

Hardware Accelerated Protein

Identification

by

Anish Alex

A thesis submitted in conformity with the requirements

for the degree of Master of Applied Science in the

Graduate Department of Electrical and Computer Engineering,

University of Toronto

© Copyright by Anish Alex 2003

 ii

Hardware Accelerated Protein Identification

Master of Applied Science, 2003

Anish Alex

Graduate Department of Electrical and Computer Engineering

University of Toronto

ABSTRACT

The proteins in living organisms perform almost every significant function that governs

life. A protein's functionality depends upon its physical structure, which in turn depends

on its constituent sequence of amino acids as specified by its gene of origin. While many

protein sequences are known, many remain to be discovered. Recent advances in mass

spectrometry are capable of determining unknown protein sequences but the process is

very slow. We review a new method of de-novo protein sequencing that requires a fast

search of the genome. In this thesis, we present the design of FPGA-based hardware that

can perform this search in a very fast and cost-effective manner. This hardware solution

is between 3 to 60 times more cost effective than an equivalent software platform. In

addition, we provide a framework to estimate the cost of the hardware at a desired level

of performance.

 iii

ACKNOWLEDGEMENTS

I would first like to sincerely thank my supervisor Jonathan Rose for his help and

motivation over the past two years. This project would certainly not have progressed had

it not been for his keen interest and desire to "find the problem that we are the solution

to". On the same note I’d like to thank Dr. Christopher Hogue at Mt. Sinai’s SLRI. This

project is a somewhat uncommon collusion between different fields, and the idea would

never have taken footing without Dr Hogue’s fascination with custom computing.

Many thanks to Dr. Stephen Davies, Dr. Zvonko Vranesic and Dr. Paul Chow for

volunteering to be on my committee, especially on such short notice.

To the TM3/TM4 crew : Thanks for all the help – not just with the TM3. Had it not been

for Marcus, Dave and especially Josh, my understanding of hardware design would not

have been what it is today.

To the folks at Mt. Sinai : A big thank you to Ruth Isserlin who provided all the

biological knowledge that I missed out on from Grade 11 onwards. Special thanks to

Gary Bader and Michel Dumontier who patiently helped me understand the problem.

Many thanks to Kelly Boutilier at MDSP for providing me with data and instrument

specs on such short notice.

To Pavel Metalnikov and Paul O’ Donnell at Mt. Sinai's Mass Spec labs, thanks for

taking the time explain mass spectrometry to a slow learner.

The past two years have been a lot of fun. For this I must certainly thank the guys in the

lab. Cheers to Evil Tom, Mehrdad, Lorraine – sorry – Lesley, Ahmad, Navid “Tranzor”

Azizi, Aaron, Peter "Blackbeard" Jamieson, Jason, Chairman Andy, Reza, Rubil, Imad,

Denis (Dr. D) and Ian. Paul, its sad not hearing a rant against humanity on Fri morning.

Hope you’re having fun down south.

 iv

To my housemates G-bo, Jason, Capt. Lorraine and Mighty Mitch, I don’t think I

could’ve had a better set of housemates. Well, maybe the Justice League – but for puny

humans, you guys were a lot of fun.

Last, but certainly not least, I’d like to thank my family for supporting me in every sense

of the word for the last 23 years.

There’s probably other people who should be on the list, but no worries, if I didn’t

remember you, you’ll be getting a cheque for $401.

1 Cheques will not be honoured

 v

Table of Contents
Glossary .. 8
Chapter 1. Introduction... 9

1.1. Introduction to Proteins and Protein Identification... 9
1.2. Thesis Motivation ... 10
1.3. Thesis Organization .. 12

Chapter 2. Background... 13
2.1. Introductory Biology... 13

2.1.1. Deoxyribonucleic Acid (DNA)... 13
2.1.2. Protein Formation ... 15

2.2. Mass Spectrometry Based Methods of Protein Sequencing 18
2.2.1. Tandem Mass Spectrometry ... 19
2.2.2. A New Search Strategy... 24
2.2.3. Requirements of the New Approach... 30

2.3. Practical Considerations.. 31
2.3.1. Reading Frames and Complementary Strands.. 31
2.3.2. Alternative Splicing .. 33
2.3.3. Unknown Bases in the Genome.. 34
2.3.4. Repeat Sequences in the Genome ... 35

2.3.4.1. Significance of Matches.. 36
2.3.4.2. The MOWSE Algorithm... 39

2.4. Prior Work in Software and Hardware Based Genome Searching 41
2.4.1. Software Searches of the Genome .. 41
2.4.2. Hardware Searches of the Genome... 42

2.5. Programmable Hardware Platform ... 43
2.5.1. Field-Programmable Gate Arrays ... 43
2.5.2. Hardware Description Languages (HDLs) ... 45
2.5.3. Transmogrifier 3-A (TM3A)... 47

2.6. Summary ... 48
Chapter 3. Design of a Hardware Search Engine, Mass Calculator and Scoring Unit49

Overview... 49
3.1. Genome Database Coding and Compression.. 51
3.2. Peptide Query.. 52
3.3. Search Engine ... 54

3.3.1. Search Engine Operation .. 55
3.3.2. Peptide Comparison Unit.. 57
3.3.3. Codon Unit.. 60
3.3.4. Interpreting Search Engine Outputs.. 63
3.3.5. Summary of Search Engine Design and Operation 64

3.4. Tryptic Mass Calculation.. 65
Overview... 65
3.4.1. Calculator Architecture... 66
3.4.2. Mass Calculation... 69
3.4.3. Mass LUTs and Detection Units... 70
3.4.4. Complementary Strand Calculations .. 71

 vi

3.4.5. Six Frame Mass Calculation ... 73
3.4.6. Summary of Tryptic Mass Calculator Operations 73

3.5. Scoring unit... 74
Overview... 74
3.5.1. True PIS Storage ... 75
3.5.2. Histogram Construction .. 76
3.5.3. Score Calculation .. 79

3.5.3.1. Mass Matching.. 79
3.5.3.2. Significance Calculation for Matching Masses 81

3.5.4. Six Frame Score Calculations... 83
3.6. Design Summary... 84

Chapter 4. Implementation Details & Results .. 85
4.1. Overview... 85
4.2. Assumptions and Approximations.. 85

4.2.1. Using Simpler Organisms ... 85
4.2.2. Implementation Parameters .. 86

4.3. Implementation Details... 88
4.3.1. Functionality ... 88
4.3.2. Design Implementation on the TM3A .. 96
4.3.3. Design Implementation on Modern FPGAs ... 100
4.3.4. Software .. 102
4.3.5. System Cost and Resource Estimation ... 103

4.3.5.1. Cost of Software Platform .. 104
4.3.5.2. Cost of Hardware Platform for Full System 106
4.3.5.3. Cost of Hardware Platform for Standalone Search Engine 108
4.3.5.4. Cost Comparison... 110
4.3.5.5. Framework for estimating system cost ... 111

4.4. Summary ... 116
Chapter 5. Conclusions & Future Work ... 118

5.1. Thesis Summary.. 118
5.2. Thesis Contributions ... 118
5.3. Future Work .. 119

Chapter 6. References... 120
Appendix A. Mass Spectrometry for Protein Identification 125
Appendix B. VHDL Source Code .. 130
Appendix C. Scoring and Distance Results for Sample Peptides................................... 173
Appendix D. Precursor Ion Scan (PIS) Masses .. 179

 vii

Glossary

TERM DEFINITION

Alternative Splicing Process by which a single DNA strand could be transcribed into several different RNA
sequences

Amino Acid Subunit of a protein/peptide
Base nucleotide,a DNA moelcule, can be one of A,T,C,G

Codon Set of three bases in an RNA strand; used as a template for amino acids
De novo Novel or hitherto unknown

Digestion The process of breaking amino acid bonds in a protein
DNA Deoxyribonucleic Acid

FPGA Field-Programmable Gate Array
Gene A hereditary unit of DNA that is responsible for the synthesis of proteins in an organism

Genome All the genes of an organism
In silico On a computer

Nucleotide base, a DNA moelcule, can be one of A,T,C,G
Peptide Chain of amino acids; piece of a protein
Protein Chain of amino acids that serves a specific function

Proteome The set of all proteins encoded by a Genome
RNA Ribonucleic Acid
SAC System Administration Cost, the cost of maintaining and upgrading a computer cluster

Sequence The order of bases in a DNA strand or amino acids in a protein
Trypsin Enzyme that digests proteins at the Argnine(R) and Lysine(K) amino acids

Tryptic peptide Peptide formed from digestion of protein by trypsin
VHDL VHSIC Hardware Descrition Language
VHSIC Very High Speed Integrated Circuit

 8

Chapter 1. Introduction

1.1. Introduction to Proteins and Protein Identification

Proteins and their interactions regulate the majority of processes in the human

body. From mechanical support in skin and bones to enzymatic functions, the operation

of the human body can be characterized as a complex set of protein interactions. Over the

past fifty years thousands of proteins have been studied [5], but despite the efforts of

scientists, many proteins and their functions have yet to be discovered [4]. The wealth of

information that lies in these unknown proteins may well be the key to uncovering the

mysteries that govern life. The subject of this research is to investigate the use of digital

hardware to aid in a specific technique used to discover new proteins.

A protein is composed of a long chain of molecules known as amino acids, and the order

of these amino acids is known as the sequence of the protein [2]. Protein sequencing –

the process of identifying the sequence of a given protein – is a means of establishing the

protein's identity, from which its functionality can be inferred. In the past, sequencing

was a slow, manual process in which individual amino acids of a protein were analyzed

chemically [15]. The nature of these methods meant that sequencing took many weeks,

even for relatively small proteins. Advances in technology over the past two decades

introduced the concept of protein sequencing by mass spectrometry [10]. A mass

spectrometer (MS) is a device that takes a biological or chemical sample as input and

measures the masses of the constituent particles of the sample. This information, in

combination with molecular mass databases, can be used to identify the molecules in the

sample. Proteins, however, are large molecules and cannot be analyzed in their intact

form; they must be digested or broken up into smaller subunits known as peptides. It is

these peptides that are analyzed to determine the identity of the protein.

 9

Mass Spectrometry for protein analysis can be divided into 4 distinct steps:

1. An MS takes the peptides from a set of digested proteins and measures the mass
of each peptide. It then selects an individual peptide, using its mass to
discriminate it from the others.

2. The selected peptide is fragmented and a second MS then analyzes the peptide;

this is followed by a complex computation that produces the sequence of the
selected peptide.

3. After a short delay (approx 1 sec.), Step 2 is repeated for another peptide. This is

done for each peptide from every protein in the sample.

4. The peptide sequences from individual proteins are grouped together and ordered
to obtain the full sequence of the each protein.

These MS techniques greatly reduce the sequencing time, but protein identification still

requires several days. With a few hundred peptides in a sample, a great deal of the delay

in the MS process comes from having to repeat the sequencing process (step 2) for each

peptide [6]. Judicious analysis of the sample shows that not every peptide needed

sequencing to obtain the full protein sequence [8]. However, this analysis needs to be fast

to maintain a high-throughput mass spectrometry flow. This need for faster sample

analysis coupled with the availability of cheap computing power has given rise to several

techniques to accelerate protein sequencing. In the following section we describe the

latest techniques for protein sequencing and motivate our work to accelerate one kind of

sequencing with the use of digital hardware.

1.2. Thesis Motivation

Recent revolutions in biology and computing have sought to alleviate the analysis

bottleneck described above. As stated above, the major hurdle in sample analysis is the

number of peptides in the protein sample. However, it is possible to identify a protein

using only a few of its peptides. There are many characterized proteins (proteins whose

sequence is known) in biological databases. Using a small set of peptides as queries to

these databases, the intact protein sequence that they originated from can be identified.

 10

Using this technique, a few peptides from any protein can act as a unique fingerprint for

that protein. Once the intact protein sequence has been obtained, all its constituent

peptides can be eliminated from further analysis. This technique greatly reduces the

number of times Step 2 has to be repeated before all proteins in the sample are identified.

This technique of peptide mass fingerprinting (PMF) can be used to identify proteins in

mere fractions of a second [9].

The limitation of PMF, however, is that it requires that the intact protein sequence

already be present in the database. In de-novo sequencing experiments, researchers

attempt to sequence a hitherto unidentified or novel protein. By definition, these proteins

do not exist in a protein database, making direct PMF infeasible.

However, information about the sequence of novel proteins can be obtained elsewhere.

Cells use the information contained in genes as a template to create proteins [2]. With the

recent successful sequencing of the Human Genome, the set of all human genes is now

available to researchers. It is possible to obtain the sequence of a protein if its gene can be

identified. In effect, the genome can be interpreted as a complete protein database, thus

overcoming the barrier presented by standard PMF searches [1].

Due to physical limitations of the instrument, it takes approximately 1 second before the

second MS step can be repeated. To make an efficient high throughput protein

identification system, it is crucial to be able to perform the genome database search

within this 1-second interval. If the MS is forced to wait in excess of this delay, it incurs a

non-productive downtime, which reduces its throughput and is considered both

inefficient and expensive. Software techniques to perform this interpretation of the

genome have thus far been slow requiring approximately 1 minute on a modern processor

[1].

Over the past two decades, the benefits of custom hardware for computation have been

seen in various applications [18][19][20]. For tasks such as database searching, where the

search space is large and the operations are simple and parallelizable, custom hardware

implementations of the algorithm show significant performance gains over software [18].

 11

 Thus the focus of this thesis is the design of a practical hardware system capable of

accelerating the de-novo sequencing process using the genome. Our goal is to develop

hardware that is both cheaper and faster than equivalently functional software. Note also,

that there are myriad applications that search the human genome for diverse purposes

from tracking human evolution to complex drug design. There are many fields of

research that will benefit from the ability to search rapidly through the Human Genome.

1.3. Thesis Organization

This thesis is organized as follows: The second chapter provides details of the

background biology and the technology in which the hardware is implemented. The third

chapter describes the design and implementation of the hardware and the fourth chapter

provides the results of this work in comparison with software running comparable

algorithms on commodity processors. We also provide a framework to help the interested

reader calculate the cost of this high-speed search based on the cost and density of the

FPGAs available at the time. The fifth chapter will describe the conclusions of this work

and avenues for future research.

 12

Chapter 2. Background

In this chapter we survey the details of protein sequencing, and some aspects of the

underlying biology and instrumentation necessary to understand this research. In

addition, we describe the programmable hardware platform used in our research. Section

2.1 provides an introduction to basic genetics and protein synthesis. Section 2.2 outlines

the process of Mass Spectrometry as it applies to the protein sequencing approach that

our work is based on. Section 2.3 describes some of the complexities of the biological

systems that must be handled in our work. This ordering of biological concepts is done in

hopes of allowing the reader to get an understanding of the core concepts of protein

sequencing before considering issues of practicality. This is followed by a description of

prior work in genome-based protein sequencing and hardware acceleration of biological

algorithms in Section 2.4. Section 2.5 concludes the chapter with a description of the

structure and relevant details of our implementation platform.

2.1. Introductory Biology

A theme of this work is the interaction between DNA and proteins. DNA is the

template for protein formation. To better understand how the details of the two are

related, the following sections present the key concepts behind DNA and protein

interaction.

2.1.1. Deoxyribonucleic Acid (DNA)

Often described as the blueprint or life, Deoxyribonucleic Acid (DNA) is the core of

genetic content passed between generations of organisms. DNA is a determining factor in

almost all aspects of life, from appearance to health. The importance of DNA is related

directly to its role in the production of proteins.

 13

Figure 2-1: DNA Double Helix [24]

DNA is contained within the nucleus of a cell and exists in the double stranded structure

shown in Figure 2-1 [24]. Each strand consists of a chain of nucleic acid molecules (also

known as bases) linked by a phosphate backbone. There are four possible bases in DNA:

Adenine (A), Thymine (T), Guanine (G), and Cytosine (C). Figure 2-1 shows that the

bases on one strand bond to the other. This bonding can only occur between certain pairs.

A will always bond with T while G will only bond with C; these pairings are referred to

as complementary pairs or base pairs. Thus knowledge of the bases in one strand implies

knowledge of the bases in the complementary strand [2], which is oriented in the opposite

direction.

A strand of DNA can be represented as a string of ordered bases. The order of bases in

the strand is important as DNA is used as a template in the creation of proteins and a

change in the order of bases may result in the malformation of proteins. The DNA

template is interpreted in units of three bases at a time – this set of three bases is known

as a codon. Therefore DNA can also be thought of as a string of codons and it is these

codon strands that act as templates for the creation of proteins. DNA strands within a cell

are ordered into structures known as genes. Genes are DNA strands that are usually

several thousands of bases long and each gene codes one or more proteins. Several genes

are grouped together into larger structures known as chromosomes, and it is the set of

chromosomes that is passed on as hereditary information between generations of

 14

organisms [3]. The DNA sequence of all the chromosomes in an organism is known as its

genome [24]. The hierarchical view of DNA in Figure 2-2 illustrates the relationship

between these units.

Figure 2-2 Genetic Hierarchy [24]

2.1.2. Protein Formation

The information stored in DNA governs the synthesis of proteins in an organism.

Proteins are chemicals that provide both structural and enzymatic functions within a cell.

They are required for everything from the formation of muscles and ligaments to the

synthesis of various digestive enzymes. Almost every reaction within the body is some

form of protein interaction, and so a better understanding of protein functions is clearly

beneficial to biologists. It is the structure of a protein that determines its functionality and

thus a great deal of effort has been directed towards determining the structure of every

protein. Biologists can infer function from protein structure by comparing the structure of

novel proteins with well-characterized proteins whose functions have already been

 15

determined [7]. An understanding of how proteins are produced is essential to appreciate

how their structure is determined.

Proteins are synthesized from DNA by a combination of processes known as

transcription and translation. Transcription is the conversion of DNA to RNA

(Ribonucleic Acid). RNA, like DNA, also consists of four bases, but Uracil (U) in RNA

replaces Thymine (T) in DNA. For the purposes of this discussion we will treat Thymine

and Uracil as equivalent molecules and only refer to Thymine. In essence, transcription

results in the creation of a copy of the original DNA strand as shown in Figure 2-3.

Figure 2-3: Transcription of RNA

The example in Figure 2-3 is simplified for clarity. The RNA strand that is transcribed

from a DNA strand actually consists of the complementary bases, i.e., A is transcribed to

U, C is transcribed to G etc. The key point to note is that the bases in the RNA strand can

be inferred from the original DNA strand.

The RNA strands are then translated into proteins. This is done by structures known as

ribosomes and transfer RNA (tRNA) that bond to the RNA strand converting groups of

bases into molecules known as amino acids. Recall that the DNA (or RNA) strand is

interpreted in codon blocks. Each codon, or set of three bases, represents a specific amino

acid and the rules for translation are standard for most organisms including homo sapiens.

A table of codons and their corresponding amino acids is given in Table 2-1. To convert

an RNA strand into a protein, it can first be thought of as a set of codons. The first base

of a codon identifies the major row (T, C, A or G on the left side of Table 2-1), the

second base identifies the major column, and the last base of a codon identifies the

 16

specific codon and its corresponding amino acid. Consider the example of the codon

TAC. The first base (T) indicates the first row, and the second base (A) indicates the third

column. The final base (C) identifies the specific codon and its corresponding amino acid

Tyrosine (Y). In this manner, any RNA codon strand can be translated to its

corresponding set of amino acids, or protein strand.

Second base of codon
 T C A G

TTT Phenylalanine (F) TCT Serine (S) TAT Tyrosine (Y) TGT Cysteine (C) T
TTC F TCC S TAC Y TGC C C
TTA Leucine (L) TCA S TAA STOP TGA STOP A

T

TTG L TCG S TAG STOP TGG Tryptophan (W) G
CTT Leucine (L) CCT Proline (P) CAT Histidine (H) CGT Arginine (R) T
CTC L CCC P CAC H CGC R C
CTA L CCA P CAA Glutamine (Q) CGA R A

C

CTG L CCG P CAG Q CGG R G
ATT Isoleucine (I) ACT Threonine (T) AAT Asparagine (N) AGT Serine (S) T
ATC I ACC T AAC N AGC S C
ATA I ACA T AAA Lysine (K) AGA Arginine (R) A

A

ATG Methionine (M) or START ACG T AAG K AGG R G
GTT Valine (V) GCT Alanine (A) GAT Aspartic acid (D) GGT Glycine (G) T
GTC V GCC A GAC D GGC G C
GTA V GCA A GAA Glutamic acid (E) GGA G A

Fi
rs

t b
as

e
of

 c
od

on

G

GTG V GCG A GAG E GGG G G

Th
ird

 b
as

e
of

 c
od

on

Table 2-1: The Genetic Code – Mapping DNA to Amino Acids

 Note that there is redundancy in the coding, as there are 64 codons and only 20 amino

acids. In some of these cases the last base in the codon can be treated as a wildcard. For

example the codon set GC* codes for Alanine, regardless of the last base. Recall that

genes are simply long strands of DNA that can be grouped into codons and proteins are

amino acid chains. Using this table, it is possible to translate genes to proteins and vice

versa. An example of this process is presented in Figure 2-4.

 17

C G A A T G T T A A

 ..……
M L

Protein translated from codons in RNA

codon

Amino acid chain

C G

T

C

Figure 2-4: Translation to protein strand

The ribosome unit traveling down an RNA strand physically carries out the nucleic acid

to amino acid translation process and synthesizes the protein by adding the amino acid

corresponding to the codon being processed. In the example in Figure 2-4, the tRNA

reads A as the first base, T as the second, and G as the third base of the codon. The tRNA

adds the amino acid Methionine (M) to the current protein chain. The ribosome proceeds

along the RNA strand until a STOP codon is reached, and a full protein is synthesized.

2.2. Mass Spectrometry Based Methods of Protein Sequencing

Recall that our ultimate goal is to sequence a protein, i.e. to identify the order of

the constituent amino acids in a protein sample. Over the last few decades mass

spectrometry has become the method of choice for high throughput protein sequencing

[10]. A Mass Spectrometer (MS) is a tool that takes a chemical or biological sample as

input and measures the masses to charge ratio of the sample’s constituent molecules. The

mass to charge is used to calculate the masses of the molecules in the sample and these

masses are then used to determine the identity of the molecules. A more detailed

description of this process is presented in Figure 2-5.

The MS identifies particles in the input sample by ionizing them and allowing the

charged ions to fly over a detection plate. Identification of the ions relies on the fact that

 18

heavier ions will not travel as far lighter ions and will thus fall to the detection plate

sooner, as illustrated in Figure 2-5. Based on the ion’s charge and position along the

detection plate, the mass of the ion can be resolved [11].

Sample ionizer

Heavy Ions

 Light Ions Detection plate

Figure 2-5: Mass Spectrometer

These measured masses are compared against known molecular masses to establish the

identity of the molecules in the sample.

There are several different types of mass spectrometry, many of which are used for

protein sequencing [9] [21]. One such approach, which will be the focus of this research,

is the technique of tandem mass spectrometry [6]. An overview of this approach is

presented in the following section to help understand the capabilities and limitations of

the process.

2.2.1. Tandem Mass Spectrometry

Tandem Mass Spectrometry (often abbreviated as MS/MS as it uses two MS ion

separation chambers) is a common technique used in protein identification studies. In

preparation for MS/MS analysis, protein samples are treated to ensure that the MS

devices can operate on them.

Since proteins are large chains that are several hundred amino acids in length, they are

heavy (on a molecular scale) and most MS instruments cannot analyze them in their

intact form. For this reason, proteins are usually broken down into smaller fragments

known as peptides by a process known as digestion [42]. Digestion occurs by treating the

protein sample with a proteolytic or digestive enzyme, which will cut the proteins in the

 19

sample at certain known amino acid bonds. One such enzyme is trypsin, which is known

as a specific enzyme for its property of cleaving proteins at specific amino acids (trypsin

cleaves after the positively charged amino acids Arginine (R) and Lysine (K) provided

that neither is immediately followed by Proline (P) in the protein sequence). The peptides

created by trypsin digestion are referred to as tryptic peptides. An example of protein

digestion is shown below in Figure 2-6. For simplicity, only a single protein is shown, but

a real biological sample may have as many as 40 proteins in it [60].

MAVRAKPCOKLHNWF
Original protein in sample

MAV A CO LHNWF R K

K and R but not
KP

KP) After digestion – 3 smaller tryptic peptides (note cleavage after

Figure 2-6: Trypsin Digestion of Proteins

This group of tryptic peptides is now passed to the tandem MS for analysis. An overview

of this process is given in Figure 2-7. The tandem MS or MS/MS consists of two MS

units [12]. The first MS is used to measure the masses of the tryptic peptides and select

individual peptides to send to the second MS (step 2 in Figure 2-7). The first MS

produces a list of masses of all the tryptic peptides, which is known as the list of

precursor or parent ions and will hereafter be referred to as the precursor ion scan (PIS)

[12]. However, note that the first MS stage also contains peptides that were not in the

original tryptic peptide set. These unwanted peptides might originate from a number of

sources, such as proteins from the MS operator’s skin through careless handling,

contaminant proteins that could not be separated from the sample during preparation and

other sources of contamination. This noise appears on the PIS list and makes it difficult to

distinguish the interesting peptides from the contaminants.

The second MS breaks the peptide selected by the first MS into groups of amino acids.

These groups consist of chains of one, two or more amino acids, effectively generating

the substrings of the selected peptide. These groups are then ionized and the ion masses

are used to deduce the identity and sequence of the amino acids in the peptide [43]. The

 20

details of this process are described in Appendix A for the interested reader. Once the

sequence for a single peptide is obtained, the user selects another peptide from the first

MS and the sequencing step (step 3) is repeated. An important detail to note is that it

takes between 500 ms to 1 second before the next peptide can be selected for sequencing

[49]. Caution must be exercised in choosing the subsequent peptide; if a contaminant is

chosen instead of a peptide of interest, both the sample and sequencing time will be

wasted. Note that typical samples contain many proteins that must be analyzed [60].

After all the peptides from each of the proteins of interest are sequenced, they must be

assembled to obtain the full protein sequence. This is a computationally intensive step,

often requiring the manual intervention of an MS technician with experience in protein

sequencing.

 21

AKPCK

LHNWF
AKPCKLHNWF

Step 1: Protein digested to its tryptic peptides

476.26 Da

674.37 Da

716.35 Da

337.96 Da

466.48 Da

Step 2: Noisy sample analyzed by first MS. PIS list saved

Step 3: Single peptide ionized by second MS. Amino acid sequence produced

MS1

MS2

MS2

MS1

MAVR

MAVR

M A V R

Figure 2-7: Tandem Mass Spectrometry Flow

There are three key limitations to this process:

1. The sequencing step has to be repeated for each peptide in the PIS. In the simple

example shown in Figure 2-7 there are only two additional peptides to sequence

after the first sequence is obtained. However, proteins can have between 50-900

tryptic peptides each [59] and the sequencing process in the second MS will have

 22

to be repeated for each peptide. With multiple proteins in a sample, there may be

thousands of peptides that have to be individually sequenced. Also, multiple

sequencing steps will consume larger volumes of the sample. Since it is difficult

to acquire large volumes of purified biological samples for medical experiments,

conservation of the sample is critical [47].

2. Sample preparation, as any chemical process, is subject to contamination. It is

impossible to prepare a protein sample that does not contain trace amounts of

contaminants from the environment. These “noisy” samples will also appear in

the MS output and there is no means of distinguishing them from the peptides to

be sequenced. Further, a real protein sample will contain a great deal of noise,

making it harder to identify relevant target peptides [47]. Therefore, in the cycle

between step 3 and step 2 in Figure 2-7 there is no information that aids us in

picking subsequent peptides to sequence. Any time spent accidentally analyzing

these noisy data elements wastes more of the input protein sample.

3. The peptides, once sequenced, must be placed in order. Once all the sequences are

obtained, a final step is needed to place the peptides in the correct order. As

mentioned above, this is a demanding process, which frequently requires manual

intervention.

As mentioned in Chapter 1, it is not strictly necessary to sequence every peptide in a

protein to identify it. If the sequence of the protein is known and stored in a protein

database, a few peptides can be used as a fingerprint to uniquely identify their parent

protein [9]. However, this approach requires that the protein sequence exist in the

database. As mentioned, our aim is to accelerate de-novo sequencing experiments, i.e.

experiments where the goal is to sequence a hitherto unknown protein. By definition, a

protein that has not been studied before cannot exist in a protein database; therefore the

fingerprint approach cannot be implemented directly.

Large computer clusters are now available to improve analysis thereby lessening the

restrictions imposed by the other two limitations, namely sample contamination and

 23

peptide ordering. Regardless, de-novo protein sequencing still cannot be performed as a

real time operation.

The input protein sample is usually difficult to obtain and small in quantity [48]

especially in de novo experiments. The ionization process described above is destructive

and consumes the sample rapidly. Thus being able to quickly distinguish between noise

and interesting peptides would allow researchers to minimize the amount of sample

required. In addition one could greatly improve the throughput of protein sequencing by

reducing the need for manual intervention and reducing the number of peptides that have

to be retrieved and sequenced from the first MS. With these goals in mind we consider a

different approach to protein sequencing.

2.2.2. A New Search Strategy

With the recent successful sequencing of the human genome, the set of all human

genes is now available to researchers [58][59]. Section 2.1.2 described how genes act as

templates for the creation of proteins. In theory it is possible to derive the sequence of all

the possible proteins of an organism given its genome [1] [16]. This implies that a

complete protein database can be built, which then reopens the possibility of performing

a peptide mass fingerprint (PMF) search. The PMF technique as described earlier, uses a

few peptides as a fingerprint to uniquely identify its protein of origin.

To see how this approach works, let us consider the sequence that is output by the second

MS (step 3 of Figure 2-7). This peptide was part of an intact protein before it was

digested by trypsin and analyzed by the mass spectrometer. Since every protein must be

synthesized from a gene, the human genome must contain the gene that originally coded

the sample protein. Once this gene is located, it can be translated to its amino acid

sequence using the codon translations given in Table 2-1. Consider the example in Figure

2-8: If the sequence produced by the second MS is "MAVR", it can be reverse-translated

as follows:

 24

Figure 2-8: Reverse Translation

Note that the amino acids A, V and R can be synthesized by multiple different codons;

thus there are many possible DNA strands that can create this peptide. The gene that

coded the protein in the sample must have one of these DNA strands as its substring. If

the possible DNA coding strands in Figure 2-8 are submitted as queries to a genome

database, the true coding gene can be located. Then, using the information in Table 2-1,

this gene can then be translated to a protein. However the human genome is a sequence of

approximately 3.3 billion base pairs and a search for 3 strings of 12 bases (including

wildcards) as shown above will likely yield multiple matches. If there are numerous

locations in the genome that match the coding strands, we must resolve them to see which

the true coding gene is. To this end we can utilize more information from the MS. From

the first MS we have the precursor ion scan (PIS) list. Recall that the PIS is a list of the

masses of the tryptic peptides in the protein sample. We will refer to this as the true PIS,

as it is the set of masses that have been positively identified by the MS.

The true PIS contains mass information about every peptide in the protein sample and its

can be used to resolve the problem of multiple matches described above. If each of the

matching genes is translated to its corresponding protein, and each of these proteins is

cleaved into its tryptic peptides, the masses of these tryptic peptides can now be

calculated. In essence, we generate a hypothetical PIS for every matching gene. The

hypothetical PIS that shows the greatest similarity to the true PIS corresponds to the

original protein. Variations of this approach have been proposed by several researchers

[1],[8]. An algorithm that implements this searching strategy is outlined in Figure 2-9.

 25

Reverse translate Peptide
query to DNA query.

Identify all tryptic peptides
masses (hypothetical PIS)
for each translated protein.

(H1,H2,...Hn)

Digest

Compare and Evaluate

Compare each
of H1,H2,..Hn to

TP

MS1
provides
true PIS

(TP)

MS2 provides
peptide sequence

Return Pi as protein
sequence

If Hi, shows best match to TP

Locate all genes that
contain this DNA query.

(G1,G2,...Gn)

Search

Translate each matching
gene to a protein.

(P1,P2,...,Pn)

Translate

Figure 2-9: Algorithm Outline

To clarify the steps of the algorithm consider the example in Figure 2-10. The second MS

produces the sequence of a single peptide (magtr) and the algorithm attempts to identify

 26

the full sequence of the protein that this peptide originated from. To do this, the peptide is

first reverse translated using the information in Table 2-1.

Figure 2-10: Searching the Genome Database

The DNA queries thus generated are located throughout the genome. Note in Figure 2-11,

that we locate two possible genes in the database that contain the DNA query. Both of

these genes are translated from DNA to amino acids, once again using the information in

Table 2-1. We know that digestion by trypsin cleaves a protein at the K and R amino

acids (if they are not followed by P). Using this rule, we identify all tryptic peptides from

both of the translated proteins and calculate their masses. This generates two hypothetical

PIS sets. This corresponds to the translation and digestion steps in Figure 2-9.

 27

Figure 2-11: Translate genes and digest translated proteins

Each hypothetical PIS is then compared to the true PIS and it is clear that the gene

corresponding to the protein “MAGTRQGGAKVILT” matches the true PIS more closely

and is thus identified as the true coding gene, as shown in Figure 2-12.

True
PIS

112.5

151.9

89.1

True
PIS

Hypothetical
PIS

112.5

151.9

89.1

112.5

94.4

53.8

Hypothetical
PIS

112.5

152.1

89.2

Figure 2-12: Compare digested peptides to PIS

Observe that identifying the coding gene in this manner implies that the protein sequence

can be obtained by simply translating the gene. Unlike the traditional approach described

 28

in Section 2.2.1 only one peptide from a protein (or two or three at most [36]) need be

analyzed to obtain the full protein sequence.

There are a number of advantages to the technique described above:

• Less sample is consumed: If only a few peptides have to be identified, a smaller

quantity of protein can be analyzed.

• Sequencing time is shorter: Using this approach, the multiple sequencing steps

and final peptide ordering phase described above can be avoided allowing the

sequencing speeds and overall MS throughput to be greatly increased.

• We can make better decisions: Given that we identify the full protein sequence,

we can generate a list of peptide masses we expect to see if this is the protein

being analyzed by the MS. When this list is compared against the PIS it will be

easier to distinguish between true proteins in the sample and artifacts generated by

noise from contaminant proteins as we now know what peptide masses should

appear in the PIS. The cycle between step 2 and step 3 in Figure 2-7 is now a

feedback path containing information in the form of the hypothetical PIS. This

information can be used to identify masses in the true PIS and eliminate them

from further analysis. Thus only peptides that we cannot identify with the

hypothetical PIS need to be considered, drastically reducing the overall number of

sequencing repetitions (step 3 in Figure 2-7) that have to be performed.

 29

2.2.3. Requirements of the New Approach

To implement this approach to peptide sequencing four key features are required:

• A method of locating potential coding genes within the genome. A database search

engine capable of locating query DNA strands within the genome is crucial to the

functioning of this algorithm.

• A method of translating the genes to find the masses of tryptic peptides they

generate. Once potential genes have been located, they must be translated and

digested in silico (by computation) to obtain the masses of the tryptic peptides.

• A method of comparing calculated tryptic peptide masses with masses detected by

the first MS. The tryptic peptides generated from each gene must now be

compared with the PIS list of masses. Using a scoring algorithm, every matching

mass can be ranked and thus a score for each gene match can be generated to help

the user to quickly identify the true coding gene.

• Fast overall processing time. Since we will have to sequence multiple proteins in

any realistic sample, we must be able to identify proteins in the time that the

second MS generates a sequence. From [49] we know that the average time before

the second MS can be reused to sequence another peptide is between 0.5 and 1

second. Therefore, any useful implementation of the above algorithm using the

feedback path described in Section 2.2.2 must be able to produce a protein

sequence within this timeframe.

Searching through the 3.3 billion base human genome [58] in a fraction of second

requires enormous throughput. Fortunately this kind of search is highly parallelizable in

both software and hardware. Applications of this nature are good candidates for custom

hardware implementation, thus our goal in this research is to design a hardware system

that meets the requirements of the sequencing algorithm as described above.

 30

2.3. Practical Considerations

In Section 2.1 the basics of protein formation were explained. The methods of DNA

translation described are true for simple organisms. However, for more complex

organisms such as humans there are additional processes that affect protein formation. In

addition, there are peculiarities of the genome database that must be addressed if it is to

be used in the manner described in Section 2.2.2.

2.3.1. Reading Frames and Complementary Strands

In Section 2.1.2 an example of protein formation was shown. In it, the tRNA unit

started at the codon ATG and moved in units of one codon (3 bases) along the RNA

strand. In this simple example, the tRNA started at the beginning of the strand. However

the genome is stored as a large set of DNA strands and while the translation starting

points of many genes are known, many remain to be discovered. In short, it is extremely

difficult to predict at which base protein translation actually begins [41]. Consider the

example below.

A T G G A

T G

Frame 2

Frame 3

T A

M Frame 1

Figure 2-13: Reading Frames

 31

Three different possibilities are shown in Figure 2-13. If protein translation starts at the

first A, the first amino acid will be M (Methionine) and every subsequent codon will be

processed with reference to ATG as the first codon (i.e. in this case the next codon will

be GAT). If however, translation began one base ahead at the first T (using TGG as the

first codon) the first amino acid would be T. The next codon would then be taken from

this reference point (i.e. it would be ATA). Each of these possibilities is known as a

reading frame. If translation begins at the first base in the sequence it is designated as

Frame 1, if it begins at the second base it is designated as Frame 2 and so on. Note that in

a given strand there are only three frames to consider. If translation began at the fourth

base, it begins reading at Frame 1 with the difference that one codon (or amino acid) has

been skipped [40].

Another detail to consider is that the Human genome is stored as single strands of DNA,

i.e. the complement of a strand is not stored since it can be inferred from the original

strand. A protein may be synthesized from either the original strand or its complement,

and to account for this we must generate the proteins for both the strand stored in the

genome database and its complement. It must be noted that the direction of translation is

reversed for the complementary strand. The effect of this is illustrated in Figure 2-14.

ATG TCA CCT AGA CCA

translation direction

Original
DNA Strand

Complementary
DNA Strand

TAC AGT GGA TCT GGT

translation direction

Figure 2-14: Translation of a Complementary DNA Strand

As stated in Section 2.1.1, the complementary DNA strand is a copy of the original with

the Adenine (A) replaced by Thymine (T) and the Guanine (G) replaced by Cytosine (C).

Figure 2-14 also shows that the direction in which protein translation proceeds is reversed

 32

for the two strands. Note that the presence of the complementary strand implies that there

are an additional 3 frames. The three frames of the complementary strand are designated

Frame 4, Frame 5 and Frame 6 respectively [40]. Each of these frames must also be

included with the original three in any calculations that occur as a result of gene to

protein translation.

2.3.2. Alternative Splicing

In Section 2.1.2 the process of protein translation was described. It was implied that

the tRNA unit traveled down the gene and based on the codons, it created a specific

amino acid chain. This is the basis for translation, but in complex organisms, an

additional process known as splicing occurs. Consider the earlier example from Figure

2-4, reprised in Figure 2-15.

T A G T T A A C G C C G A T

RNA strand is spliced – several bases removed

Different protein translated from spliced RNA

T A G T T C G A T

T A T G T T G

 ..……
M F

codon

A

A

C

Figure 2-15: Alternative Splicing

After the original gene is transcribed from the DNA to an RNA strand, when splicing

occurs, a small subsection is removed. In Figure 2-15, five bases are removed from a

region of the RNA strand. The new strand is joined at the spliced bases (in this case T

 33

and C) to form a new shorter strand. The mechanism behind splicing is not fully

understood by biologists and is an active area of research. Since there is no way of

determining splice sites a priori, it is not currently possible to translate a gene using only

a codon table. However, only 30% of all genes produce alternatively spliced proteins

[61][62]. It should be noted that this figure is an assumption based on current knowledge

and that several genes exhibit far more splicing. For example 55% of all genes in

chromosome 7 are alternatively spliced [52]. The approach we use in this work relies on

direct translation of genes to identify proteins without accounting for splicing. However,

an average protein is not spliced at many locations along its structure. If a spliced protein

is chemically digested as described above, only tryptic peptides formed from a splice site

will not have a corresponding coding sequence in a gene. The majority of tryptic peptides

will not be from splice sites and thus can be detected by this approach. This is sufficient

to confidently identify the gene of origin. Once the coding gene has been identified, more

complex analysis may be done to attempt identification of the splice locations. The key

notion here is to identify the true coding gene as rapidly as possible. It should be noted

however, that of the 30% of genes that alternatively spliced, 98% follow canonical rules

and many of these splice variants can be determined [62].

2.3.3. Unknown Bases in the Genome

One key detail that should be stated at the outset is the presence of ambiguities in the

genome databases. In addition to the A, T C and G molecules of DNA, genomic

databases also consist of an ambiguous base character ‘N’ which stands for aNy of the

four bases. These unresolved bases exist in genome databases as a result of the high

throughput sequencing techniques that are commonly used, and while they will ultimately

be resolved, the fact remains that ambiguous regions exist in biological databases [35].

 34

2.3.4. Repeat Sequences in the Genome

Another biological reality is the presence of repeated DNA sequences throughout the

genome. These repeats, as their name implies are merely sections of the genome that

have a sequence of bases repeated continuously for a long stretch within a chromosome.

Usually a 6 to 10 nucleotide sequence is repeated several thousand or even a million

times. [37][38]. If such a DNA sequence is translated to amino acids, the peptide string

will produce a set of repeating tryptic peptides upon digestion. Recall that we will be

comparing the masses of calculated peptides to those detected by the MS. If a reasonable

number of the calculated masses within a gene match those detected by the MS we regard

the gene as good candidate coding gene for the sample protein. In a purely random DNA

string (without repeats) one would not expect many matches to a query. However,

consider the effect of a repeat sequence on the matching process. If a mass detected by

the MS matches the mass produced by a repeat sequence it will produce a great number

of matches simply due to the repetitive nature of the DNA in this region. It is apparent

that an erroneous high score may be generated for a match due to repeats. One common

solution to reduce these false positives in current biological database system is to remove

or mask repetitive DNA sequences in the genome database. This simple approach is

reasonable, as repeats generally do not code proteins. However, a great deal remains

unknown about the genome and it would be ideal to search the genome in its

unadulterated form. For this reason, we use the entire genome including repeats and

provide an extension to the third requirement in Section 2.2.3 The comparison method

should calculate scores that do not merely indicate the number of matching masses, but

also reflect whether the match was made to peptide that appeared very frequently within a

gene (for example by a repeat) or to a peptide that appeared relatively infrequently.

Various database-searching algorithms such as MOWSE use the frequency of occurrence

of a peptide as a measure of its significance [9]. Since the probability of a real match

between a query and the genome is considered statistically improbable [9], a match that

occurs frequently can be treated as insignificant or a random match. The match scoring

system will incorporate both the frequency of occurrence of individual peptides and the

number of matches in the final score.

 35

2.3.4.1. Significance of Matches

The concept of significance described above can best be understood by the example

illustrated in Figure 2-16

MS1 PIS

10
50

100

PIS generated for protein

Figure 2-16: PIS of protein is generated by MS

In Figure 2-16, the protein sample in the MS is digested to 3 peptides whose masses are

listed in the PIS. Peptide masses are usually defined in Daltons (Da) where 1 Da is the

mass of a single Hydrogen atom. The PIS in Figure 2-16 indicates that peptide 1 has a

mass of 10 Da, peptide 2 has a mass of 50Da and peptide 3 has a mass of 100 Da. For

simplicity, we ignore any contaminants in the sample and only consider a single pure

protein sequence.

 36

Gene A =

Gene B =

Protein A =

Protein B =

Multiple genes located as potential coding regions and translated to
proteins

 ATGGCGATACTAGGCAGATCGA…

MVRHANNGQTILKCI…..

ATGCCACGGAGCTATTCAGCGA

MERGVAKVLFWNRSQ…..

Figure 2-17: Two Potential Coding Genes are Located in the Genome

The sequence of a single peptide is generated and used as a query to the genome

database. Figure 2-17 shows two candidate genes that may have coded the query peptide.

Each of these genes is translated to a protein that is then split into its tryptic peptides.

The masses of these peptides are then calculated and a histogram of peptide masses is

built. The histogram illustrates how frequently a peptide within a certain mass range

occurs in a given protein. This is the "frequency of occurrence" referred to in the previous

section.

 37

Protein A = Protein B =

Mass
Histogram

frequency
Mass
range

100
7
200

5
58
0

0-20

20-40

40-60

60-80

80-100

100-120

frequency
Mass
range

3
500
2

97
2
0

0-20

20-40

40-60

60-80
80-100

100-120

Mass
Histogram

High
frequency

Low
frequency

Protein A only matches high frequency peptides. Protein B match is more realistic

MVR-HANNGQTILK-CI….. MER-GVAK-VLFWNR-SQ…..

Figure 2-18: Identification of Significant Match

Gene A translates to a protein (protein-A) with a wide distribution of masses. There are

100 tryptic peptides that range in mass from 0 Da to 10 (the range of peptide 1), 200 in

the 40-60 range (the range of peptide 2) and 58 in the 80-100 range (the range of peptide

3). Clearly the unknown protein in the MS may exhibit a mass match to some of the

peptides in protein-A. However consider protein-B, which has only 3 fragments in the 0–

10 range, 2 fragments in the 40-60 range and 2 in the 80-100 range. The distribution of

mass is shown in Figure 2-18. Note that only the mass ranges into which the MS masses

fall are considered, since these are the only ranges in which a true match can occur.

 With a large number of peptides in the matching range, protein-A is hardly significant,

as a mass match could have occurred simply by chance due to the overwhelming number

of peptides that fell into the matching mass ranges. Protein-B on the other hand, has very

few masses that fall into the matching range. If the calculated masses in this range meet

the user specified threshold, this is a significant result as these matches are far less likely

to have occurred by chance. Consequently the definition of a significant match hinges on

 38

the frequency of occurrence described in Section 2.3.3. We define a match as a mass

match that occurs between an MS detected peptide and a calculated peptide. A significant

match occurs if the mass of the calculated peptide does not appear frequently within its

constituent protein. A number of techniques to compute significance exist for biological

database search algorithms. We adapt the approach proposed by the MOWSE algorithm

for our purposes [9]. Note that scoring functions such as MOWSE are extremely sensitive

to the data they operate on [46]. Biologists often spend a great deal of time developing

scoring schemes for specific comparisons and warn that even advanced scoring schemes

will suffer high rates of false positives when used with highly random data [63]. However

the MOWSE algorithm used in peptide database searches suits our requirements well,

and can be tuned by trial and error to work with the approach proposed in this work.

2.3.4.2. The MOWSE Algorithm

A number of algorithms that compare peptides from MS/MS expriments to protein

databases are commercially available. For example the Sequest [68] MS/MS search

attempts to correlate the theoretical spectra of proteins in a database with those identified

by the MS. A protein match is ranked by using a count of the number of matching

peptides and the sum of the intensities of these peptides. The Sonar MS/MS algorithm

[67] also uses intensity information in ranking matching peptides. The algorithm

described in Section 2.2.2 relies only on the masses and ignores the intensity information

provided by the MS. Thus we adapt the MOWSE algorithm, in our implementation as it

mostly closely meets our requirements. The MOWSE algorithm is targeted towards

peptide mass databases that are used in Peptide Mass Fingerprinting (PMF) experiments.

However, this is comparable to the approach described in Section 2.2.2, which is

essentially a peptide mass search. The difference is that the approach in Section 2.2.2

obtains its protein database by translating the genome, while PMF experiments used

databases of sequenced proteins.

The traditional MOWSE algorithm accepts a list of peptide masses detected by the MS

and searches through a protein database to find a protein that may generate the same

 39

peptide masses. However, MOWSE does more than just count the number of matching

peptides. It also assigns a statistical weight to each peptide match by using the MOWSE

factor matrix M [9]. In our approach M can be thought of as an array representing a

histogram of masses. Each element of the array is a bin representing a range of masses.

The bins record the number of peptides that fall into their mass range; in effect they

record the frequency of occurrence of peptides of a certain mass. These frequencies are

normalized by dividing them by the most frequent range to produce the final M.

|| (max)f
f

m i
i =

where fi is the frequency of element i.

This is then used to calculate the score of an individual peptide match as:

)(∏
=

= n

i
im

KScore

1

where K is a scaling factor that can be set by the user, and n is the number of matches

This is not the traditional MOWSE scoring function, as the original was designed to

operate on peptide sequences and not on translated DNA sequences. Nevertheless, this

formula still captures the essence of the scoring algorithm, which is the frequency

information provided by the MOWSE factor matrix.

To realize the scoring function above for a gene window, certain aspects of the

computation must be adapted for hardware implementation.

maxmaxmax f
f

f
f

f
f

m nmm
n

i

m
i ×××=∏

=

Λ21

1

n
m

f
f
)(max

∏= where n is the number of matches.

Thus, three key components define the score: the product term, the maximum frequency

and the number of matches. For every mass range [1...n] in which we detect a match, we

 40

take the product of the normalized frequency of the range. If a match occurs in a highly

frequent range, the ∏ term (and correspondingly the score) will be higher.

Conversely, a match to an infrequent range will produce a low score. This “smaller-is-

better” value for can be used to assign a significance value to a match.

m
f

m
f∏

2.4. Prior Work in Software and Hardware Based Genome
Searching

Researchers have considered using the genomes of organisms for protein sequencing

in the past [1]. As mentioned in Chapter 1 custom hardware has also been used to

accelerate various applications. However, we believe that this is first time the hardware

implementation of the sequencing scheme described in Section 2.2.2 has been published.

It is instructive to look at past attempts to use genomic data in both software and

hardware contexts.

2.4.1. Software Searches of the Genome

Choudary et. al. have performed searches of the human genome using mass

spectrometry data in the manner described above. Their research showed it to be a time

consuming method prone to errors due to the quality of the genomic sequence and the

immense volume of random data in an organism’s genome [1]. Nevertheless, they note

that with high quality MS data the genome could prove a useful tool in identifying novel

coding sequences. However the size of the genome, coupled with memory bandwidth

limitations on conventional processors restricted the speed of this method. The study in

[1] showed search times of 3.5 minutes on a 600 MHz Pentium processor. This can be

optimistically extrapolated to a search time of approximately 1 minute on a 2.4 GHz

processor assuming that memory speeds scale with the processor. Recall that a practical

implementation of the algorithm in Section 2.2.2 must be able to identify the coding gene

within 1 second to avoid costly instrument downtime.

 41

Despite the challenges posed above, complete high quality drafts of the human genome

have been produced since the work in [1] and many of the errors due to erroneous and

incomplete genomic data can now be resolved. Furthermore other studies such as those

conducted by Kumar et. al [26] suggest that a wealth of information will go overlooked in

protein sequencing studies if an organism’s genome is not analyzed.

Note that our goal is to determine novel protein sequences. A number of techniques exist

to characterize well-known protein sequences [8][9][10], but our challenge is to

accelerate real-time de-novo protein sequencing. Therefore the ability to search the

genome at high speed is crucial.

2.4.2. Hardware Searches of the Genome

The continuous growth of biological databases has created the demand for intensive

computational power if these databases are to be analyzed within a practical timeframe.

Several biological algorithms have already benefited from custom hardware acceleration,

some of which are reviewed in this section.

Among the most well known algorithms that show improvement when implemented in

hardware are those used for sequence alignment. These methods search through

biological databases to look for strings similar to those provided by a user. Hoang and

Lopresti describe hardware implementations of alignment algorithms that perform several

orders of magnitude faster than their software counterparts [17][18]. The alignment

algorithms in their work compute the edit distance between strings. The edit distance

between two strings is the weighted cost of the operations required to convert one string

to the other. The distance is computed using the common Smith-Waterman dynamic

programming algorithm, which lends itself to hardware due to its parallelizable nature.

Commercial hardware units such as BioXL, which perform sequence alignment, are

also available to researchers [20]. BioXL is capable of performing the Smith Waterman

calculations in addition to several proprietary algorithms that perform similarity searches.

The BioXL package is designed as a scalable system, which can grow based on the user’s

budget and requirements. Depending on cost concerns, the user can have a hardware

 42

system that outperforms an identical software algorithm by a factor of 198. The core of

the BioXL unit is a set of FPGAs containing hardware implementations of various search

algorithms. Other algorithms, such as BLAST [23], which search both gene and protein

databases, have been commercially implemented in systems such as DeCypher [19],

which also use FPGA-based hardware searches. These searches are commonly used in

similarity studies to establish the relationship between groups of proteins or groups of

genes. The DeCypher hardware was created in response to the massive growth of

genomic databases. The DeCypher system provides an economical alternative to

purchasing large server farms to search large genomic databases. A number of biological

search algorithms in addition to BLAST have been implemented in DeCypher, most of

which seek to group similar genes and proteins into families. These hardware

implementations show between 50 to 200-fold increase in speed with a 10 to 100-fold

reduction in price-performance ratios when compared to equivalent software platforms.

2.5. Programmable Hardware Platform

Our goal in this work is to implement the genomic search engine, tryptic mass

calculator and scoring algorithm in hardware to accelerate the de-novo protein

sequencing process.

The hardware upon which the system is prototyped is the University of Toronto’s

Transmogrifier 3A (TM3A) reconfigurable platform [13]. The core of the system is a set

of four interconnected reprogrammable chips known as Field-Programmable Gate Arrays

(FPGAs). These allow the user to implement a new design by simply downloading it to

the board from a PC. A brief description of FPGAs in general and the architecture of the

TM3A are presented in the following sections. This is followed by a description of how a

design is specified using a Hardware Description Language (HDL).

2.5.1. Field-Programmable Gate Arrays

FPGAs are reprogrammable chips that can have their logic functionality modified by

a user. There are two key features of an FPGA that enable this programmable behaviour:

programmable logic blocks and programmable routing. In Figure 2-19 the simplified

 43

view of an FPGA is depicted. It can be seen that there are a number of columns of

connected Configurable Logic Blocks (CLBs). The Configurable Logic Blocks often

contain multiple Lookup Tables (LUTs) and flip flops. These LUTs implement any

Boolean expression with a fixed number of inputs. In Figure 2-20, a 4-LUT (four input

lookup table), which can implement any Boolean function of 4 inputs, is shown. The

outputs of these functions can then be passed to various other LUTs or the input/output

blocks (IOBs) of the FPGA. In the architecture depicted, there is also a flip-flop

associated with each LUT, which is used to store the LUT output. Another feature of

modern FPGAs is the embedded block RAM (BRAM) that is also connected to the

routing racks [22]. This additional RAM provides greater storage capacity within the

FPGA. The FPGAs in the TM3A are Xilinx Virtex 2000E FPGAs that have 38,000 LUTs

and flip-flops and 64Kbits of RAM per chip.

CLBs

Block RAM

I/O pads

Figure 2-19: FPGA Architecture

 44

4
LUT

a) Single CLB
b) LUT and Logic

Figure 2-20: CLB and LUT details

2.5.2. Hardware Description Languages (HDLs)

To implement a circuit in an FPGA, the designer needs to describe it with a Hardware

Description Language (HDL). The designs in this work were created using VHDL,

(VHSIC• Hardware Description Language). VHDL is commonly used to describe a

circuit at various levels. At a high level of abstraction it can describe how circuit

components are connected together. Conversely it can be used at a detailed level to

specify the behaviour of each of the individual circuit components. An illustrative

example is provided below.

• Very High Speed Integrated Circuit

 45

ENTITY and2 IS
PORT

 (
 input1 : IN STD_LOGIC ;
 input2 : IN STD_LOGIC ;
 and2_out : OUT STD_LOGIC
);
END and2;

ARCHITECTURE and2_behv OF and2 IS
BEGIN

and2_out <= input1 AND input2 ;

END and2_behv;

Figure 2-21: VHDL definition of 2 input AND gate

The example in Figure 2-21 shows the VHDL specification for a 2 input AND gate. The

boldface type highlights keywords reserved by the language. The AND gate is described

as an ENTITY that has two input ports and a single output port. The behaviour of the

entity is described in the architecture section, where the logical AND of the two inputs is

assigned to the output of the circuit.

This simple example illustrates how a circuit component can be described in VHDL. A

compiler then synthesizes this code into the hardware structures such as the LUTs

described in Section 2.5.1.

 46

2.5.3. Transmogrifier 3-A (TM3A)

Figure 2-22: Transmogrifier 3-A

The TM3A (shown in Figure 2-22) is a reconfigurable hardware platform with 4 Xilinx

Virtex 2000E FPGA chips that are interconnected to each other by a 98-bit bus [13]. This

allows designs that are too large for a single FPGA to be spread over multiple chips. Each

FPGA also has 2 megabytes of SRAM attached and various IO connectors. Data is read

from the SRAM in 63-bit words. Each chip is also connected to a central housekeeping

chip, which performs the configuration of the FPGAs and ensures that they are

functioning within their operational limits. The housekeeping chip also interfaces the

board with a PC.

The PC allows the user to download designs into the onboard FPGAs and to

communicate with the board to provide input and receive output. A convenient software

interface to connect circuit on the FPGAs to a C program running on the host PC has

been developed, called the ports package [14].

 47

2.6. Summary

In this chapter, we have described the requisite biology to understand the design

presented in our work. The challenges of conventional de novo protein sequencing by

mass spectrometry have been examined. The advantages and shortcomings of using the

human genome database to infer the sequence of novel proteins have been presented. The

limitations of implementing these sequencing approaches in software and the appeal of

custom hardware for similar algorithms have also been considered. A description of the

implementation platform has also been provided as the architecture of this platform

guides our design choices.

In the following chapter we describe the design of the hardware units that the device is

comprised of. For each of the requirements listed in Section 2.2.3, we design hardware

units that are optimized to perform specific calculations that are optimized to both

accelerate the algorithm, and target the architectural features of the hardware.

 48

Chapter 3. Design of a Hardware Search Engine,
Mass Calculator and Scoring Unit

Overview

Any useful implementation of the sequencing approach described in the previous

chapter demands the capacity for high-speed searches. This speed can only be achieved in

software at high cost, as mentioned in Section 2.4.1. Custom hardware, as seen in Section

2.4.2, is often a practical solution for applications that process large volumes of data and

can be easily parallelized. The core of the algorithm in Section 2.2.2 is a search through

the genome that must be completed in approximately 500 ms to 1 s. Since a database

search is intrinsically parallelizable and the search space is large, we implement the key

units described in section 2.2.3 in hardware to achieve the speed requirements and avoid

the costs of a large computing cluster.

The design takes three primary inputs, namely:

1. A peptide query from the MS, which is a string of 10 amino acids or less,

2. A genome database,

3. A list of peptide masses detected by the MS. (the true PIS described in Section

2.2.2)

The design produces a set of outputs for a given peptide query:

1. A set of gene locations, which can code the input peptide query

2. A set of scores for each gene location. The scores rank the genes based on the

likelihood that they coded the protein in the sample.

The hardware identifies all locations in the genome that can code the peptide query and

then translates these gene locations into their protein equivalents. It then compares the

peptides in the translated proteins to the peptides detected by the MS and provides a

ranking for each gene location based on how well it matches the masses detected by the

MS. These gene locations can be translated to their protein sequence in a matter of a few

milliseconds by using Table 2-1 or by using existing software packages [44][45].

 49

The design is divided into three major subunits:

1. A search engine that locates all possible coding strands for a peptide query.

2. A tryptic mass calculator that translates all matching genes and produces the

masses of all the corresponding tryptic peptides from the translated gene.

3. A scoring unit that compares calculated peptides against those stored in the PIS

of the MS and ranks the matching gene locations.

This architecture is depicted in Figure 3-1. In the following sections we describe the

inputs and explain how they are encoded within the system. We then describe each of the

units in Figure 3-1 as we detail the flow of data through the system.

Tryptic
Mass

Calculator

Search
Engine

Scoring
Unit

Score Gene
Locations

Matching
genes

Calculated
peptide
masses

OUTPUTS

Genome
Database

Peptide
Query

MS detected
masses

(PIS)
INPUTS

Figure 3-1: Device Architecture

 50

3.1. Genome Database Coding and Compression

The genome database is one of the primary inputs to the system. To better understand

the nature of operations performed on this database, a description the data encoding

schemes used to store this database is provided.

The genome database is stored as an ASCII file of bases, and is available for download

from several different institutions. The ASCII representation uses 8 bits per character,

which allows for 256 unique characters to be stored. However, since there are only 5

different characters (the four bases A, T, C, G and the wildcard N) in the genome

database 98% of the storage spaces is wasted. We thus encode this ASCII file using a

different scheme that allows for better compression of the data. Each codon in the

genome file is encoded using a 7-bit value that allows for 27=128 unique codons. Each

codon consists of 3 characters and the characters themselves can be one of five values.

Therefore there are 53=125 unique codons in the actual genome database. For example

AAA = 0000000, AAT = 0000001, AAC = 0000010 etc. This encoding uses 2.3 bits per

base wasting only 2.3% of the storage space (125 of 128 possibilities used).

Since the genomes of most organisms are large (15 million to 3.3. billion characters), it is

not practical to store the genome database directly on-chip. Instead we store the genome

database in RAM external to the FPGAs.

As the genome is read from external RAM into the device, it first passes through the

decoder units illustrated in Figure 3-2. Each decoder takes in a 7 bit “compressed” codon

from memory and produces a 9 bit “uncompressed” codon using the original 3-bit

encoding scheme. The decoders themselves are BlockRAM units that are configured as

ROMs. They accept the compressed string as an address and produce and produce an

uncompressed bit-string as their output.

 51

Decompressed DNA word sent to rest of hardware

D

Compressed DNA string read in

D D D D D D D D

D Decoder unit

7 7 7 7 7 7 7 7 7

9 9 9 9 9 9 9 9 9

Figure 3-2: Genome Decompression

The uncompressed bit-string uses 3 bits per base that allows for eight possible

characters, five of which are used (A = 000, T = 001, C = 010,G = 011 and N =100 for

ambiguities). Thus a single codon is represented by a 9-bit value within our hardware as

shown in Figure 3-2. The rest of the hardware units described in the following sections

also use the 3-bit encoding scheme described above.

3.2. Peptide Query

Recall that the output of the second MS in an MS/MS experiment is a peptide

sequence (i.e. a string of amino acids). This must be converted to an equivalent DNA

representation to be compared against a genome database. This process was outlined in

Section 2.2.2. Consider for example the case when the MS outputs the peptide sequence

"MAVR". The goal of the algorithm is to locate all genes that can create this peptide.

 52

Therefore we reverse translate each amino acid into the codons that it could have

originated from.

ATG GC* GT* AGA
ATG GC* GT* AGG
ATG GC* GT* CG*

MAVR

Peptide query DNA/codon query

000 001 011 011 010 100…
000 001 011 011 010 100…
000 001 011 011 010 100…

Encoded DNA query

Figure 3-3: Query Reverse Translation

The peptide query is a string of no more than 10 amino acids (including wildcards). We

chose this query size based on the average size of the sequencable portion of a tryptic

peptide (approx. 10 amino acids) and the fact that a very short sequence of amino acids

(often less than 7) can uniquely identify the protein it originated from [25].

Note that we allow the wildcarding of searches by the inclusion of a wildcard character

in the query. This also serves to compress the query, as some amino acids with multiple

codons will not need each codon explicitly enumerated (for example the amino acid

Alanine (A) in the query above is expressed as GC*). This reverse translation is done on

the host PC when the peptide query is received from the MS. Inspection of Table 2-1

shows that no more than three codons are needed to encode any amino acid when

wildcards are employed. Thus we reverse translate each amino acid in the peptide to

generate a codon, or DNA query that encapsulates all the possible coding strands for the

peptide query as shown in Figure 3-3. Each of these DNA/codon queries are then

encoded using the 3-bit scheme described above.

It was mentioned in Section 2.3.1 that genetic sequences are stored as either original

DNA strands or their complements, but never both, since this is redundant. In the 3-bit

encoding scheme, no information is stored to indicate the type of strand. Therefore we

must also consider the complement of every strand in the database to ensure that all

possible coding patterns within an organism’s genome are examined. For this purpose,

 53

the complement of the query is also generated. Thus the original peptide query is

translated into six binary strings, three for the original DNA strand representation and

three for its complement. The query, thus encoded, is submitted to the search engine,

which locates all instances of the coding stands in the genome.

3.3. Search Engine

Recall that the primary objective of the search algorithm is to identify all possible

locations in the genome from which a peptide may have originated. To accomplish this,

the user provides a peptide query (inferred from the MS data), which is simply a string of

amino acids. To compare these amino acids to a genome (DNA) database they must be

reverse translated to codons as described in Section 3.2. The search engine takes these

strings of codons as input, and outputs all positions within the genome that match the

strings.

The purpose of implementing the search in hardware is to maximize speed. This speed is

governed by the frequency with which the memory containing the genome can be

clocked through the search engine. We define the parameter MEM_WIDTH to be the

width of a memory word that is read into the search engine, i.e. the number of bits read

into the system in every clock cycle. Thus the total number of clock cycles required to

search through a genome in memory (with a size defined by SIZE_OF_GENOME) is

given by
WIDTH_MEM
GENOME_OF_SIZE .

Consequently the total time to search through the database is given by:

Frequency_SystemWIDTH_MEM
GENOME_OF_SIZETime_Search_Total 1×=

Note that the total search time must be less than 1s for the search engine to be useful in

the de-novo sequencing method described in Chapter 2. Furthermore, we speculate that

there may be other applications that require high-speed searches of the genome. In

Chapter 4 we will describe versions of this system capable of achieving search speeds in

the order of a few hundred milliseconds.

 54

3.3.1. Search Engine Operation

The search engine accepts queries, which consist of a set of DNA strings and their

complements, and locates every position within the genome that matches any of these

strings. The genome, which is stored in the RAM, is clocked in as a series of

MEM_WIDTH-bit memory words. On every clock cycle the controller reads a new

memory word into the system. This word is compared to the set of queries provided by

the user. If a match is detected, the search engine controller returns the current memory

address, which the user can then use to locate the coding gene. The VHDL description of

the search engine controller is provided in Appendix B1 (control.vhd). A depiction of the

architecture of this device is provided in Figure 3-4.

Memory Word

Controller

memory
address

External
RAM

match found
match location

Complementary
query

match_found

Original
Query

Figure 3-4: Full Search Engine Architecture

 55

Memory
 1 2 3 4 5 6 7
 T T T A T C G

 A T C G

Query 4 A T C G

Query 1 A T C G

Query 2 A T C G

A T C G

 A T C G

Query 3

Query 5

Query 6

Query 7

 A T C G

Figure 3-5: Searching the Genome

Once reset, the search engine controller enters initialization state in which the six DNA

queries are read into the search engine. This is done in two clock cycles: one for the

original DNA query, and one more for the complementary query described in Section 3.2.

In the example in Figure 3-5, a simplified view of the architecture is presented, in which

a single DNA query is performed. Note that the complementary query shown in Figure

3-4 is removed for simplicity, however the search operations performed on both strings

are identical. The controller then moves into the comparison state in which memory

words are continuously read into the search engine from external RAM. With a new word

entering the engine in each cycle, every substring within the memory word must be

compared to the query in a single cycle. To do this, multiple copies of the query are

registered in hardware, and each one is simultaneously compared against the memory

word. Note that we need as many copies of the query as there are bases in the memory

word. This is apparent in the architecture shown in Figure 3-5 as each copy of the query

is aligned with a successive base in the memory word.

 Using the compression scheme of 7 bits per codon described in Section 3.1, the number

of bases in a single memory word is parameterized as:

 56

3
7

×= WIDTHMEMMEMWORDINBASESNUM ____

Each copy of the query is stored in a peptide unit, and if any peptide units signal a match

(as query 4 in the example in Figure 3-5), the controller exits the comparison state and

returns the current memory address to the user, to be interpreted as a coding region for

the query strand. The search engine then returns to the comparison state and the process

continues until all the memory has been read.

 It is apparent that the peptide units mentioned above are responsible for the core

functionality of the search engine. To elucidate the details of the design, a description of

the peptide unit follows.

3.3.2. Peptide Comparison Unit

The search process described above compares several identical copies of the query to

a memory word to maximize throughput. Each query is stored in an individual peptide

unit, which is depicted below.

PIPELINED AND

memory

Codon Units

Figure 3-6: Peptide Unit Structure

 57

A peptide comparison unit takes two inputs

a. A set of query codons (corresponding to the amino acids in the query)

b. A set of 10 codons from memory.

Figure 3-6 represents the general architecture of a peptide comparison unit. The query

codons are stored in a set of codon units. Each of these units then receives codons from

the memory word, which are compared against the query codons. Each unit produces a

single match output that signals whether the codon from memory matches any of the

query codons. If all of these match signals are activated simultaneously, a string of

codons from memory that matches a set of query codons has been found. The VHDL

description that instantiates the peptide comparison unit is presented in Appendix B 2

(protein.vhd)

ACG

AC*

AC*

AC*

ATC

ATT

CC*

CC*

CC*

ATA CCG

ATA

Query
Codons

Peptide
Match

Memory
Codons

Figure 3-7: Peptide Unit Operation

In Figure 3-7 a simplified peptide comparison unit is depicted in operation. There are 3

sets of query codons, which are compared to the codons from memory. In Figure 3-7 the

matching codons are highlighted. If at least one codon from each set shows a match to

memory, the query has been found in the genome, or equivalently, a coding strand for the

peptide query has been found.

Thus each of the codon sets signals a pipelined logical AND unit, and if all sets indicate a

match, the peptide unit signals a match. A wide AND operation (logical AND with many

 58

inputs) will incur significant delay if is to be completed in a single cycle. To avoid this

delay and ensure fast circuit operation, we register the match signals from the units, then

AND them as a pipelined operation.

intermediate
registers

AND
inputs

Pipelined
AND

output

AND
inputs

AND
output

a) Non-pipelined Wide AND

b) Pipelined Wide AND

long logic delay

short logic delay short logic delay

Figure 3-8: Pipelined AND Operation

Figure 3-8 contrasts a simple wide AND implementation with the pipelined version

described above. In the non-pipelined unit, there is a comparatively long logic delay as

the input pass through multiple gates to produce the output AND signal. If this delay is

sufficiently high, it will constrain the maximum clock frequency of the circuit. In the

pipelined implementation, the inputs are divided into two groups. Each of these groups is

 59

individually ANDed in a single clock cycle. The results of this operation are stored in

intermediate registers and ANDed together in the next clock cycle. This technique

reduces the delay through logic and allows faster circuit operation. Note that the output of

the pipelined AND is delayed by an additional clock cycle, but this is usually acceptable

as the clock frequencies are sufficiently high, and the penalty of an extra cycle is

negligible.

Figure 3-6 depicts the peptide unit as a set of codon units, as described above. It is the

match signals from each of these codon units that are ANDed together to verify that all

codons have detected a match in memory. These codon units are the building blocks upon

which the search engine is built.

3.3.3. Codon Unit

The smallest fundamental unit of the search is the codon unit, which takes a set of

three query codons and a single codon from memory as its input. It produces a match

signal as its output. If any of the three query codons matches the memory codon, the

match signal is activated. The set of three codons corresponds to the translation defined

in Section 3.1. Recall than any amino acid can be represented as set of three codons or

less. Thus a codon unit essentially determines whether a codon from memory is capable

of coding a query amino acid.

 60

R Query
registers

A G A

A G G

C G *

memory

match

T G A

Figure 3-9: Codon Unit Operation

The operation of the codon unit is shown Figure 3-9. Assuming that the query amino acid

is Arginine (R), it is translated to its equivalent codons AGA, AGG and CG* using Table

2-1. This is done in software before the query is submitted to the search engine hardware

as described in Section 3.2. These three query codons are stored in the codon unit, and at

every clock cycle, a new base from the genome in memory is read in and compared

against the queries.

Delving deeper into the implementation, Figure 3-10 illustrates a detailed view of the

codon unit. The bases in the three query codons are divided by position, i.e. the first base

in every query codon is ANDed with the first base for a codon from memory, the second

query base is ANDed with the second memory base and so on. From Figure 3-10, it is

apparent that the codon unit only signals a match if each base from memory matches at

least one query base in its corresponding position. The VHDL code that describes this

architecture can be found in Appendix B 3 (amino.vhd)

 61

T

G

A

match

A A C

G G G

A G *

Figure 3-10: Implementation Details of Codon Unit

It is the match signal shown in Figure 3-10 that is passed into the pipelined AND in the

peptide comparison unit, and ultimately to the controller, which then detects a hit and

returns the corresponding memory address to the user.

 62

3.3.4. Interpreting Search Engine Outputs

The search engine identifies memory addresses that contain a section of DNA capable

of synthesizing the query peptide. In a biological sense, this corresponds to identifying

coding genes within the genome. Figure 3-1 indicates that the gene at the hit location is

then sent to the tryptic mass calculator for further processing.

However the stream of DNA from the genome database, which passes through the search

engine, has no markers to indicate the start or end points of a gene. To overcome this lack

of information, we use the average size of a gene to delineate the gene under

consideration.

ACGGAT ACGATC
query

 Hit located in genome. Genes on either side of hit window are translated

GENE_SIZE

…GATCGAGC
TACG
GAGCATCAG
TCAGCGGTT
GAACACG…

Genome

Gene Window

GENE_SIZE

Figure 3-11: Selection of Gene

Defining the size of a gene as GENE_SIZE bases, we send a 2 x GENE_SIZE window

of bases surrounding the hit to the calculator. This approach, as shown in Figure 3-11,

allows the consideration of one gene preceding the hit and one gene following it. In

practise, this window is implemented as a GENE_SIZE sized shift register. The input

data to this shift register is obtained from the output of the decoder blocks described in

Section 3.1. This data is in the uncompressed 3-bit form; therefore the depth of the shift

register is GENE_SIZE x 3 bits. Data from the decoder is continually passed into the

gene window register, which acts like a delay element, as its outputs are delayed by

GENE_SIZE (its depth) relative to its input. When the search engine detects a hit, the

 63

output of the gene window is sent to the tryptic mass calculator, which continues to read

the gene window until it has processed 2 x GENE_SIZE bases.

This technique ensures that the calculator processes a reasonable amount of genomic data

on either side of the hit location. However, the fixed size of the gene window adds an

inherent error to further operations, as most genes will be of a different size. Regardless,

if a reasonable portion of the gene is processed, it will still be possible to identify many

of the peptides from the translated protein.

3.3.5. Summary of Search Engine Design and Operation

The original peptide query is translated from amino acids to sets of codons as

described in Section 3.2. These codon strings are stored in the codon units that make up a

peptide unit. Multiple identical copies of the peptide unit are instantiated to maximize the

throughput of the search as described in Section 3.3.1. The search engine progresses

incrementally through the address space of the genome stored in RAM, looking for a

match to the queries. If a match is found, the current memory address is sent to the user

as a gene location that codes the peptide query. Genomic data surrounding the hit

location is then sent to the Tryptic Mass Calculator as illustrated in Figure 3-1.

 64

3.4. Tryptic Mass Calculation

Overview

Referring back to Figure 3-1, we see that the search engine locates genes matching the

peptide query and sends the corresponding addresses to the user. It remains to translate

all matching genes to their protein equivalent, digest these proteins to peptides and

calculate the masses of the peptides. Peptide masses from each translated protein are then

compared with the PIS list described in Section 2.2.1 to determine which translated

protein most closely matches the protein sample in the MS.

Note that the tryptic mass calculator receives matching genes as its input, and performs

the translation, digestion and calculation operations described above to provide the

peptide masses as outputs. To do this the calculator unit must translate the matching

genes from the search engine into amino acids and locate the tryptic cut-sites as described

in Section 2.2.1. To obtain tryptic peptide masses, the sum of masses of the amino acids

from cut-site to cut-site is accumulated. These masses are then sent to the Scoring Units

as illustrated in Figure 3-1.

As an overview of the mass calculation process, an example of the steps involved is

presented.

…..CATAGG AAGGCT…

Translation

….. H R M D K A……

Gene window translated from DNA to amino acid sequence

ACGGAT

Figure 3-12: Translation of Gene to Protein

 65

The DNA data from the gene window, i.e. the matching genes, are interpreted as a

stream of codons, or equivalently, as an amino acid string. We are, in effect, translating

the gene to its corresponding protein as shown Figure 3-12.

….. H R M D K A……

…H 225.32 Da
MD 127.11 Da

Tryptic peptides detected in amino acid sequence. Peptide masses calculated

Digestion

Calculation

R
K

Figure 3-13: Digestion of Protein and Calculation of Tryptic Peptide Masses

Once a protein is translated, its tryptic peptides must be compared to those detected by

the MS. To identify the tryptic peptides and digest the protein, the calculator detects the

tryptic cut-sites (Lysine (K) and Argnine (R) amino acids) and calculates the

accumulated mass of all amino acids between these cut-sites as illustrated in Figure 3-13.

3.4.1. Calculator Architecture

An architectural view of the calculator as depicted in Figure 3-14 shows a pipelined

design that performs the translation, digestion and peptide mass calculations described

above.

At every clock cycle, the controller for the calculator reads a new set of

NUM_BASES_IN_MEMWORD bases from the gene window into the calculator. The

calculator operates on this data in codon-sized units. Note that each stage of the

calculator in Figure 3-14 has a single active codon attached to a detection unit and mass

lookup table. The first stage of the calculator translates its first codon into the mass of its

corresponding amino acid, which in turn is passed to a mass accumulator. In the next

clock cycle the controller reads a new set of codons from the gene window into the

calculator, and the remaining unprocessed codons from first stage are passed down. In the

 66

second calculator stage, the second codon is processed in parallel with the first codon

from the new set. Note also that the accumulator from the first stage passes its calculated

mass to the second stage. Thus the mass of the first amino acid can be added to the mass

of the second to calculate the mass of the peptide. If the detection units identify a tryptic

cut-site (Argnine or Lysine amino acids not followed by Proline), digestion occurs and

the accumulated peptide is output from the calculator. Observe that each stage of the

calculator operates in an identical manner by receiving a set of codons, performing

calculations on only a single codon and buffering the rest. These remaining codons are

passed to the next stage in the subsequent clock cycle and the process is repeated until the

entire gene has been processed. The VHDL representation of the behaviour of the

calculator is given in Appendix B 4 (mod_calc.vhd).

Gene window

Active Codon

Detection Units and Mass LUTs

Mass Accumulators

Tryptic
Peptide
Masses

Figure 3-14: Calculator architecture

 67

The matching gene is passed as input to the calculator,

NUM_BASES_IN_MEMWORD at a time to match the memory throughput. The

calculator operates on these bases in codon-sized units; therefore

NUM_BASES_IN_MEMWORD/3 codons (defined as NUM_CODONS) are clocked

into the calculator in every cycle. To maintain this throughput, the calculator needs at

least NUM_CODONS stages operating in parallel, as there could be at most

NUM_CODONS peptides in a single memory word. However, if a peptide spans more

than a single memory word, the accumulated mass from the first memory word will have

to be saved until the tryptic cut-site is detected in one of the following memory words.

Thus an extra pipeline stage is required to accumulate intra-word peptides, resulting in a

total of NUM_CODONS +1 stages operating in parallel to ensure that the calculator can

meet the memory throughput.

For every hit detected by the search engine, the calculator processes a full gene window

of bases. Thus for every hit, the calculator operates for a total of

MEMWORD_IN_BASES_NUM
SIZE_GENE corresponding to one cycle for every memory word

in the genome. Note that an additional NUM_CODONS+1 cycles are required to process

the codons that will remain the pipeline of the calculator. The following sections provide

a detailed description of the architecture of the hardware used to perform the mass

calculations.

 68

3.4.2. Mass Calculation

For a detailed account of the operations performed by the calculator, consider Figure

3-15.

Active Codon

Next Stage

Previous Codon Mass

Mass
Lookup
Table

Detection
Units

Next Codon

demux

Calculator Output

Figure 3-15: Single Stage of Calculator

Each stage of the calculator only processes its active codon, which is fed into a lookup

table of masses and a set of detection units. The mass lookup table reads the codon and

produces the mass of the corresponding amino acid effectively translating the codon. The

detection unit looks for tryptic cut-sites in the codon stream. If no cut-site is detected, the

mass of the previous codon is added to the mass of the active codon. However, if a cut-

site is detected, i.e. we reach the end of a tryptic peptide, the accumulated mass is sent to

the calculator output instead. Thus the detection units and mass accumulators control the

digestion and calculation operations of the calculator.

 69

3.4.3. Mass LUTs and Detection Units

Mass LUT
Current
Codon Mass

a) Mass Lookup Table(LUT)

Cut-site Detector Cut found

b) Detection Units

Current
Codon

Proline Detector Pro found
Next
Codon

Wildcard Detector Irresolvable
‘N’ found

Current
Codon

NUM_MASS_BITS

6

6

6

4

Figure 3-16: Calculator Subunits

The mass LUTs are implemented as ROM tables which accept a 6-bit codon as input

and provide a mass value, which is NUM_MASS_BITS bits wide, as output. A codon

size of 6 bits implies that only 2 bits are used to represent each of the 3 bases in contrast

to the 3-bit per base scheme described thus far. To explain this disparity, consider the

binary representation of the codons as described in 3.1. With only four real bases A,T,C

and G, a two bit representation is sufficient to encapsulate all possibilities. Recall that the

third bit is used to represent the wildcard character. Thus every mass is represented by

two data bits and a single wildcard bit. As the mass lookup table is instantiated in

BlockRAM, using a 9-bit input for every codon (3-bits per base) would require 29 = 512

storage locations of NUM_MASS_BITS size in the BlockRAM. By using only the two

data bits of a base, a codon can be represented in 6 bits. Such an implementation requires

only 26 = 64 storage locations. The controller for the mass calculator uses the wildcard bit

in combination with the wildcard detector to determine whether there is sufficient

 70

information to translate the codon into its amino acid mass.

 The cut-site detection unit looks for the presence of a Lysine (K) or Argnine (R) amino

acid in the codon stream. Recall that trypsin cleaves the protein at these amino acids

provided that they are not followed by Proline. Thus the Proline detection unit looks

ahead to the next codon (see Figure 3-15) to detect the presence of any codon that can

synthesize the amino acid Proline. Both the cut-site and Proline detection units take a 6-

bit codon as input and output a single bit indicating whether a cut-site or Proline codon

was found in the input codon.

The wildcard detection unit looks for the presence of an irresolvable codon in the data

from memory. Recall from Section 2.1.2, that the presence of a wild card or 'N' character

in a codon does not automatically imply that the resultant amino acid cannot be resolved.

In some of these cases, it is still possible to identify amino acid. The wildcard detection

unit takes a 4-bit input (corresponding to the last two bases in a codon) and provides a 1-

bit output, which is combined with the wildcard bits described above. The controller for

the calculator uses this information to determine whether to save or discard the mass

produced by a mass lookup table.

3.4.4. Complementary Strand Calculations

As with the search engine, the complementary DNA strand must be accounted for.

The tryptic masses for both the strand stored in the genome, and its complement must be

calculated. With the hardware above, the masses of tryptic peptides from the original

strand can be calculated. For the complementary strand, a copy of this hardware is built

which transposes and complements the codons. In Figure 3-17(a) an example string is

shown alongside its reverse complement. Likewise, implementations of the cut-site,

Proline and wildcard detection units for the complementary strand are instantiated within

the calculator.

 71

ATG ACT CCA GAC

GTC TGG AGT CAT

Original strand

Complementary strand

ATG CAT

ACT AGT

CCA TGG

GAC GTC

Original Complement
A T G

C A

A C T

A G

…

a) DNA Strand and its Complement

a) Mapping codons to their complements

 T T

Figure 3-17: Complementary Strand Calculation

Note that to obtain the reverse complement, the original strand is transposed and the

bases are replaced with their complements. This corresponds to the reversed translation

direction described in Section 2.3.1. However, the codons read from memory arrive in the

order of the original strand and do not follow the transposed order depicted in Figure

3-17(a). Thus the codons are accumulated in the forward direction for the original strand

(as read from memory), but backwards for the complementary strand.

This merely implies that, for the complementary strand, tryptic mass calculations will

begin at the end of the protein. Mass accumulation is an associative process which is

unaffected by the direction in which its input codons arrive.

 72

3.4.5. Six Frame Mass Calculation

Each calculator unit computes the masses of one strand and its complement. This

accounts for one frame and its complement. To account for the other two frames and their

complements, two more calculator units are instantiated; each starts calculations at one

base position ahead of its predecessor (see Section 2.3.1 for explanation) and operates

identically to the structure described above. To implement this, output of the gene

window shift register is read at different base locations by each of the three calculators as

shown in Figure 3-18.

T C G A G C T A G C G C T

Frame 2,5
 Frame 1,4

Gene Window

Peptide masses (frame 2,5)

Peptide masses (frame 1,4)

Peptide masses (frame 3,6)

3 sets of two-frame
calculators

Frame 3,6

Figure 3-18: Parallel Six-Frame Calculations

3.4.6. Summary of Tryptic Mass Calculator Operations

The search engine identifies locations in the genome that can code the query peptide.

The genes surrounding these locations are sent to the tryptic mass calculator to be

translated into proteins and digested into tryptic peptides. The calculator then calculates

the masses of these tryptic peptides. In the event that there are multiple matching genes,

we now have a list of tryptic peptide masses that correspond to each gene. These masses

are compared with the peptide masses detected by the MS to uniquely identify the true

coding gene.

 73

3.5. Scoring unit

Overview

From Figure 3-1 we see that the calculator described in Section 3.4 produces the

masses of tryptic peptides for all genes that coded the peptide query. These calculated

masses are then compared with the masses detected by the MS to determine which gene

actually codes the protein in the sample. Figure 3-19 elaborates the representation of the

scoring unit shown in Figure 3-1. The interested reader can find the VHDL description

of this unit in Appendix B 5 (scorer.vhd)

Calculated
Peptide
Masses

MS detected
masses

(PIS)

Score

PIS
Storage

Mass
Matching

Histogram

Significance
Calculator

matching masses

frequency

Figure 3-19: Scoring Unit Architecture

Observe that the inputs to the scoring unit are the calculated tryptic masses and the PIS

list from the MS. After comparing the two sets of masses, the unit produces a score

indicating the quality match. Thus, the scoring unit serves to rank each hit (or gene

window) in order of significance. Significance here is defined as the likelihood that a

given gene window contains the gene that actually codes the protein in the input sample.

Section 2.3.4.2 describes how the significance is computed using a histogram that records

the frequency of occurrence of mass ranges. To compute this score, the hardware

 74

operates in three distinct states: True PIS storage, histogram construction and score

calculation. In the first state the scoring unit merely saves the masses from the true PIS,

which are primary inputs to our device. In the histogram construction state, peptide

masses from the tryptic mass calculator are used to initialize the histogram. Once

initialization is complete, the controller moves into the score calculation state in which it

identifies matches between the calculated masses and those in the stored PIS. The

matching masses are used in conjunction with the frequencies stored in the histogram to

generate a score for the gene window.

Recall from Section 2.3.4.2, that the score consists of three major components: the

product term, the maximum frequency and the number of matches. In the following

sections, we explain the how operations performed in the three states listed above

produce these three key components of the score.

3.5.1. True PIS Storage

Upon initialization, the masses detected by the MS (the true PIS as defined in Section

2.2.2) are sent as inputs to the scoring unit, which saves them in on-chip RAM. Later, as

the calculator generates masses, each must be compared with the stored masses from the

PIS. If they fall within a user-defined threshold of each other, a match is signaled.

The first step in this process is to store the mass values from the MS in the on-chip RAM.

The storage uses a data-associative indexing scheme similar to Content Addressable

Memory (CAM). A subset of the most significant bits of the mass value is used to divide

the masses into specific ranges as illustrated in Figure 3-20.

 75

1011100…

address (0..ADDR_BITS –1)

…11001

data

mass (0..NUM_MASS_BITS-1)

On Chip RAM

Figure 3-20: Data Associative Mass Storage

In Figure 3-20 a NUM_MASS_BITS sized mass value from the true PIS is sent to the

on-chip RAM for storage. ADDR_BITS of the most significant bits from the mass value

are used as an address into the on-chip RAM at which to store the mass. This storage

method divides the masses into ranges; the range that a particular mass falls into is

defined by its address. In the example in Figure 3-20, the mass will be stored at address

46 (101110).

 It is clearly possible for two different masses to be stored at the same address if

ADDR_BITS of their most significant bits are identical. To avoid this situation, we

constrain the design such that ADDR_BITS must be sufficiently large enough to ensure

that data will not be overwritten. Upon device initialization, each of the PIS masses from

the MS is stored in the on-chip RAM using this technique.

3.5.2. Histogram Construction

In the second state, the scoring unit initializes a histogram with NUM_BINS bins. As

the mass calculator operates, its outputs are passed into the scoring unit. Recall from

Section 2.3.4.1, that the histogram records the frequency of occurrence of peptides in

 76

different mass ranges. To this end, decoders are used to identify which range a given

mass falls into and a set of counters is used to determine how many masses fall into a

given range.

Figure 3-21 illustrates how the decoders and counters described are used to update the

histogram. Refer to Appendix B 6 for the VHDL description of controller that

implements this process (mod_frequency_table.vhd).

Mass 0

Mass 1

Mass 2

Mass 3

Decoder 0

Decoder 1

Decoder 2

Decoder 3

NUM_BINS
counter

counter

counter

counter

counter

Mass
NUM_CODONS

Decoder
NUM_CODONS

counterNUM_BINS

NUM_BINS

NUM_BINS

NUM_BINS

/

/

/

/

/

Calculator
Outputs

Histogram
Bins HIST_ADDR_BITS

/

/

/

/
/
/
/
/
/

NUM_FREQ_BITS

Figure 3-21: Building the Frequency Histogram

Firstly note that the bins in Figure 3-21 are simply a set of NUM_BINS registers that are

NUM_FREQ_BITS bits in width. Each resister, or bin, represents a range of mass and

contains the number of peptides in the current gene window that fall into this range. The

counters at the inputs of these registers identify how many of the peptides from the

calculator fall into a given range. The counter then updates the bin appropriately. Recall

that the calculator is capable of producing NUM_CODONS + 1 masses in a single cycle.

Thus in every clock cycle, any bin in the histogram can be incremented by a maximum of

NUM_CODONS + 1 peptides.

As mentioned, binary decoders are used to determine the range into which a calculated

mass falls. The decoder has log2(NUM_BINS) inputs and NUM_BINS outputs. Each

 77

output signal of the decoder corresponds to one of the NUM_BINS bins. Therefore

log2(NUM_BINS) bits of the mass (defined as HIST_ADDR_BITS) are required to

determine the range a given mass falls into. There are NUM_CODONS + 1 decoders,

each corresponding to single output of the calculator.

000....
counter

counter

counter

000001010110....

Decoder

Histogram

Calculator outputs

bin 1

bin 0

bin 1

bin 2

bin 3

000001110

Decoder

counter + 2

bin 1

Figure 3-22: Updating the Histogram

An example of a histogram update is presented in Figure 3-22 for clarity. In this example

two calculator outputs are shown. While both masses are different, HIST_ADDR_BITS

of their most significant bits (6 bits in this example) are the same, thus both fall into the

same bin (bin 1). Both decoders activate the output corresponding to bin 1, and the bin 1

counter correspondingly indicates that the histogram should increment the value in bin 1

by 2. Using this approach, we can record the frequency of occurrence for each calculated

peptide mass. Once a full gene window has been processed, the bins are passed through a

shift register, which identifies the mass range that occurs most frequently. The maximum

frequency is one of the key components of the score and is returned to the user. The

entire histogram update process occurs in parallel with the operation of the calculator, but

an additional NUM_BINS cycles are required to identify the maximum frequency. The

next phase uses this histogram to calculate the significance of the matching masses as

shown in Figure 3-19.

 78

3.5.3. Score Calculation

Once the masses from the PIS have been stored and the histogram has been

initialized, the score calculation process begins. This process consists of two operations

that occur in parallel: mass matching and significance computation. The mass matching

operation compares every calculated mass to the PIS values saved in the on-chip RAM to

identify any matches. The significance computation uses these matching masses to

determine the significance of the gene window at a hit location. The two remaining

components of the final score, namely the number of matches and the product term are

calculated by these operations. The following sections describe the architecture and

operation of the hardware that implements these operations.

3.5.3.1. Mass Matching

Once the histogram has been initialized, the masses from the tryptic peptide calculator are

once again sent to the scoring unit. In this state however, the masses are not used to

update the histogram. Instead, the calculated masses are compared with the true PIS

masses that were stored earlier to identify any matches between the tryptic peptides in the

current gene window and those detected by the MS. Figure 3-23 represents the

architecture implemented to perform the mass matching operations.

The goal of the mass matching hardware is to identify calculated masses that fall within a

user defined threshold of a value in the true PIS. Given a tryptic peptide mass from the

calculator, we identify its closest corresponding mass in the true PIS by once again using

data associative techniques. To see how the closest matches are identified, recall the

storage scheme used to save the true PIS.

 79

On-chip
RAM

comparator

Closest matching mass

tolerance

match

Calculated
mass

-

/

ADDR_BITS

Figure 3-23: Mass Matching

The on-chip RAM, in which the true PIS masses are stored, is set into a read only mode

and ADDR_BITS of the most significant bits of the masses from the calculator are used

as addresses. Doing so retrieves the PIS mass that was stored at the same address, i.e. the

retrieved PIS mass falls into the same range as the calculated mass.

The difference between the calculated mass and the stored PIS mass is then calculated.

This difference is passed to a comparator along with a user-defined threshold. If the

difference is less than or equal to the threshold, the comparator signals a match as

illustrated in Figure 3-23. The match signal is passed to the controller, which increments

a counter to keep track of the total number of matches found in a window. Recall that

this is one of the key components of the final score for the current gene window.

The matching masses identified here are used in the significance calculation step where

the final component of the score, namely the product term, is computed. This process is

detailed in the following section.

 80

3.5.3.2. Significance Calculation for Matching Masses

In addition to the number of matches, the scoring algorithm described in Section

2.3.4.2 ranks the matches by significance. Figure 3-19 shows that the significance

calculator receives frequency values from the histogram in addition to the matching mass

values. The purpose of the significance calculator then, is to determine the ranges into

which matching masses fall, and compute the product of the frequencies of these ranges.

This corresponds to the product term defined in Section 2.3.4.2.

Recall that the peptide mass calculator can produce a maximum of NUM_CODONS+1

matching masses (i.e. every output of the calculator matches a mass value in the true

PIS). To account for this event, the most significant HIST_ADDR_BITS bits of

matching masses are used to identify the range the mass falls into. The frequency of this

range is read from the appropriate bin of the histogram and placed in a pipeline as shown

in Figure 3-24. As with the tryptic mass calculator, the pipeline is used to ensure that the

product of the frequencies of multiple matching masses can be computed per cycle to

meet the throughput of the calculator. Each of the NUM_CODONS+1 stages of the

pipeline processes a single frequency value per cycle. In the subsequent cycle, the

unprocessed frequencies from every stage are passed to the following stage. However, the

processing units depicted in Figure 3-24 do not directly compute the product of the

frequencies.

 81

freq

frequencies of matching ranges from histogram

freq freq

freq freq

freq

product of matching frequencies

∑
=

n

i
m)flog(

i
1

log

log

log

Figure 3-24: Calculation of the Product Term

To calculate the product of the frequencies in the pipeline, the technique of logarithmic

addition is employed as represented by the log and accumulator blocks in Figure 3-24.

This method relies on the fact that log(, where f∏ ∑
= =

=
n

i

n

i
mm)flog()f

ii
1 1

m corresponds to

the frequency of a matching range and n is the total number of matches. Thus, instead of

explicitly calculating the product of the frequencies, we take the sum of the logarithms of

these values. The actual product can be determined by taking the inverse of the logarithm

of the accumulated value. We use this approach primarily to ensure that the product term

can span a large range. The logarithm units are NUM_FREQ_BITS bits wide allowing

for values between 0 to 2NUM_FREQ_BITS to be represented. These values are calculated in

hardware by lookup tables, which take a NUM_FREQ_BITS sized frequency value as

input and produce log10(frequency) as its output. Since the frequencies themselves are

integer values from 0 to 2NUM_FREQ_BITS, this simple scheme is sufficient to calculate the

 82

logarithms. The sum of these logarithms is computed by a set of accumulators to obtain

the logarithm of the product term. This value is returned to the user, where the logarithm

is inverted to obtain the final product term. This product term, along with the maximum

frequency and the total number of matches between the hypothetical PIS and the MS

detected values, is returned to the user to calculate the final score given by.

matches_of_number_total)encyimum_frequ(max
term_productScore 1=

This corresponds to the scoring method described in Section 2.3.4.2.

A small product term indicates a match to an infrequent mass range, which corresponds

to a high score as explained in Section 2.3.4.1. In practice, the actual score values

produced by this formula vary in orders of magnitude i.e. high and low scores are

typically several orders of magnitude apart. Therefore it is common for these scoring

schemes to use 10 log(Score) as the final score value. In the results presented in Section 4

we adopt this notation.

3.5.4. Six Frame Score Calculations

Section 3.4.5 states that the calculators generate six frames of masses simultaneously.

Each of these frames can be treated as an independent gene as each encodes a different

set of tryptic peptides. Thus six corresponding scoring units, are instantiated in the

hardware, each of which computes the score of an individual frame of the gene under

consideration. Therefore each hit in the database is returned to the user with 6 sets of

scoring information. Since only one of these six frames is the true coding region, the

frame that generates the maximum final score for a given gene window is considered to

be the true coding frame.

 83

3.6. Design Summary

We have presented the design of a hardware system that meets the key requirements

stated in Section 2.2.3. Figure 3-1 illustrates an overview of the key subunits of the

device.

1. A search engine that accepts a peptide query from the MS and locates all coding

regions of the peptide in the genome.

2. A tryptic peptide mass calculator that translates and digests the genes around the

located coding regions to produce the mass of the tryptic peptides that are

contained in the proteins encoded by these genes.

3. A scoring unit that accepts the calculated tryptic peptide masses (the hypothetical

PIS as described in Section 2.2.2) and compares the calculated masses to the true

PIS from the MS. The scoring unit assigns a score to each set of tryptic masses

based on their significance. Each location identified by the search engine is

associated with its score and returned to the user to determine the true coding

region.

The final requirement presented in Section 2.2.3 was the ability to perform all the

operations above within 1 second. In the following chapter, we look at the performance

and cost of the hardware presented in this chapter in comparison to software running a

similar algorithm. The results show that this design meets the speed requirements of

current mass spectrometry at a significantly lower cost than an equivalent algorithm

implemented in software.

 84

Chapter 4. Implementation Details & Results

4.1. Overview

The protein identification system described in Chapter 3 performs a reverse

translated peptide query search through a Genome database. It locates all genes that can

potentially code the query peptide and translates them into proteins. It then uses a variant

of the MOWSE algorithm to compare the masses of these translated proteins to the

masses in the PIS of a tandem mass spectrometer. This technique identifies and ranks

potential coding regions for a protein or set of proteins in an MS sample. The coding

regions can be sent to gene finding programs [44][45] or homology search tools [31] to

obtain the protein sequence. In this chapter, we specify the implementation parameters

for the design presented in Chapter 3. We then demonstrate the functionality of the

design by providing input data obtained from biological experiments. This is followed by

an evaluation of the speed and area of the design as realized on several modern FPGAs.

Finally, we present the cost of the hardware system in comparison to a software

implementation capable of similar performance.

4.2. Assumptions and Approximations

In implementing the design described in Chapter 3, a number of design decisions

were made based on constraints imposed by the hardware and knowledge of the

biological attributes of the problem. This section describes the dataset used to obtain our

results, and details the assumptions that governed our design decisions.

4.2.1. Using Simpler Organisms

Ideally the algorithms described here should be tested on the Human Genome, since

most studies ultimately target human proteins. Unfortunately it is difficult to obtain MS

data from human subjects for research purposes. However, biologists often capitalize on

the similarity of the genomes of various organisms. The genomes of simple organisms

ranging from flies to yeast have been used to infer the behaviour of more complex

 85

organisms such as humans [33][34]. For our study we use MS data from the organism

Saccharomyces cerevisiae, commonly known as baker’s yeast. The yeast genome is an

excellent model for the human genome since both are eukaryotes and thus share several

similar proteins [34]. Further studies must be conducted with human MS data to verify

the results presented here, but the insights gained from yeast can be used to identify the

strengths and weaknesses of the algorithm. We define the operational parameters for the

device in the following section, bearing in mind that the data in the yeast genome acts as

the basis for our assumptions.

4.2.2. Implementation Parameters

The parameters defined in Chapter 3 are governed by physical constraints of the

implementation platform and the particular biology of the organism under consideration.

In this section, we detail the biological assumptions and hardware constraints that help us

resolve the optimal values for the design parameters.

Input Data
The first key parameter is the size of the genome. The yeast genome [27] consists of

12070522 bases, which defines the parameter SIZE_OF_GENOME as 3.4 megabytes

using the compression described in Section 3.1. For comparison, the human genome is

918 megabytes.

Search Engine

In the search engine, the most crucial parameters are MEM_WIDTH and

NUM_BASES_IN_MEMWORD, as they dictate the throughput of the system at a given

operating frequency. The memory word read from the TM3A is 64 bits wide, but the

compression scheme operates on multiples of 7 bits; therefore we use a MEM_WIDTH of

63 bits. The compression scheme uses 7 bits to encode a codon (or 3 bases) resulting in a

NUM_BASES_IN_MEMWORD of 27 bases.

 86

Gene Window

After passing through the search engine, the uncompressed memory word enters the

gene window before it is sent to the calculator. Recall from Section 3.3.4, that the size of

the organism's gene governs the size of the gene window upon which the calculator

operates. Studies of the genes in yeast have shown the average gene size to be

approximately 1450 bases [32]. The gene window is thus implemented as 18-word 81-bit

shift register (corresponding to a GENE_SIZE of 1458 bases). In contrast, the average

gene size in human chromosome 7 is 70,000 bases with 10% of the genes as large as

500,000 bases. This expansion in size is due to more alternative splicing (55% of

chromosome 7 genes are spliced as opposed to 4% in yeast) [52].

Mass Calculator

 The bases from the gene window are read and translated by the calculator into

peptide masses. Measurements on the dataset showed that tryptic peptides range in mass

from 0 to 10 KDa a 20-bit mass value ((220 = 1048576) allows for masses between 0 and

10,485.76 Da. However for an additional level of precision, 5 more bits are used to

further divide these masses into 0.0003125 Da ranges. Thus NUM_MASS_BITS is set to

25 bits.

Scoring Unit
The masses from the calculator are passed to the scoring unit, which ranks them

in a similar manner to the MOWSE algorithm. MOWSE defines bins of 100 Da, which

we approximate by setting NUM_BINS to 128 bins. In the mass range between 0 and

10,485.76 Da, this translates to bins of approximately 82 Da. The choice of 128 bins in

turn defines HIST_ADDR_BITS as 7 bits, as 7 bits of the mass are needed to identify

127 bins.

For convenience, these design parameters are listed in Table 4-1.

 87

Parameter
Values

(Yeast)

Values

(Human)

MEM_WIDTH 63 bits 63

SIZE_OF_GENOME 3.4 Megabytes 917 Megabytes

NUM_CODONS 9 codons 9 codons

GENE_SIZE 1458 bases 35000 bases

ADDR_BITS 9 bits 9 bits

NUM_MASS_BITS 20 bits 20 bits

NUM_BASES_IN_MEMWORD 27 bases 27 bases

HIST_ADDR_BITS 7 bits 7 bits

NUM_BINS 128 bins 128 bins

NUM_FREQ_BITS 8 bits 8 bits

Table 4-1: Design Parameters

The parameter values in Table 4-1 are chosen for a design with sufficient resources to

perform the scoring operations accurately. In the following section we present the

implementation details of a device designed with these parameter values.

4.3. Implementation Details

In this section, the particulars of the design implemented with the values in Table 4-1

are presented. Firstly, the functionality of the design when used with MS data is shown.

In the subsequent sections, hardware and software platforms implementing the design at

varying levels of performance are considered. Finally the costs of these systems are

compared in an attempt to identify a practical solution.

4.3.1. Functionality

The following tests were performed to gauge the performance of the system with real

MS data. The data used were obtained from the study performed in [60]. The study

utilized Liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis using a

 88

Finnigan LCQ Deca ion trap mass spectrometer fitted with a Nanospray source. Protein

identification was performed by the search engines Mascot [39], Sonar [67], Sequest [68]

and PepSea [69]. Interested readers can find the PIS masses reproduced in Appendix D.

The input sample used in the experiment contains two well-characterized proteins from

Saccharomyces cerevisiae (baker’s yeast):

1. A Rab Escort Protein (REP) [ACCESSION: NP_015015]

2. A heat shock protein from the SSB2 variant of the HSP70 family [ACCESSION:

NP_014190]

Rab Escort Protein (REP)

The REP in the protein sample is from the MRS6 family of proteins created by the MRS6

gene, located in yeast chromosome 15. A full gene map is located on the Saccharomyces

Genome Database (SGD) [30].

Its coordinates in our database (i.e. the bases that the gene spans) are:

• from 1025599 to 1026956. (located in Chromosome 15 [30])

Heat Shock Protein (HSP70)

The HSP70 family is coded by the SSB1 and SSB2 genes located on chromosomes 4 and

14 respectively. Our sample contains the SSB2 subfamily variant coded by the gene in

chromosome 14.

Each of these chromosomes codes a different subfamily of the HSP70 proteins but both

have extremely similar sequences (BLAST [31] of the 2 sequences shows 551 out of 613

matching amino acids (89% identity)). A full gene map is located on the SGD. (located in

Chromosome 4 [28], located in Chromosome 14 [29])

Its coordinates in our database are:

• from 1427427 to 1429279. SSB1 variant (located in Chromosome 4)

• from 9661724 to 9663575. SSB2 variant (located in Chromosome 14)

 89

Table 4-2 lists the some of the peptides that were provided as queries to the search engine

alongside the hit locations reported by the search engine.

Protein Query Sequences
(minimal query)2

Hit Location(s)

vpealqr
(vpealq) 1025938

REP saavggptyk
(saavg) 1026060

nttvptik
(nttvpt)

1428705
9663002

llsdffdgk
(llsdff)

1428495
9662792

tgldisddar
(tgldis)

1428190
9662487

HSP70

fedlnaalfk
(fedlna)

1428352
9662648

 Table 4-2: Query peptides and hit locations for HSP70 and REP

The first important observation is that any query sequence greater than 5 amino acids in

length always uniquely identifies a single coding region, eliminating the need for a

scoring function. Note that the peptides from HSP70 are shown as originating from two

hit locations. Recall that there are two variants of this family encoded by different genes,

but having highly similar sequences. However the 11% difference in sequence guarantees

that the set of tryptic peptides generated by both variants is not the same. The scoring

system helps resolve the two hits and uniquely identify the protein in the sample.

2 The minimal query (in italics under the query) is the shortest peptide sequence that still identifies a unique
coding region

 90

Protein Query Sequences

Hit Location(s)
(Gene)

Score

nttvptik 1428705 (SSB1)
9663002 (SSB2)

62
89*

llsdffdgk 1428495 (SSB1)
9662792 (SSB2)

65
89*

tgldisddar 1428190 (SSB1)
9662487 (SSB2)

67
88*

HSP70

fedlnaalfk
1428352 (SSB1)
9662648 (SSB2)

66
88*

Table 4-3: Score identifies subfamily variant in HSP70

In Table 4-3, the HSP70 peptide queries are shown alongside their scores. In each case,

the SSB2 encoding (indicated by the * next to the score) has a higher score,

corresponding to the variant that is in the sample.

Each of the queries shown above is 5 amino acids or greater in length. An average

sequence detected from a tryptic peptide may be up to 10 amino acids in length, but

shorter sequences are common. Further, it is possible that only a short sequence can be

determined for a long tryptic peptide due to instrument limitations, sample contamination

etc. These shorter peptide queries to the genome have lower resolution and will result in

multiple matches.

We consider a few smaller peptides to test the resolution of the scoring function. These

peptides were also identified by the mass spectrometer, but are shorter than the average

peptide length, thus they are likely to encounter multiple matches within the genome.

 91

Protein Query Sequences Hit Location(s) Score

eyvpr
1026605
6672335
2264445

79*
76
66

REP

ilfak

1938133
1323971
5006575
6224783
1025581
5231459
9309092
3108258

96
90
89
84
72*
71
70
61

Table 4-4: Queries with multiple matches in REP

In Table 4-4 the queries “iflak” and “eyvpr” both generate false positives as expected. The

query "eyvpr" in Table 4-4 is ranked correctly, and the true coding location gets the

highest score. However, the second query is ranked incorrectly, with the true hit being

ranked fifth. Recall that scoring functions are highly sensitive to the data that they

operate on [46] and the MOWSE algorithm that we use was not intended for genome

wide searches [9].

In cases where the query sequence is short and cannot be resolved to a unique gene

location, multiple peptide queries may be used to identify the true coding region. This

approach relies on the assumption that multiple matches are random, which may not

always be true. For example, Table 4-3 showed multiple matches due to the fact that the

two hit locations coded proteins that were similar or homologues. These matches were

clearly not random, however most of the cases with multiple matches are random and

occur due to the volume of data contained in the genome [1].

To see how multiple sequences can resolve the random false positive matches, such as

those in Table 4-4, observe the distribution of match locations. Each match corresponds

to a gene location that codes the query peptide. In non-homologous proteins it is unlikely

that several proteins will share common peptide sequences. Peptide mass fingerprinting

(PMF) techniques make use of this fact to use a few peptides to discriminate between

tens of thousands of proteins in protein databases.

 92

Any short peptide query will match the true gene location and may produce several false

positives. Thus if several peptide queries are used, the matches will be clustered together

(within the true coding gene) while the false positives will be randomly distributed

throughout the genome.

This can easily be seen in the data in Table 4-4. The two true matches are only 1024

bases apart, which is within the size of a single gene. The next closest match occurs

between the hit at 1026605 and 1323971, but these locations are 297366 bases apart. It is

thus easy to identify the true hits as they are clustered together.

"ilfak" hit
locations

Closest Match
in "eyvpr"

Distance to closest
match

1025581 1026605 1024
1323971 1026605 297366
1938133 2264445 326312
3108258 2264445 843813
5006575 6672335 1665760
5231459 6672335 1440876
6224783 6672335 447552
9309092 6672335 2636757

Table 4-5: Closest Distances between Match Locations

Table 4-5 shows the distance between the closest matches using the two peptide queries

from Table 4-4. Using this information, we deduce that matches that are close to each

other indicate the presence of peptides being coded by the same gene, which in turn

corresponds to the true hit location. Thus, the inverse of the difference between match

locations is used to identify the true coding gene.

In Figure 4-1 a scaled representation of the distance between the two queries is presented.

The inverse of the distance between matches - which we define as "closeness" - is

presented across all bases in the genome in Figure 4-1. Note that the closeness value is

scaled by a factor of 1 for better visualization. 710×

 93

Closest matches between "ilfak" and "eyvpr"

-20000
0

20000
40000
60000
80000

100000
120000

0 2E+06 4E+06 6E+06 8E+06 1E+07
Location in Genome

C
lo

se
ne

ss

Figure 4-1: Visualizing "iflak" and "eyvpr" Hits Across the Genome

Note in Figure 4-1 that the true hit can be clearly distinguished from the other matches.

Thus by using two peptides we can identify hits that cluster around a single gene and

thereby discriminate a coding gene from random matches.

The short query peptides in Table 4-4 above are natural, i.e., the peptides occur naturally

via trypsin digestion. However, similar cases arise if the quality of the sample is poor and

only a few amino acids can be sequenced. In these cases, the MS may only be able to

resolve a short length of full tryptic peptide, forcing the MS operator to search the

database with a shorter query.

To replicate the effect of these low quality samples we search using queries that are

smaller than the minimal query. In effect, we are using substrings of the queries in Table

4-2 to simulate the behaviour of “dirty” samples.

In the following example the two queries "saavggptyk" and "eyvpr" from Table 4-2 and

Table 4-4 respectively are considered. To simulate low-quality sequences, we use the

substrings "saav" and "eyvp" of these peptide sequences. For brevity the full set of

 94

matches are deferred to Appendix C. However, the true hits are ranked 65th of 128 hits

and 13th out of 48 hits for the queries "saav" and "eyvp" respectively. It is clear that the

MOWSE scoring algorithm cannot distinguish the true coding locations from false

positives. However, using the technique summarized in Table 4-5, we can look for the

distance between hits.

The 5 closest matches are presented in Table 4-6.

"saav" Hit
Locations

Closest Match in
"eyvp"

Distance to Closest
Match

1026060 1026605 545
7486943 7488841 1898
8964661 8965326 2305
10170118 10165117 5001
9383697 9378467 5230

Table 4-6: Distance Between Hits in "eyvp" and "saav"

As before, the inverse of the distance to the closest match – the closeness - between hits

produces a map of the genome in which the true coding gene is easily identifiable.

Closest Matches Between "saav" and "eyvp"

-500

0

500

1000

1500

2000

0 200000
0

400000
0

600000
0

800000
0

1E+07 1.2E+0
7

1.4E+0
7

Location in Genome

C
lo

se
ne

ss

Figure 4-2: Visualizing Matches Between "saav" and "eyvp" across the genome

 95

Note, that the true hit can easily be distinguished from 127 false positives, even when the

query is only four amino acids long.

The results in Appendix C show that in many cases, the true coding region can be easily

identified by using multiple queries. With a query of five amino acids, the true coding

location was always correctly identified using two peptide queries to the database. When

using a query length of four amino acids, the number of hits per query increases. With

more hits, more queries are required to accurately identify the true coding region.

Appendix C shows that using two queries of length four identifies the true hit in eight of

12 searches. Of the four erroneous cases, the true hit location is ranked 2nd in three of

these and 3rd in the remaining case. In each of these cases, the distance between hits can

be calculated in a few milliseconds, without significant impact on the speed of the search

and score process.

4.3.2. Design Implementation on the TM3A

The TM3A described in Section 2.5.3, was the primary implementation platform for

our design. Considering the architecture of the TM3A, the device was partitioned across

four FPGAs as shown in Error! Reference source not found..

 96

PIS

FPGA 3

PIS

FPGA 2

PIS

FPGA 1

FPGA 0

SEARCH
ENGINE

6 FRAME CALCULATOR
AND SCORING

Figure 4-3 Device Partitioned Across TM3A

The design is partitioned as follows:

• FPGA 0: Search Engine and Gene Window

• FPGA 1: Mass Calculator and Scoring Units (for Frames 1 and 4)

• FPGA 2: Mass Calculator and Scoring Units (for Frames 2 and 5)

• FPGA 3: Mass Calculator and Scoring Units (for Frames 3 and 6)

Note that FPGAs 1, 2 and 3 have identical units implemented on them. The

distinction lies in the data that they receive from the gene window. FPGA1 receives the

data from the gene window directly, and produces the scores from Frame 1 and its

complement (Frame 4). FPGA2 and FPGA3 receive the data from the gene window

shifted by 1 base and 2 bases respectively, and correspondingly produce the scores of

Frames 2 and 3 and their complements. Using this structure, the individual FPGAs can be

classified by the units they implement. Therefore our design will be described in terms of

search engine FPGAs and calculator and scoring unit FPGAs.

Unfortunately, compiling the design with the parameter values described in the

previous section resulted in an implementation that did not fit on the TM3A due to

 97

insufficient resources. The 25-bit mass and 128-bin histogram force the calculator and

scoring units to occupy more area than is available on a Xilinx Virtex 2000E FPGA. In

combination, these units occupy 44338 LUTs and flip-flops, but Table 4-7 shows that the

Virtex 2000 E chips on the TM3A only have 38,400 LUTs and flip-flops.

FPGA
Number of

LUTs and FFs
Block RAM

(bits)
User IO pins

Virtex 2000E 38,400 655,360 804
Virtex II 8000 93,184 3,024,000 1,108

Stratix EP1-S20 18,460 1,669,248 586
Stratix EP1-S40 41,250 3,423,744 822
Stratix EP1-S80 79,040 7,427,520 1,238

Table 4-7: FPGA resource comparison

In an attempt to fit the device on the TM3A, the design was modified to use 18-bit

masses with a 64-bin histogram thus reducing the area occupied by the calculator and

scoring units. This modification enabled the units to fit on the TM3A, and the speed and

area results for the individual FPGAs are presented below.

Design
Platform

LUTs FFs Memory (bits)
Operating
Frequency

(MHz)

Search Time
through Human

Genome
(s)

TM3A - Virtex
2000E 8,622 1,858 8,786 89 1.4

Table 4-8: Total Resources and Speed for Search Engine on Virtex 2000 E

Design
Platform

LUTs FFs
Memory

(bits)

Operating
Frequency

(MHz)

Processing
Time for Human

Genome
(s)

TM3A - Virtex
2000E 27,925 12,475 34,816 58 2.1

Table 4-9: Total Resources and Speed for Combined 2-Frame Calculator and Scoring Units on Virtex
2000E

 98

Note that the searching and scoring times shown are for the human genome, and not

yeast, as presented in Section 4.2.1. Recall that the ultimate goal of these sequencing

experiments is to identify human proteins; the search times presented in Table 4-9 are

more relevant when evaluating the practicality of our tool in useful biological

experiments. The functionality of the device is not dependent upon the organism under

consideration; indeed the only parameter affected is the value of SIZE_OF_GENOME,

which is set to 918 megabytes (approximately 1 GB) when using the human genome.

From the tables above, it is apparent that the calculator and scoring units limit, and thus

define, the system speed. Table 4-9 shows that it takes 2.1 seconds to identify and score

all gene locations that match a single peptide query. This speed however is not achievable

on the TM3A due to the limited speed of the SRAM. The operating frequencies in Table

4-8 and Table 4-9 apply only to the FPGA under consideration and are independent of

memory speeds. The SRAM on the TM3A operates at a maximum frequency of 50 MHz

making it the system bottleneck. Taking the memory speed into account, we restrict the

operating frequency of the system to 50 MHz and calculate the operating time for a single

query to be 2.4 seconds.

In addition to the memory bottleneck, further problems arise as a result of the reduction

in accuracy mentioned above. Using the less accurate 18-bit mass representation and

coarser 64-bin histogram severely lower the performance of the scoring algorithm, thus

the area and system speed presented above are not representative of a practical design.

Note that this limitation only applies to the calculator and scoring units. The search

engine fits on a Virtex 2000E FPGA and is not affected by the reduced parameters.

Regardless, it is obvious that the TM3A, while a practical prototyping tool, is not

adequately equipped to implement this design.

To obtain realistic figures for area and speed, the design was recompiled with the

parameters in Table 4-1 to target a set of modern FPGAs with more resources. These

results are presented in the following section.

 99

4.3.3. Design Implementation on Modern FPGAs

The limitations of the TM3A impose unacceptable constraints on the speed and

accuracy of the design. To overcome these constraints, we describe the implementation of

our design using modern FPGAs and high-speed commercial memory. The FPGAs under

consideration are listed in Table 4-7.

Note that the newer FPGAs, namely the Xilinx Virtex II 8000 FPGA [56] and the Altera

Stratix S40 and S80 FPGAs [57], all have more resources than the Virtex 2000E FPGAs

on the TM3A. The Stratix S20 is included in Table 4-8 as it is the smallest FPGA upon

which a search engine will fit.

The speed and resource utilization tables are once again partitioned into individual

FPGAs. The implementation of the search engine on each of the FPGAs is shown in

Table 4-10. Correspondingly the implementation of the calculator and scoring units upon

the Virtex II 8000 and Stratix S40 and S80 FPGAs is shown in Table 4-11. Due to the

lack of resources on the Stratix S20, the calculator and scoring units do not fit on it.

Search Engine

FPGA LUTs
Flip

Flops
Memory

Bits

Operating
Frequency

(MHz)

Search
Time
(s)

Stratix S20 10,605 1,694 7,938 163 0.7
Stratix S40 10,605 1,694 7,938 152 0.8
Stratix S80 10,605 1,694 7,938 148 0.8

Table 4-10: Total Resources and Speed for Search Engine using Current Technology

The reduced operating frequency on the larger devices in Table 4-10 can be attributed to

the fact that the smaller devices have shorter wires, which have less capacitance, and are

thus faster.

 100

Two Frame Calculator and Scoring Unit

FPGA LUTs Flip Flops
Memory

Bits

Operating
Frequency

(MHz)

Search
Time
(s)

Virtex II
8000 28,786 15,552 204,800 62 1.97

Stratix S40 30,684 13,814 205,244 75 1.63
Stratix S80 30,684 13,814 205,244 75 1.63

Table 4-11: Total Resources and Speed for Combined 2-Frame Calculator and Scoring Units using
Current Technology

The difference between the number of flip flops and memory bits between the Virtex and

Stratix FPGA can be attributed to the different synthesis and mapping tools used to

implement the circuits. Various parts of the circuit are mapped to different structures

(LUTs or BlockRAM) by the tools, which are tailored to find the best possible

implementation of a circuit on a given device.

Note once again that the operating frequencies reported in the tables are independent of

memory speeds and are based on a 63-bit memory word as indicated in Table 4-1.

However, as we are not constrained by the SRAM as in the TM3A, we choose

commercial DDR SDRAM, which operates in excess of 266 MHz [53], well above the

system frequencies listed above, ensuring that memory will not be the bottleneck in the

system.

Note that the calculator and scoring units constitute the critical subsection of the design.

From Table 4-11, we see that a peptide query can be located and its coding regions

ranked within 1.63 seconds, slightly over the 1 second requirement presented in Section

2.2.3. To meet this speed requirement, consider the nature of the algorithm. The entire

search and score process is highly parallelizable. By simply partitioning the genome into

subsections and instantiating multiple copies of the hardware, the design can operate on

each section simultaneously. Thus with two copies of the hardware, the entire search and

score can be completed in 820
2
631 .. = seconds to meet the requirements of Section 2.2.3.

 101

The data in Table 4-10 and Table 4-11 show that a hardware system capable of searching

the genome at very high speeds can be designed using current FPGA technology in

combination with existing commercial RAM. Capitalizing on the intrinsically parallel

nature of the algorithm, hardware units at various levels of performance can be designed

to meet a user's cost and performance requirements. However, the parallel nature of this

algorithm lends itself to software implementation as easily as hardware. In the following

section we examine a software implementation of a similar algorithm and consider the

resources required to implement it. This information will then be used to determine the

most cost effective platform for this design.

4.3.4. Software

The software speeds and resources described here are taken from the study in [1]. The

scoring algorithm in the study is MASCOT, which is based on MOWSE. The operations

in [1] were performed on a 600 MHZ Pentium III PC, resulting in search and score times

of 3.5 minutes (210 s) per query. To scale these values to current processor speeds, while

presenting the software in the most favorable light, we assume a linear increase in speed

if the algorithm is implemented on a modern processor. Based on this assumption, we

state that the software can complete the task in 52.5 seconds on a 2.4 GHz processor.

This claim implies that the process will experience a speedup factor of 4 when run on a

processor that is four times as fast. Such a scaling in speed is unlikely, as memory

bandwidth does not scale with processor speed, but this optimistic assumption presents

the ideal performance of this algorithm in software. Regardless, a single modern

processor still cannot achieve the 1-second search and score time defined in Section

2.2.3.

As with the hardware, the algorithm is highly parallelizable and indeed MASCOT is a

threaded program, designed to be implemented in a multiprocessor environment [39]. To

meet the 1-second operation time, we assume that processing time scales perfectly with

cluster size, i.e. to halve the time, the cluster size must be doubled. Table 4-12 shows the

 102

number of processors required to achieve performance that is comparable to the

hardware.

Number of
Processors

Processing
time
(s)

1 52.5

32 1.6

64 0.8

Table 4-12: Processing Time for Computing Cluster

Table 4-12 shows that a cluster of 64 processors can achieve the performance delivered

by two copies of the hardware as described in the previous section. Thus both systems are

capable of offering the same level of performance.

In the next section, the system is parameterized based on the resources required to

achieve a user-defined level of performance. The required resources allow us to estimate

and compare the costs of the hardware and software systems to evaluate the most cost-

effective solution.

4.3.5. System Cost and Resource Estimation

The goal of this thesis was to design cost-effective hardware to accelerate the

sequencing process. The previous sections have presented hardware and software

approaches to solving this problem. In this section, we evaluate the cost of these systems

at various levels of performance to determine the most practical platform for final

implementation. In addition, to providing the cost of the hardware system described in

Chapter 3, we detail the cost of a hardware system designed only to search the genome

and locate coding regions for a peptide. Numerous biological algorithms require the

ability to search through the genome without the scoring function detailed in Section 3.5.

We hope that readers will find the cost to performance comparisons of the standalone

search engine useful even outside of the scope of this work.

 103

4.3.5.1. Cost of Software Platform

The processors described here are ASL Lancelot C 1851 blades [54]. Each blade is a

2.4 GHz Xeon Dual processor with 2 gigabytes of RAM and an 80-gigabyte hard disk.

Table 4-13 shows the price of the system for various scan times.

Number of
Processors

Scan time
(s)

Number of
Blades

Acquisition Cost
(USD)

1 52.5 1 $1,962

32 1.6 16 $31,392

64 0.8 32 $62,784

512 0.1 256 $502,272

Table 4-13: Prices of Computer Clusters for Varying Performance

Since the blades are dual processor boards, 32 blades can implement the 64-processor

search system described in the previous section at a cost of approximately $ 62,700.

In Section 3.3 the concept of high-speed genome searching outside the context of this

work is mentioned. A plethora of biological applications require the ability to search

through the genome at high speed. Table 4-13 shows the cost of computer clusters

capable of searching the human genome at varying speeds from a minute to a hundred

milliseconds.

Table 4-13 only lists the price of the system or its acquisition cost, but computer clusters

usually suffer a system administration cost (SAC). The SAC includes cost of installation,

maintenance and upgrading by a professional administrator. The work in [64] considers

several different clusters with 23 nodes (processors) and identifies an average annual

SAC that is equivalent to the acquisition cost. Table 4-14 shows the total operational cost

of a computer cluster over a four-year lifetime.

 104

Number of
Processors

Scan time
(s)

Acquisition
Cost
(USD)

Total Cost
Acquisition +

Administration
(USD)

1 52.5 $1,962 $9,810

32 1.6 $31,392 $156,960

64 0.8 $62,784 $313,920

512 0.1 $502,272 $2,511,360

Table 4-14: Total Cost of Computer Cluster Over Four-year Lifetime

In addition to the SAC described above, the power consumption of a computer cluster

may be quite significant. The average power consumption of a 2.4 GHz Pentium is

approximately 57.8 W [66]. Table 4-15 lists the power consumption of clusters of various

sizes.

Number of
Processors

Scan time
(s)

Power
Consumed

(W)

1 52.5 58

32 1.6 1,850

64 0.8 3,700

512 0.1 29,594

Table 4-15: Power Consumption of Computer Clusters

It is clear from Table 4-15 that a large cluster will draw a significant amount of power

during its operation. In high throughput MS experiments, where the cluster is constantly

in use, the cost of power will not be negligible.

Having identified the cost of using software to search and score through the genome, the

next section presents the cost of hardware systems capable of offering similar levels of

performance.

 105

4.3.5.2. Cost of Hardware Platform for Full System

The design presented in Chapter 3 was implemented using the parameter values from

Table 4-1 on a set of FPGAs to identify the optimal hardware system. Section 4.3.3

identifies the Stratix S20 as the smallest FPGA upon which a search engine can be

implemented and further identifies the Stratix S40 as the smallest FPGA upon which the

calculator and scoring units can be implemented. Therefore the most cost effective

implementation for the entire system is achieved on a set of 4 FPGAs: one S20 for the

search engine and three S40 FPGAs for the 6 frames of calculation and corresponding

scoring units. Such a system requires sufficient RAM and a suitable PCB to act as a

motherboard. We therefore make the following design decisions:

• Each set of 4 FPGAs requires a 10.5" x 14" – 14 layer PCB as its motherboard.

• Every search engine in the system has 2 GB of memory.

The second decision reflects practical issues in acquiring memory. We can use multiple

hardware units to search subsections of the genome in parallel. Clearly a subsection of

the genome will not require the storage space of the full genome. However, small

memory modules are difficult to acquire commercially, and large memory modules can

be purchased relatively inexpensively [53]. Thus each hardware unit contains a full 2 GB

of memory even though this is unnecessary for the design. The costs of such a hardware

system at various speeds are presented in Table 4-16. Note that a 50% margin has been

added to the total cost as an estimate for the final purchase price.

Scan Time
(s)

Number
of S20
FPGAs

Number of
S40

FPGAs

Cost of
RAM
(USD)

Cost of PCB
(USD)

Cost of FPGAs
(USD)

Purchase
Price
(USD)

1.6 1 3 $344 $131 $6,950 $11,137
0.8 2 6 $689 $262 $13,900 $25,426
0.1 16 48 $5,512 $2,100 $111,200 $225,469

Table 4-16: Price of Full System in Hardware

Table 4-16 lists the cost and resources required to implement the full system at different

levels of parallelism corresponding to different speeds. Note that the prices for the FPGA

[50] and PCB [51] are based on volume pricing for 500 units. A hardware system that

meets the requirements defined in Chapter 2, i.e. a system that takes under 1 second to

 106

search and score using a single peptide query, can be implemented for less than half of

the acquisition cost of an equivalent software system.

For a fair comparison to software, we assume that the annual system administration costs

(SAC) in hardware are equal to the acquisition cost. Table 4-17 shows the total cost of

operating the hardware systems in Table 4-16. Recall that an individual hardware unit

consists of 1 Stratix S20 FPGA and 3 Stratix S40 FPGAs.

Number of
Hardware

Units

Scan Time
(s)

Total Cost
Acquisition + Administration

(USD)
1 1.6 $55,685

2 0.8 $127,130

16 0.1 $1,127,345

Table 4-17: Total Cost of Hardware-Clusters Over Four-year Lifetime

Table 4-17 shows that the total cost of the custom hardware implementation is less than

half that of a software platform of equivalent performance.

The Stratix Power Calculator [65] is a tool that allows the designer to estimate the total

power consumed by a design on a Stratix FPGA. Using the resource values from Table

4-10 and Table 4-11 the power consumed by the full hardware system is estimated as 7.6

W (1 W for a Stratix S20 containing search engine and 2.2 W for each of the three Stratix

S40 containing the calculator and scoring units). The majority of the power is dissipated

in the IO pins.

Number of
Hardware Units

Scan Time
(s)

Power Consumed
(W)

1 1.6 7.6

2 0.8 15.2

16 0.1 121.6

Table 4-18: Power Consumption of Hardware-Clusters

 107

All the FPGAs are running at 75 MHz and a 25% toggle rate is assumed for every flip

flop and memory bit in the design. The results in Table 4-18 show that our custom

hardware implementation consumes 200 times less power than general-purpose processor

cluster. This reduction in total power consumption translates into a significantly lower

operational cost over the lifetime of the cluster.

The speed of the search engine operating as an individual unit unencumbered by the

calculator and scoring units may prove to be of greater interest to the reader. In the

following section, we consider the cost of implementing the search engine as a standalone

hardware unit.

4.3.5.3. Cost of Hardware Platform for Standalone Search Engine

The search engine operating as an isolated unit does not require the same number of

FPGAs or a PCB of the same complexity as the full system described in the previous

section. Therefore the following design decisions are made for the standalone search

engine:

• A 10"x 4" - 8 layer PCB is required as the motherboard and can contain two

FPGAs

• Every search engine in the system has 2 GB of memory

Using these constraints, we find that the Stratix S20 is the most cost effective FPGA upon

which to implement the search engine as shown in Table 4-19

 108

Search
Time
(s)

Number of
Stratix S20

FPGAs

Cost of
FPGAs
(USD)

Cost of RAM
(USD)

Cost of PCB
(USD)

Purchase
Price
(USD)

0.8 1 $650 $344 $25.5 $1,530
0.4 2 $1,300 $689 $25.5 $3,021
0.2 4 $2,600 $1,378 $51 $6,044
0.1 8 $5,200 $2,756 $102 $12,087

Table 4-19: Cost of Standalone Search-Engine in Hardware

Note once again that a 50% margin is added to the total cost as an estimate for the final

purchase price. As before, we estimate the total cost of the system over a four-year

operational lifetime. Note that each hardware unit in Table 4-20 can contain two FPGAs.

Number of
Hardware

Units

Scan Time
(s)

Total Cost
Acquisition + Administration

(USD)
1 0.8 $7,650

4 0.1 $60,435

Table 4-20: Total Cost of Hardware Search Engine Over Four-year Lifetime

Table 4-20 shows the total cost of the hardware based search engine assuming that the

annual administration cost is equal to the purchase price. The hardware searching system

costs approximately 40 times less than a software platform of comparable performance.

Intuitively, the power consumed by the hardware search engine is significantly lower

than either the fully hardware system or the processor cluster.

Number of
Hardware Units

Search Time
(s)

Power Consumed
(W)

1 0.8 1.8

4 0.1 7.2

Table 4-21: Power Consumption of Hardware Search Engine

Table 4-21 lists the power consumption of the hardware search engine for various search

times. These power estimates were obtained from the Stratix Power Calculator assuming

 109

a clock speed of 162 MHz and a 25% toggle rate for every flip flop an memory bit in the

design. The power savings are even more significant in this case, with the hardware

providing over 2000 times the power to performance ratio of a software cluster. These

results indicate that there are significant advantages to performing genomic searches in

hardware.

In the following section, the hardware and software cost are directly contrasted to

ascertain the most economical solution for a desired level of performance.

4.3.5.4. Cost Comparison

This section summarizes the costs of the system, by dividing the solution into two

broad categories, namely, low-performance and high performance. Here, low

performance indicates search times in excess of a minute, which may be acceptable in

many applications. However, as detailed in Section 2.2.3, our design must be able to

identify and rank the coding locations for a peptide query in less than 1 second, thus

demanding a high performance system. The ratio of software to hardware costs for

different system speeds is given in Table 4-22. Note once again that the costs are based

on a four-year operation lifetime for the both the software and hardware platforms.

Time
(s)

Cost of
Software
Platform

Cost of
Hardware

Search and
Score Platform

Cost of
Hardware

Search
Engine

Software
/Hardware Cost

Ratio
(Search + Score)

Software
/Hardware
Cost Ratio
(Search)

60 $750 $10335 $7650 0.07 0.1

0.8 $313,920 $127135 $7650 2.5 41

0.1 $2,511,360 $1127350 $60435 2.2 41

Table 4-22: Ratio of Software to Hardware Cost for Different Processing Speeds

For slower searches of the genome, i.e. search times in excess of 1 minute, software is a

far more cost effective solution than hardware. The software cost is based the quoted

price on a 2.4 GHz Dell Dimension Desktop [55]. The cost of its hardware counterpart is

 110

based on the cost of a single hardware board capable of implementing the full system, as

described in Table 4-16. It is possible to design a hardware system using cheaper, slower

FPGAs but if real time performance is not required, a PC is likely a far more flexible

solution with a greater capacity for reuse in other applications. Moreover, a PC at half the

price of the hardware system it is clearly a better choice. Therefore, at the low end of the

performance spectrum, software is more practical vehicle for the searching and scoring

process.

However, using the current cost and performance of the system as a measure of quality,

hardware is clearly a better solution for a laboratory seeking the ability to search through

genomes in real-time. At the high-performance end of the cost spectrum, hardware is

more than three times as economical for equivalent level of performance as seen in Table

4-22. For a standalone search engine, hardware is more than 40 times as economical,

making it an ideal platform for genomic studies.

The costs in Table 4-22 do not take power consumption into account. Section 4.3.5.2

showed that the performance to power ratio is far more favourable for hardware, than a

cluster of general-purpose processors. Over the operational lifetime of the hardware

platform, the power savings will likely translate to a substantial reduction in operational

cost when compared with software.

In the following section, we present a means of estimating these costs based on the

resources required to attain a given level of performance in hardware. Using these

methods, designers in the future can estimate the cost of a hardware system using the

technology available to them at the time.

4.3.5.5. Framework for estimating system cost

Table 4-19 and Table 4-16 list the current costs of designing such a hardware system.

The key resources that determine this cost are: the FPGAs, the RAM and the PCB. The

FPGA [50], RAM [53] and PCB [51] costs are obtained from current vendor and

 111

manufacturer quotes. System designers in the future will likely have access to FPGAs

with far more resources for which prices cannot be accurately predicted. As such we

define the resources required for a given level of performance. Knowledge of the required

resources will allow designers in the future to choose the most practical platform upon

which to build their hardware. This section provides a framework to estimate the

resources required to implement a hardware system at a given level of performance.

In general, to design a system that meets a specific level of performance, the required

resources can be estimated by the three elements listed above: FPGAs, RAM and PCBs.

The total cost of the hardware is then given by the number of FPGAs (defined as

NUM_FPGAs), the total amount of RAM (TOTAL_EXT_RAM) and the number of PCBs

(NUM_PCBs). Note that this cost is a function of the desired level of performance

specified by the designer. The performance is specified by the time required to process an

entire genome, thus the two variables that determine the hardware resources for the

system are size_of_genome (in GB) and search_time (in seconds). Thus we define the

performance factor P =

time_search

genome_of_size . The designer can use the desired value of

P to determine the cost of the system in the future. This cost is given by:

COST (P) = (NUM_FPGAs(P) x FPGA_PRICE) + (TOTAL_EXT_RAM(P) x RAM_PRICE) +

(NUM_PCBs(P) x PCB_PRICE)

The number of FPGAs that contain a given amount of resources can only be evaluated for

current technology. Any speculation on device capabilities in the future would likely be

inaccurate. Therefore we classify an FPGA in terms of its key components, namely the

LUTs, flip-flops and memory and user IO pins. Given these parameters, designers will be

able to determine the most cost-effective FPGA or set of FPGAs at their time.

We define the total number of LUTs and flip-flops in a given FPGA as

FPGA_LUTs_FFs, and the total on-chip RAM as FPGA_RAM, and the number of user

IO pins as FPGA_IO_PINS. Using these parameters, a designer can determine the

optimal FPGA for the device.

 112

Again, the following results are divided into two units: one to provide resource estimates

for the full search and score system and the other for the search engine as an independent

unit.

Resources Required for Full Search and Score System:

The values for each of these parameters depend on the performance factor P described

above. From Table 4-9, we see that a full implementation of the device requires 12,299

LUTs and flip-flops for the search engine and 3 LUTs and flip-flops

for the calculator and scoring functions. Thus, with FPGA_LUTs_FFs = 145313, a 1 GB

genome can be processed in 1.6 seconds. To generalize this we state that:

13304144338 =×)(

FPGA_LUTs_FFs = P ×232500

Correspondingly, the device in Table 4-10 requires 7938 on-chip memory bits for the

search engine and bits for the 3 calculators and the associated

scoring functions. Thus 623670 on-chip memory bits are required to process the 1 GB

genome in 1.6 seconds. Once again we generalize this to:

6157322052443 =×)(

FPGA_RAM = 997872 P ×

The design requires a total of 1014 pins to process the genome as described. This enables

us to define:

FPGA_IO_PINS = 1623 P ×

Note that these assumptions are pessimistic, as we do not account for improvements in

process technology, which will undoubtedly result in faster FPGAs.

Using these three parameters, designers in the future can determine the value of

NUM_FPGAs based on the most cost effective devices available at the time. To

determine the optimal number of FPGAs, a designer must compare the cost and resources

of a few large FPGAs with those on many smaller FPGAs. This information can be

easily obtained from datasheets and vendor price lists for the chosen device. The most

 113

favourable solution implements the required resources at the minimum cost, thus defining

the ideal value for NUM_FPGAs.

The next significant parameter is the amount of external RAM required. A single copy of

a 1 GB genome can be searched in 1.6 seconds. As the level of parallelism increases and

additional copies of the device are used to increase the system speed, multiple copies of

the genome must be processed. This is generalized as:

TOTAL_EXT_RAM = ×
6250
1

.
P

Using the design presented in this work as a reference, we estimate that four FPGAs and

the RAM can be connected on a single PCB without prohibitive complexity. This leads to

the formula:

NUM_PCBs =
4
FPGAs_NUM

The value of NUM_PCBs clearly hinges on an assumption of 4 FPGAs per board as

defined in our design. The trend towards larger FPGAs implies that our design will

eventually be able to fit on a single FPGA. When such technology becomes available, the

size of the PCB can be scaled down correspondingly.

Note that each of these formulas is based on the design of the full search and score

algorithm that operates on a 1 GB genome in 1.6 seconds. The formulas are intended to

provide a sense of the required resources as the speed, and correspondingly the level of

parallelism, within the system increase. If the required search time is less than 1.6

seconds, or the size of the genome is significantly less than 1 GB, the approximations

provided here will be of little value, as the formulas encapsulate the trend in resource

requirements for increasing levels of parallelism.

 114

Resources Required for Standalone Search Engine:

As in the previous section, we distinguish the search engine from the full design as it may

be of interest to the reader. For the standalone search engine, we define the resource

requirements as a function of search_time and size_of_genome to allow the user to

estimate system costs in the future. The formulas given below are based on the data in

Table 4-10 and Table 4-11, and assume a standalone search engine can search a 1 GB

genome in 0.8 seconds.

FPGA_LUTs_FFs = 9839 × P

FPGA_RAM = 6350 × P

FPGA_IO_PINS = 313 × P

Once again, the actual value for NUM_FPGAs hinges on the technology available to the

designer and can be determined based on the cost of devices in the future.

TOTAL_EXT_RAM = ×
251
1
.

P

As in Section 4.3.5.3, we constrain the design to two FPGAs per PCB resulting in the

formula:

NUM_PCBs =
2

FPGAsNUM _

The caveats from the first set of formulas apply equally well to the approximations

above. The formulas convey the trends in resource usage based on the search of a 1 GB

genome in 0.8 seconds and any attempt to use them to approximate resource utilization

for a system with lower performance will be fraught with error.

 115

The formulas above model the resources required for various levels of parallelization,

which in turn correspond to different levels of performance. As stated the performance is

dictated by the time taken to process a genome of a given size. Using the resources

estimation models above, designers in the future can estimate the resources required to

implement either the full search and score system described in Chapter 3 or the search

engine as an independent unit. These resources can then be used to determine the cost of

the optimal solution based on the prices of devices available at the time.

4.4. Summary

From the above results, we see that with a sufficiently high quality sequence, a

scoring function will not even be necessary. If the sequence is sufficiently large, it can act

as a “fingerprint” by uniquely identifying its true coding region. In such an event, only

the search engine hardware is required. Recall that the standalone search engine is

considerably faster and cheaper than the full system and as MS technology improves, this

will likely be a more cost-effective solution.

If, however, the protein sample is contaminated, it may be hard to obtain a large peptide

query. In these cases, multiple hits need to be resolved to identify the true coding gene. It

is clear from our results that the scoring function is limited to resolving differences

between proteins and has difficulty identifying the false positives in the genome. This

was expected due to the volume of random information contained in the genome and the

fact that MOWSE was designed to target protein databases. Observations from prior

work [1] also suggest that the genome should only be used as a search database for novel

proteins due to the number of false positive matches that are found in unannotated

genomic sequence [63].

Despite the difficulty of assigning accurate scores, we see that one can easily isolate the

true coding region by using additional queries.

The approach presented here accelerates the sequencing process for novel proteins. Using

either high or low quality peptides as a query to the database, the device is capable of

rapidly locating the peptide's true coding location in the genome. Furthermore, it delivers

 116

this performance at a significantly lower cost than a software implementation of

equivalent functionality.

 117

Chapter 5. Conclusions & Future Work

5.1. Thesis Summary

In this work we have studied the design of a hardware system designed to

accelerate MS/MS based de-novo protein sequencing. The objective of this work has

been to study the feasibility of a custom hardware implementation of a protein-

sequencing algorithm. We believe that this is the first published hardware implementation

of the sequencing approach described here. The results of this work show that hardware

implementations of certain key features of the system provide significant improvements

in speed at a lower cost than equivalently functional software.

5.2. Thesis Contributions

This thesis provides the following significant contributions:

1. The design of an FPGA-based hardware system capable of locating and ranking

the coding regions of a peptide in an organism's genome. The hardware is

between 3 and 60 times as cost-effective as an equivalent software platform.

2. The design of a fast comparison scheme based on data associativity (as described

in Section 3.5.3.1). This hardware can be used to identify similar values in a

single clock cycle.

3. A framework for estimating the cost of the hardware design in the future. The

models presented in Section 4.3.5.5 allow designers to estimate the cost of the

system at various levels of performance.

 118

5.3. Future Work

The first and most practical extension to this work is to interface the system with

a real mass spectrometer. Our prototype was tested using data from real MS experiments,

but these data were used offline. It would be instructional to integrate the system with

different mass spectrometers to see what other improvements could be made to the

sequencing process. Also, as described in Appendix A, there is additional information in

the MS output (for example intensity) that is often used for noise rejection. We have only

used the masses from the MS output but it is likely that incorporating the intensity

information into the scoring system will be beneficial.

 In addition, a study using protein data from human samples would allow us to truly

evaluate the benefits of this system as a tool for medical researchers. While the yeast

genome is a good foundation on which to begin a study, further insight into the

complexities of human biological systems can only be achieved by studying the human

genome.

The scoring algorithm used in this work needs to be tuned to fit the dataset. We chose the

MOWSE [9] algorithm, as it seemed best suited to our needs. However, there is a

plethora of scoring algorithms, each of which must be considered before the best ranking

scheme can be determined.

Another interesting area is exposed by the complexities of biological systems. In 2.3.2 we

described the process of alternative splicing and mentioned that 98% of splice variants

are canonical – i.e. they follow a recognized pattern of rules defining their start and end

points. The current implementation of the design does not deal with the splice variants in

hardware. If the splice variants and their masses could be calculated in hardware, they too

could be compared to the PIS list to obtain a further degree of confirmation for the

generated score.

 119

Chapter 6. References

[1] Choudary J S., Blackstock W.P., Creasy D. M., Cottrell J.S., “Interrogating the

human genome using uninterpreted mass spectrometry data”,Proteomics, 2001,
May;1(5):651-67.

[2] Lesk, Arthur M., Introduction to Bioinformatics . Oxford press, NY, 2002, pp.

6-7

[3] Baxevais and Ouellette, Bioinformatics, Wiley Interscience,N, 2001, pp. 253-257

[4] European Molecular Biology Lab (EMBL), http://www.embl-heidelberg.de/

[5] Sanger, F., “The free amino groups of insulin”, Biochem. J., 1945, 39:507-515.

[6] J. Alex Taylor and Richard S. Johnson “Implementation and Uses of Automated
de Novo Peptide Sequencing by Tandem Mass Spectrometry”, Analytical
Chemistry, 2001, V 73, pp 2594-2604

[7] Brenner S.E. “A tour of structural genomics”, Nature Reviews – Genetics, 2001,

2: pp 801-9.

[8] Eng J.K., McCormack, A.L., and Yates, J.R., III, “An approach to correlate
tandem mass spectral data of peptides with amino acid sequences in a protein
database”. J. Am. Soc. Mass Spectrom., 1994, 5(11) pp. 976-89

[9] Pappin, D.J.C., Hojrup, P. and Bleasby, A.J., “Rapid identification of proteins by

peptide mass fingerprinting”. Curr Biol, 1993, 3(6), pp 327-32

[10] McLuckey S.A. and Wells J.M., “Mass Analysis at the Advent of the 21st

Century”, Chem Rev. 101 (2), 2001, pp. 571-606

[11] Washington University, Dept. of Chemistry. “Instrumentation and Ionization
Methods Tutorial” http://wunmr.wustl.edu/~msf/ionmethd.html

[12] Richard Caprioli and Marc Sutter, “Mass Spectrometry”,

http://ms.mc.vanderbilt.edu/tutorials/ms/ms.htm

[13] TM3 Documentation, University of Toronto, Dept. of ECE.
http://www.eecg.toronto.edu/~tm3/

[14] TM3 Ports Package Documentation, University of Toronto, Dept. of ECE.

http://www.eecg.toronto.edu/~tm3/ports.ps

 120

http://www.embl-heidelberg.de/
http://wunmr.wustl.edu/~msf/ionmethd.html
http://ms.mc.vanderbilt.edu/tutorials/ms/ms.htm
http://www.eecg.toronto.edu/~tm3/

[15] Edman, P. “On the mechanism of the phenyl isothiocyanate degradation of
peptides”. Acta Chem. Scand. (1956) 10, 761–768

[16] Burley S.K., Almo S.C., Bonanno J.B., Capel M., Chance M. R., Gaasterland

T., Lin D., Šali A, Studier F.W. & Swaminathan S, “Structural genomics: beyond
the Human Genome Project”, Nature Genetics, 1999, 23, pp. 151 - 157

[17] Hoang D.T. , Lopresti D. P., “FPL Implementation of Systolic Sequence
Alignment” FPL 1992: 183-191

[18] Lopresti D. P., “Rapid implementation of a genetic sequence comparator using

FPGAs” Adv. Res. VLSI, pp 139-152, 1991.

[19] DeCypher http://www.timelogic.com/technology.html

[20] BioXL http://www.cgen.com/products/bioxl.htm

[21] Biemann K., Cone C., Webster B.R., Arsenault G.P. “Determination of the
amino acid sequence in oligopeptides by computer interpretation of their high-
resolution mass spectra”, J. Am. Chem. Soc., 1966, 88(23), p.5598-606

[22] Lewis D., Betz V., Jefferson D., Lee A., Lane C., Leventis P., Marquardt S.,

McClintock C., Pedersen B., Powell G., Reddy S., Wysocki C., Cliff R., and Rose
J., "The Stratix Routing and Logic Architecture" FPGA '03, pp. 15-20, February
2003.

[23] Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. "Basic local

alignment search tool.",J. Mol. Biol., 215 pp. 403-410, 1990

[24] DNA images, http://dna.com

[25] Sinclair B., “Software Solutions to Proteomics Problems”, The Scientist, 2001
Oct, 15[20]:26

[26] Kumar A, Harrison PM, Cheung KH, Lan N, Echols N, Bertone P, Miller P,

Gerstein MB, Snyder M. “An integrated approach for finding overlooked
genes in yeast.”, Nat Biotechnol 2002 Jan;20(1):58-63

[27] ftp://genome-ftp.stanford.edu/pub/yeast/data_download/sequence/

genomic_sequence/chromosomes/fasta/

[28] Partial Saccharomyces Chromosome IV map http://db.yeastgenome.org/ cgi-
bin/SGD/ORFMAP/ORFmap?seq=YDL229W

 121

http://www.timelogic.com/technology.html
http://www.cgen.com/products/bioxl.htm
http://dna.com/
ftp://genome-ftp.stanford.edu/pub/yeast/data_download/sequence/
http://db.yeastgenome.org/

[29] Partial Saccharomyces Chromosome XIV map http://db.yeastgenome.org/ cgi-
bin/ SGD/ORFMAP/ORFmap?seq=YNL209W

[30] Partial Saccharomyces Chromosome XV map http://db.yeastgenome.org/ cgi-

bin/SGD/ORFMAP/ORFmap?seq=YOR370C

[31] BLAST (2 sequence) http://www.ncbi.nlm.nih.gov/blast/bl2seq/bl2.html

[32] Sherman Fred, An Introduction to the Genetics and Molecular Biology of the

Yeast Saccharomyces cerevisiae, http://dbb.urmc.rochester.edu/labs/
Sherman_f/yeast/index.html, Chapters 1-5

[33] Rubin, Gerald M. “The draft sequences: Comparing species”, Nature, 2001,

409, pp.820-821

[34] Stanchi F, Bertocco E, Toppo S, Dioguardi R, Simionati B, Cannata N,
Zimbello R, Lanfranchi G, Valle G. “Characterization of 16 novel human genes
showing high similarity to yeast sequences”, Yeast. 2001 Jan 15;18(1), pp. 69-80.

[35] Bostanci Adam, “Sequencing Human Genomes”, The Mapping Cultures of 20th

Century Genetics, August 2003

[36] Steen H., Andersen J., Küster B., Podtelejnikov A., Rappsilber J., Henrik M.,

Mann M., “Increasing the Throughput of Protein Identification Using
Nanoelectrospray QqTOF Mass Spectrometry”, ASMS, 1999.

[37] S. cerevisiae - Repeat Sequence information http://www.yeastgenome.org/

sequence_done.shtml

[38] H. Sapiens - Repeat Sequence information http://www.neuro.wustl.edu/
neuromuscular/mother/dnarep.htm

[39] MASCOT http://www.matrixscience.com/cgi/index.pl?page=/

search_form_select.html

[40] University of Wisconsin BioWeb System: Sequence Analysis

http://bioweb.uwlax.edu/GenWeb/Molecular/Seq_Anal/Translation/
translation.html

[41] A Guide to Molecular Sequence Analysis : Open Reading Frames

http://www.sequenceanalysis.com/model/orf.html

[42] Medical Dictionary Database http://www.books.md/T/dic/trypsin.php

[43] Aebersold R, Mann M., “Mass spectrometry-based proteomics”, Nature. 2003

Mar 13;422(6928):198-207.

 122

http://db.yeastgenome.org/ cgi-bin/ SGD/ORFMAP/ORFmap?seq=YNL209W
http://db.yeastgenome.org/ cgi-bin/ SGD/ORFMAP/ORFmap?seq=YNL209W
http://db.yeastgenome.org/
http://www.ncbi.nlm.nih.gov/blast/bl2seq/bl2.html
http://dbb.urmc.rochester.edu/labs/ Sherman_f/yeast/index.html
http://dbb.urmc.rochester.edu/labs/ Sherman_f/yeast/index.html
http://www.yeastgenome.org/ sequence_done.shtml
http://www.yeastgenome.org/ sequence_done.shtml
http://www.neuro.wustl.edu/ neuromuscular/mother/dnarep.htm
http://www.neuro.wustl.edu/ neuromuscular/mother/dnarep.htm
http://www.matrixscience.com/cgi/
http://bioweb.uwlax.edu/GenWeb/Molecular/Seq_Anal/Translation/
http://www.sequenceanalysis.com/model/orf.html
http://www.books.md/T/dic/trypsin.php

[44] Net Gene Predictor http://www.cbs.dtu.dk/services/NetGene2/

[45] GLIMMER at TIGR http://www.tigr.org/~salzberg/glimmer.html

[46] Houle, John L., “Database Mining in the Human Genome Initiative”,
Whitepaper, Biodatabases, Amita Corporation, July 2000.

[47] 2D GEL ELECTROPHORESIS FOR PROTEOMICS TUTORIAL

http://www.aber.ac.uk/parasitology/Proteome/Tut_2D.html

[48] Editorial, “A Cast of Thousands”, Nature Biotechnology, March 2003 21 (3) p
213.

[49] Analyst QS Tutorials for Hybrid Quadrupole-TOF Mass Spectrometer (Pulsar),

(Chaper 5) Independent Data Acquisition, Sciex Corp.

[50] Altera Corporation, North American price list (volumes 100-499), Aug 2003

[51] Leontti J., Private Communication, Camtech II Circuits, Sep 2003

[52] Steve Schaer, Personal Communication

[53] Kingston Technology, http://www.kingston.com

[54] ASL Inc. http://www.aslab.com

[55] Dell Computers http://www.dell.com

[56] Xilinx Corporation http://www.xilinx.com

[57] Altera Corporation http://www.altera.com

[58] Venter et al. “The Sequence of the Human Genome”, Science, Feb 2001
291:1304-1351.

[59] International Human Genome Sequencing Consortium, “Initial Sequencing and

Analysis of the Human Genome”, Nature, 2001, 409, pp. 860-921

[60] Yuen Ho, Albrecht Gruhler, Adrian Heilbut, Gary D. Bader, Lynda Moore,
Sally-Lin Adams, Anna Millar, Paul Taylor, Keiryn Bennett, Kelly Boutilier,
Lingyun Yang, Cheryl Wolting, Ian Donaldson, Soren Schandorff, Juanita
Shewnarane, Mai Vo, Joanne Taggart, Marilyn Goudreault, Brenda Muskat, Cris
Alfarano, Danielle Dewar, Zhen Lin, Katerina Michalickova, Andrew R.
Willems, Holly Sassi, Peter A. Nielsen, Karina J. Rasmussen, Jens R. Andersen,
Lene E. Johansen, Lykke H. Hansen, Hans Jespersen, Alexandre Podtelejnikov,
Eva Nielsen, Janne Crawford, Vibeke Poulsen, Birgitte D. Sorensen, Jesper

 123

http://www.cbs.dtu.dk/services/NetGene2/
http://www.tigr.org/~salzberg/glimmer.html
http://www.aber.ac.uk/parasitology/Proteome/Tut_2D.html

Matthiesen, Ronald C. Hendrickson, Frank Gleeson, Tony Pawson, Michael F.
Moran, Daniel Durocher, Matthias Mann, Christopher W. V. Hogue, Daniel
Figeys & Mike Tyers, “Systematic identification of protein complexes in
Saccharomyces cerevisiae by mass spectrometry”, Nature 2002 Jan 10;415(6868):
180-183

[61] Hastings, L.M. and Krainer, A. R., “Pre-mRNA splicing in the new Millenium”,

Current Opinion in Cell Biology, 2001, 13:302-309

[62] Thanaraj, T. A., and Clark F., “Human GC-AG alternative intron isoforms with

weak donor sites show enhanced consensus at acceptor exon positions”, Nucleic
Acids Research, 2001, 29, (12) pp. 2581-2593.

[63] Perkins D.N., Pappin D.J., Creasy DM, Cottrell J.S.,“Probability-based protein

identification by searching sequence databases using mass spectrometry data”,
Electrophoresis. 1999 Dec;20(18):3551-67.

[64] Feng W., Warren M.S., and Weigle E., "Honey, I shrunk the Beowulf!", ICPP

2002, pp 141-149

[65] Stratix power calculator, http://www.altera.com/products/devices/stratix/
utilities/power_calculator/stratix_power_calc.xls

[66] Intel (R) Pentium 4 Processor datasheet,

http://developer.intel.com/design/pentium4/datashts/298643.htm

[67] Sonar MS/MS, http://www.genomicsolutions.com/search/index.html

[68] ThermoFinnigan Sequest, http://www.genomicsolutions.com/search/index.html

[69] MDS Proteomics Pepsea, http://www.mdsproteomics.com

 124

Appendix A. Mass Spectrometry for Protein Identification

Mass Spectrometry is a process in which an input sample is ionized and the ions thus

generated are separated according to their mass to charge ratio. The general mass

spectrometry flow used in protein identification is depicted in Figure A-1 below.

Sample
Preparation

Peptide
Resolution

(MS1)

Peptide
Analysis
(MS2)

Data Analysis
& Sequence
Generation

Figure A-1: Tandem Mass Spectrometry Flow

Once a biological sample is prepared for analysis, it is fed into a mass spectrometer (MS).

Tandem mass spectrometry, as the name implies, involves two mass spectrometers (MS1

and MS2 shown in Figure A-1). The first MS provides a coarse analysis of the sample,

and allows the user to select elements of the sample that can then be sent to the second

MS for more detailed analysis.

Sample Preparation:
A protein sample being prepared for mass spectrometry should ideally only contain

proteins of interest. However, current protein separation techniques cannot achieve this

level of accuracy and most protein samples contain several contaminant proteins.

The purified samples are usually digested from their intact form into smaller peptides.

Digestion is frequently performed using the enzyme trypsin, which is known as a specific

enzyme for its property of cleaving proteins specifically after the Arginine (R) and

Lysine (K) amino acids. However if a Proline (P) molecule follows the K or R amino

acids, the bond will be stronger, preventing cleavage. Thus a protein is digested into

tryptic peptides. An example is presented in Figure A-2 below.

 125

MAVRAKPCOKLHNWF
Original protein in sample

MAV LHNWF
After digestion – 3 smaller tryptic peptides (note cleavage after ut not

R A K
K and R b

KPCO
KP)

Figure A-2: Protein Digestion

The intact protein is cut after every instance of a K or R amino acid except when

followed by P. This process occurs to every protein in the sample, which is then fed into

the mass spectrometer.

Peptide Resolution:

The next step of a conventional mass spectrometry experiment is Peptide Resolution.

Here, the peptides in the sample are ionized and the mass to charge ratio of each ionized

peptide is measured, and saved in a list known as the Parent Ion Scan (PIS). In addition to

mass, the MS can also identify the concentration or intensity of a given substance in the

sample. Individual parent ions (or ionized peptides) are selected by mass and moved to

the next stage of analysis.

Peptide Analysis:

Each parent ion is then analyzed by a second mass spectrometer (MS2) to obtain its

sequence. This is usually done through a technique known as Collision Induced

Dissociation (CID). In CID, the parent ions are dissociated into their daughter fragments

by collision with an inert gas. Consider the ion from the peptide "mavr" in the example

above.

 126

M A V RN C

y1 y2y3

b1 b2 b3

MN

A V R C

b1

y3

a) Collision points along peptide backbone

b) Daughter fragments generated from parent ion

Figure A-3: Collision Induced Dissociation of Peptide

The molecules of the collision gas strike the peptide backbone i.e. the bonds that hold the

amino acids together thus breaking the peptide into smaller fragments.

Note that the figure indicates two terminals present in every protein, the N and C terminal

on either end of the peptide. Any daughter fragment induced by collision is either an N-

terminal or C-terminal fragment, and referred to as a 'b-ion' or 'y-ion' respectively. These

fragments are also identified by a subscript, which indicates the number of amino acids

from their terminal they contain. For example, 'y3' in the example above contains the first

three amino acids starting at the C terminal of the peptide.

 127

Set of all
Daughter

Ions
Ion Type Mass of ion

M 131
MA 202 b-ions

MAV 301
R

RV 255 y-ions
(read backwards)

RVA 326

156

Figure A-4: Daughter Ions of "MAVR"

The set of daughter ion fragments consists of all substrings of the parent peptide as

shown in Figure A-4.

Data Analysis and Sequence Generation:

Figure A-5: Interpretation of Sequence from CID Sprectrum

 128

From the CID spectrum in Figure A-5, each of the daughter ion fragments can be

identified. The difference in mass between the peaks corresponds to the mass of a single

amino acid and thus the sequence of individual fragments can be reconstructed.

There are various algorithms that then overlap the reconstructed fragment sequences and

determine the full sequence of the original peptide.

In this manner each peptide from the original protein can be sequenced. Once the

sequence of each tryptic peptides is known, a number of approaches can be used to

deduce the sequence of the full protein. Several genetic algorithms have been used to

match peptide sequences with those of existing proteins to look for common structures.

Other heuristic approaches involve using physical chemistry to evaluate peptide

configurations to determine a likely protein sequence.

 129

Appendix B. VHDL Source Code

1. Search Engine Controller (control.vhd)

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

entity control is
port (

 tm3_clk_v0 : in std_logic;
 tm3_sram_adsp : out std_logic;
 tm3_sram_data : inout std_logic_vector(63 downto 0);
 tm3_sram_addr : out std_logic_vector(18 downto 0);
 tm3_sram_we : out std_logic_vector(7 downto 0);
 tm3_sram_oe : out std_logic_vector(1 downto 0);

 main_reset : in std_logic;
 mem_scanned : out std_logic;
 match_address : out std_logic_vector(18 downto 0);
 codonin : in std_logic_vector(269 downto 0);
 tm3want : out std_logic;
 sunready : in std_logic;
 reset : out std_logic;
 mem_for_frame : out std_logic_vector(63 downto 0);
 freq_enable : out std_logic;
 calc_enable : out std_logic;
 score_sent : in std_logic

);
end control;

architecture ctrl_behv of control is

 component genebuffer
 port (
 clock: IN std_logic;
 data: IN std_logic_VECTOR(62 downto 0);
 q: OUT std_logic_VECTOR(62 downto 0);
 load: IN std_logic);
 end component;

 component fullprot
 port (
 fpClk : in std_logic;
 codonInp : in std_logic_vector(0 to 269);
 memwindow : in std_logic_vector(0 to 149);
 foundHit : out std_logic
);

 130

 end component;

 type ctrlStates is
(rst,load1,load2,save,meminit1,meminit2,meminit3,hand1,hand2,reenter,madematch,returnscore,memstate1,done);

 signal memory_word : std_logic_vector(0 to 188);
 signal dataword : std_logic_vector(63 downto 0);

 signal query1 : std_logic_vector(0 to 269);
 signal query2 : std_logic_vector(0 to 269);

 signal stored_data : std_logic_vector(62 downto 0);
 signal freq_window_out_buffer : std_logic_vector(62 downto 0);
 signal mass_window_out_buffer : std_logic_vector(62 downto 0);
 signal mem_to_frames : std_logic_vector(0 to 125);
 signal freq_mem_to_frames : std_logic_vector(0 to 125);
 signal mass_mem_to_frames : std_logic_vector(0 to 125);
 signal load_gene_window : std_logic;
 signal load_mass_window : std_logic;

 signal calc_operation : std_logic_vector(8 downto 0);
 signal freq_operation : std_logic_vector(8 downto 0);

 signal testnet : std_logic;

 signal currAddr : std_logic_vector(18 downto 0);
 signal codon_ctr : std_logic_vector(0 to 0);
 signal currState : ctrlStates;
 signal nextState : ctrlStates;
 signal mainhit : std_logic;
 signal cmplhit : std_logic;
 signal freq_enable_line : std_logic;
 signal calc_enable_line : std_logic;

 attribute syn_black_box : boolean;
 attribute syn_black_box of genebuffer : component is true;

 begin

 reset <= main_reset;

 freq_genewindow : genebuffer port map (
 clock => tm3_clk_v0,
 data => memory_word(0 to 62),
 q => freq_window_out_buffer,
 load => load_gene_window);

 mass_genewindow : genebuffer port map (

 131

 clock => tm3_clk_v0,
 data => freq_window_out_buffer,
 q => mass_window_out_buffer,
 load => load_gene_window);

 proteinblock : fullprot port map (
 fpClk => tm3_clk_v0,
 codonInp => query1,
 memwindow => memory_word(0 to 149),
 foundhit => mainhit
);

 complmntblock : fullprot port map (
 fpClk => tm3_clk_v0,
 codonInp => query2,
 memwindow => memory_word(0 to 149),
 foundhit => cmplhit
);

 process(currState,currAddr,codon_ctr,mainhit,cmplhit,score_sent,sunready,main_reset,calc_operation)
 begin

 calc_enable_line <= '0';
 freq_enable_line <= '0';
 load_gene_window <= '0';
 tm3want <= '0';
 tm3_sram_we <= "11111111";
 tm3_sram_oe <= "01";
 tm3_sram_adsp <= '1';
 tm3_sram_addr <= currAddr;
 tm3_sram_data <= (others => 'Z');
 mem_scanned <= '0';
 nextState <= rst;

 case(currState) is

 when rst =>
 nextState <= load1;

 when load1 =>
 tm3want <= '1';
 tm3_sram_data <= dataword;

 if sunready = '1' then
 nextState <= load2;
 else
 nextState <= load1;
 end if;

 when load2 =>
 tm3want <= '0';

 if sunready = '0' then
 nextState <= save;
 else
 nextState <= load2;

 132

 end if;

 when save =>
 tm3_sram_addr <= currAddr;
 tm3_sram_adsp <= '0';
 tm3_sram_oe <= "01";

 if codon_ctr = "1" then
 nextState <= meminit1;
 else
 nextState <= load1;
 end if;

 when meminit1 =>
 tm3_sram_addr <= currAddr;
 tm3_sram_adsp <= '0';
 tm3_sram_oe <= "01";

 nextState <= meminit2;

 when meminit2 =>

 tm3_sram_addr <= currAddr;
 tm3_sram_adsp <= '0';

 tm3_sram_oe <= "01";
 nextState <= meminit3;

 when meminit3 =>

 tm3_sram_addr <= currAddr;
 tm3_sram_adsp <= '0';

 tm3_sram_oe <= "01";

 if score_sent = '1' then
 load_gene_window <= '1';
 nextState <= memstate1;
 else
 load_gene_window <= '0';
 nextState <= meminit3;
 end if;

 when memstate1 =>

 if calc_operation > "000000000" then
 calc_enable_line <= '1';
 else
 calc_enable_line <= '0';
 end if;

 133

 if freq_operation > "000000000" then
 freq_enable_line <= '1';
 else
 freq_enable_line <= '0';
 end if;

 load_gene_window <= '1';

 tm3_sram_addr <= currAddr;
 tm3_sram_adsp <= '0';
 tm3_sram_oe <= "01";

 if (mainhit = '1') or (cmplhit = '1') or (currAddr >=
"1000000000000000000") then
 nextState <= madematch;

 elsif (score_sent = '1')then
 nextState <= memstate1;
 elsif (score_sent = '0')then
 nextState <= returnScore;
 end if;

 when madematch =>

 if currAddr >= "1000000000000000000" then
 mem_scanned <= '1';
 nextState <= done;
 else
 nextState <= memstate1;
 end if;

 when returnScore =>
 if score_sent = '1' then
 nextState <= madematch;
 else
 nextState <= returnScore;
 end if;

 when done =>
 nextState <= done;

 when others =>

 end case;

 end process;

 process(tm3_clk_v0,main_reset,codon_ctr,mainhit,cmplhit,calc_operation)
 begin

 134

 if main_reset = '1' then

 currState <= rst;

 elsif rising_edge(tm3_clk_v0) then

 --if freq_operation > "000000000" and freq_operation < "000001111" then
 if freq_enable_line= '1' then
 mem_for_frame <= freq_mem_to_frames(0 to 63);
 --elsif calc_operation > "000000000" and calc_operation < "000001111" then
 elsif calc_enable_line = '1' then
 mem_for_frame <= mass_mem_to_frames(0 to 63);
 end if;

 freq_enable <= freq_enable_line;
 calc_enable <= calc_enable_line;

 currState <= nextState;

 case (currState) is

 when rst =>
 codon_ctr <= (others => '0');
 currAddr <= (others => '0');
 dataword <= (others => '0');
 calc_operation <= (others => '0');
 freq_operation <= (others => '0');

 when load1 =>

 dataword <= (others => '1');

 when load2 =>

 when save =>

 codon_ctr <= codon_ctr+1;

 if codon_ctr = "0" then
 query1 <= codonin;
 else
 query2 <= codonin;
 end if;

 when meminit1 =>

 memory_word(0 to 62) <= tm3_sram_data(63 downto 1);
 currAddr <= "0000000000000000000";

 when meminit2 =>

 memory_word(63 to 125) <= tm3_sram_data(63 downto 1);
 currAddr <= "0000000000000000001";

 135

 when meminit3 =>

 calc_operation <= (others => '0');
 memory_word(126 to 188) <= tm3_sram_data(63 downto 1);
 currAddr <= "0000000000000000010";

 when memstate1 =>

 if (mainhit = '1') or (cmplhit = '1') then
 freq_operation <= "000000001";
 elsif freq_operation > "000000000" and freq_operation < "0000011110" then
 freq_operation <= freq_operation + 1;
 elsif freq_operation = "0000011110" then
 freq_operation <= (others => '0');
 calc_operation <= "000000001";
 end if;

 if calc_operation > "000000000" and calc_operation < "0000011110" then
 calc_operation <= calc_operation + 1;
 elsif calc_operation = "0000011110" then
 calc_operation <= (others => '0');
 end if;

 match_address <= currAddr;

 --mem_to_frames(0 to 62) <= mem_to_frames(63 to 125);
 --mem_to_frames(63 to 125) <= window_out_buffer;
 freq_mem_to_frames(0 to 62) <= freq_mem_to_frames(63 to 125);
 freq_mem_to_frames(63 to 125) <= freq_window_out_buffer;

 mass_mem_to_frames(0 to 62) <= mass_mem_to_frames(63 to 125);
 mass_mem_to_frames(63 to 125) <= mass_window_out_buffer;

 for i in 0 to 125 loop
 memory_word(i) <= memory_word(i+63);
 end loop;
 memory_word(126 to 188) <= tm3_sram_data(63 downto 1);
 currAddr <= currAddr + 1;

 when done =>
 when others=>

 end case;

 end if;
 end process;
end ctrl_behv;

2. Peptide Comparison Unit (protein.vhd)

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;

 136

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity protein is
generic (numAA:integer:=10);
 port (

 pClk : in std_logic;
 potentialCodons1 : in std_logic_vector(0 to (9*numAA)-1);
 potentialCodons2 : in std_logic_vector(0 to (9*numAA)-1);
 potentialCodons3 : in std_logic_vector(0 to (9*numAA)-1);
 memWord : in std_logic_vector(0 to (9*numAA)-1);
 onehit : out std_logic
);
end protein;

architecture prot_behv of protein is

 signal rowHit : std_logic_vector(numAA-1 downto 0);
 signal phitline : std_logic;
 signal hi : std_logic;

 component amino
 port (
 aClk : in std_logic;
 codonin1 : in std_logic_vector(0 to 8);
 codonin2 : in std_logic_vector(0 to 8);
 codonin3 : in std_logic_vector(0 to 8);
 memPort : in std_logic_vector(0 to 8);
 hit : out std_logic
);
 end component;

 component big_and
 Port (clk : in std_logic;
 And_in : in std_logic_vector(11 downto 0);
 And_out : out std_logic);
 end component;

 begin

 hi <= '1';

 rowOfAminos : for i in 0 to numAA-1 generate
 oneAA : amino port map (
 aClk => pClk,
 codonin1 => potentialCodons1(9*i to (9*i+8)),
 codonin2 => potentialCodons2(9*i to (9*i+8)),
 codonin3 => potentialCodons3(9*i to (9*i+8)),
 hit => rowHit(i),
 memPort => memWord(9*i to (9*i+8))

);
 end generate rowOfAminos;

 andaminos : big_and port map (
 clk => pClk,
 And_in(0) => rowHit(0),
 And_in(1) => rowHit(1),

 137

 And_in(2) => rowHit(2),
 And_in(3) => rowHit(3),
 And_in(4) => rowHit(4),
 And_in(5) => rowHit(5),
 And_in(6) => rowHit(6),
 And_in(7) => rowHit(7),
 And_in(8) => rowHit(8),
 And_in(9) => rowHit(9),
 And_in(10) => hi,
 And_in(11) => hi,
 And_out => phitline
);

 process(pClk)

 begin
 if rising_edge(pClk) then
 onehit <= phitline;
 end if;
 end process;

end prot_behv;

3. Codon Unit (amino.vhd)

library ieee;
use ieee.std_logic_1164.all;
use work.all;

entity amino is
port (
 aClk : in std_logic;
 codonin1 : in std_logic_vector(0 to 8);
 codonin2 : in std_logic_vector(0 to 8);
 codonin3 : in std_logic_vector(0 to 8);
 memPort : in std_logic_vector(0 to 8);
 hit : out std_logic
);
end amino;

architecture amino_behv of amino is

signal memhit : std_logic;
signal directhit : std_logic;

 begin

 process(aClk,codonin1, memPort)

 begin

 if rising_edge(aClk) then

if (((codonin1(2) = '1' or memPort(2) = '1') or (codonin1(0 to 1) = memPort(0 to 1))) and
 ((codonin1(5) = '1' or memPort(5) = '1') or (codonin1(3 to 4) = memPort(3 to 4))) and
 ((codonin1(8) = '1' or memPort(8) = '1') or (codonin1(6 to 7) = memPort(6 to 7)))) or

 138

 (((codonin2(2) = '1' or memPort(2) = '1') or (codonin2(0 to 1) = memPort(0 to 1))) and
 ((codonin2(5) = '1' or memPort(5) = '1') or (codonin2(3 to 4) = memPort(3 to 4))) and
 ((codonin2(8) = '1' or memPort(8) = '1') or (codonin2(6 to 7) = memPort(6 to 7)))) or

 (((codonin3(2) = '1' or memPort(2) = '1') or (codonin3(0 to 1) = memPort(0 to 1))) and
 ((codonin3(5) = '1' or memPort(5) = '1') or (codonin3(3 to 4) = memPort(3 to 4))) and
 ((codonin3(8) = '1' or memPort(8) = '1') or (codonin3(6 to 7) = memPort(6 to 7)))) then

 hit <= '1';

 else

 hit <= '0';

 end if;

 end if;

 end process;

 end amino_behv;

4. Tryptic Peptide Mass Calculator Controller (mod_calc.vhd)

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

entity mod_calc is
generic(num_stages : integer := 10;
 mass_bits : integer := 25);
port (
 clk : in std_logic;
 calc_reset : in std_logic;
 enable : in std_logic;
 ramword : in std_logic_vector(63 downto 0);
 masses : out std_logic_vector(0 to (num_stages)*(mass_bits)-1);
 mass_save : out std_logic_vector(1 to 8);
 complement_masses : out std_logic_vector(0 to (num_stages)*(mass_bits)-1);
 complement_mass_save : out std_logic_vector(1 to 8);
 rdy : out std_logic

);
end mod_calc;

architecture calc_flow of mod_calc is

 139

--
-- Fragment detection units and mass LUTs

component masslut
 PORT
 (
 address : IN STD_LOGIC_VECTOR (5 DOWNTO 0);
 clock : IN STD_LOGIC ;
 enable : IN STD_LOGIC := '1';
 q : OUT STD_LOGIC_VECTOR (mass_bits-1 DOWNTO 0)
);
end component;

component cleavecheck
 PORT
 (
 address : IN STD_LOGIC_VECTOR (5 DOWNTO 0);
 clock : IN STD_LOGIC ;
 enable : IN STD_LOGIC := '1';
 q : OUT STD_LOGIC_VECTOR (1 DOWNTO 0)
);
end component;

COMPONENT ambigna IS
 PORT
 (
 address : IN STD_LOGIC_VECTOR (3 DOWNTO 0);
 clock : IN STD_LOGIC ;
 clken : IN STD_LOGIC ;
 q : OUT STD_LOGIC_VECTOR (0 DOWNTO 0)
);
END COMPONENT;

--
-- Basically the same components; modified to produce values for the complementary strands

component compl_masslut
 PORT
 (
 address : IN STD_LOGIC_VECTOR (5 DOWNTO 0);
 clock : IN STD_LOGIC ;
 enable : IN STD_LOGIC := '1';
 q : OUT STD_LOGIC_VECTOR (mass_bits-1 DOWNTO 0)
);
end component;

component compl_cleavecheck
 PORT
 (
 address : IN STD_LOGIC_VECTOR (5 DOWNTO 0);
 clock : IN STD_LOGIC ;
 enable : IN STD_LOGIC := '1';
 q : OUT STD_LOGIC_VECTOR (1 DOWNTO 0)
);
end component;

 140

COMPONENT compl_ambigna IS
 PORT
 (
 address : IN STD_LOGIC_VECTOR (3 DOWNTO 0);
 clock : IN STD_LOGIC ;
 clken : IN STD_LOGIC ;
 q : OUT STD_LOGIC_VECTOR (0 DOWNTO 0)
);
END COMPONENT;

 signal third_pos_check: std_logic_vector(1 to num_stages-1);
 signal ambig : std_logic_vector(1 to num_stages-1);
 signal word_stage : std_logic_vector(0 to 252);
 signal discard_buff2 : std_logic_vector(1 to num_stages);
 signal mlut_out : std_logic_vector(((num_stages-1)*mass_bits) -1 downto 0);
 signal mass_a : std_logic_vector(0 to (num_stages-1)*(mass_bits)-1);
 signal mass_b : std_logic_vector(0 to (num_stages-1)*(mass_bits)-1);
 signal discard : std_logic_vector(1 to num_stages);
 signal discard_buff : std_logic_vector(1 to num_stages);
 signal wordaccum : std_logic_vector(0 to (2*mass_bits)-1);
 signal accumsave : std_logic_vector(0 to (2*mass_bits)-1);
 signal init_ctr : std_logic_vector(3 downto 0);
 signal mass_break : std_logic_vector(1 to num_stages-1);
 signal slidingwindow : std_logic_vector(0 to (num_stages-1)*(mass_bits)-1);
 signal break_in_stage : std_logic_vector(1 to num_stages);
 signal bs_buff : std_logic_vector(0 to 2);
 signal following_break : std_logic_vector(1 to num_stages);
 signal save_b :std_logic_vector(1 to num_stages-1);
 signal slide_save :std_logic_vector(0 to num_stages-1);
 signal fb_buff : std_logic_vector(1 to num_stages);
 signal wildcard : std_logic_vector(1 to num_stages-1);
 signal sd_buff : std_logic_vector(1 to num_stages);
 signal sd_buff2 : std_logic_vector(1 to num_stages);
 signal start_detected : std_logic_vector(1 to num_stages);

-- Now all the same signals but for the complementary strand
 signal compl_third_pos_check: std_logic_vector(1 to num_stages-1);
 signal compl_ambig : std_logic_vector(1 to num_stages-1);
 signal compl_discard_buff2 : std_logic_vector(1 to num_stages);
 signal compl_mlut_out : std_logic_vector((num_stages-1)*mass_bits -1 downto 0);
 signal compl_mass_a : std_logic_vector(0 to (num_stages-1)*mass_bits -1);
 signal compl_mass_b : std_logic_vector(0 to (num_stages-1)*mass_bits -1);
 signal compl_discard : std_logic_vector(1 to num_stages);
 signal compl_discard_buff : std_logic_vector(1 to num_stages);
 signal compl_wordaccum : std_logic_vector(0 to (2*mass_bits)-1);
 signal compl_accumsave : std_logic_vector(0 to (2*mass_bits)-1);
 signal compl_init_ctr : std_logic_vector(3 downto 0);
 signal compl_mass_break : std_logic_vector(1 to num_stages-1);
 signal compl_slidingwindow : std_logic_vector(0 to (num_stages-1)*32 -1);
 signal compl_break_in_stage : std_logic_vector(1 to num_stages);
 signal compl_bs_buff : std_logic_vector(0 to 2);
 signal compl_following_break : std_logic_vector(1 to num_stages);
 signal compl_save_b :std_logic_vector(1 to num_stages-1);
 signal compl_slide_save :std_logic_vector(0 to num_stages-1);
 signal compl_fb_buff : std_logic_vector(1 to num_stages);
 signal compl_wildcard : std_logic_vector(1 to num_stages-1);

 141

 signal compl_sd_buff : std_logic_vector(1 to num_stages);

 signal m1 : std_logic_vector(0 to mass_bits-1);
 signal m2 : std_logic_vector(0 to mass_bits-1);
 signal m3 : std_logic_vector(0 to mass_bits-1);
 signal m4 : std_logic_vector(0 to mass_bits-1);
 signal m5 : std_logic_vector(0 to mass_bits-1);
 signal m6 : std_logic_vector(0 to mass_bits-1);
 signal m7 : std_logic_vector(0 to mass_bits-1);
 signal m8 : std_logic_vector(0 to mass_bits-1);

 signal cm1 : std_logic_vector(0 to mass_bits-1);
 signal cm2 : std_logic_vector(0 to mass_bits-1);
 signal cm3 : std_logic_vector(0 to mass_bits-1);
 signal cm4 : std_logic_vector(0 to mass_bits-1);
 signal cm5 : std_logic_vector(0 to mass_bits-1);
 signal cm6 : std_logic_vector(0 to mass_bits-1);
 signal cm7 : std_logic_vector(0 to mass_bits-1);
 signal cm8 : std_logic_vector(0 to mass_bits-1);

 type massStates is (reset,summing);
 attribute ENUM_ENCODING : STRING;
 attribute ENUM_ENCODING of massStates : type is "0 1";
 signal currState : massStates;
 signal nextState : massStates;

-- attribute syn_black_box : boolean;
-- attribute syn_black_box of masslut : component is true;
-- attribute syn_black_box of cleavecheck : component is true;
-- attribute syn_black_box of ambigna : component is true;

-- attribute syn_black_box of compl_masslut : component is true;
-- attribute syn_black_box of compl_cleavecheck : component is true;
-- attribute syn_black_box of compl_ambigna : component is true;

 begin

m1 <= mass_b(0 to mass_bits-1);
m2 <= mass_b(mass_bits to (mass_bits)+mass_bits-1);
m3 <= mass_b(2*mass_bits to (2*mass_bits)+mass_bits-1);
m4 <= mass_b(3*mass_bits to (3*mass_bits)+mass_bits-1);
m5 <= mass_b(4*mass_bits to (4*mass_bits)+mass_bits-1);
m6 <= mass_b(5*mass_bits to (5*mass_bits)+mass_bits-1);
m7 <= mass_b(6*mass_bits to (6*mass_bits)+mass_bits-1);
m8 <= accumsave(mass_bits to (mass_bits)+mass_bits-1);

cm1 <= compl_mass_b(0 to mass_bits-1);
cm2 <= compl_mass_b(mass_bits to (mass_bits)+mass_bits-1);
cm3 <= compl_mass_b(2*mass_bits to (2*mass_bits)+mass_bits-1);
cm4 <= compl_mass_b(3*mass_bits to (3*mass_bits)+mass_bits-1);

 142

cm5 <= compl_mass_b(4*mass_bits to (4*mass_bits)+mass_bits-1);
cm6 <= compl_mass_b(5*mass_bits to (5*mass_bits)+mass_bits-1);
cm7 <= compl_mass_b(6*mass_bits to (6*mass_bits)+mass_bits-1);
cm8 <= compl_accumsave(mass_bits to (mass_bits)+mass_bits-1);

mass_save(1 to num_stages-1) <= save_b ;
mass_save(num_stages) <= slide_save(num_stages-1) ;

complement_mass_save(1 to num_stages-1) <= compl_save_b ;
complement_mass_save(num_stages) <= compl_slide_save(num_stages-1) ;

masses(0 to ((num_stages-1)*(mass_bits))-1) <= mass_b;
masses(((num_stages-1)*(mass_bits)) to ((num_stages-1)*(mass_bits))+mass_bits-1) <=accumsave((mass_bits) to
(2*mass_bits)-1);

complement_masses(0 to ((num_stages-1)*(mass_bits))-1) <= compl_mass_b;
complement_masses(((num_stages-1)*(mass_bits)) to ((num_stages-1)*(mass_bits))+mass_bits-1) <=
compl_accumsave((mass_bits) to (2*mass_bits)-1);

strand_ambiguites : for stage in 0 to num_stages-2 generate

 one_wildcard : ambigna PORT MAP (
 address(0) => word_stage((63+(63*(stage-1) - 9*(((stage-1)*(stage-1) + (stage-1))/2)))
),
 address(1) => word_stage((63+(63*(stage-1) - 9*(((stage-1)*(stage-1) + (stage-1))/2))
)+1),
 address(2) => word_stage((63+(63*(stage-1) - 9*(((stage-1)*(stage-1) + (stage-1))/2))
)+3),
 address(3) => word_stage((63+(63*(stage-1) - 9*(((stage-1)*(stage-1) + (stage-1))/2))
)+4),
 clock => clk,
 clken => enable,
 q(0) => ambig(stage+1));
end generate;

strand_masses : for stage in 0 to num_stages-2 generate
 mlut: masslut PORT MAP (
 address(5) => word_stage((63+(63*(stage-1) - 9*(((stage-1)*(stage-1) + (stage-1))/2)))),
 address(4) => word_stage((63+(63*(stage-1) - 9*(((stage-1)*(stage-1) + (stage-1))/2))
)+1),
 address(3) => word_stage((63+(63*(stage-1) - 9*(((stage-1)*(stage-1) + (stage-1))/2))
)+3),
 address(2) => word_stage((63+(63*(stage-1) - 9*(((stage-1)*(stage-1) + (stage-1))/2))
)+4),
 address(1) => word_stage((63+(63*(stage-1) - 9*(((stage-1)*(stage-1) + (stage-1))/2))
)+6),
 address(0) => word_stage((63+(63*(stage-1) - 9*(((stage-1)*(stage-1) + (stage-1))/2))
)+7),
 clock => clk,
 enable => enable,
 q => mlut_out(((stage*mass_bits)+mass_bits-1) downto stage*mass_bits)

 143

);

end generate;

strand_breaks : for stage in 0 to num_stages-2 generate
 clv : cleavecheck PORT MAP (
 address(5) => word_stage((63+(63*(stage-1) - 9*(((stage-1)*(stage-1) + (stage-1))/2)))),
 address(4) => word_stage((63+(63*(stage-1) - 9*(((stage-1)*(stage-1) + (stage-1))/2))
)+1),
 address(3) => word_stage((63+(63*(stage-1) - 9*(((stage-1)*(stage-1) + (stage-1))/2))
)+3),
 address(2) => word_stage((63+(63*(stage-1) - 9*(((stage-1)*(stage-1) + (stage-1))/2))
)+4),
 address(1) => word_stage((63+(63*(stage-1) - 9*(((stage-1)*(stage-1) + (stage-1))/2))
)+6),
 address(0) => word_stage((63+(63*(stage-1) - 9*(((stage-1)*(stage-1) + (stage-1))/2))
)+7),
 clock => clk,
 enable => enable,
 q(1) => sd_buff(stage+1),
 q(0) => fb_buff(stage+1)
);
end generate;

--
-- Now the portmappings for the complementary devices

compl_str_ambiguites : for stage in 0 to num_stages-2 generate
 one_compl_wild : compl_ambigna PORT MAP (
 address(0) =>word_stage((63+(63*(stage-1) - 9*(((stage-1)*(stage-1) + (stage-1))/2))
)+6),
 address(1) =>word_stage((63+(63*(stage-1) - 9*(((stage-1)*(stage-1) + (stage-1))/2))
)+7),
 address(2) =>word_stage((63+(63*(stage-1) - 9*(((stage-1)*(stage-1) + (stage-1))/2))
)+3),
 address(3) =>word_stage((63+(63*(stage-1) - 9*(((stage-1)*(stage-1) + (stage-1))/2))
)+4),
 clock => clk,
 clken => enable,
 q(0) => compl_ambig(stage+1)
);
end generate;

compl_str_masses : for stage in 0 to num_stages-2 generate
 compl_mlut : compl_masslut PORT MAP (
 address(5) =>word_stage((63+(63*(stage-1) - 9*(((stage-1)*(stage-1) + (stage-1))/2))
)+6),
 address(4) =>word_stage((63+(63*(stage-1) - 9*(((stage-1)*(stage-1) + (stage-1))/2))
)+7),
 address(3) =>word_stage((63+(63*(stage-1) - 9*(((stage-1)*(stage-1) + (stage-1))/2))
)+3),
 address(2) => word_stage((63+(63*(stage-1) - 9*(((stage-1)*(stage-1) + (stage-1))/2))
)+4),
 address(1) => word_stage((63+(63*(stage-1) - 9*(((stage-1)*(stage-1) + (stage-1))/2)))),

 144

 address(0) => word_stage((63+(63*(stage-1) - 9*(((stage-1)*(stage-1) + (stage-1))/2))
)+1),
 clock => clk,
 enable => enable,
 q => compl_mlut_out(((stage*mass_bits)+mass_bits-1) downto stage*mass_bits)
);

end generate;

compl_str_breaks : for stage in 0 to num_stages-2 generate
compl_clv : compl_cleavecheck PORT MAP (
 address(5) => word_stage(6),
 address(4) => word_stage((63+(63*(stage-1) - 9*(((stage-1)*(stage-1) + (stage-1))/2))
)+7),
 address(3) => word_stage((63+(63*(stage-1) - 9*(((stage-1)*(stage-1) + (stage-1))/2))
)+3),
 address(2) => word_stage((63+(63*(stage-1) - 9*(((stage-1)*(stage-1) + (stage-1))/2))
)+4),
 address(1) => word_stage((63+(63*(stage-1) - 9*(((stage-1)*(stage-1) + (stage-1))/2)))),
 address(0) => word_stage((63+(63*(stage-1) - 9*(((stage-1)*(stage-1) + (stage-1))/2))
)+1),
 clock => clk,
 enable => enable,
 q(1) => compl_sd_buff(stage+1),
 q(0) => compl_fb_buff(stage+1)
);
end generate;

--

 process(currState,enable)
 begin
 if enable = '1' then
 case currState is

 when reset =>
 nextState <= summing;

 when summing =>
 nextState <= summing;

 when others =>
 nextState <= reset;

 end case;
 end if;
 end process;

 process(clk,enable,calc_reset,word_stage)
 begin

 for stage in -1 to num_stages-3 loop
 third_pos_check(stage+2) <= word_stage(71+(63*stage - 9*((stage*stage + stage)/2)));
 compl_third_pos_check(stage+2) <= word_stage(65+(63*stage - 9*((stage*stage +
stage)/2)));

 145

 end loop;

 if calc_reset = '1' then

 currState <= reset;

 elsif rising_edge(clk) then

 if enable = '1' then
--
 -- Events that occur on every enabled edge
 currState <= nextState;
 -- All for the original (not complementary) strand

 bs_buff(1) <= bs_buff(0);
 bs_buff(2) <= bs_buff(1);
 following_break <= fb_buff;
 sd_buff2 <= sd_buff;
 start_detected <= sd_buff2;
 discard <= discard_buff;
 following_break(8) <= following_break(7);

 -- Same as above but for complementary strand

 compl_bs_buff(1) <= compl_bs_buff(0);
 compl_bs_buff(2) <= compl_bs_buff(1);
 compl_following_break <= compl_fb_buff;
 compl_discard <= compl_discard_buff;
 compl_following_break(8) <= compl_following_break(7);
--

 if init_ctr >= 9 then
 rdy <= '1';
 else
 rdy <='0';
 end if;

 case currState is

 when reset =>

 init_ctr <= (others => '0');

-- All the initializations for the original strand
 wordaccum <= (others => '0');
 accumsave <= (others => '0');
 word_stage <= (others => '0');
 mass_a <= (others => '0');
 mass_b <= (others => '0');
 slide_save <= (others => '0');
 slidingwindow <= (others => '0');
 start_detected <= (others => '0');
 save_b <= (others => '0');
 bs_buff <= "100";
 break_in_stage <= (others => '0');
 following_break <= (others => '0');

-- All the initializations for the complementary strand
 compl_wordaccum <= (others => '0');

 146

 compl_accumsave <= (others => '0');
 compl_mass_a <= (others => '0');
 compl_mass_b <= (others => '0');
 compl_slide_save <= (others => '0');
 compl_slidingwindow <= (others => '0');
 compl_save_b <= (others => '0');
 compl_bs_buff <= "100";
 compl_break_in_stage <= (others => '0');
 compl_following_break <= (others => '0');

 when summing =>

 if (init_ctr <= 8) then init_ctr <= init_ctr + 1; end if;

--
-- The first a-register always gets the mass of the first amino acid in every word
 mass_a(0 to mass_bits-1) <= mlut_out(mass_bits-1 downto 0);
 slide_save(0) <= sd_buff(1);
 slidingwindow(0 to mass_bits-1)<= (others => '0');
 bs_buff(0) <= '0';

--Similar setup for complementary strands
 compl_mass_a(0 to mass_bits-1) <= compl_mlut_out(mass_bits-1 downto 0);
 compl_slide_save(0) <= compl_sd_buff(1);
 compl_slidingwindow(0 to mass_bits-1)<= (others => '0');
 compl_bs_buff(0) <= '0';
--

-- This is the actual word pipeline, It starts with the full 63 bit word and at every stage it
-- processes 9 bits (one codon = one amino acid) until all 63 bits = 7 amino acids have been
-- processed (both the original and complementary strands use this pipe)

 word_stage(0 to 62) <= ramword(63 downto 1);
 for stage in 0 to num_stages - 3 loop
 word_stage((63+(63*stage - 9*((stage*stage + stage)/2))) to (((63+(63*stage
- 9*((stage*stage + stage)/2)) + (62 - (9*(stage+1))))))) <= word_stage((72+(63*(stage - 1) - 9*(((stage -
1)*(stage - 1) + (stage - 1))/2))) to (72+(63*(stage - 1) - 9*(((stage - 1)*(stage - 1) + (stage - 1))/2)) + (62 -
(9*((stage - 1)+2)))));
 end loop;

--
-- Wild card detectors for the original strand. They check every stage for a wild card in the
-- first two codons (guranteed wildcard) or the specific codons that will create ambiguity if
-- there is a wildcard in the third position

 for stage in -1 to num_stages-3 loop
 wildcard(stage+2) <= word_stage(65+(63*stage - 9*((stage*stage + stage)/2))) OR
word_stage(68+(63*stage - 9*((stage*stage + stage)/2))) OR (third_pos_check(stage+2) and ambig(stage+2));
 end loop;

-- Same thing for the complementary strand, the only difference is that the ambiguity has
-- to be interpreted differently.

 for stage in -1 to num_stages-3 loop

 147

 compl_wildcard(stage+2) <= word_stage(71+(63*stage - 9*((stage*stage + stage)/2)))
OR word_stage(68+(63*stage - 9*((stage*stage + stage)/2))) OR (compl_third_pos_check(stage+2) and
compl_ambig(stage+2));
 end loop;

--
-- Keeps track of which words should not be saved (flushes the buffer on a wildcard)
 discard_buff(1) <= wildcard(1);
 for i in 2 to num_stages-1 loop
 discard_buff(i) <= (discard_buff(i-1) OR wildcard(i-1));
 end loop;

 if slide_save(7) = '1' and (discard_buff(8) = '1') then

 discard_buff(8) <= '0';
 else
 discard_buff(8) <= discard_buff(7);

 end if;

-- Same for the complementary strand
-- Keeps track of which complementary fragments should not be saved (flushes the buffer on a wildcard)
 compl_discard_buff(1) <= compl_wildcard(1);
 for i in 2 to 7 loop
 compl_discard_buff(i) <= (compl_discard_buff(i-1) OR compl_wildcard(i-1));
 end loop;

 if compl_slide_save(7) = '1' and (compl_discard_buff(8) = '1') then

 compl_discard_buff(8) <= '0';
 else
 compl_discard_buff(8) <= compl_discard_buff(7);

 end if;

-- Keeps track of whether a certain word has seen a breakpoint yet. If it has not, then its starting
-- point was in some previous word. If it has seen a break, then it can be saved right away (its
-- starting point was in this word.)

 break_in_stage(1) <= bs_buff(2) or sd_buff(1) ;

 for i in 2 to 7 loop
 break_in_stage(i) <= (break_in_stage(i-1) OR following_break(i)) or
sd_buff(i);
 end loop;

 break_in_stage(8) <= break_in_stage(7);

-- The same for the complementary strand

 compl_break_in_stage(1) <= compl_bs_buff(2) or compl_sd_buff(1) ;

 for i in 2 to 7 loop
 compl_break_in_stage(i) <= (compl_break_in_stage(i-1) OR
compl_following_break(i)) or compl_sd_buff(i);
 end loop;

 compl_break_in_stage(8) <= compl_break_in_stage(7);

 148

--

-- Stuff to deal with the sliding window
-- This is for the original strand
 for i in 1 to 6 loop

 if following_break(i)='0' and sd_buff(i+1) ='0' then
 slidingwindow((i)*mass_bits to (mass_bits)*(i)+(mass_bits-1)) <=
slidingwindow((i-1)*(mass_bits) to (mass_bits)*(i-1)+(mass_bits-1));

 if slide_save(i-1) = '1' then
 slide_save(i) <= '1';
 else
 slide_save(i) <= '0';
 end if;

 else

 if break_in_stage(i) = '0' then
 slide_save(i) <= '1';
 slidingwindow(((mass_bits)*(i)) to ((mass_bits)*(i))+(mass_bits-1))
<= mass_a(((mass_bits)*(i-1)) to ((mass_bits)*(i-1))+(mass_bits-1));
 else
 slidingwindow((i)*(mass_bits) to (mass_bits)*(i)+(mass_bits-1)) <=
slidingwindow((i-1)*(mass_bits) to (mass_bits)*(i-1)+(mass_bits-1));
 if slide_save(i-1) = '1' then
 slide_save(i) <= '1';
 else
 slide_save(i) <= '0';
 end if;

 end if;

 end if;

 end loop;

 slide_save(7) <= (slide_save(6) or ((not save_b(7)) and following_break(8) and
(break_in_stage(7)))) and (not discard(8));

-- COMPLEMENTARY STRAND
-- Same thing : sliding window for the complementary strand

 for i in 1 to 6 loop

 if compl_following_break(i)='0' and compl_sd_buff(i+1) ='0' then
 compl_slidingwindow((i)*(mass_bits) to (mass_bits)*(i)+(mass_bits-1)) <=
compl_slidingwindow((i-1)*(mass_bits) to (mass_bits)*(i-1)+(mass_bits-1));

 if compl_slide_save(i-1) = '1' then
 compl_slide_save(i) <= '1';
 else
 compl_slide_save(i) <= '0';
 end if;

 149

 else

 if compl_break_in_stage(i) = '0' then
 compl_slide_save(i) <= '1';
 compl_slidingwindow(((mass_bits)*(i)) to
((mass_bits)*(i))+(mass_bits-1)) <= compl_mass_a(((mass_bits)*(i-1)) to ((mass_bits)*(i-1))+(mass_bits-1));
 else
 compl_slidingwindow((i)*(mass_bits) to (mass_bits)*(i)+(mass_bits-
1)) <= compl_slidingwindow((i-1)*(mass_bits) to (mass_bits)*(i-1)+(mass_bits-1));
 if compl_slide_save(i-1) = '1' then
 compl_slide_save(i) <= '1';
 else
 compl_slide_save(i) <= '0';
 end if;

 end if;

 end if;

 end loop;

 compl_slide_save(7) <= (compl_slide_save(6) or ((not compl_save_b(7)) and
compl_following_break(8) and (compl_break_in_stage(7)))) and (not compl_discard(8));

--
-- ORIGINAL STRAND
-- The following loop determines when to add or flush the buffers
-- Stuff to deal with the actual summation and sending to scorer

 for i in 1 to 6 loop

 if following_break(i)='0' and sd_buff(i+1) ='0' then
 mass_a(((mass_bits)*i) to (((mass_bits)*i)+(mass_bits-1))) <= mlut_out(
(((mass_bits)*i)+(mass_bits-1)) downto ((mass_bits)*i)) + mass_a((i-1)*(mass_bits) to ((mass_bits)*(i-
1))+(mass_bits-1));
 save_b(i) <= '0';
 else
 mass_a(((mass_bits)*i) to (((mass_bits)*i)+(mass_bits-1))) <= mlut_out(
(((mass_bits)*i)+(mass_bits-1)) downto ((mass_bits)*i));

 if break_in_stage(i) = '0' then
 save_b(i) <= '0';
 else
 if discard(i) = '0' then
 save_b(i) <= '1';
 end if;
 end if;

 end if;

 end loop;

 150

 if following_break(7) = '0' then
 save_b(7) <= '0';
 else

 if break_in_stage(7) = '0' then
 save_b(7) <= '0';
 else

 if discard(7) = '0' then
 save_b(7) <= '1';
 end if;

 end if;

 end if;

-- COMPLEMENTARY STRAND
-- The logic appears identical, but the mluts (the mass lookup tables) have been mapped differently to
-- account for the transposed and complemented nucleic acids within a word

 for i in 1 to 6 loop

 if compl_following_break(i)='0' and compl_sd_buff(i+1) ='0' then
 compl_mass_a(((mass_bits)*i) to (((mass_bits)*i)+(mass_bits-1))) <=
compl_mlut_out((((mass_bits)*i)+(mass_bits-1)) downto ((mass_bits)*i)) + compl_mass_a((i-1)*(mass_bits) to
((mass_bits)*(i-1))+(mass_bits-1));
 compl_save_b(i) <= '0';
 else
 compl_mass_a(((mass_bits)*i) to (((mass_bits)*i)+(mass_bits-1))) <=
compl_mlut_out((((mass_bits)*i)+(mass_bits-1)) downto ((mass_bits)*i));

 if compl_break_in_stage(i) = '0' then
 compl_save_b(i) <= '0';
 else
 if compl_discard(i) = '0' then
 compl_save_b(i) <= '1';
 end if;
 end if;

 end if;

 end loop;

 if compl_following_break(7) = '0' then
 compl_save_b(7) <= '0';
 else

 if compl_break_in_stage(7) = '0' then
 compl_save_b(7) <= '0';
 else

 if compl_discard(7) = '0' then
 compl_save_b(7) <= '1';
 end if;

 end if;

 151

 end if;

--

 -- ORIGINAL STRAND
 -- The b registers are sent to scorer and the final accumulator
 -- The previous amino acid mass

 mass_b <= mass_a;

 -- COMPLEMENTARY STRAND
 compl_mass_b <= compl_mass_a;

--

-- ORIGINAL STRAND
-- word accumulation if a single mass spans more than one word

 if slide_save(6) = '1' then

 if (discard(8) = '0') then
 if save_b(7) = '0' then

 accumsave <= wordaccum +
mass_b((num_stages-2)*(mass_bits) to (num_stages-2)*(mass_bits)+mass_bits-1) + slidingwindow((num_stages-
2)*(mass_bits) to (num_stages-2)*(mass_bits)+mass_bits-1);

 else
 accumsave <= wordaccum +
slidingwindow((num_stages-2)*(mass_bits) to (num_stages-2)*(mass_bits)+mass_bits-1);
 end if;
 end if;

 wordaccum <= (others => '0');
 else
 if (discard(8) = '0') then
 accumsave <= wordaccum + mass_b((num_stages-2)*(mass_bits) to
(num_stages-2)*(mass_bits)+mass_bits-1);

 if following_break(7) = '0' then
 if save_b(7) = '0' then
 wordaccum <= wordaccum +
mass_b((num_stages-2)*(mass_bits) to (num_stages-2)*(mass_bits)+mass_bits-1);
 else
 wordaccum <= (others => '0');
 end if;

 else

 if save_b(7) = '0' then
 wordaccum <= wordaccum +
mass_b((num_stages-2)*(mass_bits) to (num_stages-2)*(mass_bits)+mass_bits-1);
 else
 wordaccum <= (others => '0');
 end if;
 end if;
 end if;

 end if;

 152

-- COMPLEMENTARY STRAND
-- Same accumulation for the complementary strand

 if compl_slide_save(6) = '1' then

 if (compl_discard(8) = '0') then
 if compl_save_b(7) = '0' then
 compl_accumsave <= compl_wordaccum +
compl_mass_b((num_stages-2)*(mass_bits) to (num_stages-2)*(mass_bits)+mass_bits-1) +
compl_slidingwindow((num_stages-2)*(mass_bits) to (num_stages-2)*(mass_bits)+mass_bits-1);
 else
 compl_accumsave <= compl_wordaccum +
compl_slidingwindow((num_stages-2)*(mass_bits) to (num_stages-2)*(mass_bits)+mass_bits-1);
 end if;
 end if;

 compl_wordaccum <= (others => '0');
 else
 if (compl_discard(8) = '0') then
 compl_accumsave <= compl_wordaccum +
compl_mass_b((num_stages-2)*(mass_bits) to (num_stages-2)*(mass_bits)+mass_bits-1);

 if compl_following_break(7) = '0' then
 if compl_save_b(7) = '0' then
 compl_wordaccum <= compl_wordaccum +
compl_mass_b((num_stages-2)*(mass_bits) to (num_stages-2)*(mass_bits)+mass_bits-1);
 else
 compl_wordaccum <= (others => '0');
 end if;

 else

 if compl_save_b(7) = '0' then
 compl_wordaccum <= compl_wordaccum +
compl_mass_b((num_stages-2)*(mass_bits) to (num_stages-2)*(mass_bits)+mass_bits-1);
 else
 compl_wordaccum <= (others => '0');
 end if;
 end if;
 end if;

 end if;

 when others =>

 end case;

 end if; -- for Altera's enable
 end if;

 end process;

end calc_flow;

 153

5. Scoring Unit Controller (scorer.vhd)
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_signed.all;

entity scorer is
 generic(num_stages : integer := 10;
 mass_bits : integer := 25;
 tolerance_bits : integer := 3;
 num_freq_bits : integer := 8;
 num_bins : integer := 128;
 selected_mass_bits : integer := 9;
 encoder_mass_bits : integer := 7);
 port (

 tm3_clk_v0 : in std_logic;
 reset : in std_logic;
 MS_input : in std_logic_vector((mass_bits-1) downto 0);
 score_tm3want : out std_logic;
 score_sunready : in std_logic;
 score_tm3ready : out std_logic;
 score_sunwant : in std_logic;
 hitlocation : out std_logic_vector(18 downto 0);
 scan_complete : out std_logic;
 good_match : out std_logic_vector(0 to num_stages-1);
 compl_good_match : out std_logic_vector(0 to num_stages-1);
 mem_scanned : in std_logic;
 match_address : in std_logic_vector(18 downto 0);
 mem_for_frame : in std_logic_vector(63 downto 0);
 freq_product : out std_logic_vector(0 to num_freq_bits-1);
 num_matches_out : out std_logic_vector(7 downto 0);
 hist_max_freq : out std_logic_vector(num_freq_bits-1 downto 0);
 compl_freq_product : out std_logic_vector(0 to num_freq_bits-1);
 compl_num_matches_out : out std_logic_vector(7 downto 0);
 compl_hist_max_freq : out std_logic_vector(num_freq_bits-1 downto 0);
 calc_enable : in std_logic;
 freq_enable_signal : in std_logic;
 score_sent : out std_logic

);
end scorer;

architecture score_struct of scorer is

--
-- Statistics for low/high frequency mass ranges
component mod_frequency_table
port (
 clk : in std_logic;
 rst : in std_logic;
 enb : in std_logic;
 evaluate_mass : in std_logic;
 max_freq : in std_logic_vector(0 to 5);
 save_freq : in std_logic;
 low_freq_peptides : out std_logic_vector(0 to num_stages-1);
 mass_valid : in std_logic_vector(0 to num_stages-1);
 matching_stages : in std_logic_vector(0 to num_stages-1);
 hist_max_freq : out std_logic_vector(0 to num_freq_bits-1);
 Pi_f : out std_logic_vector(0 to num_freq_bits-1);
 mass_ranges : in std_logic_vector(0 to (num_stages*7)-1));
end component;

 154

-- 128 entry RAM Block to store the MS detected values
component spec_vals
 port (
 address: IN std_logic_VECTOR(8 downto 0);
 clock: IN std_logic;
 data: IN std_logic_VECTOR(24 downto 0);
 q: OUT std_logic_VECTOR(24 downto 0);
 wren: IN std_logic);
END component;

-- Fragment Mass Calculator
 component mod_calc
 port (
 clk : in std_logic;
 calc_reset : in std_logic;
 enable : in std_logic;
 ramword : in std_logic_vector(63
downto 0);
 masses : out std_logic_vector(0 to
(num_stages)*(mass_bits)-1);
 mass_save : out std_logic_vector(1 to
num_stages);
 complement_masses : out std_logic_vector(0 to
(num_stages)*(mass_bits)-1);
 complement_mass_save: out std_logic_vector(1 to num_stages);
 rdy : out std_logic);
 end component;

-- Tolerance comparators to check how closely the detected values match the DB
component thresh_comp
 port (
 dataa: IN std_logic_VECTOR(2 downto 0);
 datab: IN std_logic_VECTOR(2 downto 0);
 clock: IN std_logic;
 AleB: OUT std_logic);
end component;

-- ROMs to help count the total number of matches

component count_rom
 PORT
 (
 address : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
 clock : IN STD_LOGIC ;
 enable : IN STD_LOGIC := '1';
 q : OUT STD_LOGIC_VECTOR (3 DOWNTO 0)
);
end component;

 type matchStates is
(rst,soft_rst,read1_MS1_data,read2_MS1_data,initialize,mem_load1,mem_load2,mem_save,return_score1,return_
score2,compare, done);
 signal currState : matchStates;
 signal currState_buffer : matchStates;
 signal nextState : matchStates;
 signal nextState_buffer : matchStates;

 155

 signal memvar : std_logic_vector(0 to 63);
 signal load_compare : std_logic;
 signal calc_difference : std_logic;
 signal hi : std_logic;
 signal mass_line : std_logic_vector(0 to
(num_stages)*(mass_bits)-1);
 signal compl_mass_line : std_logic_vector(0 to (num_stages)*(mass_bits)-1);
 signal mass_save_line : std_logic_vector(1 to num_stages);
 signal compl_mass_save_line : std_logic_vector(1 to num_stages);

 signal freq_mass_line : std_logic_vector(0 to
(num_stages)*(mass_bits)-1);
 signal compl_freq_mass_line : std_logic_vector(0 to (num_stages)*(mass_bits)-1);
 signal freq_mass_save_line : std_logic_vector(1 to num_stages);
 signal compl_freq_mass_save_line : std_logic_vector(1 to num_stages);

 signal user_tolerance : std_logic_vector(tolerance_bits-1 downto 0);

 signal pipe_mass_line : std_logic_vector(0 to
(num_stages)*(mass_bits)-1);
 signal pipe_compl_mass_line : std_logic_vector(0 to (num_stages)*(mass_bits)-1);
 signal pipe2_mass_line : std_logic_vector(0 to
(num_stages)*(mass_bits)-1);
 signal pipe2_compl_mass_line : std_logic_vector(0 to (num_stages)*(mass_bits)-1);

 signal mass_index_buffer1 : std_logic_vector(0 to (num_stages)*(encoder_mass_bits)-1);
 signal mass_index_buffer2 : std_logic_vector(0 to (num_stages)*(encoder_mass_bits)-1);
 signal mass_index : std_logic_vector(0 to (num_stages)*(encoder_mass_bits)-1);

 signal diff : std_logic_vector(
((mass_bits)*(num_stages))-1 downto 0);
 signal compl_diff : std_logic_vector(((mass_bits)*(num_stages))-1
downto 0);

 signal absdiff : std_logic_vector(
((mass_bits)*(num_stages))-1 downto 0);
 signal compl_absdiff : std_logic_vector(
((mass_bits)*(num_stages))-1 downto 0);

-- signal good_match : std_logic_vector(0 to num_stages-1);

 signal spec_mass : std_logic_vector((mass_bits-1) downto 0);
 signal stored_spec_mass : std_logic_vector(((mass_bits)*(num_stages))-1
downto 0);
 signal compl_stored_spec_mass : std_logic_vector(((mass_bits)*(num_stages))-1 downto
0);

 signal stored_spec_mass_reg : std_logic_vector(((mass_bits)*(num_stages))-1
downto 0);
 signal compl_stored_spec_mass_reg : std_logic_vector(((mass_bits)*(num_stages))-1 downto
0);

 signal match_ctr : std_logic_vector(7 downto 0);
 signal mem_ctr : std_logic_vector(7 downto 0);
 signal index : std_logic_vector(0
to((num_stages)*(selected_mass_bits))-1);
 signal compl_index : std_logic_vector(0
to((num_stages)*(selected_mass_bits))-1);
 signal frame_calc_ready : std_logic;
 signal freq_calc_ready : std_logic;

 156

 signal match_found : std_logic_vector((num_stages)-1 downto 0);
 signal compl_match_found : std_logic_vector((num_stages)-1 downto 0);

 signal num_matches : std_logic_vector(7 downto 0);
 signal compl_num_matches : std_logic_vector(7 downto 0);

 signal curr_num_match : std_logic_vector(3 downto 0);
 signal compl_curr_num_match : std_logic_vector(3 downto 0);

 signal msb_below_thresh : std_logic_vector(num_stages-1 downto 0);
 signal lsb_below_thresh : std_logic_vector(num_stages-1 downto 0);

 signal compl_msb_below_thresh : std_logic_vector(num_stages-1 downto 0);
 signal compl_lsb_below_thresh : std_logic_vector(num_stages-1 downto 0);

 signal low_freq_peptides : std_logic_vector(0 to num_stages-1);
 signal compl_low_freq_peptides : std_logic_vector(0 to num_stages-1);

 signal freqtable_mass_line : std_logic_vector(0 to (num_stages*7)-1);
 signal compl_freqtable_mass_line : std_logic_vector(0 to (num_stages*7)-1);
 signal max_freq : std_logic_vector(0 to 5);
 signal freq_en_buff : std_logic;
 signal save_freq : std_logic;
 signal evaluate_mass : std_logic;
 signal freq_mass_valid : std_logic_vector(0 to num_stages-1);
 signal compl_freq_mass_valid : std_logic_vector(0 to num_stages-1);
 signal table_enable : std_logic;
-- signal max_freq : std_logic_vector(0 to 5);
 signal pipe_low_freq : std_logic_vector(0 to (num_stages*3)-1);
 signal compl_pipe_low_freq : std_logic_vector(0 to (num_stages*3)-1);

 signal reg_freq_enable : std_logic;
 signal reg_calc_enable : std_logic;

-- attribute syn_black_box : boolean;
-- attribute syn_black_box of spec_buffer: component is true;
-- attribute syn_black_box of count_rom: component is true;

begin
hi <= '1';
user_tolerance <= "001";
table_enable <= (freq_enable_signal AND freq_calc_ready) OR (calc_enable and frame_calc_ready);
evaluate_mass <= calc_enable;
max_freq <= "011001";

 selector_units : for i in 0 to num_stages-1 generate
 single_stage_buffer : spec_vals PORT MAP (
 address => index(selected_mass_bits*i to (selected_mass_bits*i)+selected_mass_bits-
1),
 clock => tm3_clk_v0,
 data => spec_mass,
 wren => load_compare,
 q => stored_spec_mass((mass_bits*i)+(mass_bits-1) downto mass_bits*i)
);
 end generate selector_units;

 complement_selector_units : for i in 0 to num_stages-1 generate
 compl_stage_buffer : spec_vals PORT MAP (
 address => compl_index(selected_mass_bits*i to
(selected_mass_bits*i)+selected_mass_bits-1),

 157

 clock => tm3_clk_v0,
 data => spec_mass,
 wren => load_compare,
 q => compl_stored_spec_mass((mass_bits*i)+(mass_bits-1) downto
mass_bits*i)
);
 end generate complement_selector_units;

freqTable : mod_frequency_table port map(
 clk => tm3_clk_v0,
 rst => reset,
 enb => table_enable,
 evaluate_mass => evaluate_mass,
 max_freq => max_freq,
 save_freq => save_freq,
 low_freq_peptides => low_freq_peptides,
 mass_valid => freq_mass_valid,
 matching_stages => match_found,
 hist_max_freq => hist_max_freq,
 Pi_f => freq_product,
 mass_ranges => freqtable_mass_line);

compl_freqTable : mod_frequency_table port map(
 clk => tm3_clk_v0,
 rst => reset,
 enb => table_enable,
 evaluate_mass => evaluate_mass,
 max_freq => max_freq,
 save_freq => save_freq,
 low_freq_peptides => compl_low_freq_peptides,
 mass_valid => compl_freq_mass_valid,
 matching_stages => compl_match_found,
 hist_max_freq => compl_hist_max_freq,
 Pi_f => compl_freq_product,
 mass_ranges => compl_freqtable_mass_line);

 frame1_calculator : mod_calc port map(
 clk => tm3_clk_v0,
 calc_reset => reset,
 enable => calc_enable,
 ramword => mem_for_frame,
 masses => mass_line,
 mass_save => mass_save_line,
 complement_masses => compl_mass_line,
 complement_mass_save => compl_mass_save_line,
 rdy => frame_calc_ready);

 freq_calculator : mod_calc port map(
 clk => tm3_clk_v0,
 calc_reset => reset,
 enable => freq_enable_signal,
 ramword => mem_for_frame,
 masses => freq_mass_line,
 mass_save => freq_mass_save_line,

 158

 complement_masses => compl_freq_mass_line,
 complement_mass_save => compl_freq_mass_save_line,
 rdy => freq_calc_ready);

 check_difference: for i in 0 to num_stages-1 generate
 mass_compare : thresh_comp PORT MAP (
 dataa => absdiff((mass_bits*i)+(tolerance_bits-1) downto mass_bits*i),
 datab => user_tolerance,
 clock => tm3_clk_v0,
 AleB => lsb_below_thresh(i)
);
 end generate check_difference;

 compl_check_difference: for i in 0 to num_stages-1 generate
 compl_mass_compare : thresh_comp PORT MAP (
 dataa => compl_absdiff((mass_bits*i)+(tolerance_bits-1) downto mass_bits*i),
 datab => user_tolerance,
 clock => tm3_clk_v0,
 AleB => compl_lsb_below_thresh(i)
);
 end generate compl_check_difference;

 m_counter : count_rom PORT MAP (
 address => match_found,
 clock => tm3_clk_v0,
 enable => hi,
 q => curr_num_match
);

 cm_counter : count_rom PORT MAP (
 address => compl_match_found,
 clock => tm3_clk_v0,
 enable => hi,
 q => compl_curr_num_match
);

 process(currState,MS_input,match_ctr,mem_ctr,score_sunready,freq_enable_signal,calc_enable,score_sunwa
nt,mem_scanned)
 begin

 load_compare <= '0';
 calc_difference <= '1';

 score_tm3want <= '0';
 score_tm3ready <= '0';
 score_sent <= '1';
 scan_complete <= '0';

 -- I'll clock it, the delay is too much (and make sure the freq_en_buff gets a max_fan
restriction

 159

 --if falling_edge(freq_enable_signal) then
 --if freq_en_buff = '1' and freq_enable_signal = '0' then
 -- save_freq <= '1';
 --else
 -- save_freq <= '0';
 --end if;

 case currState is

 when rst =>
 nextState <= read1_MS1_data;
 nextState_buffer <= read1_MS1_data;

 when read1_MS1_data =>
 score_sent <= '0';
 score_tm3want <= '1';

 if score_sunready = '1' then
 nextState <= read2_MS1_data;
 nextState_buffer <= read2_MS1_data;
 else
 nextState <= read1_MS1_data;
 nextState_buffer <= read1_MS1_data;
 end if;

 when read2_MS1_data =>
 score_sent <= '0';
 score_tm3want <= '0';

 if score_sunready = '0' then
 nextState <= initialize;
 nextState_buffer <= initialize;
 else
 nextState <= read2_MS1_data;
 nextState_buffer <= read2_MS1_data;
 end if;

 when initialize =>
 load_compare <= '1';
 score_sent <= '0';

 if (match_ctr = "01111111") then
 nextState <= soft_rst;
 nextState_buffer <= soft_rst;
 else
 nextState <= read1_MS1_data;
 nextState_buffer <= read1_MS1_data;
 end if;

 when compare =>

 --if (mem_ctr <= 29) then
 if calc_enable = '1' then
 nextState <= compare;
 nextState_buffer <= compare;
 else
 nextState <= return_score1;

 160

 nextState_buffer <= return_score1;
 end if;

 when return_score1 =>
 score_sent <= '0';
 score_tm3ready <= '1';

 if score_sunwant = '1' then
 nextState <= return_score2;
 nextState_buffer <= return_score2;
 else
 nextState <= return_score1;
 nextState_buffer <= return_score1;
 end if;

 when return_score2 =>
 score_sent <= '0';
 score_tm3ready <= '0';

 if score_sunwant = '0' then
 nextState <= soft_rst;
 nextState_buffer <= soft_rst;
 else
 nextState <= return_score2;
 nextState_buffer <= return_score2;
 end if;

 when soft_rst =>

 if calc_enable = '1' then
 nextState <= compare;
 nextState_buffer <= compare;
 else
 nextState <= soft_rst;
 nextState_buffer <= soft_rst;
 end if;

 when done =>

 scan_complete <= '1';
 nextState <= done;
 nextState_buffer <= done;

 when others =>
 nextState <= rst;
 nextState_buffer <= rst;

 end case;

 end process;

 process(tm3_clk_v0,reset,freq_calc_ready,frame_calc_ready,calc_difference,mass_line,compl_mass_line,me
m_scanned)

 161

 begin

 if reset= '1' then
 currState <= rst;
 elsif mem_scanned = '1' then
 currState <= done;
 elsif rising_edge(tm3_clk_v0) then

-- save the "matching" mass, or at least the first bits to use as an index for the PIS
 for i in 0 to num_stages-1 loop
 mass_index_buffer1((i*encoder_mass_bits) to (i*encoder_mass_bits) +
encoder_mass_bits-1) <= pipe2_mass_line((i*mass_bits) to (i*mass_bits) + encoder_mass_bits-1);
 end loop;
 mass_index_buffer2 <= mass_index_buffer1;
 mass_index <= mass_index_buffer2;

-- register these two so I can pipeline the sig and move it away from the BRAM
 stored_spec_mass_reg <= stored_spec_mass;
 compl_stored_spec_mass_reg <= compl_stored_spec_mass;

-- wideor changed

 currState <= nextState;
 currState_buffer <= nextState_buffer;

--these two enables have become clocked signals
-- table_enable <= freq_enable_signal OR calc_enable;
-- evaluate_mass <= calc_enable;

 if freq_en_buff = '1' and freq_enable_signal = '0' then
 save_freq <= '1';
 else
 save_freq <= '0';
 end if;

 freq_en_buff <= freq_enable_signal;

 for i in 0 to num_stages-1 loop
 good_match(i) <= pipe_low_freq(i) AND match_found(i);
 end loop;

 for i in 0 to num_stages-1 loop
 compl_good_match(i) <= compl_pipe_low_freq(i) AND
compl_match_found(i);
 end loop;

 for i in 0 to 1 loop
 pipe_low_freq(num_stages*i to num_stages*i+(num_stages-1)) <=
pipe_low_freq(num_stages*(i+1) to num_stages*(i+1)+(num_stages-1));
 end loop;
 pipe_low_freq(num_stages*2 to num_stages*2+(num_stages-1)) <=
low_freq_peptides;

 for i in 0 to 1 loop
 compl_pipe_low_freq(num_stages*i to num_stages*i+(num_stages-1)) <=
compl_pipe_low_freq(num_stages*(i+1) to num_stages*(i+1)+(num_stages-1));
 end loop;
 compl_pipe_low_freq(num_stages*2 to num_stages*2+(num_stages-1)) <=
compl_low_freq_peptides;

 162

 for i in 0 to num_stages-1 loop
 if evaluate_mass = '0' then
 freq_mass_valid(i) <= freq_mass_save_line(i+1);
 freqtable_mass_line(i*7 to (i*7)+6) <= freq_mass_line(i*mass_bits
to ((i*mass_bits)+6));
 else
 freq_mass_valid(i) <= mass_save_line(i+1);
 -- freqtable_mass_line(i*7 to (i*7)+6) <= mass_line(i*mass_bits to
((i*mass_bits)+6));
 freqtable_mass_line(i*7 to (i*7)+6) <= mass_index(i*7 to (i*7)+6);
 end if;
 end loop;

 for i in 0 to num_stages-1 loop
 if evaluate_mass = '0' then
 compl_freq_mass_valid(i) <= compl_freq_mass_save_line(i+1);
 compl_freqtable_mass_line(i*7 to (i*7)+6) <=
compl_freq_mass_line(i*mass_bits to ((i*mass_bits)+6));
 else
 compl_freq_mass_valid(i) <= compl_mass_save_line(i+1);
 --compl_freqtable_mass_line(i*7 to (i*7)+6) <=
compl_mass_line(i*mass_bits to ((i*mass_bits)+6));
-- FIX
 compl_freqtable_mass_line(i*7 to (i*7)+6) <= mass_index(i*7 to
(i*7)+6);
 end if;
 end loop;

 if freq_calc_ready = '1' then
 pipe_mass_line <= mass_line;
 pipe_compl_mass_line <= compl_mass_line;

 pipe2_mass_line <= pipe_mass_line;
 pipe2_compl_mass_line <= pipe_compl_mass_line;

 end if;

 num_matches_out <= num_matches;
 compl_num_matches_out <= compl_num_matches;

 if (frame_calc_ready = '1') and (calc_enable = '1') then
 num_matches <= num_matches + "0000"+ curr_num_match;
 compl_num_matches <= compl_num_matches + "0000"+
compl_curr_num_match;
 end if;

 for i in 0 to num_stages-1 loop
 msb_below_thresh(i) <= NOT (absdiff((mass_bits*i)+3) OR
absdiff((mass_bits*i)+4) OR absdiff((mass_bits*i)+5) OR absdiff((mass_bits*i)+6) OR
absdiff((mass_bits*i)+selected_mass_bits) OR absdiff((mass_bits*i)+num_stages) OR absdiff((mass_bits*i)+9)
OR absdiff((mass_bits*i)+10) OR absdiff((mass_bits*i)+11) OR absdiff((mass_bits*i)+12) OR
absdiff((mass_bits*i)+13) OR absdiff((mass_bits*i)+14) OR absdiff((mass_bits*i)+ 15) OR
absdiff((mass_bits*i)+ 16) OR absdiff((mass_bits*i)+ 17) OR absdiff((mass_bits*i)+ 18) OR

 163

absdiff((mass_bits*i)+ 19)OR absdiff((mass_bits*i)+ 20) OR absdiff((mass_bits*i)+ 21) OR
absdiff((mass_bits*i)+ 22) OR absdiff((mass_bits*i)+ 23) OR absdiff((mass_bits*i)+ mass_bits-1));
 compl_msb_below_thresh(i) <= NOT (compl_absdiff((mass_bits*i)+3) OR
compl_absdiff((mass_bits*i)+4) OR compl_absdiff((mass_bits*i)+5) OR compl_absdiff((mass_bits*i)+6) OR
compl_absdiff((mass_bits*i)+selected_mass_bits) OR compl_absdiff((mass_bits*i)+num_stages) OR
compl_absdiff((mass_bits*i)+9) OR compl_absdiff((mass_bits*i)+10) OR compl_absdiff((mass_bits*i)+11) OR
compl_absdiff((mass_bits*i)+12) OR compl_absdiff((mass_bits*i)+13) OR compl_absdiff((mass_bits*i)+14) OR
compl_absdiff((mass_bits*i)+ 15) OR compl_absdiff((mass_bits*i)+ 16) OR compl_absdiff((mass_bits*i)+ 16)
OR compl_absdiff((mass_bits*i)+ 17) OR compl_absdiff((mass_bits*i)+ 18) OR compl_absdiff((mass_bits*i)+
19) OR compl_absdiff((mass_bits*i)+ 20) OR compl_absdiff((mass_bits*i)+ 21) OR
compl_absdiff((mass_bits*i)+ 22) OR compl_absdiff((mass_bits*i)+ 23) OR compl_absdiff((mass_bits*i)+
mass_bits-1));

 msb_below_thresh(i) <= NOT (absdiff((mass_bits*i)+3) OR
absdiff((mass_bits*i)+4) OR absdiff((mass_bits*i)+5) OR absdiff((mass_bits*i)+6) OR
absdiff((mass_bits*i)+selected_mass_bits) OR absdiff((mass_bits*i)+num_stages) OR absdiff((mass_bits*i)+9)
OR absdiff((mass_bits*i)+10) OR absdiff((mass_bits*i)+11) OR absdiff((mass_bits*i)+12) OR
absdiff((mass_bits*i)+13) OR absdiff((mass_bits*i)+14) OR absdiff((mass_bits*i)+ 15) OR
absdiff((mass_bits*i)+ 16) OR absdiff((mass_bits*i)+ 17) OR absdiff((mass_bits*i)+ 18) OR
absdiff((mass_bits*i)+ mass_bits-1));
 compl_msb_below_thresh(i) <= NOT (compl_absdiff((mass_bits*i)+3) OR
compl_absdiff((mass_bits*i)+4) OR compl_absdiff((mass_bits*i)+5) OR compl_absdiff((mass_bits*i)+6) OR
compl_absdiff((mass_bits*i)+selected_mass_bits) OR compl_absdiff((mass_bits*i)+num_stages) OR
compl_absdiff((mass_bits*i)+9) OR compl_absdiff((mass_bits*i)+10) OR compl_absdiff((mass_bits*i)+11) OR
compl_absdiff((mass_bits*i)+12) OR compl_absdiff((mass_bits*i)+13) OR compl_absdiff((mass_bits*i)+14) OR
compl_absdiff((mass_bits*i)+ 15) OR compl_absdiff((mass_bits*i)+ 16) OR compl_absdiff((mass_bits*i)+ 16)
OR compl_absdiff((mass_bits*i)+ 17) OR compl_absdiff((mass_bits*i)+ 18) OR compl_absdiff((mass_bits*i)+
mass_bits-1));

 match_found(i) <= msb_below_thresh(i) AND lsb_below_thresh(i);
 compl_match_found(i) <= compl_msb_below_thresh(i) AND
compl_lsb_below_thresh(i);

 end loop;

 case currState_buffer is

 when rst =>
 match_ctr <= (others => '0');
 mem_ctr <= (others => '0');
 diff <= (others => '0');
 compl_diff <= (others => '0');
 absdiff <= (others => '0');
 compl_absdiff <= (others => '0');

 num_matches <= (others => '0');
 compl_num_matches <= (others => '0');
 match_found <= (others => '0');
 compl_match_found <= (others => '0');
 spec_mass <= (others => '0');
 index <= (others => '0');
 compl_index <= (others => '0');

 when soft_rst =>
-- reset all the intermediate accumulators
 match_ctr <= (others => '0');
 mem_ctr <= (others => '0');

 164

 diff <= (others => '1');
 compl_diff <= (others => '0');
 absdiff <= (others => '1');
 compl_absdiff <= (others => '0');
 num_matches <= (others => '0');
 compl_num_matches <= (others => '0');
 msb_below_thresh <= (others => '0');
 match_found <= (others => '0');
 compl_match_found <= (others => '0');
 spec_mass <= (others => '0');
 mem_ctr <= (others => '0');
 hitlocation <= match_address;
 index <= (others => '0');
 compl_index <= (others => '0');

 when initialize =>
 match_ctr <= match_ctr + 1;
 spec_mass <= MS_input;

 for i in 0 to num_stages-1 loop
 index((selected_mass_bits*i) to
((selected_mass_bits*i)+(selected_mass_bits-1))) <= MS_input((mass_bits-1) downto (mass_bits-
selected_mass_bits));
 compl_index((selected_mass_bits*i) to
((selected_mass_bits*i)+(selected_mass_bits-1))) <= MS_input((mass_bits-1) downto (mass_bits-
selected_mass_bits));
 end loop;

 when mem_save =>
 memvar <= mem_for_frame;

 when compare =>

 mem_ctr <= mem_ctr + 1;

 for i in 0 to num_stages-1 loop

 diff((mass_bits*i)+(mass_bits-1) downto mass_bits*i) <=
stored_spec_mass((mass_bits*i)+(mass_bits-1) downto mass_bits*i) - pipe2_mass_line(mass_bits*i to
(mass_bits*i)+(mass_bits-1));
 compl_diff((mass_bits*i)+(mass_bits-1) downto mass_bits*i) <=
 compl_stored_spec_mass((mass_bits*i)+(mass_bits-1) downto mass_bits*i) -
pipe2_compl_mass_line(mass_bits*i to (mass_bits*i)+(mass_bits-1)) ;

 absdiff((mass_bits*i)+(mass_bits-1) downto mass_bits*i) <= abs(
diff((mass_bits*i)+(mass_bits-1) downto mass_bits*i)) ;
 compl_absdiff((mass_bits*i)+(mass_bits-1) downto mass_bits*i) <=
abs(compl_diff((mass_bits*i)+(mass_bits-1) downto mass_bits*i));

 end loop;

 for i in 0 to num_stages-1 loop
 if mass_save_line(i+1) = '1' then
 index((selected_mass_bits*i) to
((selected_mass_bits*i)+(selected_mass_bits-1))) <= mass_line((mass_bits*i) to
((mass_bits*i)+selected_mass_bits)-1);
 else

 165

 index((selected_mass_bits*i) to
((selected_mass_bits*i)+(selected_mass_bits-1))) <= (others => '1');
 end if;

 if compl_mass_save_line(i+1) = '1' then
 compl_index((selected_mass_bits*i) to
((selected_mass_bits*i)+(selected_mass_bits-1))) <= compl_mass_line((mass_bits*i) to
((mass_bits*i)+selected_mass_bits)-1);
 else
 compl_index((selected_mass_bits*i) to
((selected_mass_bits*i)+(selected_mass_bits-1))) <= (others => '1');
 end if;
 end loop;

 when return_score1 =>

 when others =>

 end case;

 end if;
 end process;

end score_struct;

6. Histogram Architecture (mod_frequency_table.vhd)

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

entity mod_frequency_table is
 generic(num_stages : integer := 10;
 num_freq_bits : integer := 8;
 size : integer := 8*8 ;
 shift : integer := 8;
 num_bins : integer := 128);
port (
 clk : in std_logic;
 rst : in std_logic;
 enb : in std_logic;
 evaluate_mass : in std_logic;
 max_freq : in std_logic_vector(0 to 5);
 save_freq : in std_logic;
 low_freq_peptides : out std_logic_vector(0 to num_stages-1);
 mass_valid : in std_logic_vector(0 to num_stages-1);
 matching_stages : in std_logic_vector(0 to num_stages-1);
 hist_max_freq : out std_logic_vector(0 to num_freq_bits-1);
 Pi_f : out std_logic_vector(0 to num_freq_bits-1);
 mass_ranges : in std_logic_vector(0 to (num_stages*7)-1)

);
end mod_frequency_table;

architecture mod_stats of mod_frequency_table is

-- decoder to decide which range is being incremented

 166

component bin_decoder
 port (
 address: IN std_logic_VECTOR(6 downto 0);
 clock: IN std_logic;
 q: OUT std_logic_VECTOR(127 downto 0);
 clken: IN std_logic);
end component;

-- ROMs to help count the total number of matches
component count_rom
 port (
 address: IN std_logic_VECTOR(7 downto 0);
 clock: IN std_logic;
 enable: IN std_logic;
 q: OUT std_logic_VECTOR(3 downto 0));
end component;

-- check to see if any of the frequency bins meet low thresh
component or_34
 Port (
 clk : in std_logic;
 or_in : in std_logic_vector(127 downto 0);
 or_out : out std_logic);
end component;

-- log conversion LUTs

component logtable
 port (
 A: IN std_logic_VECTOR(5 downto 0);
 CLK: IN std_logic;
 QSPO_CE: IN std_logic;
 QSPO: OUT std_logic_VECTOR(7 downto 0));
end component;

 type freqStates is (reset,update_stats,locate_max_freq,rank_masses);
 signal currState : freqStates;
 signal nextState : freqStates;
 signal full_max_freq : std_logic_vector(0 to num_freq_bits-1);
 signal element_counter : std_logic_vector(6 downto 0);
 signal hist_max_freq_reg : std_logic_vector(0 to num_freq_bits-1);
 signal frequency : std_logic_vector(0 to (num_bins * num_freq_bits)-1);
 signal saved_freq : std_logic_vector(0 to (num_bins * num_freq_bits)-1);
 signal saved_frequency_table : std_logic_vector(0 to (num_bins * num_freq_bits)-1);
 signal increment_range : std_logic_vector(0 to (128*num_stages)-1);
 signal rev_increment_range : std_logic_vector((128*num_stages)-1 downto 0);
 signal increment_amount : std_logic_vector(0 to (num_bins*4)-1);
 signal addr : std_logic_vector(0 to (num_bins*8)-1);
 signal bin_incr : std_logic;
 signal flagged_ranges : std_logic_vector(0 to (num_bins*num_stages)-1);
 signal freq_table_copies : std_logic_vector(0 to (num_freq_bits*num_bins*num_stages)-1);
 signal low_freq_range : std_logic_vector(0 to num_bins-1);
 signal pipe_mass_valid : std_logic_vector(0 to num_stages-1);
 signal matching_mass : std_logic_vector(0 to num_stages-1);
 signal frequency_pipeline : std_logic_vector(0 to (num_freq_bits*num_stages)-1);

 signal log_accum : std_logic;
 signal logadder_pipe : std_logic_vector(0 to (num_freq_bits* (((num_stages*num_stages)+num_stages)/2))-
1);
 signal log_val_stages : std_logic_vector(0 to (num_stages*num_freq_bits)-1);

 167

 signal log_val_accum : std_logic_vector(0 to (num_stages*num_freq_bits)-1);
 signal temp_test :std_logic_vector(0 to (num_stages * num_freq_bits)-1);

begin

 rev_increment_range <= increment_range ;
 full_max_freq <= "00" & max_freq;

log_convert : for i in 0 to num_stages-1 generate
convert_freq : logtable port map(
 A => logadder_pipe(((size+(size*(i-1) - shift*(((i-1)*(i-1) + (i-1))/2))) + 2) to ((size+(size*(i-1) -
shift*(((i-1)*(i-1) + (i-1))/2))) + 7)),
 CLK => clk,
 QSPO_CE => evaluate_mass,
 QSPO => log_val_stages(i*num_freq_bits to (i*num_freq_bits) + (num_freq_bits-1))

);
end generate log_convert;

range_selectors : for i in 0 to num_stages-1 generate
 range_decoder : bin_decoder port map(
 address=> mass_ranges(7*i
to (7*i + 6)),
 clock => clk,
 clken => mass_valid(i),
 q => increment_range(128*i
to (128*i)+127)
);
 end generate range_selectors;

incrementors : for i in 0 to num_bins-1 generate
 range_increment_value: count_rom port map (
 address => addr(i*8 to (i*8)+7),
 clock => clk,
 enable => bin_incr,
 q => increment_amount(i*4 to (i*4)+3)
);
 end generate incrementors;

good_ranges : for i in 0 to num_stages-1 generate
 check_mass_range: or_34 port map (
 clk => clk,
 or_in => flagged_ranges(i*128 to (i*128)+127),
 or_out =>low_freq_peptides((num_stages-1)-i)
);
 end generate good_ranges;

 168

 process(currState,evaluate_mass,save_freq)
 begin
 bin_incr <= '0';

 case currState is

 when reset =>
 nextState <= update_stats;

 when update_stats =>
 bin_incr <= '1';

 if save_freq = '1' then
 nextState <= locate_max_freq;

 else
 nextState <= update_stats;

 end if;

 when locate_max_freq =>
 if element_counter = "1111111" then
 nextState <= rank_masses;

 else
 nextState <= locate_max_freq;

 end if;

 when rank_masses =>
 if evaluate_mass = '0' then
 nextState <= update_stats;

 else
 nextState <= rank_masses;

 end if;

 when others =>

 end case;

 end process;

 process(enb,clk)
 begin

 if rst = '1' then
 currState <= reset;
 elsif rising_edge(clk) then

 if (enb = '1') then

 currState <= nextState;
 pipe_mass_valid <= mass_valid;
 matching_mass <= matching_stages;

 169

 logadder_pipe <= (others => '0');

 logadder_pipe(64 to 119) <= logadder_pipe(8 to 63);
 logadder_pipe(120 to 167) <= logadder_pipe(72 to 119);
 logadder_pipe(168 to 207) <= logadder_pipe(128 to 167);
 logadder_pipe(208 to 239) <= logadder_pipe(176 to 207);
 logadder_pipe(240 to 263) <= logadder_pipe(216 to 239);
 logadder_pipe(264 to 279) <= logadder_pipe(248 to 263);
 logadder_pipe(280 to 287) <= logadder_pipe(272 to 279);

 for i in 0 to num_bins-1 loop
 addr(i*8 to (i*8)+7) <= rev_increment_range(i) & rev_increment_range(i+128)
& rev_increment_range(i+(2*128)) & rev_increment_range(i+(3*128)) & rev_increment_range(i+(4*128)) &
rev_increment_range(i+(5*128)) & rev_increment_range(i+(6*128)) & rev_increment_range(i+(7*128));

 end loop;

 for i in 1 to num_stages-2 loop
 log_val_accum(i*num_freq_bits to
(i*num_freq_bits)+(num_freq_bits-1)) <= log_val_accum((i-1)*num_freq_bits to ((i-
1)*num_freq_bits)+(num_freq_bits-1)) + log_val_stages((i+1)*num_freq_bits to ((i+1)*num_freq_bits) +
(num_freq_bits-1)) ;
 end loop;
 log_val_accum((num_stages-1)*num_freq_bits to ((num_stages-
1)*num_freq_bits)+(num_freq_bits-1)) <= log_val_accum((num_stages-2)*num_freq_bits to ((num_stages-
2)*num_freq_bits)+(num_freq_bits-1)) + log_val_accum((num_stages-1)*num_freq_bits to ((num_stages-
1)*num_freq_bits)+(num_freq_bits-1)) ;
 Pi_f <= log_val_accum((num_stages-1)*num_freq_bits to (
(num_stages-1)*num_freq_bits)+(num_freq_bits-1));

 frequency_pipeline <= (others => '0');

 case (currState) is

 when reset =>
 frequency <= (others => '0');
 low_freq_range <= (others => '0');
 frequency_pipeline <= (others => '0');
 log_val_accum <= (others => '0');
-- logadder_pipe <= (others => '0');

 when update_stats =>
 hist_max_freq_reg <= (others => '0');
 for i in 0 to num_bins-1 loop

 saved_freq <= frequency;

 if evaluate_mass = '0' then
 frequency(i*num_freq_bits to (i*num_freq_bits)
+ num_freq_bits-1) <= frequency(i*num_freq_bits to (i*num_freq_bits) + num_freq_bits-1) +
increment_amount(i*4 to (i*4)+3);

 log_val_accum <= (others => '0');

 170

 else
 for i in 0 to num_stages-1 loop
 saved_frequency_table <= frequency;

 end loop;

 frequency <= (others => '0');

 end if;

 end loop;

 when locate_max_freq =>

 hist_max_freq <= hist_max_freq_reg;
 element_counter <= element_counter+1;
 if (saved_freq(0 to num_freq_bits-1) >= hist_max_freq_reg) then
 hist_max_freq_reg <= saved_freq(0 to num_freq_bits-1);
 end if;

 for i in 0 to num_bins-2 loop

 end loop;

 if evaluate_mass = '1' then

 for i in 0 to num_stages-1 loop

 for j in 0 to num_bins-1 loop

 logadder_pipe(
i*num_freq_bits to (i*num_freq_bits + (num_freq_bits-1))) <= saved_frequency_table((127-j)*num_freq_bits to
((127-j)*num_freq_bits)+ (num_freq_bits-1));

 end if;

 end if;

 when others =>

 end case;

 end if;

 saved_freq(i*(num_freq_bits) to
(i*(num_freq_bits)+num_freq_bits-1)) <= saved_freq((i+1)*(num_freq_bits) to
((i+1)*(num_freq_bits)+num_freq_bits-1)) ;

 when rank_masses =>

 temp_test <= (others=> '0');

 if matching_mass((num_stages-1) - i) = '1' then

 if increment_range((i*num_bins) + j)
= '1' then

-- temp_test(i*num_freq_bits
to (i*num_freq_bits + (num_freq_bits-1))) <= "01001101";

 end loop;

 end loop;

 end if;

 end if;

 end process;

 171

end mod_stats;

 172

Appendix C. Scoring and Distance Results for Sample
Peptides

1. Results for GDP Dissociation Inhibitor Peptides

Closest matches between "ilfa" and "saav"

-5000
0

5000
10000
15000
20000
25000
30000
35000

0 2E+06 4E+06 6E+06 8E+06 1E+07 1E+07 1E+07

Location in Genome

C
lo

se
ne

ss

The true hit (square marker) is ranked 2nd of 128 hits.

Closest matches between "eyvp" and "saav"

-5000

0

5000

10000

15000

20000

0 2000000 4000000 6000000 8000000 1E+07 1.2E+07 1.4E+07

Location in Genome

C
lo

se
ne

ss

The true hit (square marker) is ranked 1

st of 128 hits.

 173

Closest matches between "vpea" and "saav"

-20000

0

20000

40000

60000

80000

100000

0 2000000 4000000 6000000 8000000 10000000 12000000 14000000

Location in Genome

C
lo

se
ne

ss

The true hit (square marker) is ranked 1st of 128 hits.

Closest matches between "ilfa" and "eyvp"

-2000
0

2000
4000
6000
8000

10000
12000
14000

0 2000000 4000000 6000000 8000000 1E+07 1.2E+07 1.4E+07

Location in Genome

C
lo

se
ne

ss

The true hit (square marker) is ranked 2nd of 34 hits. (The true hits are spaced 1024 bases
apart, but there are two false positives that are 754 bases apart).

 174

Closest matches between "ilfa" and "vpea"

-5000

0

5000

10000

15000

20000

25000

30000

0 2000000 4000000 6000000 8000000 1E+07 1.2E+07 1.4E+07

Location in Genome

C
lo

se
ne

ss

The true hit (square marker) is ranked 1st of 48 hits.

Closest matches between "eyvp" and "vpea"

-500000

0

500000

1000000

1500000

2000000

0 2000000 4000000 6000000 8000000 1000000
0

1200000
0

1400000
0

Location in Genome

C
lo

se
ne

ss

The true hit (square marker) is ranked 2nd of 48 hits (The true hits are spaced 667 bases
apart, but there are two false positives that are 6 bases apart).

 175

2. Results for Heat Shock Protein 70 Peptides

As mentioned in Chapter 4, HSP70 has two subfamilies that are highly similar, thus it is
hard to distinguish between the protein and its homologue using closeness as a measure.
However the score from the scoring unit can always be used to distinguish the subfamily
in the sample.

The true hit and its homologue (square marker) are ranked 1 of 105 hits. st

The true hit and its homologue (square marker) are ranked 1 of 105 hits. st

Closest Matches Between "llsd" and "nttv"

-10000

0

10000

20000

30000

40000

50000

60000

0 2E+06 4E+06 6E+06 8E+06 1E+07 1E+07 1E+07

Location in Genome

C
lo

se
ne

ss

Closest matches between "tgld" and "nttv"

-5000

0

5000

10000

15000

20000

25000

0 2E+06 4E+06 6E+06 8E+06 1E+07 1E+07 1E+07

Location in Genome

C
lo

se
ne

ss

 176

Closest matches between "nttv" and "fedl"

-5000
0

5000
10000
15000
20000
25000
30000
35000

0 2000000 4000000 6000000 8000000 1000000
0

1200000
0

1400000
0

Location in Genome

C
lo

se
ne

ss

The true hit and its homologue (square marker) are ranked 2nd of 104 hits. (The true hits
353 bases apart, but there are two false positives that are 350 bases apart)

Closest matches between "llsd" and "fedl"

-50000

0

50000

100000

150000

200000

250000

300000

0 2E+06 4E+06 6E+06 8E+06 1E+07 1E+07 1E+07

Location in Genome

C
lo

se
ne

ss

The true hit and its homologue (square marker) are ranked 2nd of 104 hits. (The true hits
are 143 bases apart, but there are two false positives that are 36 bases apart)

 177

Closest matches between "tgld" and "feld"

-10000
0

10000
20000
30000
40000
50000
60000
70000

0 2E+06 4E+06 6E+06 8E+06 1E+07 1E+07 1E+07

Location in Genome

C
lo

se
ne

ss

The true hit and its homologue (square marker) are ranked 1st of 104 hits.

Closest Matches Between "llsd" to "tgld"

-5000
0

5000
10000
15000
20000
25000
30000
35000

0 2E+06 4E+06 6E+06 8E+06 1E+07 1E+07 1E+07

Location in Genome

C
lo

se
ne

ss

The true hit and its homologue (square marker) are ranked 1

st of 306 hits.

 178

Appendix D. Precursor Ion Scan (PIS) Masses

The following values (in Daltons) were used to obtain the results in Chapter 4.

453.17 688.01 1226.14552.57 624.12 758.49 822.42 924.92 1032.42 1112.46
459.11 552.75 624.18 688.22 758.54 824.14 929.41 1035.94 1112.48 1226.49
459.18 556.92 831.04 624.95 689.69 761.49 937.26 1041.68 1115.52 1232.64
463.11 557.1 625.96 692.35 769.74 831.06 944.51 1041.69 1117.49 1237.18
463.13 561.76 633.67 694.42 772.26 838.69 945.75 1050.67 1119.22 1242.72
464.04 564.43 638.24 696.36 775.95 838.73 948.16 1050.67 1125.57 1242.77
464.1 567.35 639.31 698.11 777.47 839.54 948.23 1053.72 1126.47 1247.38
464.1 569.12 639.97 699.52 777.64 842.54 952.69 1053.88 1131.73 1247.86
464.12 576.44 640.16 702.75 783.19 842.56 962.37 1056.25 1131.76 1256.67
488.33 577.53 640.62 708.48 783.26 847.76 962.4 1056.64 1137.67 1260.67
497.41 577.71 643.65 709.69 785.07 847.96 962.49 1057.6 1147.4 1260.7
502.94 582.04 643.7 712.19 785.15 851.35 965.22 1062.68 1156.42 1265.78
503.03 583.57 649.74 712.5 785.81 855.52 965.33 1062.7 1157.51 1270.63
503.06 584.71 650.31 714.61 788.48 865.72 965.41 1062.9 1158.55 1270.63
503.08 584.74 655.43 714.63 788.51 865.72 965.42 1064.19 1167.59 1277.5
503.08 590.98 657.1 716.22 792.43 865.74 966.55 1065.45 1167.64 1278.67
503.39 591.5 659.24 720.95 792.69 865.79 976.07 1067.52 1169.59 1278.68
504.16 591.58 664.52 722.19 798.06 868.01 986.1 1068.56 1181.69 1284.53
505.15 592.69 664.8 722.41 798.42 871.59 990.52 1076.29 1181.78 1296.56
508.69 593.06 665.45 722.44 798.69 872.8 1000.39 1077.61 1185.82 1314.57
511.93 593.63 665.71 722.63 799.03 873.47 1000.48 1078.48 1185.83 1316.68
517.57 593.68 672.61 723.18 804.64 873.52 1002.49 1078.51 1190.67 1324.98
520.05 593.96 672.71 727.32 804.85 875.44 1004.77 1080.77 1191.48 1343.66
520.07 595.38 673.57 729.4 806.33 875.48 1006.65 1080.97 1199.77 1357.45

521 596.17 674.46 730.61 807.04 882.45 1006.7 1082.65 1205.45 1359.44
521 596.32 676.69 730.71 807.22 882.46 1008.59 1082.67 1206.73 1369.56

521.4 596.72 678.39 730.75 807.3 885.45 1011.04 1084.17 1209.96 1371.64
521.76 606.95 678.46 730.86 807.56 886.06 1011.19 1084.2 1210.01 1375.77
526.07 608.43 678.48 731.54 812.49 886.31 1013.69 1084.63 1210.03 1375.82
527.74 608.43 682.44 736.46 812.51 891.5 1014.12 1377.611088.4 1210.23
527.74 610.02 682.53 736.55 812.72 891.5 1014.47 1088.95 1210.28 1383.37
531.95 610.07 683.72 740.21 815.41 901.45 1020.78 1090.61 1213.44 1384.63

 179

532.1 610.1 684.01 740.7 816.34 905.75 1021.7 1090.67 1214.66 1386.25
534.71 610.17 684.04 741.71 816.66 905.75 1022.19 1091.02 1218.78

611.38 686.56 741.73 817.48 907.44 1022.95 1093 1218.79 1409.32
538.11 620.66 687.27 744.57 817.52 917.78 1023.29 1097.96 1220.15 1419.51

547 621.71 1424.64687.45 747.8 821.31 919.41 1024.31 1098.55 1220.98
547.04 622.04 687.62 757.93 821.4 922.41 1028.24 1101.42 1224.15

550.04 622.18 687.93 758 822.39 922.47 1032.25 1102.21 1224.6

1392.41
538.06

 180

	Hardware Accelerated Protein Identification
	ABSTRACT
	Glossary
	
	
	
	
	
	
	
	TERM

	DEFINITION

	Introduction
	Introduction to Proteins and Protein Identification
	Thesis Motivation
	Thesis Organization

	Background
	Introductory Biology
	Deoxyribonucleic Acid (DNA)
	Protein Formation

	Mass Spectrometry Based Methods of Protein Sequencing
	Tandem Mass Spectrometry
	A New Search Strategy
	Requirements of the New Approach

	Practical Considerations
	Reading Frames and Complementary Strands
	Alternative Splicing
	Unknown Bases in the Genome
	Repeat Sequences in the Genome
	Significance of Matches
	The MOWSE Algorithm

	Prior Work in Software and Hardware Based Genome Searching
	Software Searches of the Genome
	Hardware Searches of the Genome

	Programmable Hardware Platform
	Field-Programmable Gate Arrays
	Hardware Description Languages (HDLs)
	Transmogrifier 3-A (TM3A)

	Summary

	Design of a Hardware Search Engine, Mass Calculator and Scoring Unit
	Overview
	Genome Database Coding and Compression
	Peptide Query
	Search Engine
	Search Engine Operation
	Peptide Comparison Unit
	Codon Unit
	Interpreting Search Engine Outputs
	Summary of Search Engine Design and Operation

	Tryptic Mass Calculation
	Overview
	Calculator Architecture
	Mass Calculation
	Mass LUTs and Detection Units
	Complementary Strand Calculations
	Six Frame Mass Calculation
	Summary of Tryptic Mass Calculator Operations

	Scoring unit
	Overview
	True PIS Storage
	Histogram Construction
	Score Calculation
	Mass Matching
	Significance Calculation for Matching Masses

	Six Frame Score Calculations

	Design Summary

	Implementation Details & Results
	Overview
	Assumptions and Approximations
	Using Simpler Organisms
	Implementation Parameters
	
	
	
	
	NUM_CODONS
	9 codons
	9 codons
	ADDR_BITS
	9 bits
	9 bits
	NUM_MASS_BITS
	20 bits
	20 bits
	HIST_ADDR_BITS
	7 bits
	7 bits
	NUM_BINS
	128 bins
	128 bins
	NUM_FREQ_BITS
	8 bits
	8 bits

	Implementation Details
	Functionality
	Design Implementation on the TM3A
	Design Implementation on Modern FPGAs
	Software
	System Cost and Resource Estimation
	Cost of Software Platform
	Cost of Hardware Platform for Full System
	Cost of Hardware Platform for Standalone Search Engine
	Cost Comparison
	Framework for estimating system cost

	Summary

	Conclusions & Future Work
	Thesis Summary
	Thesis Contributions
	Future Work

	References
	Appendix A. Mass Spectrometry for Protein Identification
	Appendix B. VHDL Source Code
	Appendix C. Scoring and Distance Results for Sample Peptides
	Appendix D. Precursor Ion Scan (PIS) Masses

