signal freq_operation  : std_logic_vector(8 downto 0); 
 
  signal testnet  : std_logic; 
     
  signal currAddr      : std_logic_vector(18 downto 0); 
  signal codon_ctr     : std_logic_vector(0 to 0); 
  signal currState     : ctrlStates; 
  signal nextState     : ctrlStates; 
  signal mainhit      : std_logic; 
  signal cmplhit      : std_logic; 
  signal freq_enable_line  : std_logic; 
  signal calc_enable_line  : std_logic; 
 
 
  attribute syn_black_box : boolean; 
  attribute syn_black_box of genebuffer  : component is true; 
 
 
 
 
   
  begin 
   
  reset <= main_reset;   
   
  freq_genewindow  : genebuffer port map ( 
      clock => tm3_clk_v0, 
      data => memory_word(0 to 62), 
      q => freq_window_out_buffer, 
      load => load_gene_window); 
 
 
 
  mass_genewindow  : genebuffer port map ( 
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      clock => tm3_clk_v0, 
      data => freq_window_out_buffer, 
      q => mass_window_out_buffer, 
      load => load_gene_window); 
 
   
  proteinblock : fullprot port map ( 
      fpClk => tm3_clk_v0, 
      codonInp => query1, 
      memwindow => memory_word(0 to 149), 
      foundhit => mainhit 
      ); 
       
   
  complmntblock : fullprot port map ( 
      fpClk => tm3_clk_v0, 
      codonInp => query2, 
      memwindow => memory_word(0 to 149), 
      foundhit => cmplhit 
      );  
 
 
  
 process(currState,currAddr,codon_ctr,mainhit,cmplhit,score_sent,sunready,main_reset,calc_operation ) 
   begin 
 
 
    calc_enable_line <= '0'; 
    freq_enable_line <= '0'; 
    load_gene_window <= '0'; 
    tm3want <= '0'; 
    tm3_sram_we <= "11111111"; 
      tm3_sram_oe <= "01"; 
    tm3_sram_adsp <= '1'; 
        tm3_sram_addr <= currAddr; 
    tm3_sram_data <= (others => 'Z');  
    mem_scanned <= '0'; 
    nextState <= rst; 
 
 
    case(currState) is 
 
     when rst => 
      nextState <= load1; 
 
     when load1 => 
      tm3want <= '1'; 
      tm3_sram_data <= dataword; 
       
      if sunready = '1' then 
       nextState <= load2; 
      else 
       nextState <= load1; 
      end if; 
       
     when load2 => 
      tm3want <= '0'; 
 
      if sunready = '0' then 
       nextState <= save; 
      else 
       nextState <= load2; 
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      end if; 
             
 
     when save => 
      tm3_sram_addr <= currAddr; 
      tm3_sram_adsp <= '0'; 
      tm3_sram_oe <= "01";  
 
     if codon_ctr = "1" then 
      nextState <= meminit1; 
     else 
      nextState <= load1; 
     end if; 
       
        
      
      
     when meminit1 => 
      tm3_sram_addr <= currAddr; 
      tm3_sram_adsp <= '0'; 
      tm3_sram_oe <= "01";    
    
      nextState <= meminit2; 
 
 
 
     when meminit2 => 
 
      tm3_sram_addr <= currAddr; 
      tm3_sram_adsp <= '0';    
   
      tm3_sram_oe <= "01"; 
      nextState <= meminit3; 
      
 
 
 
     when meminit3 =>     
 
       
 
      tm3_sram_addr <= currAddr; 
      tm3_sram_adsp <= '0';    
   
      tm3_sram_oe <= "01"; 
       
      if score_sent = '1' then 
       load_gene_window <= '1'; 
       nextState <= memstate1; 
      else 
       load_gene_window <= '0'; 
       nextState <= meminit3; 
      end if; 
 
     when memstate1 => 
       
      if calc_operation > "000000000" then 
       calc_enable_line  <= '1'; 
      else 
       calc_enable_line <= '0'; 
      end if; 
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      if freq_operation > "000000000" then 
       freq_enable_line  <= '1'; 
      else 
       freq_enable_line <= '0'; 
      end if; 
 
      load_gene_window <= '1'; 
            
  
      tm3_sram_addr <= currAddr; 
      tm3_sram_adsp <= '0'; 
      tm3_sram_oe <= "01";   
      
      if (mainhit = '1') or (cmplhit = '1') or  (currAddr  >= 
"1000000000000000000") then    
       nextState <= madematch;   
     
      elsif (score_sent = '1')then 
       nextState <= memstate1; 
      elsif (score_sent = '0')then 
       nextState <= returnScore; 
      end if;      
  
 
 
 
     when madematch =>     
   
      if currAddr >= "1000000000000000000" then 
       mem_scanned <= '1'; 
       nextState <= done; 
      else 
       nextState <= memstate1; 
      end if; 
 
 
            
  
     when returnScore => 
      if score_sent = '1' then 
       nextState <= madematch; 
      else 
       nextState <= returnScore; 
      end if; 
 
 
     when done =>       
      nextState <= done; 
       
    
 
     when others =>  
 
 
    end case; 
     
     
   end process; 
    
   process(tm3_clk_v0,main_reset,codon_ctr,mainhit,cmplhit,calc_operation) 
   begin 
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   if main_reset = '1' then 
 
    currState <= rst; 
 
     
   elsif rising_edge(tm3_clk_v0) then 
 
    --if freq_operation > "000000000" and freq_operation < "000001111" then 
    if freq_enable_line= '1' then 
     mem_for_frame <= freq_mem_to_frames(0 to 63); 
    --elsif calc_operation > "000000000" and calc_operation < "000001111" then 
    elsif calc_enable_line = '1' then 
     mem_for_frame <= mass_mem_to_frames(0 to 63); 
    end if; 
 
    freq_enable <= freq_enable_line; 
    calc_enable <= calc_enable_line; 
 
    currState <= nextState; 
 
    case (currState) is 
 
    when rst => 
     codon_ctr <= (others => '0'); 
     currAddr <= (others => '0'); 
     dataword <= (others => '0');      
     calc_operation <= (others => '0'); 
     freq_operation <= (others => '0'); 
 
    when load1 => 
       
     dataword <= (others => '1'); 
      
     
    when load2 => 
      
      
     
    when save => 
      
     codon_ctr <= codon_ctr+1; 
 
     if codon_ctr = "0" then 
      query1 <= codonin; 
     else 
      query2 <= codonin; 
     end if; 
      
      
    when meminit1 => 
            
  
     memory_word(0 to 62)  <= tm3_sram_data(63 downto 1); 
     currAddr <= "0000000000000000000"; 
      
 
    when meminit2 =>  
      
     memory_word(63 to 125 )  <= tm3_sram_data(63 downto 1); 
     currAddr <= "0000000000000000001"; 
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    when meminit3 => 
 
     calc_operation <= (others => '0'); 
     memory_word(126 to 188 )  <= tm3_sram_data(63 downto 1); 
     currAddr <= "0000000000000000010"; 
      
      
 
    when memstate1 => 
 
    if (mainhit = '1') or (cmplhit = '1') then 
     freq_operation <= "000000001"; 
    elsif freq_operation > "000000000" and freq_operation < "0000011110" then 
     freq_operation <= freq_operation + 1; 
    elsif freq_operation = "0000011110" then 
     freq_operation <= (others => '0'); 
     calc_operation <= "000000001"; 
    end if; 
 
    if calc_operation > "000000000" and calc_operation < "0000011110" then 
     calc_operation <= calc_operation + 1; 
    elsif calc_operation = "0000011110" then 
     calc_operation <= (others => '0'); 
    end if; 
 
      
     match_address <= currAddr; 
      
     --mem_to_frames(0 to 62) <= mem_to_frames(63 to 125); 
     --mem_to_frames(63 to 125) <= window_out_buffer; 
     freq_mem_to_frames(0 to 62) <= freq_mem_to_frames(63 to 125); 
     freq_mem_to_frames(63 to 125) <= freq_window_out_buffer; 
 
     mass_mem_to_frames(0 to 62) <= mass_mem_to_frames(63 to 125); 
     mass_mem_to_frames(63 to 125) <= mass_window_out_buffer; 
     
 
 
     for i in 0 to 125 loop 
      memory_word(i) <= memory_word(i+63); 
     end loop; 
     memory_word(126 to 188 )  <= tm3_sram_data(63 downto 1); 
     currAddr <= currAddr + 1; 
             
    when done =>       
    when others=> 
      
    end case; 
 
   end if; 
   end process; 
end ctrl_behv; 

 
 
2. Peptide Comparison Unit (protein.vhd) 
 
library IEEE;  
use IEEE.STD_LOGIC_1164.ALL;  
use IEEE.STD_LOGIC_ARITH.ALL;  
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use IEEE.STD_LOGIC_UNSIGNED.ALL;  
 
entity protein is  
generic (numAA:integer:=10); 
 port ( 
 
  pClk  : in std_logic; 
  potentialCodons1  : in std_logic_vector(0 to (9*numAA )-1); 
  potentialCodons2  : in std_logic_vector(0 to (9*numAA )-1 ); 
  potentialCodons3  : in std_logic_vector(0 to (9*numAA )-1 ); 
  memWord  : in std_logic_vector( 0 to (9*numAA)-1 ); 
  onehit   : out std_logic 
      ); 
end protein; 
 
architecture prot_behv of protein is 
  
 signal rowHit : std_logic_vector(numAA-1 downto 0); 
 signal phitline : std_logic; 
 signal hi :  std_logic; 
  
 component amino  
  port ( 
    aClk   : in std_logic; 
    codonin1  : in std_logic_vector(0 to 8); 
    codonin2  : in std_logic_vector(0 to 8); 
    codonin3  : in std_logic_vector(0 to 8); 
    memPort  : in std_logic_vector(0 to 8); 
    hit   : out std_logic 
  ); 
 end component; 
 
 component big_and 
      Port (  clk : in std_logic; 
   And_in : in std_logic_vector(11 downto 0);  
           And_out : out std_logic);  
 end component;  
 
 
 
 
 begin 
 
  hi <= '1'; 
 
  rowOfAminos : for i in 0 to numAA-1 generate 
   oneAA : amino port map ( 
    aClk => pClk, 
    codonin1 => potentialCodons1( 9*i to (9*i+8) ), 
    codonin2 => potentialCodons2( 9*i to (9*i+8) ), 
    codonin3 => potentialCodons3( 9*i to (9*i+8) ), 
    hit  => rowHit(i), 
    memPort => memWord(9*i to (9*i+8) ) 
 
       ); 
  end generate rowOfAminos; 
      
 
  andaminos : big_and port map ( 
    clk => pClk, 
    And_in(0) => rowHit(0), 
    And_in(1) => rowHit(1), 
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    And_in(2) => rowHit(2), 
    And_in(3) => rowHit(3), 
    And_in(4) => rowHit(4), 
    And_in(5) => rowHit(5), 
    And_in(6) => rowHit(6), 
    And_in(7) => rowHit(7), 
    And_in(8) => rowHit(8),       
    And_in(9) => rowHit(9),       
    And_in(10) => hi, 
    And_in(11) => hi, 
    And_out => phitline 
       ); 
    
   process(pClk)  
 
   begin 
    if rising_edge(pClk) then 
     onehit <= phitline; 
    end if; 
   end process; 
    
        
 
end prot_behv; 
 
 

3. Codon Unit (amino.vhd) 
 
library ieee; 
use ieee.std_logic_1164.all; 
use work.all; 
 
 
entity amino is  
port ( 
 aClk    : in std_logic; 
 codonin1   : in std_logic_vector(0 to 8); 
 codonin2   : in std_logic_vector(0 to 8); 
 codonin3   : in std_logic_vector(0 to 8); 
 memPort    : in std_logic_vector(0 to 8); 
 hit    : out std_logic 
); 
end amino; 
 
architecture amino_behv of amino is 
 
 
signal memhit : std_logic; 
signal directhit : std_logic; 
 
  begin 
 
  process( aClk,codonin1, memPort ) 
 
   begin 
 
    if rising_edge(aClk) then 
 
if (( (codonin1(2) = '1' or memPort(2) = '1' ) or ( codonin1(0 to 1) = memPort(0 to 1) ) ) and 
    ( (codonin1(5) = '1' or memPort(5) = '1'  ) or ( codonin1(3 to 4) = memPort(3 to 4) ) ) and 
    ( (codonin1(8) = '1' or memPort(8) = '1'  ) or ( codonin1(6 to 7) = memPort(6 to 7) ) )) or 
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   (( (codonin2(2) = '1' or memPort(2) = '1'  ) or ( codonin2(0 to 1) = memPort(0 to 1) ) ) and 
    ( (codonin2(5) = '1' or memPort(5) = '1'  ) or ( codonin2(3 to 4) = memPort(3 to 4) ) ) and 
    ( (codonin2(8) = '1' or memPort(8) = '1' ) or ( codonin2(6 to 7) = memPort(6 to 7) ) )) or 
     
   (( (codonin3(2) = '1' or memPort(2) = '1'  ) or ( codonin3(0 to 1) = memPort(0 to 1) ) ) and 
    ( (codonin3(5) = '1' or memPort(5) = '1'  ) or ( codonin3(3 to 4) = memPort(3 to 4) ) ) and 
    ( (codonin3(8) = '1' or memPort(8) = '1' ) or ( codonin3(6 to 7) = memPort(6 to 7) ) )) then 
         
 
   hit <= '1'; 
 
   else 
 
   hit <= '0'; 
 
   end if; 
 
 
   end if; 
    
 
   end process; 
 
 end amino_behv; 
 
 
 
 

 
4. Tryptic Peptide Mass Calculator Controller (mod_calc.vhd) 
 
library ieee; 
use ieee.std_logic_1164.all; 
use ieee.std_logic_arith.all; 
use ieee.std_logic_unsigned.all; 
 
 
entity mod_calc is 
generic( num_stages : integer := 10; 
   mass_bits : integer := 25 ); 
port ( 
   clk   : in std_logic; 
   calc_reset    : in std_logic; 
   enable    : in std_logic; 
   ramword   : in std_logic_vector(63 downto 0); 
   masses    : out std_logic_vector(0 to (num_stages)*(mass_bits)-1); 
   mass_save   : out std_logic_vector(1 to 8); 
   complement_masses  : out std_logic_vector(0 to (num_stages)*(mass_bits)-1); 
   complement_mass_save : out std_logic_vector(1 to 8); 
   rdy    : out std_logic 
    

); 
end mod_calc; 
 
architecture calc_flow of mod_calc is 
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---------------------------------------------------------- 
-- Fragment detection units and mass LUTs 
 
component masslut 
 PORT 
 ( 
  address  : IN STD_LOGIC_VECTOR (5 DOWNTO 0); 
  clock  : IN STD_LOGIC ; 
  enable  : IN STD_LOGIC  := '1'; 
  q  : OUT STD_LOGIC_VECTOR (mass_bits-1 DOWNTO 0) 
 ); 
end component; 
 
component cleavecheck 
 PORT 
 ( 
  address  : IN STD_LOGIC_VECTOR (5 DOWNTO 0); 
  clock  : IN STD_LOGIC ; 
  enable  : IN STD_LOGIC  := '1'; 
  q  : OUT STD_LOGIC_VECTOR (1 DOWNTO 0) 
 ); 
end component; 
 
 
COMPONENT ambigna IS 
 PORT 
 ( 
  address  : IN STD_LOGIC_VECTOR (3 DOWNTO 0); 
  clock  : IN STD_LOGIC ; 
  clken  : IN STD_LOGIC ; 
  q  : OUT STD_LOGIC_VECTOR (0 DOWNTO 0) 
 ); 
END COMPONENT; 
 
----------------------------------------------------------------- 
 
 
 
 
---------------------------------------------------------- 
-- Basically the same components; modified to produce values for the complementary strands 
 
component compl_masslut 
 PORT 
 ( 
  address  : IN STD_LOGIC_VECTOR (5 DOWNTO 0); 
  clock  : IN STD_LOGIC ; 
  enable  : IN STD_LOGIC  := '1'; 
  q  : OUT STD_LOGIC_VECTOR (mass_bits-1 DOWNTO 0) 
 ); 
end component; 
 
component compl_cleavecheck 
 PORT 
 ( 
  address  : IN STD_LOGIC_VECTOR (5 DOWNTO 0); 
  clock  : IN STD_LOGIC ; 
  enable  : IN STD_LOGIC  := '1'; 
  q  : OUT STD_LOGIC_VECTOR (1 DOWNTO 0) 
 ); 
end component; 
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COMPONENT compl_ambigna IS 
 PORT 
 ( 
  address  : IN STD_LOGIC_VECTOR (3 DOWNTO 0); 
  clock  : IN STD_LOGIC ; 
  clken  : IN STD_LOGIC ; 
  q  : OUT STD_LOGIC_VECTOR (0 DOWNTO 0) 
 ); 
END COMPONENT; 
 
----------------------------------------------------------------- 
 
 
 
 signal third_pos_check: std_logic_vector(1 to num_stages-1); 
 signal ambig : std_logic_vector(1 to num_stages-1); 
 signal word_stage : std_logic_vector(0 to 252); 
 signal discard_buff2 : std_logic_vector(1 to num_stages); 
 signal mlut_out : std_logic_vector(((num_stages-1)*mass_bits) -1 downto 0); 
 signal mass_a   : std_logic_vector(0 to (num_stages-1)*(mass_bits)-1); 
 signal mass_b   : std_logic_vector(0 to (num_stages-1)*(mass_bits)-1); 
 signal discard : std_logic_vector(1 to num_stages); 
 signal discard_buff : std_logic_vector(1 to num_stages); 
 signal wordaccum : std_logic_vector(0 to (2*mass_bits)-1); 
 signal accumsave : std_logic_vector(0 to (2*mass_bits)-1);   
 signal init_ctr : std_logic_vector(3 downto 0); 
 signal mass_break : std_logic_vector(1 to num_stages-1); 
 signal slidingwindow : std_logic_vector(0 to (num_stages-1)*(mass_bits)-1); 
 signal break_in_stage : std_logic_vector(1 to num_stages); 
 signal bs_buff : std_logic_vector(0 to 2); 
 signal following_break : std_logic_vector(1 to num_stages); 
 signal save_b :std_logic_vector(1 to num_stages-1); 
 signal slide_save :std_logic_vector(0 to num_stages-1); 
 signal fb_buff : std_logic_vector(1 to num_stages); 
 signal wildcard : std_logic_vector(1 to num_stages-1); 
 signal sd_buff : std_logic_vector(1 to num_stages); 
 signal sd_buff2 : std_logic_vector(1 to num_stages); 
 signal start_detected : std_logic_vector(1 to num_stages); 
 
 
-- Now all the same signals but for the complementary strand 
 signal compl_third_pos_check: std_logic_vector(1 to num_stages-1); 
 signal compl_ambig : std_logic_vector(1 to num_stages-1); 
 signal compl_discard_buff2 : std_logic_vector(1 to num_stages); 
 signal compl_mlut_out : std_logic_vector((num_stages-1)*mass_bits -1 downto 0); 
 signal compl_mass_a   : std_logic_vector(0 to (num_stages-1)*mass_bits -1); 
 signal compl_mass_b   : std_logic_vector(0 to (num_stages-1)*mass_bits -1); 
 signal compl_discard : std_logic_vector(1 to num_stages); 
 signal compl_discard_buff : std_logic_vector(1 to num_stages); 
 signal compl_wordaccum : std_logic_vector(0 to (2*mass_bits)-1); 
 signal compl_accumsave : std_logic_vector(0 to (2*mass_bits)-1);   
 signal compl_init_ctr : std_logic_vector(3 downto 0); 
 signal compl_mass_break : std_logic_vector(1 to num_stages-1); 
 signal compl_slidingwindow : std_logic_vector(0 to (num_stages-1)*32 -1); 
 signal compl_break_in_stage : std_logic_vector(1 to num_stages); 
 signal compl_bs_buff : std_logic_vector(0 to 2); 
 signal compl_following_break : std_logic_vector(1 to num_stages); 
 signal compl_save_b :std_logic_vector(1 to num_stages-1); 
 signal compl_slide_save :std_logic_vector(0 to num_stages-1); 
 signal compl_fb_buff : std_logic_vector(1 to num_stages); 
 signal compl_wildcard : std_logic_vector(1 to num_stages-1); 
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 signal compl_sd_buff : std_logic_vector(1 to num_stages); 
--------------------------------------------------------------- 
 
 
 
  signal m1 : std_logic_vector(0 to mass_bits-1); 
  signal m2 : std_logic_vector(0 to mass_bits-1); 
  signal m3 : std_logic_vector(0 to mass_bits-1); 
  signal m4 : std_logic_vector(0 to mass_bits-1); 
  signal m5 : std_logic_vector(0 to mass_bits-1); 
  signal m6 : std_logic_vector(0 to mass_bits-1); 
  signal m7 : std_logic_vector(0 to mass_bits-1); 
  signal m8 : std_logic_vector(0 to mass_bits-1); 
 
  signal cm1 : std_logic_vector(0 to mass_bits-1); 
  signal cm2 : std_logic_vector(0 to mass_bits-1); 
  signal cm3 : std_logic_vector(0 to mass_bits-1); 
  signal cm4 : std_logic_vector(0 to mass_bits-1); 
  signal cm5 : std_logic_vector(0 to mass_bits-1); 
  signal cm6 : std_logic_vector(0 to mass_bits-1); 
  signal cm7 : std_logic_vector(0 to mass_bits-1); 
  signal cm8 : std_logic_vector(0 to mass_bits-1); 
 
 
 
  
 
 type massStates is (reset,summing); 
 attribute ENUM_ENCODING : STRING; 
 attribute ENUM_ENCODING of massStates : type is "0 1"; 
 signal currState  : massStates; 
 signal nextState  : massStates; 
 
 
-- attribute syn_black_box  : boolean; 
-- attribute syn_black_box of masslut : component is true; 
-- attribute syn_black_box of cleavecheck : component is true; 
-- attribute syn_black_box of ambigna : component is true; 
  
-- attribute syn_black_box of compl_masslut : component is true; 
-- attribute syn_black_box of compl_cleavecheck : component is true; 
-- attribute syn_black_box of compl_ambigna : component is true; 
  
 begin 
 
 
 
 
m1 <= mass_b(0 to mass_bits-1); 
m2 <= mass_b(mass_bits to (mass_bits)+mass_bits-1); 
m3 <= mass_b(2*mass_bits to (2*mass_bits)+mass_bits-1); 
m4 <= mass_b(3*mass_bits to (3*mass_bits)+mass_bits-1); 
m5 <= mass_b(4*mass_bits to (4*mass_bits)+mass_bits-1); 
m6 <= mass_b(5*mass_bits to (5*mass_bits)+mass_bits-1); 
m7 <= mass_b(6*mass_bits to (6*mass_bits)+mass_bits-1); 
m8 <= accumsave(mass_bits to (mass_bits)+mass_bits-1); 
 
 
cm1 <= compl_mass_b(0 to mass_bits-1); 
cm2 <= compl_mass_b(mass_bits to (mass_bits)+mass_bits-1); 
cm3 <= compl_mass_b(2*mass_bits to (2*mass_bits)+mass_bits-1); 
cm4 <= compl_mass_b(3*mass_bits to (3*mass_bits)+mass_bits-1); 
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cm5 <= compl_mass_b(4*mass_bits to (4*mass_bits)+mass_bits-1); 
cm6 <= compl_mass_b(5*mass_bits to (5*mass_bits)+mass_bits-1); 
cm7 <= compl_mass_b(6*mass_bits to (6*mass_bits)+mass_bits-1); 
cm8 <= compl_accumsave(mass_bits to (mass_bits)+mass_bits-1); 
 
 
  
 
 
mass_save(1 to num_stages-1) <= save_b  ; 
mass_save(num_stages) <= slide_save(num_stages-1) ; 
 
complement_mass_save(1 to num_stages-1) <= compl_save_b  ; 
complement_mass_save(num_stages) <= compl_slide_save(num_stages-1) ; 
 
 
 
masses(0 to ((num_stages-1)*(mass_bits))-1) <= mass_b; 
masses(((num_stages-1)*(mass_bits)) to ((num_stages-1)*(mass_bits))+mass_bits-1) <=accumsave((mass_bits) to 
(2*mass_bits)-1); 
 
complement_masses(0 to ((num_stages-1)*(mass_bits))-1) <= compl_mass_b; 
complement_masses(((num_stages-1)*(mass_bits)) to ((num_stages-1)*(mass_bits))+mass_bits-1) <= 
compl_accumsave((mass_bits) to (2*mass_bits)-1); 
 
 
strand_ambiguites : for stage in 0 to num_stages-2 generate  
 
 one_wildcard : ambigna PORT MAP ( 
  address(0)  => word_stage(( 63+(63*(stage-1) - 9*(((stage-1)*(stage-1) + (stage-1))/2)) ) 
), 
  address(1)  => word_stage(( 63+(63*(stage-1) - 9*(((stage-1)*(stage-1) + (stage-1))/2)) 
)+1), 
  address(2)  => word_stage(( 63+(63*(stage-1) - 9*(((stage-1)*(stage-1) + (stage-1))/2)) 
)+3), 
  address(3)  => word_stage(( 63+(63*(stage-1) - 9*(((stage-1)*(stage-1) + (stage-1))/2)) 
)+4),   
  clock  => clk, 
  clken  => enable, 
  q(0)  => ambig(stage+1) ); 
end generate; 
 
 
 
 
 
strand_masses : for stage in 0 to num_stages-2 generate  
 mlut: masslut PORT MAP ( 
  address(5)  => word_stage(( 63+(63*(stage-1) - 9*(((stage-1)*(stage-1) + (stage-1))/2)) )), 
  address(4)  => word_stage(( 63+(63*(stage-1) - 9*(((stage-1)*(stage-1) + (stage-1))/2)) 
)+1), 
  address(3)  => word_stage(( 63+(63*(stage-1) - 9*(((stage-1)*(stage-1) + (stage-1))/2)) 
)+3), 
  address(2)  => word_stage(( 63+(63*(stage-1) - 9*(((stage-1)*(stage-1) + (stage-1))/2)) 
)+4), 
  address(1)  => word_stage(( 63+(63*(stage-1) - 9*(((stage-1)*(stage-1) + (stage-1))/2)) 
)+6), 
  address(0)  => word_stage(( 63+(63*(stage-1) - 9*(((stage-1)*(stage-1) + (stage-1))/2)) 
)+7), 
  clock  => clk, 
  enable  => enable, 
  q  => mlut_out( ((stage*mass_bits)+mass_bits-1) downto stage*mass_bits)  
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 ); 
 
end generate; 
 
 
 
 
strand_breaks : for stage in 0 to num_stages-2 generate  
  clv : cleavecheck PORT MAP ( 
  address(5)  => word_stage(( 63+(63*(stage-1) - 9*(((stage-1)*(stage-1) + (stage-1))/2)) )), 
  address(4)  => word_stage(( 63+(63*(stage-1) - 9*(((stage-1)*(stage-1) + (stage-1))/2)) 
)+1), 
  address(3)  => word_stage(( 63+(63*(stage-1) - 9*(((stage-1)*(stage-1) + (stage-1))/2)) 
)+3), 
  address(2)  => word_stage(( 63+(63*(stage-1) - 9*(((stage-1)*(stage-1) + (stage-1))/2)) 
)+4), 
  address(1)  => word_stage(( 63+(63*(stage-1) - 9*(((stage-1)*(stage-1) + (stage-1))/2)) 
)+6), 
  address(0)  => word_stage(( 63+(63*(stage-1) - 9*(((stage-1)*(stage-1) + (stage-1))/2)) 
)+7), 
  clock  => clk, 
  enable  => enable, 
  q(1)  => sd_buff(stage+1), 
  q(0) => fb_buff(stage+1) 
 );  
end generate; 
 
 
   
------------------------------------------------------------------ 
-- Now the portmappings for the complementary devices 
 
compl_str_ambiguites : for stage in 0 to num_stages-2 generate  
 one_compl_wild : compl_ambigna PORT MAP ( 
  address(0)  =>word_stage(( 63+(63*(stage-1) - 9*(((stage-1)*(stage-1) + (stage-1))/2)) 
)+6), 
  address(1)  =>word_stage(( 63+(63*(stage-1) - 9*(((stage-1)*(stage-1) + (stage-1))/2)) 
)+7), 
  address(2)  =>word_stage(( 63+(63*(stage-1) - 9*(((stage-1)*(stage-1) + (stage-1))/2)) 
)+3), 
  address(3)  =>word_stage(( 63+(63*(stage-1) - 9*(((stage-1)*(stage-1) + (stage-1))/2)) 
)+4), 
  clock  => clk, 
  clken  => enable, 
  q(0)  => compl_ambig(stage+1) 
 ); 
end generate; 
 
 
 
compl_str_masses : for stage in 0 to num_stages-2 generate  
 compl_mlut : compl_masslut PORT MAP ( 
  address(5)  =>word_stage(( 63+(63*(stage-1) - 9*(((stage-1)*(stage-1) + (stage-1))/2)) 
)+6), 
  address(4)  =>word_stage(( 63+(63*(stage-1) - 9*(((stage-1)*(stage-1) + (stage-1))/2)) 
)+7), 
  address(3)  =>word_stage(( 63+(63*(stage-1) - 9*(((stage-1)*(stage-1) + (stage-1))/2)) 
)+3), 
  address(2)  => word_stage(( 63+(63*(stage-1) - 9*(((stage-1)*(stage-1) + (stage-1))/2)) 
)+4), 
  address(1)  => word_stage(( 63+(63*(stage-1) - 9*(((stage-1)*(stage-1) + (stage-1))/2)) )), 
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  address(0)  => word_stage(( 63+(63*(stage-1) - 9*(((stage-1)*(stage-1) + (stage-1))/2)) 
)+1), 
  clock  => clk, 
  enable  => enable, 
  q  => compl_mlut_out( ((stage*mass_bits)+mass_bits-1) downto stage*mass_bits) 
 ); 
 
end generate; 
 
 
 
compl_str_breaks : for stage in 0 to num_stages-2 generate  
compl_clv : compl_cleavecheck PORT MAP ( 
  address(5) => word_stage(6), 
  address(4)  => word_stage(( 63+(63*(stage-1) - 9*(((stage-1)*(stage-1) + (stage-1))/2)) 
)+7), 
  address(3)  => word_stage(( 63+(63*(stage-1) - 9*(((stage-1)*(stage-1) + (stage-1))/2)) 
)+3), 
  address(2)  => word_stage(( 63+(63*(stage-1) - 9*(((stage-1)*(stage-1) + (stage-1))/2)) 
)+4), 
  address(1)  => word_stage(( 63+(63*(stage-1) - 9*(((stage-1)*(stage-1) + (stage-1))/2)) )), 
  address(0)  => word_stage(( 63+(63*(stage-1) - 9*(((stage-1)*(stage-1) + (stage-1))/2)) 
)+1), 
  clock  => clk, 
  enable  => enable, 
  q(1)  => compl_sd_buff(stage+1), 
  q(0)  => compl_fb_buff(stage+1) 
 );      
end generate; 
 
 
 
 
------------------------------------------------------------------ 
 
  
  process(currState,enable) 
  begin 
  if enable = '1' then 
   case currState is  
    
    when reset => 
     nextState <= summing; 
 
    when summing => 
     nextState <= summing; 
 
    when others => 
     nextState <= reset; 
      
   end case; 
  end if; 
  end process; 
 
     
  process(clk,enable,calc_reset,word_stage) 
  begin 
 
  for stage in -1 to num_stages-3 loop  
   third_pos_check(stage+2) <= word_stage(71+(63*stage - 9*((stage*stage + stage)/2))); 
   compl_third_pos_check(stage+2) <= word_stage(65+(63*stage - 9*((stage*stage + 
stage)/2))); 
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  end loop; 
 
 
   if calc_reset = '1' then 
 
    currState <= reset; 
 
   elsif rising_edge(clk) then 
 
 if enable = '1' then 
---------------------------------------------------------------------------------------- 
 -- Events that occur on every enabled edge 
  currState <= nextState; 
 -- All for the original (not complementary) strand 
 
  bs_buff(1) <= bs_buff(0); 
  bs_buff(2) <= bs_buff(1); 
  following_break <= fb_buff; 
  sd_buff2 <= sd_buff; 
  start_detected <= sd_buff2; 
  discard <= discard_buff; 
  following_break(8) <= following_break(7); 
 
 -- Same as above but for complementary strand 
 
  compl_bs_buff(1) <= compl_bs_buff(0); 
  compl_bs_buff(2) <= compl_bs_buff(1); 
  compl_following_break <= compl_fb_buff; 
  compl_discard <= compl_discard_buff; 
  compl_following_break(8) <= compl_following_break(7); 
---------------------------------------------------------------------------------------- 
 
  if init_ctr >= 9 then  
   rdy <= '1'; 
  else 
   rdy <='0'; 
  end if; 
 
 
  case currState is 
 
  when reset =>  
 
   init_ctr <= (others => '0'); 
 
-- All the initializations for the original strand 
   wordaccum <= (others => '0'); 
   accumsave <= (others => '0'); 
   word_stage <= (others => '0'); 
   mass_a <= (others => '0'); 
   mass_b <= (others => '0'); 
   slide_save <= (others => '0'); 
   slidingwindow <= (others => '0'); 
   start_detected <= (others => '0'); 
   save_b <= (others => '0'); 
   bs_buff <= "100"; 
   break_in_stage <= (others => '0'); 
   following_break <= (others => '0'); 
 
 
-- All the initializations for the complementary strand 
   compl_wordaccum <= (others => '0'); 
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   compl_accumsave <= (others => '0'); 
   compl_mass_a <= (others => '0'); 
   compl_mass_b <= (others => '0'); 
   compl_slide_save <= (others => '0'); 
   compl_slidingwindow <= (others => '0'); 
   compl_save_b <= (others => '0'); 
   compl_bs_buff <= "100"; 
   compl_break_in_stage <= (others => '0'); 
   compl_following_break <= (others => '0'); 
 
 
  when summing => 
 
 
   if (init_ctr <= 8) then init_ctr <= init_ctr + 1; end if; 
 
 
---------------------------------------------------------------------------------------------------- 
-- The first a-register always gets the mass of the first amino acid in every word 
   mass_a(0 to mass_bits-1) <= mlut_out(mass_bits-1 downto 0); 
   slide_save(0) <= sd_buff(1); 
   slidingwindow(0 to mass_bits-1)<= (others => '0'); 
   bs_buff(0) <= '0'; 
 
--Similar setup for complementary strands 
   compl_mass_a(0 to mass_bits-1) <= compl_mlut_out(mass_bits-1 downto 0); 
   compl_slide_save(0) <= compl_sd_buff(1); 
   compl_slidingwindow(0 to mass_bits-1)<= (others => '0'); 
   compl_bs_buff(0) <= '0'; 
---------------------------------------------------------------------------------------------------- 
 
 
-- This is the actual word pipeline, It starts with the full 63 bit word and at every stage it  
-- processes 9 bits (one codon = one amino acid) until all 63 bits = 7 amino acids have been 
-- processed (both the original and complementary strands use this pipe) 
 
   word_stage(0 to 62) <= ramword(63 downto 1); 
   for stage in 0 to num_stages - 3 loop 
    word_stage( ( 63+(63*stage - 9*((stage*stage + stage)/2)) ) to (((63+(63*stage 
- 9*((stage*stage + stage)/2)) + (62 - (9*(stage+1) ) ) ) ) ) ) <= word_stage( (72+(63*(stage - 1) - 9*(((stage - 
1)*(stage - 1) + (stage - 1))/2)) ) to ( 72+(63*(stage - 1) - 9*(((stage - 1)*(stage - 1) + (stage - 1))/2)) + (62 - 
(9*((stage - 1)+2) ) )) ); 
   end loop;   
 
 
 
------------------------------------------------------------------------------------------------ 
-- Wild card detectors for the original strand. They check every stage for a wild card in the 
-- first two codons (guranteed wildcard) or the specific codons that will create ambiguity if 
-- there is a wildcard in the third position 
 
 
  for stage in -1 to num_stages-3 loop 
   wildcard(stage+2) <= word_stage(65+(63*stage - 9*((stage*stage + stage)/2))) OR 
word_stage(68+(63*stage - 9*((stage*stage + stage)/2))) OR ( third_pos_check(stage+2) and ambig(stage+2) ); 
  end loop; 
   
 
-- Same thing for the complementary strand, the only difference is that the ambiguity has 
-- to be interpreted differently. 
 
  for stage in -1 to num_stages-3 loop 
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   compl_wildcard(stage+2) <= word_stage(71+(63*stage - 9*((stage*stage + stage)/2))) 
OR word_stage(68+(63*stage - 9*((stage*stage + stage)/2))) OR ( compl_third_pos_check(stage+2) and 
compl_ambig(stage+2) ); 
  end loop; 
 
 
------------------------------------------------------------------------------------------------ 
-- Keeps track of which words should not be saved (flushes the buffer on a wildcard) 
   discard_buff(1) <= wildcard(1); 
   for i in 2 to num_stages-1 loop 
    discard_buff(i) <= (discard_buff(i-1) OR wildcard(i-1) ); 
   end loop; 
 
    if slide_save(7) = '1' and (discard_buff(8) = '1') then   
  
     discard_buff(8) <= '0'; 
    else  
     discard_buff(8) <= discard_buff(7);    
  
    end if; 
 
 
-- Same for the complementary strand 
-- Keeps track of which complementary fragments should not be saved (flushes the buffer on a wildcard) 
   compl_discard_buff(1) <= compl_wildcard(1); 
   for i in 2 to 7 loop 
    compl_discard_buff(i) <= (compl_discard_buff(i-1) OR compl_wildcard(i-1) ); 
   end loop; 
 
    if compl_slide_save(7) = '1' and (compl_discard_buff(8) = '1') then  
   
     compl_discard_buff(8) <= '0'; 
    else  
     compl_discard_buff(8) <= compl_discard_buff(7);  
    
    end if; 
----------------------------------------------------------------------------------------------------- 
 
-- Keeps track of whether a certain word has seen a breakpoint yet. If it has not, then its starting  
-- point was in some previous word. If it has seen a break, then it can be saved right away (its  
-- starting point was in this word.) 
 
 
   break_in_stage(1) <= bs_buff(2) or sd_buff(1) ; 
 
   for i in 2 to 7 loop 
    break_in_stage(i) <= (break_in_stage(i-1) OR following_break(i)) or 
sd_buff(i); 
   end loop; 
 
    break_in_stage(8) <= break_in_stage(7); 
 
-- The same for the complementary strand 
 
   compl_break_in_stage(1) <= compl_bs_buff(2) or compl_sd_buff(1) ; 
 
   for i in 2 to 7 loop 
    compl_break_in_stage(i) <= (compl_break_in_stage(i-1) OR 
compl_following_break(i)) or compl_sd_buff(i); 
   end loop; 
 
    compl_break_in_stage(8) <= compl_break_in_stage(7); 
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---------------------------------------------------------------------------------------------------- 
 
 
 
-- Stuff to deal with the sliding window 
-- This is for the original strand 
  for i in 1 to 6 loop 
 
   if following_break(i)='0' and sd_buff(i+1) ='0' then 
    slidingwindow((i)*mass_bits to (mass_bits)*(i)+(mass_bits-1)) <= 
slidingwindow((i-1)*(mass_bits) to (mass_bits)*(i-1)+(mass_bits-1)); 
 
    if slide_save(i-1) = '1' then 
     slide_save(i) <= '1'; 
    else 
     slide_save(i) <= '0'; 
    end if; 
 
   else 
 
    if break_in_stage(i) = '0'  then 
     slide_save(i) <= '1'; 
     slidingwindow( ((mass_bits)*(i)) to ((mass_bits)*(i))+(mass_bits-1)) 
<= mass_a( ((mass_bits)*(i-1)) to ((mass_bits)*(i-1))+(mass_bits-1)); 
    else 
     slidingwindow((i)*(mass_bits) to (mass_bits)*(i)+(mass_bits-1)) <= 
slidingwindow((i-1)*(mass_bits) to (mass_bits)*(i-1)+(mass_bits-1)); 
      if slide_save(i-1) = '1' then 
       slide_save(i) <= '1'; 
      else 
       slide_save(i) <= '0'; 
      end if;     
 
    end if; 
 
   end if; 
 
  end loop; 
 
 
  slide_save(7) <= (slide_save(6) or ( (not save_b(7)) and  following_break(8) and 
(break_in_stage(7)) ) ) and (not discard(8) ); 
 
 
-- COMPLEMENTARY STRAND 
-- Same thing : sliding window for the complementary strand 
 
  for i in 1 to 6 loop 
 
   if compl_following_break(i)='0' and compl_sd_buff(i+1) ='0' then 
    compl_slidingwindow((i)*(mass_bits) to (mass_bits)*(i)+(mass_bits-1)) <= 
compl_slidingwindow((i-1)*(mass_bits) to (mass_bits)*(i-1)+(mass_bits-1)); 
 
    if compl_slide_save(i-1) = '1' then 
     compl_slide_save(i) <= '1'; 
    else 
     compl_slide_save(i) <= '0'; 
    end if; 
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   else 
 
    if compl_break_in_stage(i) = '0'  then 
     compl_slide_save(i) <= '1'; 
     compl_slidingwindow( ((mass_bits)*(i)) to 
((mass_bits)*(i))+(mass_bits-1)) <= compl_mass_a( ((mass_bits)*(i-1)) to ((mass_bits)*(i-1))+(mass_bits-1)); 
    else 
     compl_slidingwindow((i)*(mass_bits) to (mass_bits)*(i)+(mass_bits-
1)) <= compl_slidingwindow((i-1)*(mass_bits) to (mass_bits)*(i-1)+(mass_bits-1)); 
      if compl_slide_save(i-1) = '1' then 
       compl_slide_save(i) <= '1'; 
      else 
       compl_slide_save(i) <= '0'; 
      end if;     
 
    end if; 
 
   end if; 
 
  end loop; 
 
 
  compl_slide_save(7) <= (compl_slide_save(6) or ( (not compl_save_b(7)) and  
compl_following_break(8) and (compl_break_in_stage(7)) ) ) and (not compl_discard(8) ); 
 
 
 
 
 
---------------------------------------------------------------------------------------------------- 
-- ORIGINAL STRAND 
-- The following loop determines when to add or flush the buffers 
-- Stuff to deal with the actual summation and sending to scorer 
 
 
  for i in 1 to 6 loop 
 
   if following_break(i)='0' and sd_buff(i+1) ='0' then 
    mass_a(((mass_bits)*i) to (((mass_bits)*i)+(mass_bits-1)) ) <= mlut_out( 
(((mass_bits)*i)+(mass_bits-1)) downto ((mass_bits)*i)) + mass_a((i-1)*(mass_bits) to ((mass_bits)*(i-
1))+(mass_bits-1)); 
    save_b(i) <= '0'; 
   else 
    mass_a(((mass_bits)*i) to (((mass_bits)*i)+(mass_bits-1)) ) <= mlut_out( 
(((mass_bits)*i)+(mass_bits-1)) downto ((mass_bits)*i)); 
 
 
    if break_in_stage(i) = '0'  then 
     save_b(i) <= '0'; 
    else  
     if discard(i) = '0' then  
       save_b(i) <= '1'; 
     end if; 
    end if; 
 
   end if; 
 
  end loop; 
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  if following_break(7) = '0' then 
   save_b(7) <= '0'; 
  else 
 
    if break_in_stage(7) = '0' then 
     save_b(7) <= '0'; 
    else 
 
     if discard(7) = '0' then  
      save_b(7) <= '1'; 
     end if; 
 
    end if; 
 
  end if; 
    
 
 
-- COMPLEMENTARY STRAND 
-- The logic appears identical, but the mluts (the mass lookup tables) have been mapped differently to 
-- account for the transposed and complemented nucleic acids within a word 
 
  for i in 1 to 6 loop 
 
   if compl_following_break(i)='0' and compl_sd_buff(i+1) ='0' then 
    compl_mass_a(((mass_bits)*i) to (((mass_bits)*i)+(mass_bits-1)) ) <= 
compl_mlut_out( (((mass_bits)*i)+(mass_bits-1)) downto ((mass_bits)*i)) + compl_mass_a((i-1)*(mass_bits) to 
((mass_bits)*(i-1))+(mass_bits-1)); 
    compl_save_b(i) <= '0'; 
   else 
    compl_mass_a(((mass_bits)*i) to (((mass_bits)*i)+(mass_bits-1)) ) <= 
compl_mlut_out( (((mass_bits)*i)+(mass_bits-1)) downto ((mass_bits)*i)); 
 
 
    if compl_break_in_stage(i) = '0'  then 
     compl_save_b(i) <= '0'; 
    else  
     if compl_discard(i) = '0' then  
       compl_save_b(i) <= '1'; 
     end if; 
    end if; 
 
   end if; 
 
  end loop; 
 
 
    
 
  if compl_following_break(7) = '0' then 
   compl_save_b(7) <= '0'; 
  else 
 
    if compl_break_in_stage(7) = '0' then 
     compl_save_b(7) <= '0'; 
    else 
 
     if compl_discard(7) = '0' then  
      compl_save_b(7) <= '1'; 
     end if; 
 
    end if; 
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  end if;    
 
---------------------------------------------------------------------------------------------- 
 
 -- ORIGINAL STRAND 
 -- The b registers are sent to scorer and the final accumulator 
 -- The previous amino acid mass 
 
  mass_b <= mass_a; 
 
 -- COMPLEMENTARY STRAND 
  compl_mass_b <= compl_mass_a; 
 
---------------------------------------------------------------------------------------------- 
 
-- ORIGINAL STRAND 
-- word accumulation if a single mass spans more than one word 
 
   if slide_save(6) = '1' then 
 
    if (discard(8) = '0') then 
      if save_b(7) = '0'  then 
 
       accumsave <= wordaccum + 
mass_b((num_stages-2)*(mass_bits) to (num_stages-2)*(mass_bits)+mass_bits-1) + slidingwindow((num_stages-
2)*(mass_bits) to (num_stages-2)*(mass_bits)+mass_bits-1); 
 
      else 
       accumsave <= wordaccum + 
slidingwindow((num_stages-2)*(mass_bits) to (num_stages-2)*(mass_bits)+mass_bits-1); 
      end if; 
    end if; 
 
    wordaccum <= (others => '0'); 
   else 
    if (discard(8) = '0' ) then 
     accumsave <= wordaccum + mass_b((num_stages-2)*(mass_bits) to 
(num_stages-2)*(mass_bits)+mass_bits-1); 
 
     if following_break(7) = '0' then 
      if save_b(7) = '0' then 
       wordaccum <= wordaccum + 
mass_b((num_stages-2)*(mass_bits) to (num_stages-2)*(mass_bits)+mass_bits-1); 
      else 
       wordaccum <= (others => '0'); 
      end if; 
       
      
     else 
      
      if save_b(7) = '0' then 
       wordaccum <= wordaccum + 
mass_b((num_stages-2)*(mass_bits) to (num_stages-2)*(mass_bits)+mass_bits-1); 
      else 
       wordaccum <= (others => '0'); 
      end if; 
     end if; 
    end if; 
 
   end if; 
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-- COMPLEMENTARY STRAND 
-- Same accumulation for the complementary strand 
 
   if compl_slide_save(6) = '1' then 
 
    if (compl_discard(8) = '0') then 
      if compl_save_b(7) = '0'  then 
       compl_accumsave <= compl_wordaccum + 
compl_mass_b((num_stages-2)*(mass_bits) to (num_stages-2)*(mass_bits)+mass_bits-1) + 
compl_slidingwindow((num_stages-2)*(mass_bits) to (num_stages-2)*(mass_bits)+mass_bits-1); 
      else 
       compl_accumsave <= compl_wordaccum + 
compl_slidingwindow((num_stages-2)*(mass_bits) to (num_stages-2)*(mass_bits)+mass_bits-1); 
      end if; 
    end if; 
 
    compl_wordaccum <= (others => '0'); 
   else 
    if (compl_discard(8) = '0' ) then 
     compl_accumsave <= compl_wordaccum + 
compl_mass_b((num_stages-2)*(mass_bits) to (num_stages-2)*(mass_bits)+mass_bits-1); 
 
     if compl_following_break(7) = '0' then 
      if compl_save_b(7) = '0' then 
       compl_wordaccum <= compl_wordaccum + 
compl_mass_b((num_stages-2)*(mass_bits) to (num_stages-2)*(mass_bits)+mass_bits-1); 
      else 
       compl_wordaccum <= (others => '0'); 
      end if; 
       
      
     else 
      
      if compl_save_b(7) = '0' then 
       compl_wordaccum <= compl_wordaccum + 
compl_mass_b((num_stages-2)*(mass_bits) to (num_stages-2)*(mass_bits)+mass_bits-1); 
      else 
       compl_wordaccum <= (others => '0'); 
      end if; 
     end if; 
    end if; 
 
   end if; 
 
 
 
 
 
 
 
  when others => 
 
 end case; 
 
 end if; -- for Altera's enable 
 end if; 
 
 end process; 
 
end calc_flow;  
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5. Scoring Unit Controller (scorer.vhd) 
library ieee; 
use ieee.std_logic_1164.all; 
use ieee.std_logic_arith.all; 
use ieee.std_logic_signed.all; 
 
entity scorer is  
  generic(  num_stages : integer := 10; 
     mass_bits : integer := 25; 
     tolerance_bits : integer := 3; 
     num_freq_bits : integer := 8; 
     num_bins : integer := 128; 
     selected_mass_bits : integer := 9; 
     encoder_mass_bits : integer := 7 ); 
 port ( 
 
   tm3_clk_v0  : in std_logic; 
   reset   : in std_logic; 
   MS_input  : in std_logic_vector((mass_bits-1) downto 0); 
   score_tm3want  : out std_logic; 
   score_sunready  : in std_logic;     
   score_tm3ready  : out std_logic; 
   score_sunwant  : in std_logic; 
   hitlocation  : out std_logic_vector(18 downto 0); 
   scan_complete  : out std_logic; 
   good_match   : out std_logic_vector(0 to num_stages-1); 
   compl_good_match  : out std_logic_vector(0 to num_stages-1); 
   mem_scanned  : in std_logic; 
   match_address  : in std_logic_vector(18 downto 0); 
   mem_for_frame  : in std_logic_vector(63 downto 0); 
   freq_product  : out std_logic_vector(0 to num_freq_bits-1); 
   num_matches_out   : out std_logic_vector(7 downto 0); 
   hist_max_freq  : out std_logic_vector(num_freq_bits-1 downto 0); 
   compl_freq_product : out std_logic_vector(0 to num_freq_bits-1); 
   compl_num_matches_out  : out std_logic_vector(7 downto 0); 
   compl_hist_max_freq : out std_logic_vector(num_freq_bits-1 downto 0); 
   calc_enable  : in std_logic;    
   freq_enable_signal   : in std_logic; 
   score_sent  : out std_logic 
 
 ); 
end scorer;  
 
architecture score_struct of scorer is 
 
------------------------------------------------------------ 
-- Statistics for low/high frequency mass ranges 
component mod_frequency_table 
port ( 
     clk  : in std_logic; 
     rst  : in std_logic; 
     enb  : in std_logic; 
     evaluate_mass : in std_logic; 
     max_freq : in std_logic_vector(0 to 5); 
     save_freq : in std_logic; 
     low_freq_peptides : out std_logic_vector(0 to num_stages-1); 
     mass_valid : in std_logic_vector(0 to num_stages-1); 
     matching_stages : in std_logic_vector(0 to num_stages-1); 
     hist_max_freq : out std_logic_vector(0 to num_freq_bits-1); 
     Pi_f : out std_logic_vector(0 to num_freq_bits-1); 
     mass_ranges : in std_logic_vector(0 to (num_stages*7)-1)); 
end component; 
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------------------------------------------------------- 
-- 128 entry RAM Block to store the MS detected values 
component spec_vals 
 port ( 
 address: IN std_logic_VECTOR(8 downto 0); 
 clock: IN std_logic; 
 data: IN std_logic_VECTOR(24 downto 0); 
 q: OUT std_logic_VECTOR(24 downto 0); 
 wren: IN std_logic); 
END component; 
  
 
------------------------------------------------------- 
-- Fragment Mass Calculator  
 component mod_calc  
   port ( 
     clk     : in std_logic; 
     calc_reset    : in std_logic; 
     enable     : in std_logic; 
     ramword    : in std_logic_vector(63 
downto 0); 
     masses     : out std_logic_vector(0 to 
(num_stages)*(mass_bits)-1); 
     mass_save    : out std_logic_vector(1 to 
num_stages); 
     complement_masses  : out std_logic_vector(0 to 
(num_stages)*(mass_bits)-1); 
     complement_mass_save: out std_logic_vector(1 to num_stages); 
     rdy     : out std_logic); 
 end component; 
------------------------------------------------------- 
-- Tolerance comparators to check how closely the detected values match the DB 
component thresh_comp 
 port ( 
 dataa: IN std_logic_VECTOR(2 downto 0); 
 datab: IN std_logic_VECTOR(2 downto 0); 
 clock: IN std_logic; 
 AleB: OUT std_logic); 
end component; 
------------------------------------------------------- 
-- ROMs to help count the total number of matches 
 
component count_rom 
 PORT 
 ( 
  address  : IN STD_LOGIC_VECTOR (7 DOWNTO 0); 
  clock  : IN STD_LOGIC ; 
  enable  : IN STD_LOGIC  := '1'; 
  q  : OUT STD_LOGIC_VECTOR (3 DOWNTO 0) 
 ); 
end component; 
 
------------------------------------------------------- 
 
 type matchStates is 
(rst,soft_rst,read1_MS1_data,read2_MS1_data,initialize,mem_load1,mem_load2,mem_save,return_score1,return_
score2,compare, done); 
 signal currState : matchStates; 
 signal currState_buffer : matchStates; 
 signal nextState : matchStates;  
 signal nextState_buffer : matchStates; 
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 signal memvar      : std_logic_vector(0 to 63); 
 signal load_compare     : std_logic; 
 signal calc_difference     : std_logic;  
 signal hi        : std_logic; 
 signal mass_line     : std_logic_vector(0 to 
(num_stages)*(mass_bits)-1); 
 signal compl_mass_line   : std_logic_vector(0 to (num_stages)*(mass_bits)-1); 
 signal mass_save_line    : std_logic_vector(1 to num_stages); 
 signal compl_mass_save_line : std_logic_vector(1 to num_stages); 
 
 signal freq_mass_line     : std_logic_vector(0 to 
(num_stages)*(mass_bits)-1); 
 signal compl_freq_mass_line   : std_logic_vector(0 to (num_stages)*(mass_bits)-1); 
 signal freq_mass_save_line    : std_logic_vector(1 to num_stages); 
 signal compl_freq_mass_save_line : std_logic_vector(1 to num_stages); 
 
 signal user_tolerance    : std_logic_vector(tolerance_bits-1 downto 0); 
    
 signal pipe_mass_line    : std_logic_vector(0 to 
(num_stages)*(mass_bits)-1); 
 signal pipe_compl_mass_line : std_logic_vector(0 to (num_stages)*(mass_bits)-1); 
 signal pipe2_mass_line    : std_logic_vector(0 to 
(num_stages)*(mass_bits)-1); 
 signal pipe2_compl_mass_line : std_logic_vector(0 to (num_stages)*(mass_bits)-1);  
 
 signal mass_index_buffer1  : std_logic_vector( 0 to (num_stages)*(encoder_mass_bits)-1); 
 signal mass_index_buffer2  : std_logic_vector( 0 to (num_stages)*(encoder_mass_bits)-1); 
 signal mass_index : std_logic_vector( 0 to (num_stages)*(encoder_mass_bits)-1); 
 
 signal diff       : std_logic_vector( 
((mass_bits)*(num_stages))-1 downto 0); 
 signal compl_diff     : std_logic_vector( ((mass_bits)*(num_stages))-1 
downto 0); 
  
 signal absdiff       : std_logic_vector( 
((mass_bits)*(num_stages))-1 downto 0); 
 signal compl_absdiff     : std_logic_vector( 
((mass_bits)*(num_stages))-1 downto 0); 
  
-- signal good_match : std_logic_vector(0 to num_stages-1); 
 
 
 signal spec_mass     : std_logic_vector( (mass_bits-1) downto 0);  
 signal stored_spec_mass    : std_logic_vector( ((mass_bits)*(num_stages))-1 
downto 0); 
 signal compl_stored_spec_mass  : std_logic_vector( ((mass_bits)*(num_stages))-1 downto 
0); 
 
 signal stored_spec_mass_reg    : std_logic_vector( ((mass_bits)*(num_stages))-1 
downto 0); 
 signal compl_stored_spec_mass_reg  : std_logic_vector( ((mass_bits)*(num_stages))-1 downto 
0); 
 
 signal match_ctr     : std_logic_vector(7 downto 0); 
 signal mem_ctr     : std_logic_vector(7 downto 0); 
 signal index      : std_logic_vector(0 
to((num_stages)*(selected_mass_bits))-1 ); 
 signal compl_index     : std_logic_vector(0 
to((num_stages)*(selected_mass_bits))-1 ); 
 signal frame_calc_ready     : std_logic; 
 signal freq_calc_ready     : std_logic;  
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 signal match_found   : std_logic_vector( (num_stages)-1 downto 0); 
 signal compl_match_found : std_logic_vector( (num_stages)-1 downto 0); 
 
 signal num_matches    : std_logic_vector(7 downto 0); 
 signal compl_num_matches  : std_logic_vector(7 downto 0); 
 
 signal curr_num_match   : std_logic_vector( 3 downto 0); 
 signal compl_curr_num_match  : std_logic_vector( 3 downto 0); 
 
 signal msb_below_thresh : std_logic_vector(num_stages-1 downto 0); 
 signal lsb_below_thresh : std_logic_vector(num_stages-1 downto 0); 
 
 signal compl_msb_below_thresh : std_logic_vector(num_stages-1 downto 0); 
 signal compl_lsb_below_thresh : std_logic_vector(num_stages-1 downto 0); 
 
 signal low_freq_peptides : std_logic_vector(0 to num_stages-1); 
 signal compl_low_freq_peptides : std_logic_vector(0 to num_stages-1); 
  
 signal freqtable_mass_line : std_logic_vector(0 to (num_stages*7)-1); 
 signal compl_freqtable_mass_line : std_logic_vector(0 to (num_stages*7)-1); 
 signal max_freq : std_logic_vector(0 to 5); 
 signal freq_en_buff : std_logic; 
 signal save_freq : std_logic; 
 signal evaluate_mass : std_logic; 
 signal freq_mass_valid : std_logic_vector(0 to num_stages-1); 
 signal compl_freq_mass_valid : std_logic_vector(0 to num_stages-1); 
 signal table_enable : std_logic; 
-- signal max_freq : std_logic_vector(0 to 5); 
 signal pipe_low_freq : std_logic_vector(0 to (num_stages*3)-1); 
 signal compl_pipe_low_freq : std_logic_vector(0 to (num_stages*3)-1); 
 
 signal reg_freq_enable : std_logic; 
 signal reg_calc_enable : std_logic; 
  
-- attribute syn_black_box : boolean; 
-- attribute syn_black_box of spec_buffer: component is true; 
-- attribute syn_black_box of count_rom: component is true; 
 
begin 
hi <= '1'; 
user_tolerance <= "001"; 
table_enable <= (freq_enable_signal AND freq_calc_ready) OR (calc_enable and frame_calc_ready); 
evaluate_mass <= calc_enable; 
max_freq <= "011001"; 
 
 selector_units :  for i in 0 to num_stages-1 generate 
  single_stage_buffer : spec_vals PORT MAP ( 
   address  => index( selected_mass_bits*i to (selected_mass_bits*i)+selected_mass_bits-
1 ), 
   clock  => tm3_clk_v0, 
   data  => spec_mass, 
   wren  => load_compare, 
   q  => stored_spec_mass( (mass_bits*i)+(mass_bits-1) downto mass_bits*i ) 
   ); 
  end generate selector_units; 
 
 
 complement_selector_units :  for i in 0 to num_stages-1 generate 
  compl_stage_buffer : spec_vals PORT MAP ( 
   address  => compl_index( selected_mass_bits*i to 
(selected_mass_bits*i)+selected_mass_bits-1 ), 
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   clock  => tm3_clk_v0, 
   data  => spec_mass, 
   wren  => load_compare, 
   q  => compl_stored_spec_mass( (mass_bits*i)+(mass_bits-1) downto 
mass_bits*i ) 
   ); 
  end generate complement_selector_units; 
    
 
 
 
freqTable : mod_frequency_table port map( 
     clk => tm3_clk_v0, 
     rst  => reset, 
     enb  => table_enable, 
     evaluate_mass => evaluate_mass, 
     max_freq => max_freq, 
     save_freq => save_freq, 
     low_freq_peptides => low_freq_peptides, 
     mass_valid => freq_mass_valid, 
     matching_stages => match_found, 
     hist_max_freq => hist_max_freq, 
     Pi_f => freq_product, 
     mass_ranges => freqtable_mass_line  ); 
      
 
compl_freqTable : mod_frequency_table port map( 
     clk => tm3_clk_v0, 
     rst  => reset, 
     enb  => table_enable, 
     evaluate_mass => evaluate_mass, 
     max_freq => max_freq, 
     save_freq => save_freq, 
     low_freq_peptides => compl_low_freq_peptides, 
     mass_valid => compl_freq_mass_valid, 
     matching_stages => compl_match_found, 
     hist_max_freq => compl_hist_max_freq, 
     Pi_f => compl_freq_product, 
     mass_ranges => compl_freqtable_mass_line  ); 
      
 
 
 
  frame1_calculator : mod_calc port map( 
    clk      => tm3_clk_v0, 
    calc_reset    => reset, 
    enable     => calc_enable, 
    ramword     => mem_for_frame, 
    masses     => mass_line, 
    mass_save     => mass_save_line, 
    complement_masses   => compl_mass_line, 
    complement_mass_save => compl_mass_save_line, 
    rdy      =>  frame_calc_ready  ); 
 
 
  freq_calculator : mod_calc port map( 
    clk      => tm3_clk_v0, 
    calc_reset    => reset, 
    enable     => freq_enable_signal, 
    ramword     => mem_for_frame, 
    masses     => freq_mass_line, 
    mass_save     => freq_mass_save_line, 
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    complement_masses   => compl_freq_mass_line, 
    complement_mass_save => compl_freq_mass_save_line, 
    rdy      =>  freq_calc_ready  ); 
 
 
 check_difference: for i in 0 to num_stages-1 generate 
  mass_compare : thresh_comp PORT MAP ( 
  dataa  => absdiff( (mass_bits*i)+(tolerance_bits-1) downto mass_bits*i), 
  datab  => user_tolerance, 
  clock  => tm3_clk_v0, 
  AleB  => lsb_below_thresh(i) 
 ); 
  end generate check_difference; 
 
 
 
 
 
 compl_check_difference: for i in 0 to num_stages-1 generate 
  compl_mass_compare : thresh_comp PORT MAP ( 
   dataa  => compl_absdiff( (mass_bits*i)+(tolerance_bits-1) downto mass_bits*i), 
   datab  => user_tolerance, 
   clock  => tm3_clk_v0, 
   AleB  => compl_lsb_below_thresh(i) 
   ); 
  end generate compl_check_difference; 
 
 
 
 
 m_counter : count_rom PORT MAP ( 
  address  => match_found, 
  clock  => tm3_clk_v0, 
  enable  => hi, 
  q  => curr_num_match 
 ); 
   
 
 cm_counter : count_rom PORT MAP ( 
  address  => compl_match_found, 
  clock  => tm3_clk_v0, 
  enable  => hi, 
  q  => compl_curr_num_match 
 ); 
  
 
 
 process(currState,MS_input,match_ctr,mem_ctr,score_sunready,freq_enable_signal,calc_enable,score_sunwa
nt,mem_scanned) 
 begin 
  
 
   load_compare <= '0'; 
   calc_difference <= '1'; 
    
   score_tm3want <= '0'; 
   score_tm3ready <= '0'; 
   score_sent <= '1'; 
   scan_complete <= '0'; 
    
   -- I'll clock it, the delay is too much (and make sure the freq_en_buff gets a max_fan 
restriction 
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   --if falling_edge(freq_enable_signal) then 
   --if freq_en_buff = '1' and freq_enable_signal = '0' then 
   -- save_freq <= '1'; 
   --else 
   -- save_freq <= '0'; 
   --end if; 
 
  case currState is  
 
   when rst => 
    nextState <= read1_MS1_data; 
    nextState_buffer <= read1_MS1_data; 
 
   when read1_MS1_data => 
    score_sent <= '0'; 
    score_tm3want <= '1';     
      
    if score_sunready = '1' then 
     nextState <= read2_MS1_data; 
     nextState_buffer <= read2_MS1_data; 
    else 
     nextState <= read1_MS1_data; 
     nextState_buffer <= read1_MS1_data; 
    end if; 
       
   when read2_MS1_data => 
    score_sent <= '0'; 
    score_tm3want <= '0'; 
 
    if score_sunready = '0' then 
     nextState <= initialize; 
     nextState_buffer <= initialize; 
    else 
     nextState <= read2_MS1_data; 
     nextState_buffer <= read2_MS1_data; 
    end if; 
         
         
   when initialize =>  
    load_compare <= '1'; 
    score_sent <= '0'; 
 
    if (match_ctr = "01111111") then  
     nextState <= soft_rst; 
     nextState_buffer <= soft_rst; 
    else 
     nextState <= read1_MS1_data; 
     nextState_buffer <= read1_MS1_data; 
    end if; 
         
    
    
 
   when compare => 
 
     
    --if (mem_ctr <= 29) then 
    if calc_enable = '1' then 
     nextState <= compare; 
     nextState_buffer <= compare; 
    else 
     nextState <= return_score1; 
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     nextState_buffer <= return_score1; 
    end if; 
 
 
   when return_score1 => 
    score_sent <= '0';     
    score_tm3ready <= '1'; 
 
    if score_sunwant = '1' then 
     nextState <= return_score2; 
     nextState_buffer <= return_score2; 
    else 
     nextState <= return_score1; 
     nextState_buffer <= return_score1; 
    end if; 
    
    
   when return_score2 => 
    score_sent <= '0';  
    score_tm3ready <= '0'; 
 
    if score_sunwant = '0' then 
     nextState <= soft_rst; 
     nextState_buffer <= soft_rst; 
    else 
     nextState <= return_score2; 
     nextState_buffer <= return_score2; 
    end if;     
 
 
   when soft_rst => 
     
    if calc_enable = '1'  then 
     nextState <= compare; 
     nextState_buffer <= compare; 
    else 
     nextState <= soft_rst; 
     nextState_buffer <= soft_rst; 
    end if; 
 
 
   when done => 
 
    scan_complete <= '1'; 
    nextState <= done; 
    nextState_buffer <= done; 
 
 
   when others => 
    nextState <= rst; 
    nextState_buffer <= rst; 
     
   
  end case;   
  
 end process; 
  
 
 
 
 process(tm3_clk_v0,reset,freq_calc_ready,frame_calc_ready,calc_difference,mass_line,compl_mass_line,me
m_scanned) 
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 begin 
 
 
  if reset= '1' then 
   currState <= rst;    
  elsif mem_scanned = '1' then   
   currState <= done; 
  elsif rising_edge(tm3_clk_v0) then  
 
-- save the "matching" mass, or at least the first bits to use as an index for the PIS 
  for i in 0 to num_stages-1 loop 
   mass_index_buffer1( (i*encoder_mass_bits) to (i*encoder_mass_bits) + 
encoder_mass_bits-1 ) <= pipe2_mass_line( (i*mass_bits) to (i*mass_bits) + encoder_mass_bits-1 ); 
  end loop; 
   mass_index_buffer2 <= mass_index_buffer1; 
   mass_index <= mass_index_buffer2;    
 
-- register these two so I can pipeline the sig and move it away from the BRAM  
   stored_spec_mass_reg <= stored_spec_mass; 
   compl_stored_spec_mass_reg <= compl_stored_spec_mass; 
 
-- wideor changed 
 
    currState <= nextState; 
    currState_buffer <= nextState_buffer; 
    
--these two enables have become clocked signals     
--   table_enable <= freq_enable_signal OR calc_enable; 
--   evaluate_mass <= calc_enable; 
 
   if freq_en_buff = '1' and freq_enable_signal = '0' then 
    save_freq <= '1'; 
   else 
    save_freq <= '0'; 
   end if; 
 
   freq_en_buff <= freq_enable_signal; 
 
   for i in 0 to num_stages-1 loop 
    good_match(i) <= pipe_low_freq(i) AND match_found(i); 
   end loop; 
    
   for i in 0 to num_stages-1 loop 
    compl_good_match(i) <= compl_pipe_low_freq(i) AND 
compl_match_found(i); 
   end loop; 
 
 
   for i in 0 to 1 loop 
    pipe_low_freq(num_stages*i to num_stages*i+(num_stages-1)) <= 
pipe_low_freq(num_stages*(i+1) to num_stages*(i+1)+(num_stages-1) ); 
   end loop; 
    pipe_low_freq(num_stages*2 to num_stages*2+(num_stages-1)) <= 
low_freq_peptides; 
 
   for i in 0 to 1 loop 
    compl_pipe_low_freq(num_stages*i to num_stages*i+(num_stages-1)) <= 
compl_pipe_low_freq(num_stages*(i+1) to num_stages*(i+1)+(num_stages-1) ); 
   end loop; 
    compl_pipe_low_freq(num_stages*2 to num_stages*2+(num_stages-1)) <= 
compl_low_freq_peptides; 
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   for i in 0 to num_stages-1 loop 
    if evaluate_mass = '0' then  
     freq_mass_valid(i) <= freq_mass_save_line(i+1); 
     freqtable_mass_line(i*7 to (i*7)+6) <= freq_mass_line(i*mass_bits 
to ((i*mass_bits)+6)); 
    else 
     freq_mass_valid(i) <= mass_save_line(i+1); 
    -- freqtable_mass_line(i*7 to (i*7)+6) <= mass_line(i*mass_bits to 
((i*mass_bits)+6)); 
     freqtable_mass_line(i*7 to (i*7)+6) <= mass_index(i*7 to (i*7)+6); 
    end if; 
   end loop; 
 
 
   for i in 0 to num_stages-1 loop 
    if evaluate_mass = '0' then  
     compl_freq_mass_valid(i) <= compl_freq_mass_save_line(i+1); 
     compl_freqtable_mass_line(i*7 to (i*7)+6) <= 
compl_freq_mass_line(i*mass_bits to ((i*mass_bits)+6)); 
    else 
     compl_freq_mass_valid(i) <= compl_mass_save_line(i+1); 
     --compl_freqtable_mass_line(i*7 to (i*7)+6) <= 
compl_mass_line(i*mass_bits to ((i*mass_bits)+6)); 
-- FIX  
     compl_freqtable_mass_line(i*7 to (i*7)+6) <= mass_index(i*7 to 
(i*7)+6); 
    end if; 
   end loop; 
 
 
 
 
    
  if freq_calc_ready = '1' then 
   pipe_mass_line      <= mass_line; 
   pipe_compl_mass_line <= compl_mass_line; 
 
   pipe2_mass_line      <= pipe_mass_line; 
   pipe2_compl_mass_line <= pipe_compl_mass_line; 
 
  end if; 
 
    num_matches_out <= num_matches; 
    compl_num_matches_out <= compl_num_matches; 
    
   if (frame_calc_ready = '1') and (calc_enable = '1') then 
    num_matches <= num_matches + "0000"+ curr_num_match; 
    compl_num_matches <= compl_num_matches + "0000"+ 
compl_curr_num_match; 
   end if;    
      
 
   for i in 0 to num_stages-1 loop 
    msb_below_thresh(i) <= NOT (absdiff((mass_bits*i)+3) OR 
absdiff((mass_bits*i)+4) OR absdiff((mass_bits*i)+5) OR absdiff((mass_bits*i)+6) OR 
absdiff((mass_bits*i)+selected_mass_bits) OR absdiff((mass_bits*i)+num_stages) OR absdiff((mass_bits*i)+9) 
OR absdiff((mass_bits*i)+10) OR absdiff((mass_bits*i)+11) OR absdiff((mass_bits*i)+12) OR  
absdiff((mass_bits*i)+13) OR absdiff((mass_bits*i)+14) OR absdiff((mass_bits*i)+ 15 ) OR 
absdiff((mass_bits*i)+ 16 ) OR absdiff((mass_bits*i)+ 17 ) OR absdiff((mass_bits*i)+ 18 ) OR 
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absdiff((mass_bits*i)+ 19 )OR absdiff((mass_bits*i)+ 20 ) OR absdiff((mass_bits*i)+ 21 ) OR 
absdiff((mass_bits*i)+ 22 ) OR absdiff((mass_bits*i)+ 23 ) OR absdiff((mass_bits*i)+ mass_bits-1 )  ); 
    compl_msb_below_thresh(i) <= NOT (compl_absdiff((mass_bits*i)+3) OR 
compl_absdiff((mass_bits*i)+4) OR compl_absdiff((mass_bits*i)+5) OR compl_absdiff((mass_bits*i)+6) OR 
compl_absdiff((mass_bits*i)+selected_mass_bits) OR compl_absdiff((mass_bits*i)+num_stages) OR 
compl_absdiff((mass_bits*i)+9) OR compl_absdiff((mass_bits*i)+10) OR compl_absdiff((mass_bits*i)+11) OR 
compl_absdiff((mass_bits*i)+12) OR compl_absdiff((mass_bits*i)+13) OR compl_absdiff((mass_bits*i)+14) OR 
compl_absdiff((mass_bits*i)+ 15 ) OR compl_absdiff((mass_bits*i)+ 16 ) OR compl_absdiff((mass_bits*i)+ 16 ) 
OR compl_absdiff((mass_bits*i)+ 17 ) OR compl_absdiff((mass_bits*i)+ 18 ) OR compl_absdiff((mass_bits*i)+ 
19 ) OR compl_absdiff((mass_bits*i)+ 20 ) OR compl_absdiff((mass_bits*i)+ 21 ) OR 
compl_absdiff((mass_bits*i)+ 22 ) OR compl_absdiff((mass_bits*i)+ 23 ) OR compl_absdiff((mass_bits*i)+ 
mass_bits-1 ) ); 
 
    msb_below_thresh(i) <= NOT (absdiff((mass_bits*i)+3) OR 
absdiff((mass_bits*i)+4) OR absdiff((mass_bits*i)+5) OR absdiff((mass_bits*i)+6) OR 
absdiff((mass_bits*i)+selected_mass_bits) OR absdiff((mass_bits*i)+num_stages) OR absdiff((mass_bits*i)+9) 
OR absdiff((mass_bits*i)+10) OR absdiff((mass_bits*i)+11) OR absdiff((mass_bits*i)+12) OR  
absdiff((mass_bits*i)+13) OR absdiff((mass_bits*i)+14) OR absdiff((mass_bits*i)+ 15 ) OR 
absdiff((mass_bits*i)+ 16 ) OR absdiff((mass_bits*i)+ 17 ) OR absdiff((mass_bits*i)+ 18 )  OR 
absdiff((mass_bits*i)+ mass_bits-1 )  ); 
    compl_msb_below_thresh(i) <= NOT (compl_absdiff((mass_bits*i)+3) OR 
compl_absdiff((mass_bits*i)+4) OR compl_absdiff((mass_bits*i)+5) OR compl_absdiff((mass_bits*i)+6) OR 
compl_absdiff((mass_bits*i)+selected_mass_bits) OR compl_absdiff((mass_bits*i)+num_stages) OR 
compl_absdiff((mass_bits*i)+9) OR compl_absdiff((mass_bits*i)+10) OR compl_absdiff((mass_bits*i)+11) OR 
compl_absdiff((mass_bits*i)+12) OR compl_absdiff((mass_bits*i)+13) OR compl_absdiff((mass_bits*i)+14) OR 
compl_absdiff((mass_bits*i)+ 15 ) OR compl_absdiff((mass_bits*i)+ 16 ) OR compl_absdiff((mass_bits*i)+ 16 ) 
OR compl_absdiff((mass_bits*i)+ 17 ) OR compl_absdiff((mass_bits*i)+ 18 ) OR compl_absdiff((mass_bits*i)+ 
mass_bits-1 ) ); 
 
 
    match_found(i) <=  msb_below_thresh(i) AND lsb_below_thresh(i); 
    compl_match_found(i) <=  compl_msb_below_thresh(i) AND 
compl_lsb_below_thresh(i); 
 
   end loop; 
 
 
 
 
 
   case currState_buffer is  
   
    when rst => 
     match_ctr <= (others => '0'); 
     mem_ctr <= (others => '0'); 
     diff <= (others => '0'); 
     compl_diff <= (others => '0'); 
     absdiff <= (others => '0'); 
     compl_absdiff <= (others => '0');    
            
     num_matches <= (others => '0'); 
     compl_num_matches <= (others => '0'); 
     match_found <= (others => '0'); 
     compl_match_found <= (others => '0'); 
     spec_mass <= (others => '0'); 
     index <= (others => '0'); 
     compl_index <= (others => '0'); 
 
    when soft_rst => 
-- reset all the intermediate accumulators  
     match_ctr <= (others => '0'); 
     mem_ctr <= (others => '0'); 
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     diff <= (others => '1'); 
     compl_diff <= (others => '0'); 
     absdiff <= (others => '1'); 
     compl_absdiff <= (others => '0'); 
     num_matches <= (others => '0'); 
     compl_num_matches <= (others => '0'); 
     msb_below_thresh <= (others => '0'); 
     match_found <= (others => '0'); 
     compl_match_found <= (others => '0'); 
     spec_mass <= (others => '0'); 
     mem_ctr <= (others => '0'); 
     hitlocation <= match_address; 
     index <= (others => '0'); 
     compl_index <= (others => '0'); 
      
      
    when initialize => 
     match_ctr <= match_ctr + 1; 
     spec_mass <= MS_input; 
 
     
    for i in 0 to num_stages-1 loop 
     index( (selected_mass_bits*i) to 
((selected_mass_bits*i)+(selected_mass_bits-1)) ) <= MS_input((mass_bits-1) downto (mass_bits-
selected_mass_bits) ); 
     compl_index( (selected_mass_bits*i) to 
((selected_mass_bits*i)+(selected_mass_bits-1)) ) <= MS_input((mass_bits-1) downto (mass_bits-
selected_mass_bits) ); 
    end loop; 
 
    when mem_save => 
     memvar <= mem_for_frame; 
 
      
    when compare => 
 
    mem_ctr <= mem_ctr + 1; 
     
    for i in 0 to num_stages-1 loop 
 
     diff( (mass_bits*i)+(mass_bits-1) downto mass_bits*i ) <=   
stored_spec_mass((mass_bits*i)+(mass_bits-1) downto mass_bits*i ) -  pipe2_mass_line(mass_bits*i to 
(mass_bits*i)+(mass_bits-1)); 
     compl_diff( (mass_bits*i)+(mass_bits-1) downto mass_bits*i )   <=
 compl_stored_spec_mass((mass_bits*i)+(mass_bits-1) downto mass_bits*i) - 
pipe2_compl_mass_line(mass_bits*i to (mass_bits*i)+(mass_bits-1) ) ; 
 
 
     absdiff( (mass_bits*i)+(mass_bits-1) downto mass_bits*i ) <= abs( 
diff( (mass_bits*i)+(mass_bits-1) downto mass_bits*i ) ) ; 
     compl_absdiff( (mass_bits*i)+(mass_bits-1) downto mass_bits*i ) <= 
abs(compl_diff( (mass_bits*i)+(mass_bits-1) downto mass_bits*i ) ); 
       
    end loop; 
 
    for i in 0 to num_stages-1 loop 
     if mass_save_line(i+1) = '1' then 
      index( (selected_mass_bits*i) to 
((selected_mass_bits*i)+(selected_mass_bits-1)) ) <= mass_line( (mass_bits*i) to 
((mass_bits*i)+selected_mass_bits)-1  ); 
     else 
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      index( (selected_mass_bits*i) to 
((selected_mass_bits*i)+(selected_mass_bits-1)) ) <= (others => '1'); 
     end if; 
      
     if compl_mass_save_line(i+1) = '1'  then 
      compl_index( (selected_mass_bits*i) to 
((selected_mass_bits*i)+(selected_mass_bits-1)) ) <= compl_mass_line( (mass_bits*i) to 
((mass_bits*i)+selected_mass_bits)-1  ); 
     else 
      compl_index( (selected_mass_bits*i) to 
((selected_mass_bits*i)+(selected_mass_bits-1)) ) <= (others => '1'); 
     end if; 
    end loop; 
 
 
   when return_score1 => 
 
    when others => 
   
   end case; 
 
  end if;    
 end process;  
 
end score_struct; 

 
 
6. Histogram Architecture (mod_frequency_table.vhd) 

 
library ieee; 
use ieee.std_logic_1164.all; 
use ieee.std_logic_arith.all; 
use ieee.std_logic_unsigned.all; 
 
entity mod_frequency_table is 
  generic(  num_stages : integer := 10; 
   num_freq_bits : integer := 8; 
   size : integer := 8*8 ; 
   shift : integer := 8; 
   num_bins : integer := 128 ); 
port ( 
 clk  : in std_logic; 
 rst  : in std_logic; 
 enb  : in std_logic; 
 evaluate_mass  : in std_logic; 
 max_freq  : in std_logic_vector(0 to 5); 
 save_freq  : in std_logic; 
 low_freq_peptides  : out std_logic_vector(0 to num_stages-1); 
 mass_valid  : in std_logic_vector(0 to num_stages-1 ); 
 matching_stages  : in std_logic_vector(0 to num_stages-1); 
 hist_max_freq  : out std_logic_vector(0 to num_freq_bits-1); 
 Pi_f   : out std_logic_vector(0 to num_freq_bits-1); 
 mass_ranges : in std_logic_vector(0 to (num_stages*7)-1) 
 
); 
end mod_frequency_table; 
 
architecture mod_stats of mod_frequency_table is 
 
-- decoder to decide which range is being incremented 
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component bin_decoder 
 port ( 
 address: IN std_logic_VECTOR(6 downto 0); 
 clock: IN std_logic; 
 q: OUT std_logic_VECTOR(127 downto 0); 
 clken: IN std_logic); 
end component; 
------------------------------------------------------- 
-- ROMs to help count the total number of matches 
component count_rom 
 port ( 
 address: IN std_logic_VECTOR(7 downto 0); 
 clock: IN std_logic; 
 enable: IN std_logic; 
 q: OUT std_logic_VECTOR(3 downto 0)); 
end component; 
------------------------------------------------------- 
-- check to see if any of the frequency bins meet low thresh 
component or_34  
    Port (  
     clk : in std_logic; 
     or_in : in std_logic_vector(127 downto 0);  
           or_out : out std_logic);  
end component;  
------------------------------------------------------- 
-- log conversion LUTs 
 
component logtable 
 port ( 
 A: IN std_logic_VECTOR(5 downto 0); 
 CLK: IN std_logic; 
 QSPO_CE: IN std_logic; 
 QSPO: OUT std_logic_VECTOR(7 downto 0)); 
end component; 
 
------------------------------------------------------- 
 
 type freqStates is (reset,update_stats,locate_max_freq,rank_masses); 
 signal currState : freqStates; 
 signal nextState : freqStates; 
 signal full_max_freq : std_logic_vector(0 to num_freq_bits-1); 
 signal element_counter : std_logic_vector(6 downto 0); 
 signal hist_max_freq_reg : std_logic_vector(0 to num_freq_bits-1); 
 signal frequency : std_logic_vector(0 to (num_bins * num_freq_bits)-1); 
 signal saved_freq : std_logic_vector(0 to (num_bins * num_freq_bits)-1); 
 signal saved_frequency_table : std_logic_vector(0 to (num_bins * num_freq_bits)-1); 
 signal increment_range : std_logic_vector(0 to (128*num_stages)-1); 
 signal rev_increment_range : std_logic_vector((128*num_stages)-1 downto 0 ); 
 signal increment_amount : std_logic_vector(0 to (num_bins*4)-1); 
 signal addr : std_logic_vector(0 to (num_bins*8)-1); 
 signal bin_incr : std_logic; 
 signal flagged_ranges : std_logic_vector(0 to (num_bins*num_stages)-1); 
 signal freq_table_copies : std_logic_vector(0 to (num_freq_bits*num_bins*num_stages)-1); 
 signal low_freq_range : std_logic_vector(0 to num_bins-1); 
 signal pipe_mass_valid : std_logic_vector(0 to num_stages-1); 
 signal matching_mass : std_logic_vector(0 to num_stages-1); 
 signal frequency_pipeline : std_logic_vector(0 to (num_freq_bits*num_stages)-1); 
  
 signal log_accum : std_logic; 
 signal logadder_pipe : std_logic_vector(0 to (num_freq_bits* (((num_stages*num_stages)+num_stages)/2) )-
1); 
 signal log_val_stages : std_logic_vector(0 to (num_stages*num_freq_bits)-1 ); 
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 signal log_val_accum : std_logic_vector(0 to (num_stages*num_freq_bits)-1); 
 signal temp_test  :std_logic_vector(0 to (num_stages  * num_freq_bits)-1 ); 
 
begin 
 
 
 
 rev_increment_range <= increment_range ; 
 full_max_freq <= "00" & max_freq; 
 
 
 
  
 
 
 
log_convert : for i in 0 to num_stages-1 generate 
convert_freq :  logtable port  map( 
 A => logadder_pipe( (( size+(size*(i-1) - shift*(((i-1)*(i-1) + (i-1))/2)) ) + 2)  to (( size+(size*(i-1) - 
shift*(((i-1)*(i-1) + (i-1))/2)) ) + 7) ), 
 CLK => clk, 
 QSPO_CE => evaluate_mass, 
 QSPO => log_val_stages( i*num_freq_bits to (i*num_freq_bits) + (num_freq_bits-1) ) 
  
 ); 
end generate log_convert; 
 
 
 
 
 
range_selectors : for i in 0 to num_stages-1 generate 
        range_decoder : bin_decoder port map( 
         address=> mass_ranges( 7*i 
to (7*i + 6) ), 
         clock => clk, 
         clken => mass_valid(i), 
         q => increment_range(128*i 
to  (128*i)+127) 
         ); 
       end generate range_selectors; 
 
 
incrementors : for i in 0 to num_bins-1 generate 
       range_increment_value: count_rom port map ( 
        address => addr(i*8 to (i*8)+7), 
        clock => clk, 
        enable => bin_incr, 
        q => increment_amount(i*4 to (i*4)+3) 
       ); 
      end generate incrementors; 
 
   
good_ranges : for i in 0 to num_stages-1 generate 
     check_mass_range: or_34 port map ( 
      clk => clk, 
      or_in => flagged_ranges(i*128 to (i*128)+127 ),  
              or_out =>low_freq_peptides((num_stages-1)-i)   
  ); 
      end generate good_ranges; 
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 process(currState,evaluate_mass,save_freq) 
 begin 
   bin_incr <= '0'; 
 
  case currState is  
 
   when reset => 
    nextState <= update_stats; 
 
   when update_stats => 
    bin_incr <= '1'; 
     
    if save_freq = '1' then 
     nextState <= locate_max_freq; 
      
    else 
     nextState <= update_stats; 
      
    end if; 
    
   when locate_max_freq => 
    if element_counter = "1111111" then 
     nextState <= rank_masses; 
      
    else 
     nextState <= locate_max_freq; 
      
    end if;     
          
 
   when rank_masses =>  
    if evaluate_mass = '0' then  
     nextState <= update_stats; 
      
    else 
     nextState <= rank_masses; 
      
    end if; 
     
   when others => 
 
 
  end case; 
 
 end process; 
 
 process(enb,clk) 
 begin 
   
 
  if rst = '1' then 
   currState <= reset; 
  elsif rising_edge(clk) then 
 
  if (enb = '1') then 
 
   currState <= nextState; 
   pipe_mass_valid <= mass_valid; 
   matching_mass <= matching_stages; 
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    logadder_pipe <= (others => '0'); 
 
    
     
   logadder_pipe(64 to 119) <= logadder_pipe(8 to 63);  
   logadder_pipe(120 to 167) <= logadder_pipe(72 to 119); 
   logadder_pipe(168 to 207) <= logadder_pipe(128 to 167);  
   logadder_pipe(208 to 239) <= logadder_pipe(176 to 207);  
   logadder_pipe(240 to 263) <= logadder_pipe(216 to 239);  
   logadder_pipe(264 to 279) <= logadder_pipe(248 to 263);  
   logadder_pipe(280 to 287) <= logadder_pipe(272 to 279); 
      
 
   for i in 0 to num_bins-1 loop 
    addr(i*8 to (i*8)+7) <= rev_increment_range(i) & rev_increment_range(i+128) 
& rev_increment_range(i+(2*128)) & rev_increment_range(i+(3*128)) & rev_increment_range(i+(4*128)) & 
rev_increment_range(i+(5*128)) & rev_increment_range(i+(6*128)) & rev_increment_range(i+(7*128) );  
   
   end loop; 
 
 
   for i in 1 to num_stages-2 loop 
     log_val_accum(i*num_freq_bits to 
(i*num_freq_bits)+(num_freq_bits-1)) <= log_val_accum((i-1)*num_freq_bits to ((i-
1)*num_freq_bits)+(num_freq_bits-1))  + log_val_stages( (i+1)*num_freq_bits to ((i+1)*num_freq_bits) + 
(num_freq_bits-1) ) ; 
   end loop; 
     log_val_accum( (num_stages-1)*num_freq_bits to ( (num_stages-
1)*num_freq_bits)+(num_freq_bits-1)) <= log_val_accum((num_stages-2)*num_freq_bits to ((num_stages-
2)*num_freq_bits)+(num_freq_bits-1))  + log_val_accum( (num_stages-1)*num_freq_bits to ( (num_stages-
1)*num_freq_bits)+(num_freq_bits-1))  ; 
     Pi_f <= log_val_accum( (num_stages-1)*num_freq_bits to ( 
(num_stages-1)*num_freq_bits)+(num_freq_bits-1)); 
 
   frequency_pipeline <= (others => '0'); 
 
 
 
 
 
  case (currState) is 
 
 
    when reset => 
     frequency <= (others => '0'); 
     low_freq_range <= (others => '0'); 
     frequency_pipeline <= (others => '0'); 
     log_val_accum <= (others => '0'); 
--     logadder_pipe <= (others => '0'); 
 
    when update_stats => 
     hist_max_freq_reg <= (others => '0'); 
     for i in 0 to num_bins-1 loop 
       
     saved_freq <= frequency; 
      
      if evaluate_mass = '0' then  
       frequency( i*num_freq_bits to (i*num_freq_bits) 
+ num_freq_bits-1 ) <=  frequency( i*num_freq_bits to (i*num_freq_bits) + num_freq_bits-1 ) + 
increment_amount(i*4 to (i*4)+3); 
       
       log_val_accum <= (others => '0'); 
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      else    
       for i in 0 to num_stages-1 loop 
        saved_frequency_table <= frequency; 
 
       end loop; 
 
       frequency <= (others => '0'); 
 
 
      end if; 
 
     end loop; 
 
    when locate_max_freq => 
 
     hist_max_freq <= hist_max_freq_reg; 
     element_counter <= element_counter+1; 
     if (saved_freq(0 to num_freq_bits-1) >= hist_max_freq_reg) then 
      hist_max_freq_reg <= saved_freq(0 to num_freq_bits-1); 
     end if; 

     for i in 0 to num_bins-2 loop 

     end loop; 

 

 

 

     if evaluate_mass = '1' then 

      for i in 0 to num_stages-1 loop 

       for j in 0 to num_bins-1 loop 

         logadder_pipe( 
i*num_freq_bits to (i*num_freq_bits + (num_freq_bits-1))  ) <= saved_frequency_table( (127-j)*num_freq_bits to 
((127-j)*num_freq_bits)+ (num_freq_bits-1));         

        end if; 

      end if; 

 

 

    when others => 

   end case;   

  end if; 

 

 

 

      saved_freq(i*(num_freq_bits) to 
(i*(num_freq_bits)+num_freq_bits-1)) <= saved_freq((i+1)*(num_freq_bits) to 
((i+1)*(num_freq_bits)+num_freq_bits-1) ) ; 

 

    when rank_masses => 

 

     temp_test <= (others=> '0'); 

 

      if matching_mass( (num_stages-1) - i) = '1' then  

        if increment_range( (i*num_bins) + j ) 
= '1' then  

--         temp_test( i*num_freq_bits 
to (i*num_freq_bits + (num_freq_bits-1))  ) <= "01001101"; 

       end loop; 

      end loop; 

     end if; 

 

 

 

  end if; 

 end process; 
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end mod_stats; 
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Appendix C. Scoring and Distance Results for Sample 
Peptides 

 
1. Results for GDP Dissociation Inhibitor Peptides 
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The true hit (square marker) is ranked 2nd of 128 hits. 
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The true hit (square marker) is ranked 1
 

st of 128 hits. 
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Closest matches between "vpea" and "saav"
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The true hit (square marker) is ranked 1st of 128 hits. 
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The true hit (square marker) is ranked 2nd of 34 hits. (The true hits are spaced 1024 bases 
apart, but there are two false positives that are 754 bases apart). 
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Closest matches between "ilfa" and "vpea"
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The true hit (square marker) is ranked 1st of 48 hits. 
 
 

Closest matches between "eyvp" and "vpea"
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The true hit (square marker) is ranked 2nd of 48 hits (The true hits are spaced 667 bases 
apart, but there are two false positives that are 6 bases apart). 
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2. Results for Heat Shock Protein 70 Peptides 
 
As mentioned in Chapter 4, HSP70 has two subfamilies that are highly similar, thus it is 
hard to distinguish between the protein and its homologue using closeness as a measure. 
However the score from the scoring unit can always be used to distinguish the subfamily 
in the sample. 
 

The true hit and its homologue (square marker) are ranked 1  of 105 hits. st

The true hit and its homologue (square marker) are ranked 1  of 105 hits. st

 

Closest Matches Between "llsd" and "nttv"

-10000

0

10000

20000

30000

40000

50000

60000

0 2E+06 4E+06 6E+06 8E+06 1E+07 1E+07 1E+07

Location in Genome

C
lo

se
ne

ss

 
 

 

Closest matches between "tgld" and "nttv"
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Closest matches between "nttv" and "fedl"
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The true hit and its homologue (square marker) are ranked 2nd of 104 hits. (The true hits 
353 bases apart, but there are two false positives that are 350 bases apart) 
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The true hit and its homologue (square marker) are ranked 2nd of 104 hits. (The true hits 
are 143 bases apart, but there are two false positives that are 36 bases apart) 
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Closest matches between "tgld" and "feld"
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The true hit and its homologue (square marker) are ranked 1st of 104 hits. 
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The true hit and its homologue (square marker) are ranked 1
 

st of 306 hits. 
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Appendix D. Precursor Ion Scan (PIS) Masses  
 
The following values (in Daltons) were used to obtain the results in Chapter 4. 
 

453.17 688.01 1226.14552.57 624.12 758.49 822.42 924.92 1032.42 1112.46
459.11 552.75 624.18 688.22 758.54 824.14 929.41 1035.94 1112.48 1226.49
459.18 556.92 831.04 624.95 689.69 761.49 937.26 1041.68 1115.52 1232.64
463.11 557.1 625.96 692.35 769.74 831.06 944.51 1041.69 1117.49 1237.18
463.13 561.76 633.67 694.42 772.26 838.69 945.75 1050.67 1119.22 1242.72
464.04 564.43 638.24 696.36 775.95 838.73 948.16 1050.67 1125.57 1242.77
464.1 567.35 639.31 698.11 777.47 839.54 948.23 1053.72 1126.47 1247.38
464.1 569.12 639.97 699.52 777.64 842.54 952.69 1053.88 1131.73 1247.86
464.12 576.44 640.16 702.75 783.19 842.56 962.37 1056.25 1131.76 1256.67
488.33 577.53 640.62 708.48 783.26 847.76 962.4 1056.64 1137.67 1260.67
497.41 577.71 643.65 709.69 785.07 847.96 962.49 1057.6 1147.4 1260.7 
502.94 582.04 643.7 712.19 785.15 851.35 965.22 1062.68 1156.42 1265.78
503.03 583.57 649.74 712.5 785.81 855.52 965.33 1062.7 1157.51 1270.63
503.06 584.71 650.31 714.61 788.48 865.72 965.41 1062.9 1158.55 1270.63
503.08 584.74 655.43 714.63 788.51 865.72 965.42 1064.19 1167.59 1277.5 
503.08 590.98 657.1 716.22 792.43 865.74 966.55 1065.45 1167.64 1278.67
503.39 591.5 659.24 720.95 792.69 865.79 976.07 1067.52 1169.59 1278.68
504.16 591.58 664.52 722.19 798.06 868.01 986.1 1068.56 1181.69 1284.53
505.15 592.69 664.8 722.41 798.42 871.59 990.52 1076.29 1181.78 1296.56
508.69 593.06 665.45 722.44 798.69 872.8 1000.39 1077.61 1185.82 1314.57
511.93 593.63 665.71 722.63 799.03 873.47 1000.48 1078.48 1185.83 1316.68
517.57 593.68 672.61 723.18 804.64 873.52 1002.49 1078.51 1190.67 1324.98
520.05 593.96 672.71 727.32 804.85 875.44 1004.77 1080.77 1191.48 1343.66
520.07 595.38 673.57 729.4 806.33 875.48 1006.65 1080.97 1199.77 1357.45

521 596.17 674.46 730.61 807.04 882.45 1006.7 1082.65 1205.45 1359.44
521 596.32 676.69 730.71 807.22 882.46 1008.59 1082.67 1206.73 1369.56

521.4 596.72 678.39 730.75 807.3 885.45 1011.04 1084.17 1209.96 1371.64
521.76 606.95 678.46 730.86 807.56 886.06 1011.19 1084.2 1210.01 1375.77
526.07 608.43 678.48 731.54 812.49 886.31 1013.69 1084.63 1210.03 1375.82
527.74 608.43 682.44 736.46 812.51 891.5 1014.12 1377.611088.4 1210.23
527.74 610.02 682.53 736.55 812.72 891.5 1014.47 1088.95 1210.28 1383.37
531.95 610.07 683.72 740.21 815.41 901.45 1020.78 1090.61 1213.44 1384.63
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532.1 610.1 684.01 740.7 816.34 905.75 1021.7 1090.67 1214.66 1386.25
534.71 610.17 684.04 741.71 816.66 905.75 1022.19 1091.02 1218.78

611.38 686.56 741.73 817.48 907.44 1022.95 1093 1218.79 1409.32
538.11 620.66 687.27 744.57 817.52 917.78 1023.29 1097.96 1220.15 1419.51

547 621.71 1424.64687.45 747.8 821.31 919.41 1024.31 1098.55 1220.98
547.04 622.04 687.62 757.93 821.4 922.41 1028.24 1101.42 1224.15  

550.04 622.18 687.93 758 822.39 922.47 1032.25 1102.21 1224.6  

1392.41
538.06 
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